

Paleoclimatic implications of glacial fluctuations in the Sierra Nevada del Cocuy, Northern Andes, Colombia, during the Lateglacial and Ho...

G Bromley, J Herbert, S Londoño, A Hidy, M Kelly, A Doughty, S Restrepo-Moreno, P Galloway

June 2025

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

1 **Paleoclimatic implications of glacial fluctuations in the Sierra Nevada del Cocuy, Northern**
2 **Andes, Colombia, during the Lateglacial and Holocene**

4 Jordan N. Herbert¹, *Gordon R.M. Bromley^{2,3}, Meredith A. Kelly¹, Alice M. Doughty⁴, Daniel
5 Ruiz-Carrascal⁵, Sergio A. Restrepo-Moreno^{6,7}, Santiago Noriega Londoño⁸, Peter Galloway¹,
6 Alan J. Hidy⁹

8 ¹*Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, USA*

9 ²*Geography, University of Galway, Galway H91 TK33, Ireland*

10 ³*Climate Change Institute, University of Maine, Orono, ME 04469, USA*

11 ⁴*School of Earth & Climate Sciences, University of Maine, Orono, ME 04469, USA*

12 ⁵*Innovation and Technological Development Directorate, EAFIT University, Medellín, Colombia*

13 ⁶*Departamento de Geociencias y Medio Ambiente, Universidad Nacional de Colombia, Medellín,
14 Colombia*

15 ⁷*Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA*

16 ⁸*Grupo de Estudios Tectónicos, Departamento de Medio Ambiente y Desarrollo, Universidad
17 Nacional de Colombia, Medellín, Colombia*

18 ⁹*Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory,
19 Livermore, CA 94550, USA*

20 *Corresponding author

22 **Highlights:**

- 23 • Relict moraines in the northern Colombian Andes reveal changes in tropical air
24 temperature over the last ~16,000 years.
- 25 • Colombian glaciers advanced during the Antarctic Cold Reversal and retreated during the
26 Younger Dryas period, similar to the broader tropical pattern of cryospheric change.
- 27 • Lateglacial climate shifts are potentially linked to ocean-atmosphere heat transfer and
28 atmospheric vapor flux.
- 29 • The magnitude of Lateglacial temperature shifts are minor relative to modern warming.

31 **Keywords:** Lateglacial, Holocene, Glacial, Geomorphology, Quaternary, Tropics, Andes,
32 Colombia, Cosmogenic Beryllium-10

33

34 **Abstract:** The reconstruction of former mountain glaciers from geomorphic mapping and
35 cosmogenic-nuclide surface-exposure dating provides a unique opportunity to infer patterns of
36 past terrestrial climate variability. Tropical mountain glaciers are particularly valuable as there are
37 comparatively few terrestrial climate proxies at equatorial latitudes relative to higher latitudes. As
38 the single largest climate zone on Earth, the tropics play an outsized role in mediating global
39 climate via the ocean-atmosphere transfer of latent heat and water vapor. Nonetheless, there
40 remains a persistent gap in our understanding of how the tropics influenced – or were influenced
41 by – the high-magnitude climate shifts of the Late Pleistocene, and whether this high-energy region
42 simply responded to extratropical forcing or was itself a driver of global climatic change. To help
43 address this knowledge gap, we analyzed geologic evidence for past glacial fluctuations in three
44 adjacent valleys in the Sierra Nevada del Cocuy, the highest subrange of the Eastern Cordillera in
45 the Colombian Andes, to provide a terrestrial record of atmospheric temperature during the latter
46 part of Termination 1. Coupled with geomorphic mapping and paleo-snowline reconstructions, our
47 beryllium-10 glacial chronology indicates that glaciers in the humid inner tropics underwent
48 pronounced growth and gradual decay during the Antarctic Cold Reversal and Younger Dryas
49 periods, respectively, following a trend that, according to directly dated moraine records from
50 throughout both polar hemispheres, appears to have been global. While the specific mechanism(s)
51 behind this large-scale behavior remains to be corroborated, we revisit the hypothesis that ocean-
52 atmosphere heat transfer and water vapor flux are key drivers of abrupt Lateglacial temperature
53 fluctuations. Subsequent to the Lateglacial, deglaciation of the Sierra Nevada del Cocuy
54 accelerated during the Early Holocene, a pattern also observed in other tropical glacier records.
55 More recently, the magnitude of snowline rise and glacier retreat over the last two centuries
56 supports the view that modern tropospheric warming is anomalously strong at least relative to the
57 last ~16,000 years.

58

59 **1. Introduction**

60 The tropics (23.5°N–23.5°S) are the primary source of heat energy and water vapor for Earth's
61 climate system (Seager and Battisti, 2007; Chiang, 2009) and, as such, have the potential to

62 propagate climatic perturbations rapidly and globally. Yet our understanding of the tropical role
63 in ice age cycles and abrupt climate change is far from complete, reflecting the relatively low
64 spatial coverage of detailed paleoclimate records from equatorial latitudes. This dearth of
65 information is particularly acute at higher elevations, where recent assessments suggest the
66 magnitude of tropospheric temperature change is amplified by moisture-driven fluctuations in the
67 lapse rate (Loomis et al., 2017; Garelick et al., 2022; Legrain et al., 2023). Compounding the
68 problem further, the geographic distribution of tropical paleoclimate datasets is far from uniform,
69 precluding accurate assessment of any latitudinal climate variability. For example, the tropical
70 Andean glacial-geologic record for the last glacial period is heavily skewed towards the Southern
71 Hemisphere (e.g., Bromley et al., 2009, 2011, 2016; Martin et al., 2020; Rodbell et al., 2009;
72 Shakun et al., 2015; Smith et al., 2005), while the northern tropical Andes are represented by only
73 a handful of studies (e.g., Carcaillet et al., 2013; Jomelli et al., 2014; Angel et al., 2016; Stansell
74 et al., 2010). Our new record from Cocuy thus helps address a persistent gap in our understanding
75 of Lateglacial terrestrial temperature in the northern tropics.

76 Glaciers are highly sensitive indicators of mean climate conditions (Oerlemans, 1989), and
77 reconstructions of past glacier behavior provide some of the clearest evidence for tropical
78 terrestrial climate variability (e.g., Jomelli et al., 2014). If sufficiently well-dated, such geologic
79 records can be used to test new hypotheses surrounding the mechanisms and spatial impact of
80 millennial-scale climate shifts during the last glacial-interglacial transition, known as Termination
81 1 (~19–11 ka). Our study is motivated by the need for robust tropical glacial chronologies from
82 both polar hemispheres to assess the geographic extent and plausible mechanisms of millennial-
83 scale climatic shifts during Termination 1.

84 Recent refinement of cosmogenic nuclide production rates in low-latitude, high-altitude
85 applications (Blard et al., 2013; Kelly et al., 2015; Martin et al., 2015) has greatly improved our
86 ability to date tropical glacial records directly and accurately, thereby providing a critical
87 foundation for comparing tropical paleoclimate data with global records. An attendant issue
88 relating to the use of glacier extents as paleoclimate proxies is whether factors other than climate
89 influence glacial configuration and moraine deposition (e.g., Barr and Lovell, 2014). This is
90 particularly important in the tropics, where glaciers are relatively small (typically $<1\text{ km}^2$) and thin
91 ($<100\text{ m}$) and, thus, potentially more sensitive than larger glaciers to topographic influences such
92 as headwall height, valley slope, and accumulation-area topography. A means to assess the

93 influence of topography on glacial extents is to develop and compare detailed records for multiple
94 glacial extents within a single area, for which climate conditions are relatively homogenous. Most
95 tropical mountain ranges are geographically compact and thus provide an ideal setting for
96 examining similarities and differences among multiple paleo-glacial systems.

97 In this paper, we compare moraine sequences corresponding to the Lateglacial period of
98 Termination 1 in three valleys of the Sierra Nevada del Cocuy (hereafter ‘Cocuy’), Colombian
99 Andes. By reconstructing changes in glacier equilibrium-line altitude (ELA) for each dated paleo-
100 glacier, we estimated the magnitude of Lateglacial temperature change at Cocuy. The result is a
101 new terrestrial record of tropospheric temperature from the northern Andes, which we use to
102 evaluate the relative timing and magnitude of key climate events within the tropics and globally.
103 Further, by comparing past glacier behavior in multiple adjacent catchments, we make a
104 preliminary examination of the topographic role in glacier configuration and, therefore, moraine
105 deposition. By identifying similarities among the multiple glacial systems, we have extracted
106 climatic information that cannot be drawn from a single valley or a limited number of landforms
107 (Balco, 2020).

108

109 **2. Geologic and climatic setting**

110 Positioned close to the northern limit of the tropical Andes, the Sierra Nevada del Cocuy (6.44° N,
111 72.29° W; Fig. 1) in the Eastern Cordillera is the highest sub-range of three Colombian cordilleras
112 (Western, Central, and Eastern) and culminates in the 5490 m asl summit of Ritacuba Blanco.
113 Centered on the cordillera’s syntactical bend, where significant local relief develops over an
114 antiformal lobe (Kammer et al., 2020), Cocuy constitutes one of the main foci of crustal
115 deformation and topographic build-up during the late Miocene’s Eu-Andina orogenetic
116 phase (Restrepo-Moreno et al., 2019). The structural orientation of the underlying Cretaceous
117 sedimentary lithologies (primarily resistant layers of white quartzose sandstone and conglomeratic
118 sandstones of the Une-Aguardinete Formation), which are arranged in thick strata with a general
119 dipping trend of 20–25° to the west (Fabre et al., 1984), results in an asymmetric sierra-like
120 topography at Cocuy, whereby low-gradient surfaces forming the western slopes contrast with
121 precipitous slopes forming the eastern flanks (Mendivelso, 2016); this orientation plays a key role
122 in local patterns of glaciation (see below).

123 Today, Cocuy hosts approximately 12 of the remaining non-volcanic glacial summits in
124 Colombia. Over the last five decades, the aerial extent of Cocuy's total glacier cover has declined
125 from $\sim 30 \text{ km}^2$ in 1987 to $\sim 15 \text{ km}^2$ in 2019 (López-Moreno et al., 2022; Molano et al., 2022).
126 Climatically, Cocuy is positioned in the inner tropics and as such experiences high year-round
127 humidity; precipitation ($\sim 1270 \text{ mm}$ rain annually: Sturm and Rangel, 1985) is derived primarily
128 from the Atlantic Ocean via the prevailing easterly airflow (Masiokas et al., 2020) and maximum
129 precipitation coincides with the spring and autumn passage of the Inter Tropical Convergence Zone
130 (ITCZ) (Masiokas et al., 2020; Rabatel et al., 2013). During the period 2007–2016, the average
131 0°C isotherm in the Cordillera Oriental was at $\sim 5050 \text{ m asl}$ (Rabatel et al., 2017), marginally higher
132 than earlier estimates of Cocuy glacier ELAs (4700–4900 m asl) based on mass balance
133 measurements (Helmens et al., 1997; Lachniet and Vazquez-Selem, 2005). Further, modern
134 variability in tropical freezing level height, and therefore glacier behavior, has been linked directly
135 to changes in equatorial Pacific sea surface temperatures (SSTs) (Bradley et al., 2003; Rabatel et
136 al., 2013; Ruiz-Carrascal et al., 2022).

137 In this study, we focus on the Lagunillas valley and one of its major tributaries, the
138 Bocatoma valley, located in the southern portion of Cocuy, and compare those results with the
139 moraine record from the Cardenillo valley on Ritacuba Negro, 15 km north of our site (Jomelli et
140 al., 2014, 2017) (Fig. 1). Lagunillas forms a broad south-to-north-oriented catchment draining the
141 southwestern side of the range for 15 km, where it joins the Río Cóncavo at 3290 m asl. In its
142 lower, northern half, the Lagunillas valley is relatively narrow and hemmed in by steep, densely
143 vegetated valley walls; the latter include the proximal slopes of high-relief Late Pleistocene lateral
144 moraines. Approximately 8 km up-valley from the Cóncavo confluence, the Lagunillas becomes
145 a lower gradient, broader valley (mean slope $\sim 7\%$) characterized by moraine-dammed wetlands
146 and open páramo vegetation, with a southern limit marked by a $\sim 4500 \text{ m}$ -high bedrock ridgeline.
147 The Río Bocatoma drains the Pan de Azúcar glacier and enters the Lagunillas valley from the east
148 immediately downstream of Laguna La Pintada (Fig. 2). In contrast to Lagunillas, Bocatoma
149 exhibits a steep profile (mean $\sim 20\%$), dropping 750 m over a distance of $<4 \text{ km}$ and constrained
150 throughout by precipitous rock walls (Fig. 3). Completing this study, the Cardenillo valley drains
151 the glaciated western flank of Ritacuba Negro at the northern end of the range (Jomelli et al., 2014)
152 (Fig. 1). Ritacuba Negro currently supports the range's most extensive glacier cover ($\sim 3.3 \text{ km}^2$)
153 between $\sim 4750 \text{ m asl}$ and the summit at 5350 m asl. Between ~ 3960 and 4300 m asl, where the

154 moraines investigated by Jomelli et al. (2014) are located (Fig. 4), the Cardenillo valley assumes
155 a broad glacial U-shape form with a gentle longitudinal profile (mean 7%) and low-gradient valley
156 walls; these topographic characteristics are typical of the main glaciated catchments at Cocuy.
157 Above 4300 m asl, the drainage becomes both broader and steeper (~20%), with ice-free portions
158 of the hillside dominated by bare, glacially molded bedrock.

159 Owing to their relative proximity to one another, we anticipate that our three target glacier
160 systems experienced similar climatologic conditions during the Late Pleistocene. Moreover, the
161 dominant lithology at all three sites is quartzose sandstone (quartz arenite), and thus ideal for ^{10}Be
162 surface-exposure dating.

163

164

165 **3. Prior glacial-geologic research at Cocuy**

166 Previous work on the paleoclimatology of Cocuy spans six decades, during which past
167 environmental conditions have been inferred from radiocarbon-dated pollen assemblages,
168 sedimentology, and expansive mapping of glacial geomorphology (Gonzalez et al., 1965; Helmens
169 et al., 1997; Kuhry et al., 1993; van der Hammen et al., 1980; van der Hammen and Hooghiemstra,
170 1995). All prior radiocarbon ages described below have been calibrated via the CALIB
171 Radiocarbon Calibration program v8.2html and the IntCal20 dataset (Reimer et al., 2020). During
172 the first such investigations in the study area, Gonzalez et al. (1965) and van der Hammen et al.
173 (1980) established pollen chrono-zones from lake and bog sediments retrieved from the Lagunillas
174 and Bocatoma valleys. Those authors inferred that the coldest conditions of the last ~48 kyr
175 occurred prior to 25 ka, with cool, dry climate persisting during the period 25–17 ka (Gonzalez et
176 al., 1965; van der Hammen et al., 1980). According to existing interpretations of the pollen record,
177 subsequent climate warming between ~17 and 15.6 ka was followed by cooling at ~15.6–14.7 ka,
178 after which warming resumed at ~14.7 ka (Kuhry et al., 1993; van der Hammen et al., 1980).
179 Finally, the *El Abra* stadial was interpreted as a cool tropical equivalent to the Younger Dryas
180 stadial (van der Hammen and Hoogheimstera, 1995).

181 Building on the initial geomorphologic work of Gonzalez et al. (1965), van der Hammen
182 et al. (1980) reported six discrete glacial drift units (Drifts 1–6, from oldest to youngest) preserved
183 throughout the range and assigned these to specific glacial stages on the basis of elevation, relative
184 weathering, and vegetation development. While the oldest unit, Drift 1, is spatially and temporally

185 undifferentiated, a calibrated basal radiocarbon age of 25.1 ± 0.4 cal ka BP (GrN 6907: 20,840 \pm
186 140 ^{14}C yr BP) from Laguna Ciega (3510 m asl), near the village of Guicán (Fig. 1), provides
187 minimum-limiting constraint for the overlying Drifts 2 and 3 (van der Hammen et al., 1980). On
188 this basis, van der Hammen et al. (1980) concluded that Drifts 2 and 3 correspond to glacial
189 advances that predated the Last Glacial Maximum (LGM: ~26–19 ka). Since these drift units
190 predate Termination 1, we do not discuss these deposits further in this paper.

191 The Drift 4 type area is the Lagunillas valley, where van der Hammen et al. (1980) reported
192 multiple well-preserved moraine sets corresponding to the last glacial cycle and Termination 1.
193 Within the upper Drift 4 sequence, at an elevation of 3880 m asl, Gonzalez et al. (1965) reported
194 a river-cut section in which laminated muds and organic sediments are exposed (section VL-V:
195 3880 m asl; Figs. 1, 3A). Those authors correlated this paleo-lacustrine unit with glacial meltwater
196 from the subsequent Drift 5 episode; if so, a radiocarbon date of $12,320 \pm 100$ ^{14}C yr BP (GrN
197 3247: 14.4 ± 0.4 cal ka BP) from the unit provides both a minimum-limiting age for the Drift 4
198 deposits and a maximum-limiting age for the Drift 5 moraines (Gonzalez et al., 1965).

199 Drift 5 was described by van der Hammen et al. (1980) as comprising “fine, high, broad
200 and curved bordering moraines” marking former ice-terminal positions, the lowermost of which
201 lies at ~3900–4200 m asl. In the Lagunillas valley, van der Hammen et al. (1980) mapped these
202 deposits solely in relation to the former Bocatoma glacier, which terminated on the Lagunillas
203 valley floor at 3950 m asl (Figs. 2, 3) and reportedly provided the fine-grained sediments exposed
204 in the VL-V section (Gonzalez et al., 1965). Farther north, van der Hammen et al. (1980) also
205 correlated Drift 5 with the large lateral moraine complex preserved in the Cardenillo valley on
206 Ritacuba Negro (Fig. 4), the focus of a more recent study by Jomelli et al. (2014).

207 According to van der Hammen (1980), the lowermost moraines preserved in the Cardenillo
208 valley correspond to Drift 4 and occur as isolated, low-relief ridge sections and mounds at
209 approximately 3960 m asl. Half a kilometer up-valley from the proposed Drift 4 limit, a set of
210 three well-defined left-lateral moraines marks the former extent of the Ritacuba Negro glacier at
211 some as-yet undetermined time during the Late Pleistocene. The left-lateral complex is traceable
212 for ~2 km as it rises along the southern valley wall, before becoming indistinct at 4275 m asl. In
213 contrast, the equivalent right-lateral moraines are discontinuous and less clearly defined. For
214 approximately one kilometer upslope of this former glacier position, a series of lower-relief (<10
215 m high) lateral-terminal ridges marks successive stages of a thinner ice tongue that terminated

216 between ~3900 and 4000 m asl (Fig. 4), and which includes moraines M16, M17, and M18 as
217 mapped by Jomelli et al. (2014). Those authors reported mean ^{10}Be ages for the M16–M18
218 moraines of between 14.0 ± 0.3 and 13.4 ± 0.3 ka.

219 This Lateglacial suite is overlain in turn by a conspicuous complex of boulder-covered
220 moraine ridges that van der Hammen et al. (1980) assigned to their Drift 5, and which Jomelli et
221 al. (2014) ^{10}Be dated to between 11.8 ± 0.3 and 11.1 ± 0.3 ka (moraines M13–M15; Fig. 4). This
222 complex is relatively massive, towering ~80 m above the valley bottom and comprising >10
223 arcuate moraines. Enclosed by this complex is a small, fluvially incised wetland in which several
224 discontinuous moraine fragments mark recessional stages of the Ritacuba Negro glacier (Jomelli
225 et al., 2014). The youngest and highest glacial deposit mapped by van der Hammen, Drift 6, is
226 characterized by conspicuous, unweathered moraines with minimal vegetation cover, and marks
227 the most recent widespread glacial advance. In the Cardenillo valley, five ^{10}Be ages from
228 unweathered moraines confirm that Drift 6 is Late Holocene in age (moraines M4 and M12;
229 Jomelli et al., 2014).

230 The rich Quaternary stratigraphy preserved at Cocuy has the potential for providing directly
231 dated geological records of past climate variability in the humid inner tropics and for placing
232 modern climate change in a longer-term context. Advancing from this foundation, the remainder
233 of this paper reports the glacial-geologic perspective on the Lateglacial period of Termination 1;
234 the LGM and early Termination 1 portions of the record are the focus of a subsequent paper. As
235 part of the current study, we report the recalculated ages of Jomelli et al. (2014) for comparison
236 with our new data.

237

238 **4. Methods**

239 **4.1 Glacial-geomorphic mapping based on remote sensing and field observations**

240 We constructed glacial-geologic maps for our target valleys: upper Lagunillas and Bocatoma (Fig.
241 5). For both, we first used Google Earth imagery to draft preliminary glacial-geologic maps, which
242 served subsequently as guides during our fieldwork in 2012, 2018, and 2023. We then drafted
243 geomorphic maps using QGIS coupled with satellite imagery derived from the Centre National
244 d'Etudes Spatiales (image date 17 December, 2017) and the 12.5 m-resolution Alos Palsar digital
245 elevation model. Each map includes key glacial depositional features and contextual non-glacial

246 features (e.g., lagoons, rivers). Our assessment of the Cardenillo valley is based solely on remotely
247 sensed imagery and the prior survey-based mapping of Jomelli et al. (2014, 2017).

248

249 **4.2 Beryllium-10 surface-exposure dating**

250 We sampled moraines in the Lagunillas and Bocatoma valleys for cosmogenic ^{10}Be surface-
251 exposure dating, targeting large, stable quartz arenite boulders located on moraine crests to
252 minimize the potential influences of post-depositional movement and shielding by sediment, snow,
253 or vegetation (Balco, 2011) (Fig. 6). We also collected samples from boulders and bedrock located
254 immediately outside moraine ridges to provide broader temporal context for moraine formation.
255 We processed 36 samples from Lagunillas and Bocatoma valleys (Table 1). In the University of
256 Galway's Palaeoenvironmental Research Unit, we isolated quartz from the whole-rock samples
257 using heavy-liquid density, magnetic separations, and progressive leaching in hydrofluoric/nitric
258 acid. In the laboratory at Dartmouth College, we spiked samples using a beryllium 9 carrier made
259 from a deeply buried beryl crystal and used ion chromatography to extract beryllium from the pure
260 quartz, following methods modified from Schaefer et al. (2009). We measured $^{10}\text{Be}/^{9}\text{Be}$ ratios of
261 the samples at the Center for Accelerator Mass Spectrometry, Lawrence Livermore National
262 Laboratory.

263 In total, we processed six batches of samples, with one process blank per batch; blank
264 corrections were made by calculating the number of ^{10}Be in the blank and subtracting this number
265 from each sample in the respective batch. Blank $^{10}\text{Be}/^{9}\text{Be}$ ratios range between 9.95×10^{-17} and
266 2.53×10^{-16} , representing $< 2\%$ (and typically $< 1\%$) of the ratio for each sample measured, and
267 sample measurement errors are 1.6–2.2% (Table 1). To calculate surface-exposure ages from ^{10}Be
268 concentrations, we used version 3 of the UW online calculator
269 (https://hess.ess.washington.edu/math/v3/v3_age_in.html) in conjunction with the Quelccaya ^{10}Be
270 production rate (Kelly et al., 2015). All input data and production rate data for this calculator are
271 provided in Table S1. This production rate was calibrated against ^{14}C -dated moraines in the
272 Peruvian Andes, in a similar geomagnetic and geographic setting as Cocuy, and thus we consider
273 it to be appropriate for this study. Below, we discuss ^{10}Be ages calculated using the time-invariant
274 ("St") scaling of Lal (1991) and Stone (2000); we also report ^{10}Be ages determined using other
275 scaling methods (e.g., "Lm" (Lal, 1991; Stone, 2000; Nishiizumi et al., 1989) and "LSDn" (Lifton

276 et al., 2014)) in Table 2. For consistency, we recalculated published ^{10}Be ages from the Cardenillo
277 valley with the same production rate and scaling methods (Tables 2 and S1; Fig. 4).

278 We report individual ^{10}Be ages with both their respective internal errors, reflecting
279 accelerator mass spectrometry (AMS) measurement uncertainties, and external errors, which
280 includes the systemic production rate uncertainty (Table 2). For landforms with two or more ^{10}Be
281 ages, we calculated both the mean and peak ages to establish the likeliest landform age. Further,
282 for each population, we calculated the standard deviation of the mean and the reduced weighted
283 mean uncertainty, and applied the larger of the two as our reported age uncertainty. We identify
284 ^{10}Be ages that are outliers on moraines using a reduced chi-squared analysis (Balco, 2011) and
285 considering the stratigraphic order of moraines. Since the surface-exposure age of a boulder on a
286 moraine represents the final occupation of that position by ice, we interpret moraine ages as
287 indicating the onset of moraine abandonment due to glacier retreat.

288

289 **4.3 ELA and paleo-temperature reconstruction**

290 Glacier mass balance is influenced by both temperature (energy) and precipitation (mass). In the
291 humid inner tropics, where precipitation remains relatively stable year-round, glacier mass balance
292 is dominated by the availability of energy for melting ice (Kaser and Osmaston, 2002; Taylor et
293 al., 2006; Rupper and Roe, 2008; Sagredo et al., 2014). Accordingly, fluctuations in past glacier
294 ('paleo-glacier') length at Cocuy are a first-order indication of air temperature variability (ΔT).
295 For a glacier in equilibrium with climate, the steady state ELA is the average elevation at which
296 annual accumulation is equal to annual ablation (Porter, 2001; Benn et al., 2005). Thus, comparing
297 the ELAs of former glacial extents, reconstructed from relict moraines, affords a powerful tool for
298 interpreting past climate change.

299 We used the ArcGIS toolboxes provided by Pellitero et al. (2015, 2016) to calculate paleo-
300 ELA values for former glacier extents at Cocuy. This approach first reconstructs the paleo-glacier
301 surface following the model outlined in Benn and Hulton (2010) and then calculates ELAs for the
302 paleo-glacier surface reconstruction using the accumulation-area ratio (AAR) and area-altitude
303 balance ratio (AABR) methods. For the modeling element, we reconstructed paleo-glaciers for
304 each dated moraine using a standard basal shear stress value of 100 kPa (Benn and Hulton, 2010;
305 Pellitero et al., 2016). We traced each mapped moraine extent in ArcGIS and established the
306 catchment of former accumulation areas with the ArcGIS Spatial Analyst.

307 The AAR method assumes a glacier's accumulation area occupies a calculable proportion
308 of the total glacier area (Porter, 2000), which in turn depends on such factors as lapse rate and
309 glacier hypsometry (Benn et al., 2005). Whereas temperate glaciers typically exhibit AARs of
310 ~0.6, this value is higher in the tropics due to the absence of thermal seasonality; glaciers undergo
311 year-round ablation and thus require larger accumulation zones to balance mass loss (Kaser and
312 Osmaston, 2002). Idealized simulations of tropical AARs (0.82: Kaser and Osmaston, 2002) are
313 similar to the optimal AAR (~0.80) reported by a recent analysis of nine paleo-glaciers in the
314 Venezuelan Andes (Stansell et al., 2017). The AABR method also incorporates glacier mass-
315 balance and hypsometry and is considered more representative of the true glacier ELA (Benn et
316 al., 2005; Kaser and Osmaston, 2002). Balance ratios (BRs, used in the AABR method) for mid-
317 latitude glaciers typically are in the range 1.8–2.2 (Benn and Lehmkuhl, 2000; Rea, 2009); tropical
318 BRs are generally higher, reflecting the larger AARs (Rea, 2009), with values as high as 25
319 reported for some tropical systems (Benn and Evans, 1998). We present ELAs calculated with a
320 range of plausible AARs and BRs in Table 3.

321 We quantified ΔT for each dated moraine extent by comparing a paleo-ELA to a reference
322 ELA and applying an appropriate lapse rate to the offset. This method assumes that glacial
323 fluctuations are primarily a response to changes in atmospheric temperature, with precipitation
324 playing a relatively minor role. This first-order relationship is confirmed for the humid inner
325 tropics by studies of extant and former glaciers, which highlight the impact of high year-round
326 precipitation on glacier mass-balance gradients and, thus, thermal sensitivity (Benn et al., 2005;
327 Favier et al., 2004; Hastenrath, 2009; Rupper and Roe, 2008; Sagredo et al., 2014). A second
328 variable in deriving ΔT from ΔELA is the atmospheric lapse rate. Today, inner tropical
329 environments at elevations <5000 m asl generally experience a moist adiabatic lapse rate of
330 approximately 5.5°C/km (Loomis et al., 2017), significantly lower than the global mean
331 environmental lapse rate (6.5°C/km) (Barry and Chorley, 2003). Prior estimates based on
332 meteorological data suggest modern lapse rates for Colombia of ~5.7°C/km (DeForest Safford,
333 1999; Sturm and Rangel, 1985), although some studies reported values closer to 6.5°C/km for the
334 Cocuy region (Kuhry et al., 1993; van der Hammen and Gonzalez, 1960).

335 Recent alkenone paleothermometry from tropical African lakes documents a lapse rate
336 during the LGM ($6.7 \pm 0.3^\circ\text{C/km}$) that was considerably steeper than at present ($5.8 \pm 0.1^\circ\text{C/km}$)
337 (Loomis et al., 2017; Garelick et al., 2022). To date, however, no similar studies have been

338 conducted in South America. Evaluating ELA reconstructions from Venezuela, Stansell et al.
339 (2007) suggested that the LGM lapse rate for the northern Andes could have been moderately
340 steeper than present, whereas pollen-inferred estimates are inconclusive (Bakker, 1990; Farrera et
341 al., 1999). Acknowledging this uncertainty, we follow the approach of Stansell et al. (2007) and
342 employ a range of lapse rates between 5 and 7°C/km in our ELA-based estimates of ΔT . For a
343 reference ELA, we used the 1955 CE values for the Pan de Azúcar and Ritacuba Negro glaciers
344 reported by López-Moreno et al. (2022) based on aerial photography from that year (Agustín
345 Codazzi Geographic Institute) (Table 3). Since the Lagunillas valley is too low to have supported
346 Late Holocene glaciers, we employed the adjacent Pan de Azúcar value (Table 3) as a reference
347 ELA for this catchment. We take the 1955 CE glacial configuration as representing Cocuy
348 temperatures prior to significant anthropogenic warming.

349

350 5. Results

351 5.1 Glacial geomorphology

352 Following retreat from the Drift 4 moraines located farther down-valley (van der Hammen et al.,
353 1980), the Lagunillas system separated into two distinct glaciers: a north-flowing system
354 occupying the upper Lagunillas valley above Laguna La Pintada (3960 m asl) and a west-flowing
355 tongue draining Pan de Azúcar via the Bocatoma valley (Fig. 2). In this section, we first describe
356 the upper Lagunillas stratigraphy before reporting on the Bocatoma stratigraphy; the glacial
357 stratigraphy of the Cardenillo valley was reported previously by Jomelli et al. (2014).

358

359 *Lagunillas valley*

360 Immediately south of Laguna La Pintada, the broad valley bottom is dominated by ice-molded
361 bedrock overlain with a thin, patchy till cover and perched glacial boulders. Within 200–600 m of
362 the lagoon, however, and damming Laguna Cuadrada, a suite of well-preserved prominent terminal
363 and lateral moraine ridges defines the former terminus of the Lagunillas glacier during the
364 culmination of a significant advance. The complex comprises three principal ridges (hereafter
365 termed the Pintada moraines; Fig. 2) that, despite their moderate relief (2–10 m), are conspicuous
366 in their uniformity of form and their lateral continuity. The outer ridge can be traced for almost 2
367 km as it crosses the corrugations of the valley floor between 4020 and 4070 m asl (Figs. 2, 5).
368 Ridge crests are mantled with quartz arenite boulders, many of which exhibit clear morphological

369 evidence for subglacial molding. Proximal to the Pintada moraines, more than 30 well-defined
370 ridges, themselves forming five broad groupings, describe the active southward (up-valley) retreat
371 of the Lagunillas ice margin over ~2.5 km (Figs. 2, 5); the highest of these recessional moraines is
372 located at ~4200 m asl. All moraines investigated in the upper Lagunillas catchment exhibit similar
373 degrees of soil development, vegetation cover, and relatively minor boulder surface weathering;
374 several impound sizeable lakes (Fig. 3).

375

376 *Bocatoma valley*

377 Today, ice in the Bocatoma drainage is restricted to elevations above 4730 m asl on the
378 southwestern slopes of Pan de Azúcar (Figs. 2, 6). During Lateglacial times, however, the
379 Bocatoma glacier constructed an extensive complex of prominent, high-relief lateral moraines and
380 well-preserved arcuate terminal ridges on the floor of the Lagunillas valley, immediately north of
381 the moraine-impounded Laguna La Pintada (Fig. 2). Our investigation revealed that, rather than
382 one single complex, the lower Bocatoma moraines form two discrete sequences (Fig. 2), with
383 markedly different physical characteristics. The outer sequence, which we refer to as the Sisuma
384 moraines, comprises five terminal moraine sections. These moraines are typically 2–4 m in relief
385 and exhibit broad, vegetated crests with sparse quartz arenite boulders. Boulder surfaces are
386 moderately pitted and exfoliated. Unlike the inner suite, the outer moraines lack significant lateral
387 components, these presumably having been removed by the Río Lagunillas. Moreover, the most
388 distal terminal ridges in this suite are partially obscured by colluviated till on the western valley
389 side.

390 The inner sequence is dominated by a well-defined terminal moraine, located immediately
391 west of the river channel, and a pair of high-relief composite lateral moraines emanating from the
392 Bocatoma valley (Figs. 2, 3). In keeping with van der Hammen et al. (1980), we refer to these Drift
393 5 deposits as the Bocatoma moraines. The terminal moraine is 2–3 m tall on its distal side but as
394 much as 4–5 m tall on the proximal side, where it has been incised by fluvial action. The crest is
395 broad and moderately vegetated, with a concentration of large (>2 m diameter) quartz arenite
396 boulders mantling the southern half of the landform. Below the surface, recent excavations have
397 exposed glacio-tectonized units of laminated blue-gray clay (Fig. 6), indicating that the moraine is
398 at least partially constructed of reworked lacustrine sediments and, thus, was formed by a glacier
399 readvance. Inboard of the principal terminal ridge, a series of lower-relief bouldery moraines

400 marks the active eastward retreat of the glacier terminus into the Bocatoma valley itself, at the
401 mouth of which a bouldery arcuate terminal moraine at ~4025 m asl marks the final period of
402 deposition in this complex (Figs. 3, 5). The Bocatoma terminal moraine sequence spans ~80 m in
403 elevation over a distance of ~400 m, making it by far the steepest transect in this study. Flanking
404 the terminal moraines, the sharp-crested lateral ridges exhibit a maximum relief of 50 m and can
405 be traced for over a kilometer east of the former terminus (Figs. 2, 5), until they become indistinct
406 at ~4260 m asl.

407 Upvalley of the prominent Bocatoma landforms, two sets of relatively subdued bouldery
408 moraines, the lower at ~4090 m asl and the upper at ~4130 m asl, are separated by a peat wetland
409 and mark subsequent stages of glacial deposition within the valley (Figs. 2, 5). The moraines of
410 each unit have a vegetation cover similar to the Bocatoma moraines, while the constituent boulder
411 surfaces are similarly pitted and exfoliated. An abrupt transition occurs at 4200 m asl, where the
412 vegetated moraines have been overlain by relatively fresh, sparsely vegetated deposits
413 corresponding to Drift 6 of van der Hammen et al. (1980) (Fig. 3). At the time of writing, the ice
414 margin at the head of the Bocatoma catchment was located on bare molded bedrock at ~4600 m
415 asl on the southern flanks of Pan de Azúcar.

416

417 **5.2 Beryllium-10 moraine chronologies**

418 *Lagunillas valley*

419 We ^{10}Be dated 18 boulders located on moraines in the upper Lagunillas valley (Fig. 5; Tables 1,
420 2). Ten samples from the three closely spaced Pintada moraines yield ages ranging from $13.2 \pm$
421 0.2 to 13.9 ± 0.3 ka (Fig. 5); an additional sample from the outer moraine (SNC-12-02: 15.1 ± 0.4
422 ka) returned an age $>2\sigma$ beyond the mean and is rejected as an outlier. While the oldest sample in
423 our dataset (SNC-12-03: 13.9 ± 0.3 ka) is from the outer crest, there is no significant age difference
424 among the three moraines and, thus, we consider them as a unit, with mean and peak ages of 13.7
425 ± 0.4 ka and 13.6 ka, respectively (Fig. 5). Immediately down-valley (north) of the Pintada
426 moraines, two distal boulders located on the indistinct crests of low-relief (~1 m tall) recessional
427 moraines give ages of 15.6 ± 0.3 and 16.3 ± 0.3 ka and constrain the time of deglaciation prior to
428 deposition of the Pintada complex (Fig. 5). As this deposit corresponds stratigraphically to the
429 Sisuma moraines, so we refer to the unit collectively as Sisuma drift. Approximately 0.5 km up-
430 valley of the Pintada moraines, an age from the prominent moraine bounding Laguna Cuadrada to

431 the south yielded an age of 9.4 ± 0.2 ka (SNC-12-08: Fig. 5; Table 2); this age is out of stratigraphic
432 order with the younger moraines farther up-valley and we reject it as an outlier. An age from the
433 moraine south of Laguna La Atravesada suggests abandonment of this limit at 11.6 ± 0.2 ka, while
434 three boulders on the uppermost prominent moraine in the valley, adjacent to Laguna La Parada,
435 yielded mean and peak ages of 11.4 ± 0.1 ka and 11.4 ka, respectively (Fig. 5).

436

437 *Bocatoma valley*

438 Four boulder samples on the largest and innermost Sisuma moraine crest yield ^{10}Be ages ranging
439 from 16.1 ± 0.3 to 17.1 ± 0.3 ka, with mean and peak ages of 16.6 ± 0.4 ka and 16.7 ka, respectively
440 (Fig. 5). A fifth sample is 15.2 ± 0.3 ka, which is sufficiently younger than the main population to
441 be considered an outlier. Inboard of the Sisuma moraines, six boulders on the large outer Bocatoma
442 terminal moraine are 12.1 ± 0.2 and 13.3 ± 0.2 ka, with mean and peak ages of 12.7 ± 0.4 ka and
443 12.6 ka, respectively (Fig. 5). Three samples of boulders on the inner Bocatoma terminal moraine
444 range from ~ 10.9 to 11.5 ka (mean 11.2 ± 0.3 ka; peak 11.3 ka) (Fig. 5).

445 To place the Bocatoma complex within a broader temporal context, we also ^{10}Be dated
446 samples from higher elevation in the valley. A single boulder embedded in a minor recessional
447 ridge at 4180 m asl, ~ 1 km up-valley of the inner Bocatoma terminal moraine, yielded an age of
448 10.7 ± 0.2 ka (SNC-12-12) (Fig. 5); stratigraphically, this vegetated landform is part of Drift 5 of
449 van der Hammen et al. (1980). Within 90 m of that sample, two boulders located on the outer ridge
450 of the overlying fresh deposits returned ages of 340 ± 10 and 620 ± 15 years (mean 0.5 ± 0.2 ka)
451 (Fig. 5; Table 2). Finally, a single sample comprising striated, ice-molded bedrock collected from
452 within 2 m of the 2012 ice margin returned an exposure age of $\sim 30 \pm 5$ years (Fig. 5). We note this
453 value is statistically indistinguishable from a subsequent measurement of quartz from the same
454 sample reported by Gorin et al. (2024).

455

456 *Cardenillo valley*

457 Jomelli et al. (2014, 2017) determined forty-six ^{10}Be ages of boulders on eight moraines in the
458 Cardenillo valley. We recalculated their ages using the same production rate and scaling scheme
459 as for our own data, and report those recalculated ages in Table 2 and Figure 4. The recalculated
460 ages differ from the originally published values by $< 1\%$. All samples marked as statistical outliers
461 were identified as such by the original authors. Five recalculated ages from the outermost sampled

462 moraine ('M18' of Jomelli et al., 2014) range between 12.8 ± 0.8 and 14.6 ± 0.4 ka (mean $13.8 \pm$
463 0.3 ka; peak 14.5 ka) (Fig. 4; Table 2), while the next sampled moraine ('M17') returns four
464 recalculated ages between 13.8 ± 0.8 and 14.4 ± 0.7 ka (mean 14.1 ± 0.1 ka; peak 14.1 ka).
465 According to Jomelli et al. (2014), the 'M16' moraine comprises two separate ridges, one located
466 on the southern valley wall and the second ~ 280 m upvalley on the northern valley wall. The lower,
467 southern moraine ridge has ages between 13.6 ± 0.3 and 14.3 ± 0.8 ka (mean 13.9 ± 0.2 ka; peak
468 13.9 ka), while the higher, northern moraine dates to between 12.4 ± 0.7 and 13.7 ± 1.1 ka (mean
469 13.0 ± 0.4 ka; peak 13.1 ka) (Fig. 4; Table 2). Ages from the M16 moraine have a normal
470 distribution with a mean age of 13.4 ± 0.3 ka and a peak age of 13.8 ka.

471 A minor ridge on the valley floor ('M15') has ages that range from 11.6 ± 0.5 to 12.2 ± 0.4
472 ka (mean 11.9 ± 0.2 ka; peak 12.0 ka). Immediately upvalley of M15, the voluminous moraine
473 complex assigned by van der Hammen et al. (1980) to Drift 5 yields thirteen ages. Nine on the
474 main 'M14' crest range from 10.9 ± 0.3 to 12.4 ± 0.5 ka (mean 11.4 ± 0.5 ka; peak 11.2 ka), and
475 four on the inner 'M13' crest range from 9.8 ± 1.0 to 11.9 ± 0.8 ka (mean 10.9 ± 0.4 ka; peak 11.0
476 ka) (Fig. 4; Table 2). Two ages from a *roche moutonnée* ~ 0.5 km inboard of M13 afford a mean
477 age of 11.2 ± 0.6 ka, while two boulders on an adjacent ridge segment give a mean of 1.1 ± 0.1 ka
478 (Fig. 4; Table 2). Finally, three samples from the youngest moraine ('M4') sampled by Jomelli et
479 al. (2014) give a mean age of 0.3 ± 0.2 ka (Fig. 4).

480

481 **5.3 Paleoglacier and ELA reconstructions**

482 The Pellitero et al. (2015, 2016) approach delivers a range of ELAs that we then compared to the
483 1955 ELA values (calculated via the same AAR or BR) to derive valley-specific Δ ELA values
484 (Table 3). The closest alignment in Δ ELA among the three catchments is provided by an AAR of
485 0.83, which agrees well with modeled and observed AARs (~ 0.8) for extant tropical glaciers
486 (Kaser and Osmaston, 2002; Stansell et al., 2007). In contrast, ELAs determined using the AABR
487 method were less conclusive with Δ ELA values converging at BRs between 19 and 24,
488 considerably higher than previous BR estimates for tropical glaciers that are typically < 5 (Lachnit
489 and Vázquez-Salem, 2005; Orvis and Horn, 2000; Quesada-Román et al., 2020; Stansell et al.,
490 2007). We note, however, that Δ ELAs determined with AARs of 0.8–0.85 are similar to ELAs
491 calculated with BRs of 5–25. Therefore, recognizing the greater uncertainty in BR suitability, we
492 have chosen to focus on ELAs calculated with an AAR of 0.8.

493 Whereas ELAs for the Lagunillas and Bocatoma paleo-glacier extents are broadly similar
494 throughout the Lateglacial (Fig. 7), the Ritacuba Negro ELA is consistently higher by ~200 m,
495 potentially reflecting the influence of topography on glacier behavior (see Discussion). For all
496 three glaciers, the magnitude of Lateglacial Δ ELAs are dwarfed by the pronounced shifts that
497 followed during the early and late Holocene (Fig. 7). In the Lagunillas valley, the entire span of
498 our glacial record corresponds to a Δ ELA of approximately +20 m, reflecting a net warming of as
499 little as ~0.1°C between 13.7 and 11.8 ka (Fig. 7). Nonetheless, the Lagunillas glacier lost ~50%
500 of its full Lateglacial length over that period (Fig. 7), underscoring the important role of glacier
501 configuration in climatic sensitivity (see Discussion).

502 The neighboring Bocatoma glacier also experienced relatively minor net changes during
503 the Lateglacial period: the difference between the ELA of the Sisuma advance at ~16.6 ka and that
504 of the major subsequent advance culminating at ~12.7 ka is only ~+20 m, corresponding to a
505 warming of ~0.1°C (Fig. 7). The gradual retreat of the terminus between ~12.7 and 11.2 ka reflects
506 a greater ELA rise (+35 m) and stronger warming (0.2°C). The net retreat of the Bocatoma
507 terminus over this period represents 15% of the glacier's full Lateglacial length (Fig. 7).
508 Immediately thereafter, our reconstruction depicts a +120 m rise in ELA during the early Holocene
509 in response to a 0.2°C warming, and a corresponding 25% loss of overall glacier length. Likewise,
510 at the northern end of the range, the net change in ELA on Ritacuba Negro was relatively minor
511 (+77 m) during the Lateglacial, reflecting a warming of <0.5°C, prior to a more pronounced rise
512 in ELA during the early Holocene (Fig. 7).

513 Since glacier records are rarely continuous, we are unable to resolve the full magnitude of
514 early Holocene Δ ELA (and the corresponding Δ T) on the Bocatoma and Ritacuba Negro glaciers,
515 where late Holocene moraines directly overlie those older deposits. Episodes of potentially high
516 ELAs that are not documented in our record are represented by dashed lines in Figure 7. In both
517 catchments, however, the absence of middle Holocene deposits is notable, while the magnitude of
518 Δ ELA and terminus retreat since deposition of the young (Drift 6) moraines is striking; both
519 glaciers lost >40% of their full Lateglacial length within ~300–500 years (Fig. 7).

520 By comparing Lateglacial ELA values to the 1955 CE reference ELA value, and using a
521 lapse rate of $6 \pm 1^\circ\text{C}/\text{km}$, our results indicate that temperatures at Cocuy were 2–3°C colder than
522 mid-20th Century values during the Lateglacial, and ~1–1.5°C colder during the Drift 6 event,
523 which we correlate broadly to the Little Ice Age.

524

525 **6. Discussion**

526 The new and recalculated ^{10}Be ages presented here track the behavior of three glacier systems at
527 Cocuy during the Lateglacial period and early Holocene; two datasets (Bocatoma and Ritacuba
528 Negro) extend that record into the Late Holocene. Here, we discuss the overall picture of terminus
529 fluctuations and implications of ΔELAs and climate variability.

530

531 *Chronology of Lateglacial ice margin fluctuations at Cocuy*

532 In the Lagunillas valley, ages of recessional landforms immediately outside the prominent Pintada
533 and Bocatoma moraines confirm that the glacier occupying this catchment during the LGM had
534 retreated far upvalley by ~ 16 ka; the glacier had separated into two ice tongues terminating close
535 to their Lateglacial limits (Fig. 2), ~ 6 km up-valley of the LGM terminus identified by van der
536 Hammen et al. (1980). This timing is significant because it adds to the growing body of glacial-
537 geologic evidence indicating that Heinrich Stadial 1 in the tropics was dominated by widespread
538 deglaciation (Bromley et al., 2009, 2011, 2016; Zech et al., 2007, 2010; Glasser et al., 2009;
539 Jackson et al., 2020), as it was at higher latitudes in both polar hemispheres (Denton et al., 2005,
540 2022; Foreman et al., 2022, 2025; Hall et al., 2013; Putnam et al., 2013, 2023; Schlüter, 1988;
541 Strand et al., 2022).

542 Following Heinrich Stadial 1, the Lagunillas and Bocatoma glaciers underwent expansion
543 during the Lateglacial period, when the Pintada and Bocatoma moraines were constructed. We
544 note that this scenario differs slightly from that of van der Hammen et al. (1980), who concluded
545 that the Pintada moraines were significantly older (e.g., Drift 4) than the Bocatoma moraines (Drift
546 5). That this event was indeed a readvance, as opposed to a pause in retreat, is substantiated by the
547 glacio-tectonized lake sediments incorporated into the Bocatoma terminal moraine (Fig. 6) and by
548 the considerable age offset (2–4 kyr) between the moraine sets and the older deposits immediately
549 distal to them (Fig. 5). Concurrently, advance/stabilization of the Ritacuba Negro glacier resulted
550 in deposition of the M18–M16 moraines in the Cardenillo valley (Jomelli et al., 2014). Whereas
551 earlier studies correlated the Drift 5 deposits with the *El Abra* (Younger Dryas) stadial (e.g., van
552 der Hammen et al., 1980), our ^{10}Be chronology confirms that the advance represented by the
553 Pintada, Bocatoma, and M18–M16 moraines predated the stadial altogether, as proposed by
554 Jomelli et al. (2014, 2017). In the low-gradient Lagunillas and moderate-gradient Cardenillo

555 drainages, the event is represented by multiple moraine ridges deposited between ~14 and 13 ka
556 (Figs. 4, 5). In the high-gradient Bocatoma valley, the composite nature of the terminal moraine
557 likely obscures earlier components of the Lateglacial moraine complex, with deposits from the
558 initial stages of the advance likely being buried under subsequent till layers. Nonetheless,
559 abandonment of this moraine at 12.7 ± 0.4 ka, at the onset of the Younger Dryas stadial, requires
560 that the advance itself occurred prior to this time, in broad accord with the neighboring valleys.

561 Recognizing that steeper glaciers are likely to be less sensitive to vertical shifts in ELA
562 than glaciers with lower-sloping surfaces (due to the smaller relative impact on accumulation area),
563 it is not surprising that the precipitous Bocatoma ice tongue maintained its full Lateglacial
564 configuration later than did the lower-gradient Lagunillas and Ritacuba Negro glaciers, whose
565 termini responded to subtle positive shifts in ELA (Fig. 7). Nonetheless, the Bocatoma record
566 affords a valuable glaciologic benchmark for the point at which climate warming finally
567 overwhelmed mass balance, driving the Bocatoma glacier into a state of gradual yet determined
568 retreat (Fig. 7). According to our ELA reconstructions, collective retreat of the Cocuy glacial
569 termini represents an atmospheric warming of no more than 0.5°C broadly coincident with the
570 Younger Dryas stadial (Fig. 7).

571

572 *Implications for Lateglacial climate*

573 The Lateglacial record from Cocuy aligns with a pattern that is consistent across the tropics and
574 described by directly dated moraines sequences, in which mountain glaciers advanced coincident
575 with (though not necessarily due to) the ACR before undergoing net retreat during the subsequent
576 Younger Dryas period. This behavior was reported previously by Stansell et al. (2017) and Jomelli
577 et al. (2014), the latter of whom synthesized Lateglacial moraine records from the northern and
578 southern tropical Andes and highlighted the synchrony among sites spanning a range of latitudes
579 and precipitation regimes. That study invoked a precipitation-cloudiness feedback to explain the
580 pan-equatorial uniformity, speculating that, without such a mechanism, glaciers north of the
581 equator would follow a more ‘traditional’ Northern Hemisphere Lateglacial climate signal (i.e.,
582 retreat during the ACR/Bölling-Alleröd and advance during the Younger Dryas) (Jomelli et al.,
583 2014). Indeed, this model of a north-south contrast in tropical temperature follows the concept of
584 a thermal bipolar seesaw (e.g., Broecker, 1998; Stocker and Johnsen, 2003) and has been explored
585 from both glacial (Rodbell and Seltzer, 2000; Jomelli et al., 2014, 2017; Vázquez-Selem and

586 Lachniet, 2017; Mey et al., 2020) and palaeoecological (e.g., Stansell et al., 2010; Handiani et al.,
587 2011; Urrego et al., 2016) vantages. We argue, however, that this concept, and thus the mechanism
588 proposed by Jomelli et al. (2014), is unnecessary for two reasons. First, the tropical atmosphere is
589 incapable of sustaining strong horizontal thermal contrasts above the surface layer due to minimal
590 Coriolis forcing, which results in an almost infinite Rossby radius of deformation and the rapid
591 dissipation of anomalies (Hastenrath, 1991; Pierrehumbert, 1995; Sobel et al., 2001; Folkins, 2006;
592 Williams et al., 2009). Recognizing that Termination 1 was characterized by strong latitudinal
593 shifts in precipitation and humidity linked to thermal anomalies at higher latitudes (McGee et al.,
594 2014; Rodbell et al., 2022), it is nonetheless physically implausible for tropical temperature – the
595 main driver of topical mass balance – to have differed measurably across the equator, or indeed
596 throughout the tropics. Second, a growing number of directly dated moraine records from mid and
597 high northern latitudes, including the North Atlantic region (Levy et al., 2016; Wittmeier et al.,
598 2020; Bromley et al., 2023; Putnam et al., 2023), reveal that glaciers there fluctuated broadly in
599 step with those in the tropics and southern mid latitudes (see above) during the Lateglacial, with
600 ACR-age advances and stadial retreat (Sagredo et al., 2018; Denton et al., 2022). From a glacial
601 perspective, at least, the case for antiphased hemispheric temperatures during Termination 1 rests
602 on dubious foundations.

603 Identifying the mechanism(s) responsible for this pattern of ACR-age glacier growth and
604 stadial retreat in tropical South America is fundamental to establishing the drivers of tropical
605 climate and the causes of abrupt climate changes, both at low latitudes and globally. One potential
606 mechanism is variability in the concentration of atmospheric greenhouse gases, primarily CO₂,
607 which has a clear relationship with Earth's radiative forcing and for which the wind-driven transfer
608 from ocean to atmosphere has been demonstrated (Anderson et al., 2009). At face value,
609 fluctuations in atmospheric CO₂ during the Lateglacial align broadly with the pattern of
610 cryospheric change at Cocuy: periods of glacier retreat coincided with rising atmospheric CO₂
611 (e.g., the YD), while glacier advance occurred during the CO₂ plateau at ~14.5–12.8 ka (Monnin
612 et al., 2001; Wendt et al., 2024). Further, a CO₂ driver could account for paleo-glaciers at all
613 elevations – from sea level to the high tropical Andes – responding similarly to air temperature as
614 they do today. Upon closer inspection, however, this hypothesis is undermined by the fact that the
615 cryospheric response appears too large relative to any significant change in CO₂-driven radiative
616 forcing. For instance, while the well-documented readvance of glaciers during the ACR reflects a

617 pronounced tropospheric cooling, we note that atmospheric CO₂ concentrations stabilized at that
618 time but did not drop appreciably (Blunier et al., 1997; Monnin et al., 2001; Wendt et al., 2024).
619 Similarly, our Lagunillas and Bocatoma chronologies indicate that both ice tongues had retreated
620 to (and potentially inside of) their respective Lateglacial limits by ~16 ka, as much as two millennia
621 before atmospheric CO₂ attained average Lateglacial concentrations. Together with further
622 discrepancies between the rate and timing of glacier change and atmospheric CO₂ (e.g., Putnam et
623 al., 2013; Bromley et al., 2016; Jackson et al., 2019; Strand et al., 2022), such inconsistencies
624 suggest that CO₂, although a powerful positive feedback (Ganopolski and Kalov, 2011), is unlikely
625 to have shaped Lateglacial tropical climate change.

626 An alternative driver is tropical ocean-atmospheric heat transfer and the accompanying
627 flux of tropospheric water vapor. Summarizing the potent role of this key greenhouse gas in
628 tropical temperature, Broecker (1997) suggested that changes in water vapor content could account
629 for the high magnitude of tropical cooling observed during glacial periods, while also affording
630 the means for abrupt, hemispherically synchronous climate shifts. The traditional argument against
631 water vapor as a climate driver, however, cites the difficulty in altering the atmospheric vapor
632 budget without first changing temperature, thus consigning water vapor to a positive feedback role.
633 Yet evaporation and latent heating are both fundamental to maintaining the water vapor budget,
634 such that the greenhouse capacity of water vapor and ocean-atmosphere heat transfer are
635 inseparable components of the same system that, together, influence the thermostat of the tropical
636 – and thus global (Pierrehumbert, 1999) – troposphere. This coupling is exemplified today by El
637 Niño-Southern Oscillation (ENSO): perturbations in the coupled latent heating–water vapor flux
638 over the tropical Pacific exert an immediate and global effect on climate (Cane, 1998; Cane and
639 Clement, 1999). A recent hypothesis centered on the Southern Hemisphere ties discrete shifts in
640 mid-latitude atmospheric circulation directly to changes in wind-driven evaporation from the
641 tropical ocean surface (Denton et al., 2021, 2022) and, thus, to the modulation of latent heating
642 and water vapor flux to the overlying troposphere. If true, this coupled mid-latitude–tropical
643 mechanism could induce the pronounced tropical thermal shifts envisaged by Broecker (1997) that
644 would then be propagated globally (Pierrehumbert, 1999). While testing this new hypothesis will
645 require intensive empirical paleoclimate data from all latitudes, we note the strong similarity
646 between tropical glacier-inferred climate records and those from the extra-tropical Southern
647 Hemisphere.

648

649 *Holocene ice margin fluctuations at Cocuy*

650 Following the Lateglacial, a prominent feature of the Cocuy glacial record is the rapid rise in ELA
651 into the early Holocene, during which both the Bocatoma and Ritacuba Negro glaciers retreated
652 markedly in response to a $\sim 0.75^{\circ}\text{C}$ warming (Fig. 7). This glaciological event marks a significant
653 climatic shift at 6°N latitude, whereby Andean glaciers transitioned from their Pleistocene
654 configuration to a comparatively contracted Holocene configuration, and appears to be represented
655 elsewhere in the tropics (e.g., Jomelli et al., 2009, 2014; Stansell et al., 2017; Jackson et al., 2020;
656 Doughty et al., 2021). Against this longer-term backdrop, however, the magnitude of ELA rise and
657 glacier retreat in recent centuries clearly dwarfs the glacial oscillations of the last ~ 14 kyr. The
658 ELA curves for Bocatoma and Ritacuba Negro suggest mean temperatures at Cocuy rose $\sim 1.5^{\circ}\text{C}$
659 since culmination of the Little Ice Age, compared to the fractions-of-a-degree changes that
660 characterized the Lateglacial and early Holocene (Fig. 7). This finding bears a striking resemblance
661 to SST-based calculations of long-term freezing-level height for Cocuy (Ruiz-Carrascal et al.,
662 2022) and reflects glaciologic trends throughout the tropical Andes (Francou et al., 2003; Rabatel
663 et al., 2013; Vuille et al., 2018). A nuanced interpretation of the recent changes requires (1)
664 consensus on the geographic extent and timing of the Little Ice Age and (2) a plausible forcing
665 mechanism for that cooling event. Nonetheless, the profound rise in modern ELA at Cocuy, and
666 the tropical Andes generally, is almost certainly unprecedented in the current interglacial (Gorin
667 et al., 2024), and the coincidence with strongly positive radiative forcing (due to greenhouse gas
668 emissions) is undeniable, fueling the argument that ongoing warming primarily reflects human
669 activity.

670

671 **7. Conclusions**

672 • Following widespread deglaciation after the LGM, glaciers at Cocuy underwent a
673 pronounced readvance during the Lateglacial period. Cosmogenic ^{10}Be surface-exposure
674 dating of glacial deposits confirm that this advance coincided with the ACR, while the
675 subsequent YD stadial was characterized by gradual yet determined glacier retreat. This
676 cryospheric behavior aligns with a growing number of directly dated moraine records
677 worldwide, suggesting a broadly global pattern of glacier – and, therefore, tropospheric
678 temperature – change during the Lateglacial period. Significantly, this glacial perspective

679 does not support the notion of hemispherically asynchronous temperature fluctuations (i.e.,
680 bipolar seesaw) at that time.

- 681 • Recognizing that the radiative forcing capacity of CO₂ likely played a role in sustaining
682 mean climate states during the Lateglacial, we propose that CO₂ alone is insufficient as a
683 driver of tropical temperature variability as inferred from the glacier record. Instead, we
684 explore the possibility that abrupt shifts in equatorial ocean-atmosphere heat transfer and
685 vapor flux, potentially linked to mid-latitude atmospheric dynamics, are the primary drivers
686 of Lateglacial temperature variability. As the tropics exert a strong and immediate global
687 influence, any such perturbations of low-latitude climate almost certainly would be
688 transmitted globally.
- 689 • The trend of post-ACR deglaciation not only continued into the early Holocene but
690 apparently accelerated, suggesting strong tropospheric warming at Cocuy at that time. At
691 face value, this behavior fits the broader tropical pattern, though we acknowledge that
692 Holocene glacier variability in the tropics is poorly resolved relative to higher latitudes.
- 693 • Both the rate and magnitude of deglaciation at Cocuy since the culmination of the LIA are
694 significantly higher than at any other time in our record, and reflect the rapid rise in
695 tropospheric temperature and ELA reported for this site and the tropics generally. This
696 pattern suggests that the scale of modern tropospheric warming is unprecedented within at
697 least the last 16,000 years.

699 **Declaration of competing interest**

700 The authors declare that they have no known competing financial interests or personal
701 relationships that could have appeared to influence the work reported in this paper.

703 **Acknowledgements**

704 Research was funded by the National Science Foundation *Geomorphology and Land Use*
705 *Dynamics* program (award no. 2022727), the Columbia University Institute for Latin American
706 Studies (ILAS), and Dartmouth College. We thank the Parques Nacionales Naturales de Colombia
707 for permission to access the field area (research permits 006-2018, filing number 20182000049991
708 and 004-2023, filing number 20232300659691); the Office of the Dean for Research at the
709 Facultad de Minas of the Universidad Nacional de Colombia (UNAL) for allocating funds to

710 support some of the logistics needed for fieldwork activities and for the development of the 1st
711 Course on TCN Applied to Paleoclimate and Paleoglaciology at UNAL-Medellín; Marvin
712 Mosquera Palacios, Isabel Restrepo-Correa, and Ezequiel De Jesús Ferro-Palacios for fieldwork
713 assistance; local farmers for granting us access to campsites; Peter Croot (University of Galway)
714 for technical assistance; Sonia Eckstein, Evan Barrett, and Alexandra Farnell (Dartmouth College)
715 for laboratory assistance; and Aaron Putnam for constructive discussions and insight. Original
716 ALOS/PALSAR/AVNIR-2 and ALOS-2 ScanSAR data products used in Figures 2, 4, and 5 are
717 provided by JAXA. Prepared in part by LLNL under Contract DE-AC52-07NA27344. This
718 is LLNL-JRNL-2003787.

719
720
721

722 **References**

723 Anderson, R.F., Ali, S., Bradtmiller, L.I., Nielsen, S.H.H., Fleisher, M.Q., Anderson, B.E.,
724 Burckle, L.H., 2009. Wind-driven upwelling in the Southern Ocean and the deglacial rise in
725 atmospheric CO₂. *Science* 323, 1443–1448. [DOI: 10.1126/science.1167441](https://doi.org/10.1126/science.1167441)

726 Angel, I., Carcaillet, J., Carrillo, E., Beck, C., Audin, L., 2016. Deglaciation chronology in the
727 Mérida Andes from cosmogenic ¹⁰Be dating, (Gavidia valley, Venezuela). *Journal of South
728 American Earth Sciences* 71, 235–247. <https://doi.org/10.1016/j.jsames.2016.08.001>

729 Bakker, J., 1990. *Tectonic and Climatic Controls on Late Quaternary Sedimentary Processes in a
730 Neotectonic Intramontane Basin, the Pitalito Basin, South Colombia* (Ph.D.). Wageningen
731 University and Research, Netherlands. Retrieved from
<https://www.proquest.com/docview/2568201634/abstract/8409E656EA684573PQ/1>

733 Balco, G., 2011. Contributions and unrealized potential contributions of cosmogenic-nuclide
734 exposure dating to glacier chronology, 1990–2010. *Quaternary Science Reviews* 30, 3–27.
735 <https://doi.org/10.1016/j.quascirev.2010.11.003>

736 Balco, G., 2020. Glacier Change and Paleoclimate Applications of Cosmogenic-Nuclide Exposure
737 Dating. *Annual Review of Earth and Planetary Sciences* 48, 21–48.
738 <https://doi.org/10.1146/annurev-earth-081619-052609>

739 Barr, I.D., Lovell, H., 2014. A review of topographic controls on moraine distribution.
740 *Geomorphology* 226, 44–64. <https://doi.org/10.1016/j.geomorph.2014.07.030>

741 Barry, R.G., Chorley, R.J., 2003. Atmosphere, weather and climate, 8th edition (1st edition 1968).
742 Routledge, London, p. 25

743 Benn, D.I., Evans, D.J.A., 1998. Glaciers and Glaciation, first edition. Edward Arnold, London.
744 734 pp.

745 Benn, D.I., Hulton, N.R.J., 2010. An ExcelTM spreadsheet program for reconstructing the surface
746 profile of former mountain glaciers and ice caps. *Computers & Geosciences* 36, 605–610.
747 <https://doi.org/10.1016/j.cageo.2009.09.016>

748 Benn, D.I., Lehmkuhl, F., 2000. Mass balance and equilibrium-line altitudes of glaciers in high-
749 mountain environments. *Quaternary International* 65–66, 15–29.
750 [https://doi.org/10.1016/S1040-6182\(99\)00034-8](https://doi.org/10.1016/S1040-6182(99)00034-8)

751 Benn, D.I., Owen, L.A., Osmaston, H.A., Seltzer, G.O., Porter, S.C., Mark, B., 2005.
752 Reconstruction of equilibrium-line altitudes for tropical and sub-tropical glaciers. *Quaternary
753 International* 138–139, 8–21. <https://doi.org/10.1016/j.quaint.2005.02.003>

754 Blard, P.-H., Braucher, R., Lavé, J., Bourlès, D., 2013. Cosmogenic ¹⁰Be production rate
755 calibrated against ³He in the high Tropical Andes (3800–4900 m, 20–22° S). *Earth and
756 Planetary Science Letters* 382, 140–149. <https://doi.org/10.1016/j.epsl.2013.09.010>

757 Blunier, T., Schwander, J., Stauffer, B., Stocker, T., Dällenbach, A., Indermühle, A., Tschumi, J.,
758 Chappellaz, J., Raynaud, D., Barnola, J.M., 1997. Timing of the Antarctic Cold Reversal and
759 the atmospheric CO₂ increase with respect to the Younger Dryas event. *Geophysical Research
760 Letters* 24, 2683–2686. <https://doi.org/10.1029/97GL02658>

761 Bradley, R.S., Vuille, M., Hardy, D., Thompson, L.G., 2003. Low latitude ice cores record Pacific
762 sea surface temperatures. *Geophysical Research Letters* 30.
763 <https://doi.org/10.1029/2002GL016546>

764 Broecker, W.S., 1997. Mountain glaciers: Recorders of atmospheric water vapor content?. *Global
765 Biogeochemical Cycles* 11, 589–597. <https://doi.org/10.1029/97GB02267>

766 Broecker, W.S., 1998. Paleocean circulation during the last deglaciation: A bipolar seesaw?
767 *Paleoceanography* 13, 119–121.

768 Bromley, G.R., Schaefer, J.M., Winckler, G., Hall, B.L., Todd, C.E., Rademaker, K.M., 2009.
769 Relative timing of last glacial maximum and late-glacial events in the central tropical
770 Andes. *Quaternary Science Reviews* 28, 2514–2526.
771 <https://doi.org/10.1016/j.quascirev.2009.05.012>

772 Bromley, G.R., Hall, B.L., Schaefer, J.M., Winckler, G., Todd, C.E., Rademaker, K.M., 2011.
773 Glacier fluctuations in the southern Peruvian Andes during the late-glacial period, constrained
774 with cosmogenic ^{3}He . *Journal of Quaternary Science* 26, 37–43.
775 <https://doi.org/10.1002/jqs.142>

776 Bromley, G.R.M., Schaefer, J.M., Hall, B.L., Rademaker, K.M., Putnam, A.E., Todd, C.E., et al.,
777 2016. A cosmogenic ^{10}Be chronology for the local last glacial maximum and termination in
778 the Cordillera Oriental, southern Peruvian Andes: Implications for the tropical role in global
779 climate. *Quaternary Science Reviews* 148, 54–67.
780 <https://doi.org/10.1016/j.quascirev.2016.07.010>

781 Bromley, G., Putnam, A., Hall, B., Rademaker, K., Thomas, H., Balter-Kennedy, A., Barker, S.,
782 Rice, D., 2023. Lateglacial shifts in seasonality reconcile conflicting North Atlantic
783 temperature signals. *Journal of Geophysical Research: Earth Surface* 128, p.e2022JF00695.
784 <https://doi.org/10.1029/2022JF006951>

785 Cane, M.A., 1998. A role for the tropical Pacific. *Science* 282, 59–61. DOI:
786 [10.1126/science.282.5386.59](https://doi.org/10.1126/science.282.5386.59)

787 Cane, M., Clement, A.C., 1999. A role for the tropical Pacific coupled ocean-atmosphere system
788 on Milankovitch and millennial timescales part II: Global impacts. *Geophysical Monograph-
789 American Geophysical Union* 112, 373–384.

790 Carcaillet, J., Angel, I., Carrillo, E., Audemard, F.A., Beck, C., 2013. Timing of the last
791 Deglaciation in the Sierra Nevada of the Mérida Andes, Venezuela. *Quaternary Research* 80,
792 482–494. <https://doi.org/10.1016/j.yqres.2013.08.001>

793 Chiang, J.C.H., 2009. The tropics in paleoclimate. *Annual Review of Earth and Planetary Sciences*
794 37, 263–297.

795 DeForest Safford, H., 1999. Brazilian Páramos I. An introduction to the physical environment and
796 vegetation of the campos de altitude. *Journal of Biogeography* 26, 693–712.
797 <https://doi.org/10.1046/j.1365-2699.1999.00313.x>

798 Denton, G.H., Alley, R.B., Comer, G.C., Broecker, W.S., 2005. The role of seasonality in abrupt
799 climate change. *Quaternary Science Reviews* 24, 1159–1182.
800 <https://doi.org/10.1016/j.quascirev.2004.12.002>

801 Denton, G.H., Putnam, A.E., Russell, J.L., Barrell, D.J.A., Schaefer, J.M., Kaplan, M.R., Strand,
802 P.D., 2021. The Zealandia Switch: Ice age climate shifts viewed from Southern Hemisphere

803 moraines. *Quaternary Science Reviews* 257, 106771.
804 <https://doi.org/10.1016/j.quascirev.2020.106771>

805 Denton, G.H., Toucanne, S., Putnam, A.E., Barrell, D.J., Russell, J.L., 2022. Heinrich
806 summers. *Quaternary Science Reviews* 295, 107750.
807 <https://doi.org/10.1016/j.quascirev.2022.107750>

808 Doughty, A.M., Kelly, M.A., Russell, J.M., Jackson, M.S., Anderson, B.A., Chipman, J., Nakileza,
809 B., Dee, S.G., 2020, Modeling glacier extents and equilibrium line altitudes in the Rwenzori
810 Mountains, Uganda, over the last 31,000 yr, in Waitt, R.B., Thackray, G.D., and Gillespie,
811 A.R., eds., Untangling the Quaternary Period: A Legacy of Stephen C. Porter: Geological
812 Society of America Special Paper 548, p. 171–188, [https://doi.org/10.1130/2020.2548\(09\)](https://doi.org/10.1130/2020.2548(09))

813 Fabre, A., Osorio, M., Vargas, R., 1984. Geología de la Plancha 153 Chita. Bogotá.
814 INGEOMINAS.

815 Farrera, I., Harrison, S.P., Prentice, I.C., Ramstein, G., Guiot, J., Bartlein, P.J., et al., 1999.
816 Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate
817 data. I. Vegetation, lake-levels, and geochemistry. *Climate Dynamics* 15, 823–856.
818 <https://doi.org/10.1007/s003820050317>

819 Favier, V., Wagnon, P., Chazarin, J.-P., Maisincho, L., Coudrain, A., 2004. One-year
820 measurements of surface heat budget on the ablation zone of Antizana Glacier 15, Ecuadorian
821 Andes. *Journal of Geophysical Research: Atmospheres* 109(D18).
822 <https://doi.org/10.1029/2003JD004359>

823 Folkins, I., 2006. Convective damping of buoyancy anomalies and its effect on lapse rates in the
824 tropical lower troposphere. *Atmospheric Chemistry and Physics* 6, 1–12.
825 <https://doi.org/10.5194/acp-6-1-2006>

826 Foreman, A.C., Bromley, G.R.M., Hall, B.L., Jackson, M.S., 2022. A ^{10}Be -dated record of glacial
827 retreat in Connemara, Ireland, following the last glacial maximum and implications for
828 regional climate. *Palaeogeography, Palaeoclimatology, Palaeoecology* 592, p.110901.
829 <https://doi.org/10.1016/j.palaeo.2022.110901>

830 Foreman, A.C., Bromley, G.R., Hall, B.L., Rodríguez, P.C., 2025. Thinning and retreat of the
831 temperate Connemara ice centre, Ireland, during Heinrich Stadial 1 constrained with
832 cosmogenic ^{10}Be dating. *Geomorphology* 475, p.109661.
833 <https://doi.org/10.1016/j.geomorph.2025.109661>

834 Francou, B., Vuille, M., Wagnon, P., Mendoza, J., Sicart, J.-E., 2003. Tropical climate change
835 recorded by a glacier in the central Andes during the last decades of the Twentieth Century:
836 Chacaltaya, Bolivia, 16°S. *Journal of Geophysical Research: Atmospheres* 108(D5).
837 <https://doi.org/10.1029/2002JD002959>

838 Ganopolski, A., Calov, R., 2011. The role of orbital forcing, carbon dioxide and regolith in 100
839 kyr glacial cycles. *Climate of the Past* 7, 1415–1425. <https://doi.org/10.5194/cp-7-1415-2011>

840 Garellick, S., Russell, J., Richards, A., Smith, J., Kelly, M., Anderson, N., Jackson, M.S., Doughty,
841 A., Nakileza, B., Ivory, S., Dee, S., 2022. The dynamics of warming during the last
842 deglaciation in high-elevation regions of Eastern Equatorial Africa. *Quaternary Science
843 Reviews* 281, 107416. <https://doi.org/10.1016/j.quascirev.2022.107416>

844 Glasser, N.F., Clemmens, S., Schnabel, C., Fenton, C.R., McHargue, L., 2009. Tropical glacier
845 fluctuations in the Cordillera Blanca, Peru between 12.5 and 7.6 ka from cosmogenic ¹⁰Be
846 dating. *Quaternary Science Reviews* 28, 3448–3458.
847 <https://doi.org/10.1016/j.quascirev.2009.10.006>

848 Gonzalez, E., van der Hammen, T., Foster Flint, R., 1965. Late Quaternary glacial and vegetational
849 sequence in Valle de Lagunillas, Sierra Nevada del Cocuy, Colombia. *Leidse Geologische
850 Mededelingen* 323, 157–182.

851 Gorin, A.L., Shakun, J.D., Jones, A.G., Kennedy, T.M., Marcott, S.A., Goehring, B.M., Zoet, L.K.,
852 Jomelli, V., Bromley, G.R., Mateo, E.I., Mark, B.G., 2024. Recent tropical Andean glacier
853 retreat is unprecedented in the Holocene. *Science* 385, 517–521. DOI:
854 [10.1126/science.adg7546](https://doi.org/10.1126/science.adg7546)

855 Hall, B.L., Porter, C.T., Denton, G.H., Lowell, T.V., Bromley, G.R., 2013. Extensive recession of
856 Cordillera Darwin glaciers in southernmost South America during Heinrich stadial
857 1. *Quaternary Science Reviews* 62, 49–55. <https://doi.org/10.1016/j.quascirev.2012.11.026>

858 Handiani, D., Paul, A., Dupont, L., 2011. Tropical climate and vegetation changes during Heinrich
859 Event 1: comparing climate model output to pollen-based vegetation reconstructions with
860 emphasis on the region around the tropical Atlantic Ocean. *Climate of the Past Discussions* 7.

861 Hastenrath, S., 1991. Climate Dynamics of the Tropics. Springer, p. 488.
862 <https://doi.org/10.1007/978-94-011-3156-8>

863 Hastenrath, S., 2009. Past glaciation in the tropics. *Quaternary Science Reviews* 28, 790–798.
864 <https://doi.org/10.1016/j.quascirev.2008.12.004>

865 Helmens, K.F., Rutter, N.W., Kuhry, P., 1997. Glacier fluctuations in the Eastern Andes of
866 Colombia (south America) during the last 45,000 radiocarbon years. *Quaternary International*
867 38–39, 39–48. [https://doi.org/10.1016/S1040-6182\(96\)00021-3](https://doi.org/10.1016/S1040-6182(96)00021-3)

868 Jackson, M.S., Kelly, M.A., Russell, J.M., Doughty, A.M., Howley, J.A., Chipman, J.W., et al.,
869 2019. High-latitude warming initiated the onset of the last deglaciation in the tropics. *Science*
870 *Advances* 5, eaaw2610. <https://doi.org/10.1126/sciadv.aaw2610>

871 Jackson, M.S., Kelly, M.A., Russell, J.M., Doughty, A.M., Howley, J.A., Chipman, J.W., et al.,
872 2020. Glacial fluctuations in tropical Africa during the last glacial termination and
873 implications for tropical climate following the Last Glacial Maximum. *Quaternary Science*
874 *Reviews* 243, 106455. <https://doi.org/10.1016/j.quascirev.2020.106455>

875 Jomelli, V., Favier, V., Rabatel, A., Brunstein, D., Hoffmann, G., Francou, B., 2009. Fluctuations
876 of glaciers in the tropical Andes over the last millennium and palaeoclimatic implications: A
877 review. *Palaeogeography, Palaeoclimatology, Palaeoecology* 281, 269–282.

878 Jomelli, V., Favier, V., Vuille, M., Braucher, R., Martin, L., Blard, P.-H., et al., 2014. A major
879 advance of tropical Andean glaciers during the Antarctic cold reversal. *Nature* 513, 224–228.
880 <https://doi.org/10.1038/nature13546>

881 Jomelli, V., Martin, L., Blard, P. H., Favier, V., Vuillé, M., Ceballos, J.L., 2017. Revisiting the
882 Andean tropical glacier behavior during the Antarctic cold reversal. *Cuadernos de*
883 *Investigación Geográfica* 43, 629–648. <https://doi.org/10.18172/cig.3201>

884 Kammer, A., Piraquive, A., Gómez, C., Mora, A., Velásquez, A., Gómez, J., Mateus-Zabala, D.,
885 2020. Structural styles of the Eastern Cordillera of Colombia. *The geology of Colombia* 3,
886 143–183. <https://doi.org/10.32685/pub.esp.37.2019.06>

887 Kaser, G., Osmaston, H., 2002. *Tropical Glaciers*. Cambridge University Press.

888 Kelly, M.A., Lowell, T.V., Applegate, P.J., Phillips, F.M., Schaefer, J.M., Smith, C.A., et al. 2015.
889 A locally calibrated, late glacial ^{10}Be production rate from a low-latitude, high-altitude site in
890 the Peruvian Andes. *Quaternary Geochronology* 26, 70–85.
891 <https://doi.org/10.1016/j.quageo.2013.10.007>

892 Kuhry, P., Hooghiemstra, H., van Geel, B., van der Hammen, T., 1993. The El Abra stadial in the
893 Eastern Cordillera of Colombia (South America). *Quaternary Science Reviews* 12, 333–343.
894 [https://doi.org/10.1016/0277-3791\(93\)90041-J](https://doi.org/10.1016/0277-3791(93)90041-J)

895 Lachniet, M.S., Vazquez-Selem, L., 2005. Last Glacial Maximum equilibrium line altitudes in the
896 circum-Caribbean (Mexico, Guatemala, Costa Rica, Colombia, and Venezuela). *Quaternary*
897 *International* 138–139, 129–144. <https://doi.org/10.1016/j.quaint.2005.02.010>

898 Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion
899 models. *Earth and Planetary Science Letters* 104, 424–439. <https://doi.org/10.1016/0012->
900 [821X\(91\)90220-C](https://doi.org/10.1016/0012-821X(91)90220-C)

901 Legrain, E., Blard, P.H., Kageyama, M., Charreau, J., Leduc, G., Bourdin, S., Bekaert, D.V., 2023.
902 Moisture amplification of the high-altitude deglacial warming. *Quaternary Science*
903 *Reviews* 318, 108303. <https://doi.org/10.1016/j.quascirev.2023.108303>

904 Levy, L.B., Kelly, M.A., Lowell, T.V., Hall, B.L., Howley, J.A., Smith, C.A., 2016. Coeval
905 fluctuations of the Greenland ice sheet and a local glacier, central East Greenland, during late
906 glacial and early Holocene time. *Geophysical Research Letters* 43, 1623–1631.
907 <https://doi.org/10.1002/2015GL067108>

908 Lifton, N., Caffee, M., Finkel, R., Marrero, S., Nishiizumi, K., Phillips, F. M., et al., 2015. In situ
909 cosmogenic nuclide production rate calibration for the CRONUS-Earth project from Lake
910 Bonneville, Utah, shoreline features. *Quaternary Geochronology* 26, 56–69.
911 <https://doi.org/10.1016/j.quageo.2014.11.002>

912 Loomis, S.E., Russell, J.M., Verschuren, D., Morrill, C., De Cort, G., Sinninghe Damsté, J. S., et
913 al., 2017. The tropical lapse rate steepened during the Last Glacial Maximum. *Science*
914 *Advances* 3, e1600815. <https://doi.org/10.1126/sciadv.1600815>

915 López-Moreno, J.I., Rojas-Heredia, F., Ceballos, J.L., Morán-Tejeda, E., Alonso-González, E.,
916 Vidaller, I., et al., 2022. Recent evolution of glaciers in the Cocuy-Güicán Mountains
917 (Colombian Andes) and the hydrological implications. *Land Degradation & Development*
918 *ldr.4336*. <https://doi.org/10.1002/ldr.4336>

919 Mackintosh, A.N., Anderson, B.M., Pierrehumbert, R.T., 2017. Reconstructing climate from
920 glaciers. *Annual Review of Earth and Planetary Sciences* 45, 649–680.
921 <https://doi.org/10.1146/annurev-earth-063016-020643>

922 Mahaney, W.C., Milner, M.W., Kalm, V., Dirsztowsky, R.W., Hancock, R.G.V., Beukens, R.P.,
923 2008. Evidence for a Younger Dryas glacial advance in the Andes of northwestern Venezuela.
924 *Geomorphology* 96, 199–211. <https://doi.org/10.1016/j.geomorph.2007.08.002>

925 Martin, L.C.P., Blard, P.-H., Lavé, J., Braucher, R., Lupker, M., Condom, T., et al., 2015. In situ
926 cosmogenic ^{10}Be production rate in the high tropical Andes. *Quaternary Geochronology* 30,
927 54–68. <https://doi.org/10.1016/j.quageo.2015.06.012>

928 Martin, L.C.P., Blard, P.-H., Lavé, J., Jomelli, V., Charreau, J., Condom, T., et al. (2020).
929 Antarctic-like temperature variations in the tropical Andes recorded by glaciers and lakes
930 during the last deglaciation. *Quaternary Science Reviews* 247, 106542.
931 <https://doi.org/10.1016/j.quascirev.2020.106542>

932 Masiokas, M.H., Rabatel, A., Rivera, A., Ruiz, L., Pitte, P., Ceballos, J. L., et al., 2020. A review
933 of the current state and recent changes of the Andean cryosphere. *Frontiers in Earth Science*
934 8, Retrieved from <https://www.frontiersin.org/article/10.3389/feart.2020.00099>

935 McGee, D., Donohoe, A., Marshall, J., Ferreira, D., 2014. Changes in ITCZ location and cross-
936 equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-
937 Holocene. *Earth and Planetary Science Letters* 390, 69–79.

938 Mendivelso, D., 2016. The El Cocuy snowy range. In M. Hermelin (Ed.), *Landscapes and*
939 *Landforms of Colombia* (pp. 85–98). Cham: Springer International Publishing.
940 https://doi.org/10.1007/978-3-319-11800-0_7

941 Mey, J., D'Arcy, M.K., Schildgen, T.F., Egholm, D.L., Wittmann, H., Strecker, M.R., 2020.
942 Temperature and precipitation in the southern Central Andes during the last glacial maximum,
943 Heinrich Stadial 1, and the Younger Dryas. *Quaternary Science Reviews* 248, 106592.

944 Molano, S.M., Cardenas, D.P., Snaider Gómez, H., Alvarado, D.M., Galindo, A.F., Sanabria, J.F.,
945 Gómez-Neita, J.S., 2022. Evaluación del retroceso glaciar de la Sierra Nevada del Cocuy,
946 Colombia a partir de la clasificación de imágenes multisensor. *Boletín de Geología* 44, 49–
947 73. <https://doi.org/10.18273/revbol.v44n1-2022002>

948 Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J., Stauffer, B., Stocker, T.F., Raynaud,
949 D., Barnola, J.M., 2001. Atmospheric CO₂ concentrations over the last glacial
950 termination. *Science* 29, 112–114. [DOI: 10.1126/science.291.5501.112](https://doi.org/10.1126/science.291.5501.112)

951 Nishiizumi, K., Winterer, E.L., Kohl, C.P., Klein, J., Middleton, R., Lal, D., Arnold, J.R., 1989.
952 Cosmic ray production rates of ^{10}Be and ^{26}Al in quartz from glacially polished rocks. *Journal*
953 *of Geophysical Research: Solid Earth* 94, 17907–17915.
954 <https://doi.org/10.1029/JB094iB12p17907>

955 Oerlemans, J., 1989. On the response of valley glaciers to climatic change. In Johannes Oerlemans
956 (Ed.), *Glacier Fluctuations and Climatic Change* (pp. 353–371). Dordrecht: Springer
957 Netherlands. https://doi.org/10.1007/978-94-015-7823-3_23

958 Orvis, K.H., Horn, S.P., 2000. Quaternary glaciers and climate on Cerro Chirripó, Costa
959 Rica. *Quaternary Research* 54, 24–37. <https://doi.org/10.1006/qres.2000.2142>

960 Pellitero, R., Rea, B.R., Spagnolo, M., Bakke, J., Hughes, P., Ivy-Ochs, S., et al., 2015. A GIS tool
961 for automatic calculation of glacier equilibrium-line altitudes. *Computers & Geosciences* 82,
962 55–62. <https://doi.org/10.1016/j.cageo.2015.05.005>

963 Pellitero, R., Rea, B.R., Spagnolo, M., Bakke, J., Ivy-Ochs, S., Frew, C.R., et al., 2016. GlaRe, a
964 GIS tool to reconstruct the 3D surface of palaeoglaciers. *Computers & Geosciences* 94, 77–
965 85. <https://doi.org/10.1016/j.cageo.2016.06.008>

966 Pierrehumbert, R.T., 1995. Thermostat, radiator fins, and local runaway greenhouse. *Journal of*
967 *Atmospheric Science* 52, 1784–1806.

968 Pierrehumbert, R.T., 1999. Subtropical water vapor as a mediator of rapid global climate
969 change. *Geophysical Monograph-American Geophysical Union* 112, 339–362.

970 Porter, S.C., 2000. Snowline depression in the tropics during the Last Glaciation. *Quaternary*
971 *Science Reviews* 20, 1067–1091. [https://doi.org/10.1016/S0277-3791\(00\)00178-5](https://doi.org/10.1016/S0277-3791(00)00178-5)

972 Putnam, A.E., Schaefer, J.M., Denton, G.H., Barrell, D.J., Andersen, B.G., Koffman, T.N., Rowan,
973 A.V., Finkel, R.C., Rood, D.H., Schwartz, R., Vandergoes, M.J., 2013. Warming and glacier
974 recession in the Rakaia valley, Southern Alps of New Zealand, during Heinrich Stadial
975 1. *Earth and Planetary Science Letters* 382, 98–110.
976 <https://doi.org/10.1016/j.epsl.2013.09.005>

977 Putnam, A.E., Denton, G.H., Schaefer, J.M., 2023. A ^{10}Be chronology of the Esmark Moraine and
978 Lysefjorden region, southwestern Norway: Evidence for coeval glacier resurgence in both
979 polar hemispheres during the Antarctic Cold Reversal. *Quaternary Science Reviews* 316,
980 p.108259. <https://doi.org/10.1016/j.quascirev.2023.108259>

981 Quesada-Román, A., Campos, N., Alcalá-Reygosa, J., Granados-Bolaños, S., 2020. Equilibrium-
982 line altitude and temperature reconstructions during the Last Glacial Maximum in Chirripó
983 National Park, Costa Rica. *Journal of South American Earth Sciences* 100, 102576.
984 <https://doi.org/10.1016/j.jsames.2020.102576>

985 Rabaté, A., Francou, B., Soruco, A., Gomez, J., Cáceres, B., Ceballos, J.L., et al., 2013. Current
986 state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and
987 climate change. *The Cryosphere* 7, 81–102. <https://doi.org/10.5194/tc-7-81-2013>

988 Rabaté, A., Ceballos, J.L., Micheletti, N., Jordan, E., Braitmeier, M., González, J., et al., 2017.
989 Toward an imminent extinction of Colombian glaciers? *Geografiska Annaler: Series A,*
990 *Physical Geography* 100, 75–95. <https://doi.org/10.1080/04353676.2017.1383015>

991 Rea, B.R., 2009. Defining modern day Area-Altitude Balance Ratios (AABRs) and their use in
992 glacier-climate reconstructions. *Quaternary Science Reviews* 28, 237–248.
993 <https://doi.org/10.1016/j.quascirev.2008.10.011>

994 Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Ramsey, C.B., et al., 2020.
995 The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP).
996 *Radiocarbon* 62, 725–757. <https://doi.org/10.1017/RDC.2020.41>

997 Restrepo-Moreno, S.A., Foster, D.A., Bernet, M., Min, K., Noriega, S., 2019. Morphotectonic and
998 orogenic development of the Northern Andes of Colombia: A low-temperature
999 thermochronology perspective. *Geology and Tectonics of Northwestern South America: The*
1000 *Pacific-Caribbean-Andean Junction*, pp.749–832. https://doi.org/10.1007/978-3-319-76132-9_11

1002 Rodbell, D.T., Seltzer, G.O., 2000. Rapid ice margin fluctuations during the Younger Dryas in the
1003 tropical Andes. *Quaternary Research* 54, 328–338. <https://doi.org/10.1006/qres.2000.2177>

1004 Rodbell, D.T., Smith, J.A., Mark, B.G., 2009. Glaciation in the Andes during the Lateglacial and
1005 Holocene. *Quaternary Science Reviews* 28, 2165–2212.
1006 <https://doi.org/10.1016/j.quascirev.2009.03.012>

1007 Rodbell, D.T., Hatfield, R.G., Abbott, M.B., Chen, C.Y., Woods, A., Stoner, J.S., McGee, D.,
1008 Tapia, P.M., Bush, M., Valero-Garcés, B.L., Lehmann, S.B., 2022. 700,000 years of tropical
1009 Andean glaciation. *Nature* 607, 301–306. <https://doi.org/10.1038/s41586-022-04873-0>

1010 Ruiz-Carrascal, D., González-Duque, D., Restrepo-Correa, I., 2022. Two-tiered reconstruction of
1011 Late Pleistocene to Holocene changes in the freezing level height in the largest glacierized
1012 areas of the Colombian Andes. *Journal of Mountain Science* 19, 615–636.
1013 <https://doi.org/10.1007/s11629-021-6783-6>

1014 Rupper, S., Roe, G., 2008. Glacier changes and regional climate: A mass and energy balance
1015 approach. *Journal of Climate* 21, 5384–5401. <https://doi.org/10.1175/2008JCLI2219.1>

1016 Sagredo, Esteban A., Rupper, S., Lowell, T.V., 2014. Sensitivities of the equilibrium line altitude
1017 to temperature and precipitation changes along the Andes. *Quaternary Research* 81, 355–366.
1018 <https://doi.org/10.1016/j.yqres.2014.01.008>

1019 Sagredo, E.A., Kaplan, M.R., Araya, P.S., Lowell, T.V., Aravena, J.C., Moreno, P.I., Kelly, M.A.
1020 Schaefer, J.M., 2018. Trans-pacific glacial response to the Antarctic Cold Reversal in the
1021 southern mid-latitudes. *Quaternary Science Reviews* 188, 160–166.
1022 <https://doi.org/10.1016/j.quascirev.2018.01.011>

1023 Schaefer, J.M., Denton, G.H., Kaplan, M., Putnam, A., Finkel, R.C., Barrell, D.J.A., et al., 2009.
1024 High-frequency Holocene glacier fluctuations in New Zealand differ from the northern
1025 signature. *Science* 324, 622–625. <https://doi.org/10.1126/science.1169312>

1026 Schlüchter, C., 1988. The deglaciation of the Swiss-Alps: a paleoclimatic event with chronological
1027 problems. *Quaternaire* 25, 141–145.

1028 Seager, R., Battisti, D.S., 2007. Challenges to our understanding of the general circulation: Abrupt
1029 climate change. *Global circulation of the atmosphere* 331, p.371.
1030 <https://doi.org/10.1515/9780691236919-014>

1031 Shakun, J.D., Clark, P.U., Marcott, S.A., Brook, E.J., Lifton, N.A., Caffee, M., Shakun, W.R.,
1032 2015. Cosmogenic dating of Late Pleistocene glaciation, southern tropical Andes,
1033 Peru. *Journal of Quaternary Science* 30, 841–847. <https://doi.org/10.1002/jqs.2822>

1034 Smith, J.A., Seltzer, G.O., Farber, D.L., Rodbell, D.T., Finkel, R.C., 2005. Early local last glacial
1035 maximum in the tropical Andes. *Science* 308, 678–681.
1036 <https://doi.org/10.1126/science.1107075>

1037 Sobel, A.H., Nilsson, J. and Polvani, L.M., 2001. The weak temperature gradient approximation
1038 and balanced tropical moisture waves. *Journal of the Atmospheric Sciences* 58, 3650–3665.
1039 [https://doi.org/10.1175/1520-0469\(2001\)058<3650:TWTGAA>2.0.CO;2](https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2)

1040 Stansell, N.D., Polissar, P.J., Abbott, M.B., 2007. Last glacial maximum equilibrium-line altitude
1041 and paleo-temperature reconstructions for the Cordillera de Mérida, Venezuelan
1042 Andes. *Quaternary Research* 67, 115–127. <https://doi.org/10.1016/j.yqres.2006.07.005>

1043 Stansell, N.D., Abbott, M.B., Rull, V., Rodbell, D.T., Bezada, M., Montoya, E., 2010. Abrupt
1044 Younger Dryas cooling in the northern tropics recorded in lake sediments from the
1045 Venezuelan Andes. *Earth and Planetary Science Letters* 293, 154–163.
1046 <https://doi.org/10.1016/j.epsl.2010.02.040>

1047 Stansell, N.D., Licciardi, J.M., Rodbell, D.T., Mark, B.G., 2017. Tropical ocean-atmospheric
1048 forcing of Late Glacial and Holocene glacier fluctuations in the Cordillera Blanca, Peru.
1049 *Geophysical Research Letters* 44, 4176–4185. <https://doi.org/10.1002/2016GL072408>

1050 Stocker, T.F., Johnsen, S.J., 2003. A minimum thermodynamic model for the bipolar
1051 seesaw. *Paleoceanography* 18. <https://doi.org/10.1029/2003PA000920>

1052 Stone, J.O., 2000. Air pressure and cosmogenic isotope production. *Journal of Geophysical*
1053 *Research: Solid Earth* 105, 23753–23759. <https://doi.org/10.1029/2000JB900181>

1054 Strand, P.D., Putnam, A.E., Sambuu, O., Putnam, D.E., Denton, G.H., Schaefer, J.M., Radue, M.J.,
1055 Dorj, A., Amarsaikhan, P., Stevens, J., Cole, D.G., 2022. A ^{10}Be moraine chronology of the
1056 last glaciation and termination at 49 N in the Mongolian Altai of Central
1057 Asia. *Paleoceanography and Paleoclimatology* 37, p.e2022PA004423.
1058 <https://doi.org/10.1029/2022PA004423>

1059 Sturm, H., Rangel Churío, J., 1985. *Ecología de los páramos andinos : una visión preliminar*
1060 *integrada*. Universidad Nacional de Colombia. Instituto de Ciencias Naturales. Museo de
1061 Historia Natural.

1062 Taylor, R.G., Mileham, L., Tindimugaya, C., Majugu, A., Muwanga, A., Nakileza, B., 2006.
1063 Recent glacial recession in the Rwenzori Mountains of East Africa due to rising air
1064 temperature. *Geophysical Research Letters* 33. <https://doi.org/10.1029/2006GL025962>

1065 Urrego, D.H., Hooghiemstra, H., Rama-Corredor, O., Martrat, B., Grimalt, J.O., Thompson, L.,
1066 Bush, M.B., González-Carranza, Z., Hanselman, J., Valencia, B., Velásquez-Ruiz, C., 2016.
1067 Millennial-scale vegetation changes in the tropical Andes using ecological grouping and
1068 ordination methods. *Climate of the Past* 12, 697–711. <https://doi.org/10.5194/cp-12-697-2016>

1069 van der Hammen, T., Gonzalez, E., 1960. Upper Pleistocene and Holocene climate and vegetation
1070 of the “Sabana de Bogota” (Colombia, South America). *Leidse Geologische Mededelingen*
1071 25, 261–315.

1072 van der Hammen, T., Barelds, J., De Jong, H., De Veer, A.A., 1980. Glacial sequence and
1073 environmental history in the Sierra Nevada del Cocuy (Colombia). *Palaeogeography,*
1074 *Palaeoclimatology, Palaeoecology* 32, 247–340. [https://doi.org/10.1016/0031-0182\(80\)90043-7](https://doi.org/10.1016/0031-0182(80)90043-7)

1076 van der Hammen, T., Hooghiemstra, H., 1995. The El Abra stadial, a Younger Dryas equivalent
1077 in Colombia. *Quaternary Science Reviews* 14, 841–851. [https://doi.org/10.1016/0277-3791\(95\)00066-6](https://doi.org/10.1016/0277-3791(95)00066-6)

1078

1079 Vázquez-Selmi, L. and Lachniet, M.S., 2017. The deglaciation of the mountains of Mexico and
1080 Central America. *Cuadernos de investigación geográfica: Geographical Research Letters* 43,
1081 553–570.

1082 Vuille, M., Carey, M., Huggel, C., Buytaert, W., Rabatel, A., Jacobsen, D., Soruco, A., Villacis,
1083 M., Yarleque, C., Timm, O.E., Condom, T., 2018. Rapid decline of snow and ice in the tropical
1084 Andes—Impacts, uncertainties, and challenges ahead. *Earth-science reviews* 176, 195–213.

1085 Wendt, K., 2024. CO₂ amount fractions from WAIS Divide, Antarctica. U.S. Antarctic Program
1086 (USAP) Data Center. <https://doi.org/10.15784/601775>.

1087 Williams, I.N., Pierrehumbert, R.T., Huber, M., 2009. Global warming, convective threshold and
1088 false thermostats. *Geophysical Research Letters* 36. <https://doi.org/10.1029/2009GL039849>

1089 Wittmeier, H.E., Schaefer, J.M., Bakke, J., Rupper, S., Paasche, Ø., Schwartz, R., Finkel, R.C.,
1090 2020. Late Glacial mountain glacier culmination in Arctic Norway prior to the Younger Dryas.
1091 *Quaternary Science Reviews* 245, p.106461. <https://doi.org/10.1016/j.quascirev.2020.106461>

1092 Zech, R., Kull, C., Kubik, P.W., Veit, H., 2007. LGM and Late Glacial glacier advances in the
1093 Cordillera Real and Cochabamba (Bolivia) deduced from ¹⁰Be surface exposure dating.
1094 *Climate of the Past* 3, 623–635. <https://doi.org/10.5194/cp-3-623-2007>

1095 Zech, J., Zech, R., May, J.-H., Kubik, P.W., Veit, H., 2010. Lateglacial and early Holocene
1096 glaciation in the tropical Andes caused by La Niña-like conditions. *Palaeogeography,
1097 Palaeoclimatology, Palaeoecology* 293, 248–254.

1098 <https://doi.org/10.1016/j.palaeo.2010.05.026>

1099

1100 **FIGURE CAPTIONS**

1101 **Fig. 1.** (A) Topographic map of South America indicating the position of panel B (white rectangle)
1102 and the Sierra Nevada del Cocuy; (B) Mean annual precipitation map for Colombia (1979–2018)
1103 derived from the Climate Reanalyzer (<https://ClimateReanalyzer.org>), showing the location of the
1104 Sierra Nevada del Cocuy in the Cordillera Oriental. (C) Topographic map of the Sierra Nevada
1105 del Cocuy, indicating our Lagunillas study area in the southern range and the Cardenillo valley on
1106 Ritacuba Negro in the northern part, along with the locations of sites mentioned in the text.

1107 Principal summits of the range are 1) Pan de Azúcar, 2) Cóncano, 3) San Pablín Sur, 4) San Pablín
1108 Norte, 5) Ritacuba Blanco, 6) Ritacuba Negro, and 7) Ritacuba Norte.

1109

1110 **Fig. 2.** Glacial geomorphology of the upper Lagunillas and Bocatoma catchments, illustrating the
1111 distribution of deposits and key moraine units discussed in the text.

1112

1113 **Fig. 3. (A)** The southern half of the Lagunillas valley viewed from the north, showing the location
1114 of sedimentary exposure VL-V reported by Gonzalez et al. (1965). Visible just beyond VL-V are
1115 the prominent Bocatoma lateral moraines entering the Lagunillas valley from the left. **(B)** Terminal
1116 moraines in the upper Lagunillas valley, with moraine-dammed Laguna La Parada in the middle
1117 distance and sample locations identified. **(C)** Bocatoma lateral-terminal moraine complex viewed
1118 from the Sisuma moraine crest, with sample locations identified. **(D)** Drift 6 (Little Ice Age)
1119 deposits overlying older glacial drift in the upper Bocatoma valley.

1120

1121 **Fig. 4.** Glacial geomorphology of the Cardenillo valley on Ritacuba Negro, depicting the
1122 distribution of deposits as reported by Jomelli et al. (2014), along with ^{10}Be surface-exposure ages
1123 recalculated as described in section 4.2. (Right) Specific landform age statistics represented by
1124 normal kernel density plots, in which ages of individual samples are shown as thin black lines and
1125 cumulative age distributions as thick black lines. Mean age and 1σ uncertainty are represented by
1126 the vertical blue lines and yellow shading, respectively. Samples rejected as outliers are depicted
1127 by dashed lines.

1128

1129 **Fig. 5.** Glacial geomorphology and ^{10}Be chronology for the Lagunillas and Bocatoma catchments,
1130 including landform-specific age statistics for key depositional units. For geomorphic legend, see
1131 Figure 2. Surface-exposure ages correspond to values given in Table 2. For population statistics,
1132 N_p refers to a population pruned of outlier values.

1133

1134 **Fig. 6. (A–E)** Examples of quartz arenite boulders sampled for cosmogenic ^{10}Be surface-exposure
1135 dating. **(F)** Deformed lacustrine sediments exposed in the Bocatoma terminal moraine, confirming
1136 that the glacier margin actively advanced into the valley bottom prior to depositing the moraine.

1137

1138 **Fig. 7.** Temporal reconstructions of (Top) Δ ELA, (Middle) Δ T, and (Bottom) % length change for
1139 the three Cocuy glaciers during the Lateglacial period, early Holocene, and late Holocene. Δ T
1140 values are based upon the ELA reconstructions reported in Table 3.

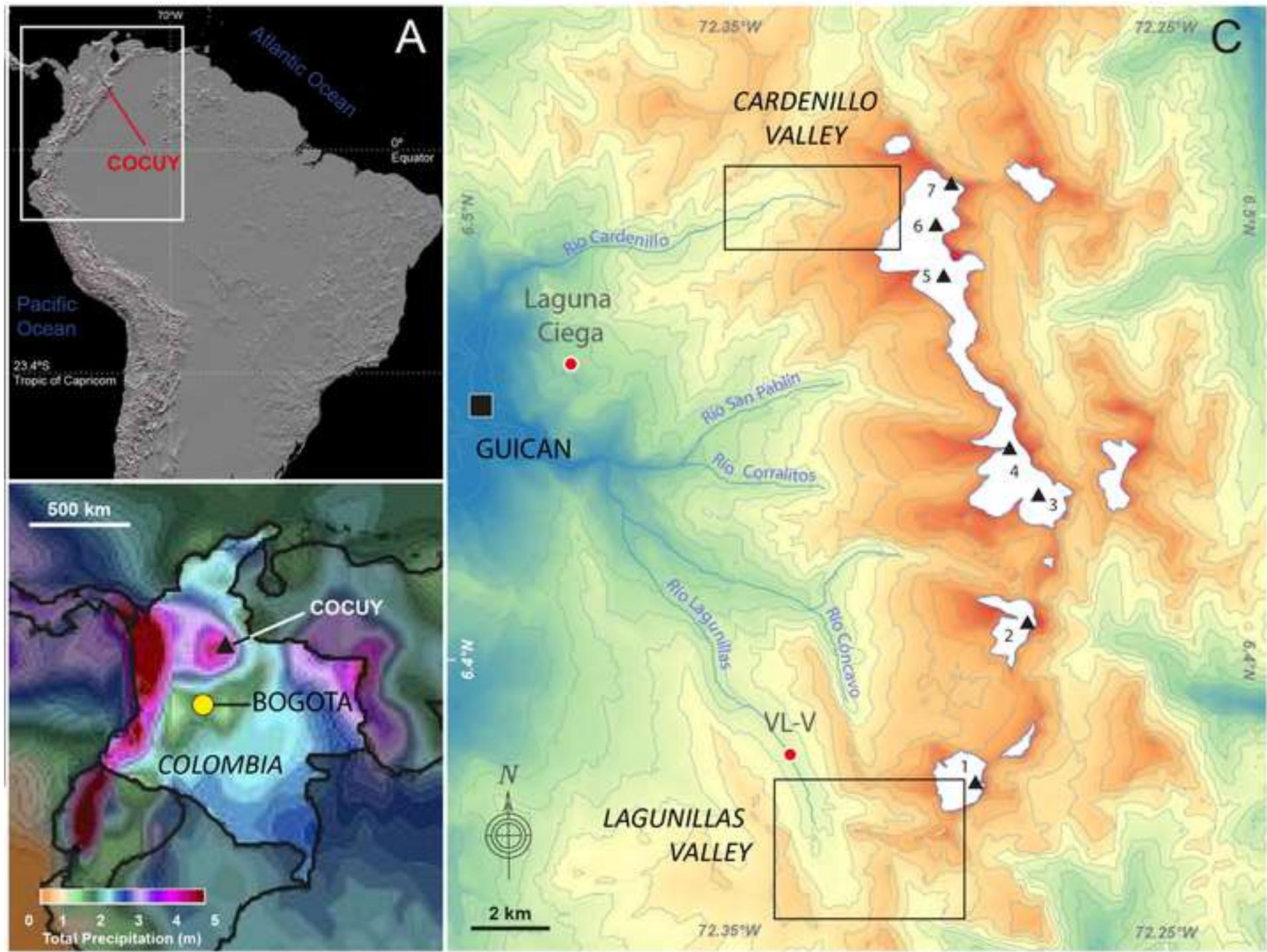
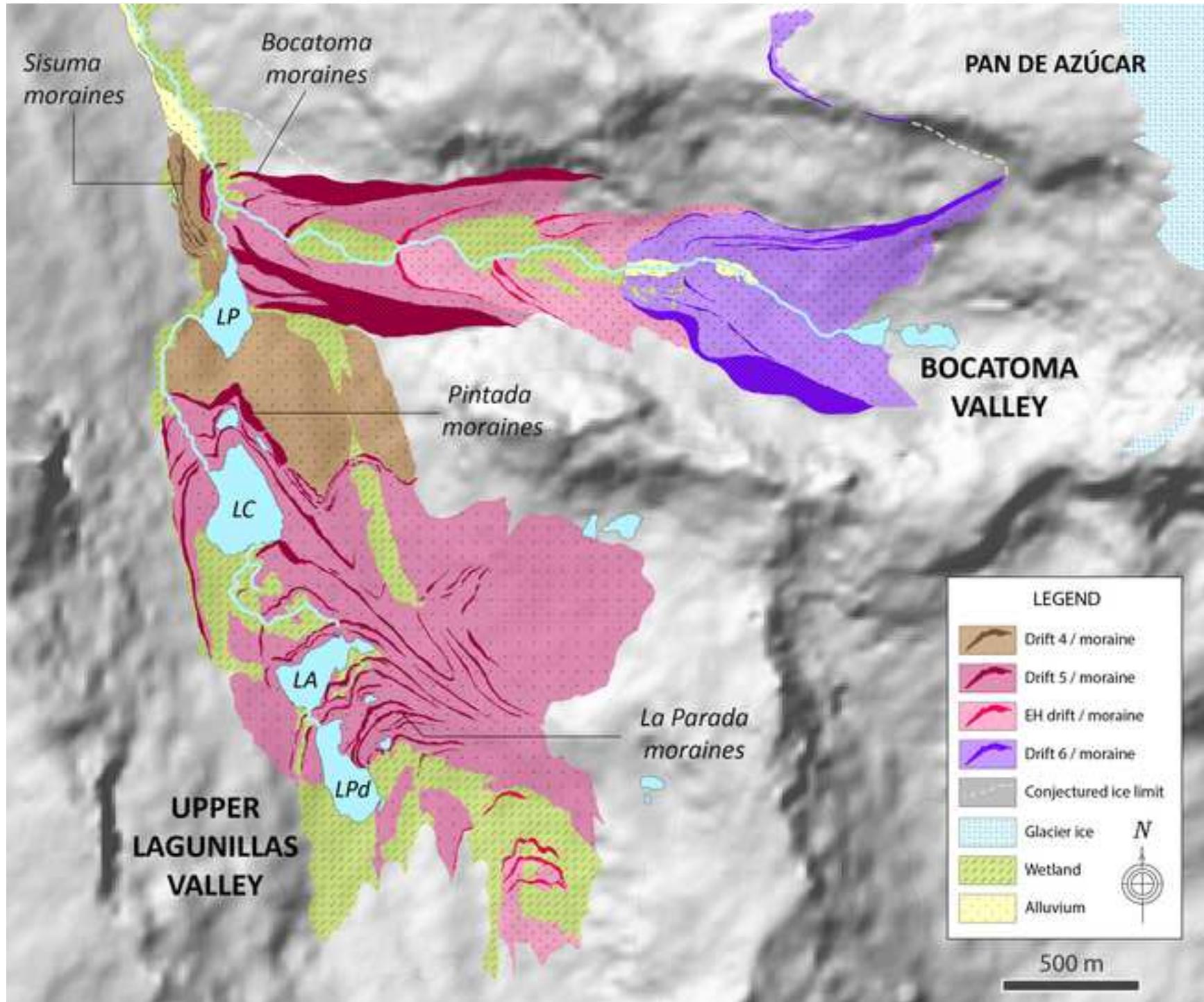



Figure 2

[Click here to access/download;Figure;Figure 2.jpg](#)

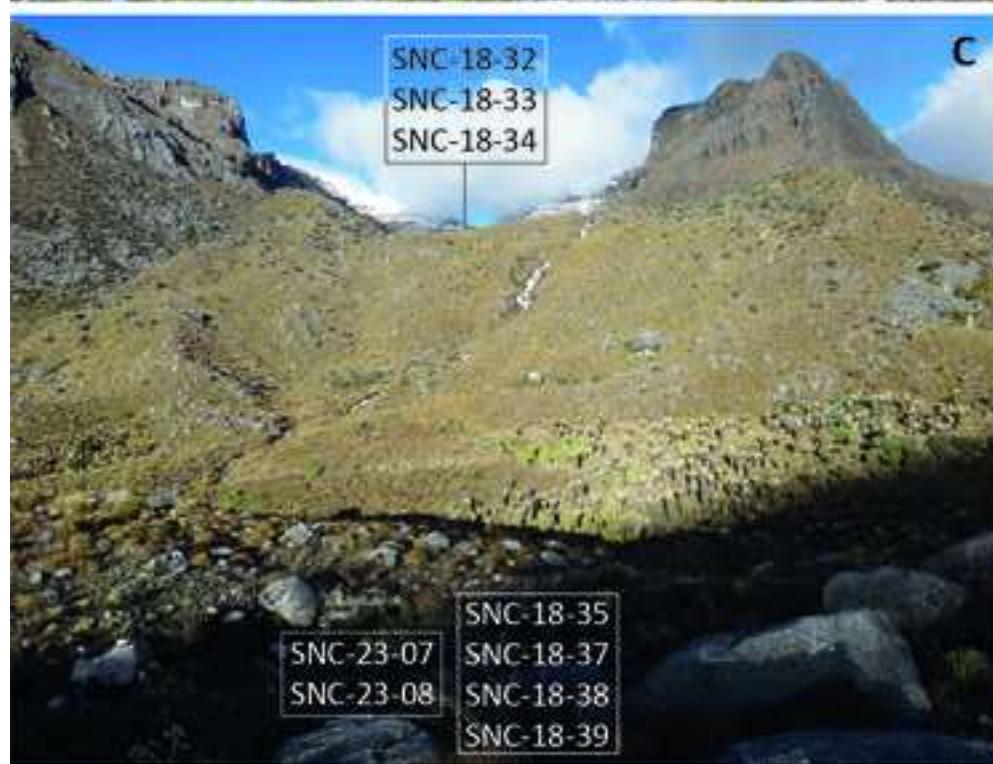


Figure 4

Click here to access/download:Figure:Figure 4.jpg

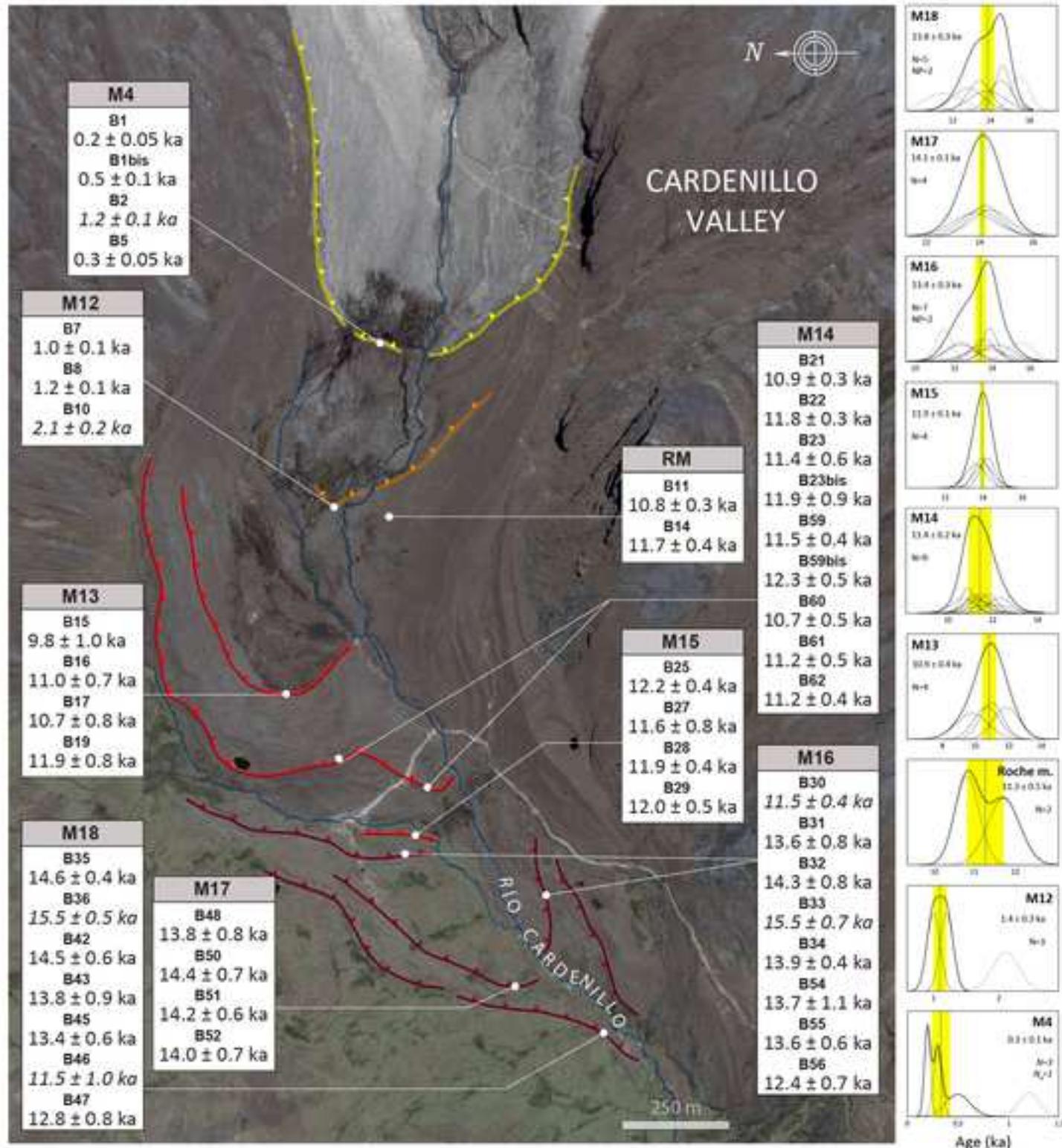


Figure 5

Click here to access/download;Figure;Figure 5.jpg

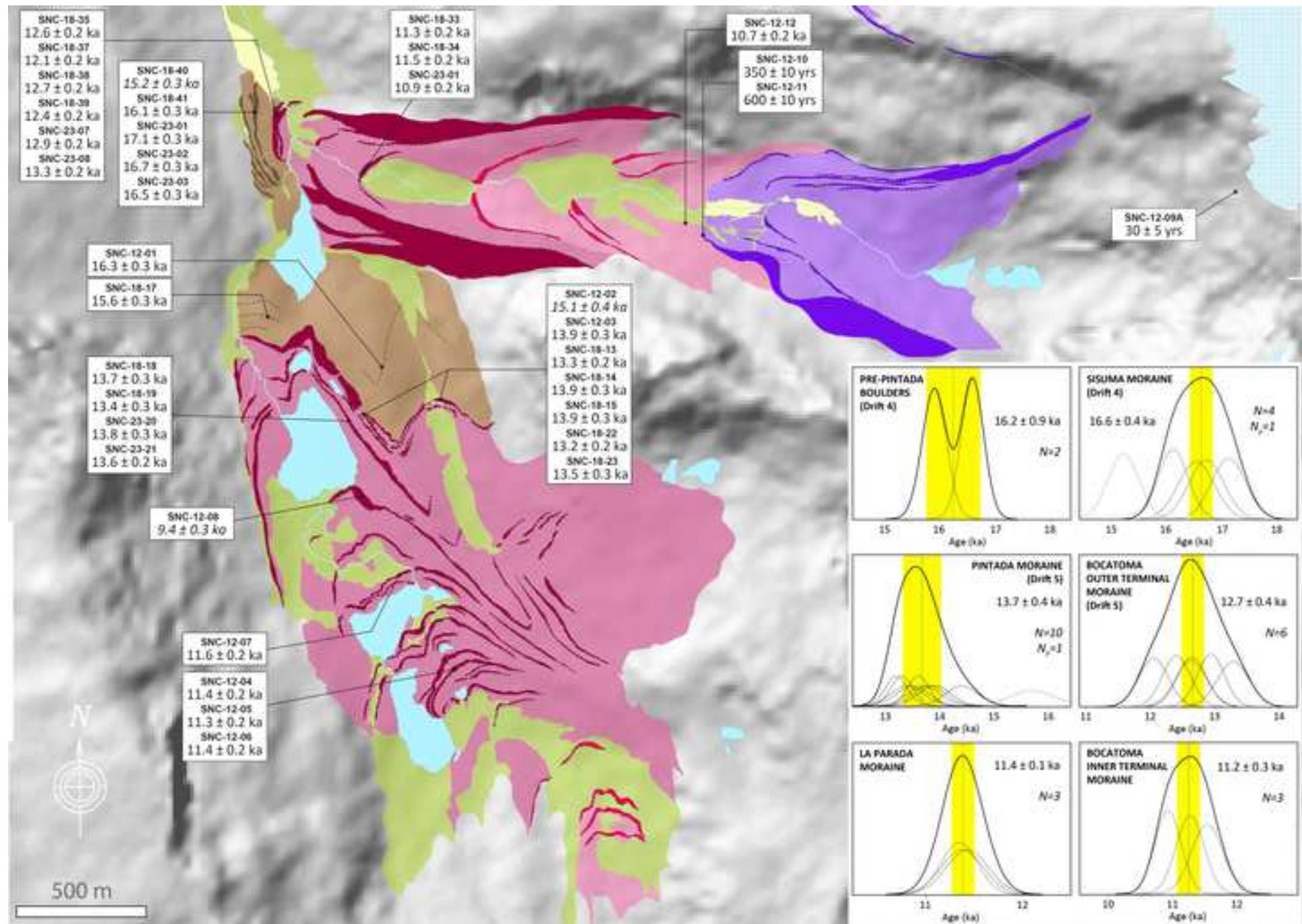
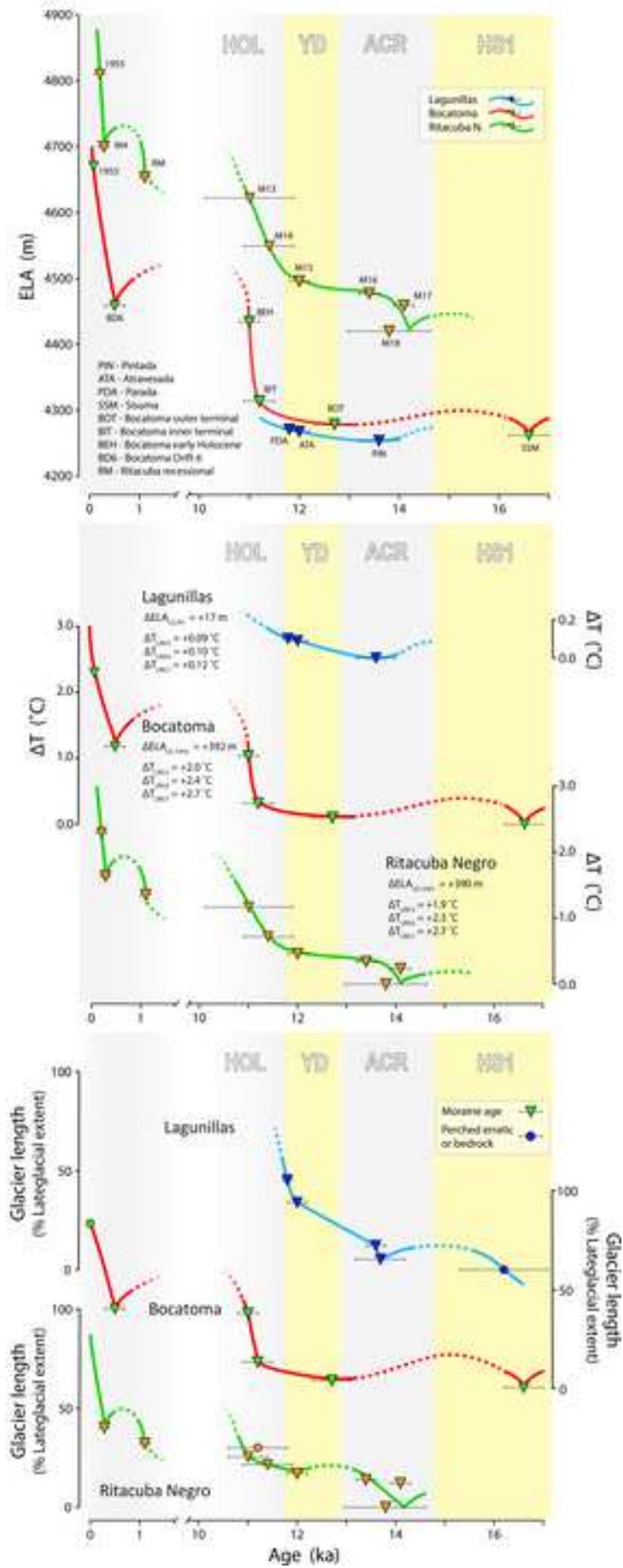



Figure 7

Click here to access/download;Figure;Figure 7.jpg

Table 1. ^{10}Be surface-exposure sample details and nuclide data for Lagunillas and Bocatoma samples. All measurements were made relative to the 07KNSTD AMS standard, which is dilution 01-5-4 from Nishiizumi et al. (2007), with a known ratio of 2850×10^{-15} . Shielding corrections were calculated using the UW topographic shielding calculator (https://stoneage.ice-d.org/math/skyline/skyline_in.html).

Landform	Sample ID	CAMS ID	Lat.	Long.	Elevation (m)	Sample thickness (cm)	Density (g/cm ⁻²)	Shielding	Quartz weight (g)	^{9}Be added (μg)	$^{10}\text{Be}/9\text{Be} \pm 1\sigma$ (10 ⁻¹³) ^a	$[^{10}\text{Be}] \pm 1\sigma$ (10 ⁵) (atoms/g quartz) ^b
Lagunillas												
Pre-Pintada	SNC-12-01	BE37330	6.36190	-72.3350	4010	1.0	2.7	0.990	5.0765	0.206	1.68 ± 0.03	4.53 ± 0.09
	SNC-18-17	BE50415	6.36000	-72.3313	4048	3.0	2.7	0.987	7.2155	0.189	2.47 ± 0.05	4.32 ± 0.08
Pintada moraine	SNC-12-02	BE37331	6.35853	-72.3314	4059	0.5	2.7	0.990	5.0191	0.208	1.57 ± 0.04	4.32 ± 0.11
	SNC-12-03	BE37332	6.35782	-72.3309	4068	1.0	2.7	0.990	5.0781	0.207	1.47 ± 0.03	3.97 ± 0.09
	SNC-18-13	BE50293	6.35912	-72.3293	4045	1.1	2.7	0.977	7.0381	0.206	2.00 ± 0.04	3.71 ± 0.07
	SNC-18-14	BE50414	6.35878	-72.3301	4051	1.3	2.7	0.972	7.0019	0.206	2.20 ± 0.04	3.86 ± 0.07
	SNC-18-15	BE50286	6.35828	-72.3304	4075	2.1	2.7	0.985	7.0037	0.207	2.09 ± 0.04	3.94 ± 0.07
	SNC-18-18	BE50416	6.35895	-72.3325	4048	1.5	2.7	0.990	7.0206	0.195	2.09 ± 0.04	3.87 ± 0.07
	SNC-18-19	BE50287	6.35909	-72.3326	4046	1.8	2.7	0.990	7.0016	0.194	2.03 ± 0.04	3.77 ± 0.08
	SNC-18-20	BE50288	6.35909	-72.3326	4046	1.3	2.7	0.990	7.0623	0.196	2.11 ± 0.04	3.91 ± 0.07
	SNC-18-21	BE50289	6.35972	-72.3329	4044	1.6	2.7	0.990	7.0000	0.198	2.03 ± 0.03	3.83 ± 0.06
	SNC-18-22	BE50290	6.36057	-72.3333	4040	2.0	2.7	0.991	6.9940	0.196	1.98 ± 0.04	3.71 ± 0.07
	SNC-18-23	BE50291	6.36028	-72.3331	4043	1.5	2.7	0.991	7.0137	0.198	2.02 ± 0.04	3.81 ± 0.07
Cuadrada moraine	SNC-12-08	BE40318	6.35545	-72.3314	4057	1.3	2.7	0.990	7.0650	0.210	1.34 ± 0.03	2.66 ± 0.05
La Atravesada mor.	SNC-12-07	BE40317	6.35362	-72.3306	4057	1.6	2.7	0.990	7.0156	0.210	1.64 ± 0.03	3.28 ± 0.05
La Parada moraine	SNC-12-04	BE40314	6.35053	-72.3289	4083	2.2	2.7	0.990	7.0163	0.211	1.63 ± 0.03	3.26 ± 0.06
	SNC-12-05	BE40315	6.35012	-72.3297	4076	2.0	2.7	0.990	7.0031	0.211	1.61 ± 0.03	3.23 ± 0.03
	SNC-12-06	BE40316	6.34935	-72.3295	4071	0.6	2.7	0.990	7.0530	0.211	1.64 ± 0.03	3.27 ± 0.03
Sisuma moraine												
	SNC-18-40	BE50299	6.36735	-72.3350	3963	1.2	2.7	0.985	7.0165	0.196	2.20 ± 0.04	4.11 ± 0.08
	SNC-18-41	BE50300	6.36739	-72.3351	3964	1.3	2.7	0.986	7.0060	0.197	2.32 ± 0.04	4.36 ± 0.07
	SNC-23-01	BE54103	6.36874	-72.3353	3968	2.0	2.7	0.978	5.9238	0.211	1.93 ± 0.04	4.59 ± 0.08
	SNC-23-02	BE54104	6.36809	-72.3351	3970	2.6	2.7	0.980	6.1388	0.209	1.96 ± 0.04	4.46 ± 0.09
	SNC-23-03	BE54105	6.36782	-72.3351	3978	2.8	2.7	0.980	6.0925	0.210	1.92 ± 0.04	4.42 ± 0.09
Outer Bocatoma moraine												
	SNC-18-35	BE50296	6.36584	-72.3341	3966	2.1	2.7	0.982	7.0475	0.197	1.81 ± 0.04	3.39 ± 0.07
	SNC-18-37	BE50297	6.36740	-72.3344	3956	2.8	2.7	0.983	6.9992	0.197	1.72 ± 0.03	3.21 ± 0.06
	SNC-18-38	BE50419	6.36729	-72.3343	3956	3.2	2.7	0.983	7.0188	0.195	1.81 ± 0.03	3.36 ± 0.06
	SNC-18-39	BE50298	6.36706	-72.3345	3959	1.4	2.7	0.983	7.0141	0.193	1.82 ± 0.03	3.36 ± 0.06
	SNC-23-07	BE54106	6.36753	-72.3344	3978	1.6	2.7	0.983	5.9468	0.206	1.51 ± 0.03	3.51 ± 0.06
	SNC-23-08	BE54107	6.36708	-72.3345	3978	2.8	2.7	0.983	5.9177	0.209	1.51 ± 0.03	3.57 ± 0.07
Inner Bocatoma moraine												
	SNC-18-32	BE50294	6.36638	-72.3316	4025	2.7	2.7	0.985	7.0084	0.197	1.65 ± 0.03	3.10 ± 0.06
	SNC-18-33	BE50295	6.36635	-72.3317	4042	1.3	2.7	0.985	7.0010	0.197	1.71 ± 0.04	3.21 ± 0.07

	SNC-18-34	BE50417	6.36631	-72.3317	4025	1.3	2.7	0.987	7.0471	0.196	1.64 ± 0.03	3.05 ± 0.06
Early Holocene err.	SNC-12-12	BE40311	6.36469	-72.3217	4180	4.4	2.7	0.970	30.1050	0.209	6.61 ± 0.02	3.07 ± 0.07
Drift 5 moraine	SNC-12-10	BE40309	6.36445	-72.3209	4202	2.0	2.7	0.970	30.1040	0.209	0.22 ± 0.01	0.10 ± 0.003
	SNC-12-11	BE40310	6.36445	-72.3209	4202	4.9	2.7	0.970	30.1570	0.209	0.39 ± 0.01	0.18 ± 0.004
Ice-proximal BR	SNC-12-09A	BE40603	6.36569	-72.3040	4723	2.3	2.7	0.980	100.6700	0.125	0.12 ± 0.01	0.01 ± 0.001

^a Beryllium ratios reported with no blank correction.

^b Sample concentrations reported with blank correction.

Table 2. Cosmogenic ^{10}Be surface-exposure ages and internal [external] uncertainties calculated using the Quelccaya Ice Cap production rate (Kelly *et al.*, 2013) and three current scaling models. Italics denote outliers.

Landform	Sample ID	St (ka)	Lm (ka)	LSDn (ka)
Lagunillas				
Pre-Pintada	SNC-12-01	16.3 ± 0.3 [1.2]	15.0 ± 0.3 [1.1]	15.4 ± 0.3 [1.1]
	SNC-18-17	15.6 ± 0.3 [1.1]	14.5 ± 0.3 [1.1]	14.9 ± 0.3 [1.1]
Pintada	SNC-12-02	15.1 ± 0.4 [1.1]	14.1 ± 0.4 [1.1]	14.5 ± 0.4 [1.1]
	SNC-12-03	13.9 ± 0.3 [1.0]	13.2 ± 0.3 [1.0]	13.5 ± 0.3 [1.0]
	SNC-18-13	13.3 ± 0.2 [1.0]	12.8 ± 0.2 [0.9]	13.0 ± 0.2 [0.9]
	SNC-18-14	13.9 ± 0.3 [1.0]	13.2 ± 0.2 [1.0]	13.5 ± 0.3 [1.0]
	SNC-18-15	13.9 ± 0.3 [1.0]	13.2 ± 0.2 [1.0]	13.5 ± 0.3 [1.0]
	SNC-18-18	13.7 ± 0.3 [1.0]	13.1 ± 0.2 [1.0]	13.3 ± 0.2 [1.0]
	SNC-18-19	13.4 ± 0.3 [1.0]	12.8 ± 0.3 [1.0]	13.1 ± 0.3 [1.0]
	SNC-18-20	13.8 ± 0.3 [1.0]	13.1 ± 0.2 [1.0]	13.4 ± 0.3 [1.0]
	SNC-18-21	13.6 ± 0.2 [1.0]	13.0 ± 0.2 [0.9]	13.2 ± 0.2 [1.0]
	SNC-18-22	13.2 ± 0.2 [1.0]	12.7 ± 0.2 [0.9]	12.9 ± 0.2 [0.9]
	SNC-18-23	13.5 ± 0.3 [1.0]	12.9 ± 0.2 [0.9]	13.1 ± 0.2 [1.0]
Cuadrada	SNC-12-08	9.4 ± 0.3 [0.7]	9.5 ± 0.2 [0.7]	9.6 ± 0.2 [0.7]
La Atravesada	SNC-12-07	11.6 ± 0.2 [0.8]	11.2 ± 0.2 [0.8]	11.3 ± 0.2 [0.8]
La Parada	SNC-12-04	11.4 ± 0.2 [0.8]	11.1 ± 0.2 [0.8]	11.2 ± 0.2 [0.8]
	SNC-12-05	11.3 ± 0.2 [0.8]	11.2 ± 0.2 [0.8]	11.2 ± 0.2 [0.8]
	SNC-12-06	11.4 ± 0.2 [0.8]	11.1 ± 0.2 [0.8]	11.2 ± 0.2 [0.8]
Bocatoma				
Sisuma	SNC-18-40	15.2 ± 0.3 [1.1]	14.1 ± 0.3 [1.0]	14.6 ± 0.3 [1.1]
	SNC-18-41	16.1 ± 0.3 [1.2]	14.9 ± 0.3 [1.1]	15.3 ± 0.3 [1.1]
	SNC-23-01	17.1 ± 0.3 [1.2]	15.5 ± 0.3 [1.1]	16.2 ± 0.3 [1.2]
	SNC-23-02	16.7 ± 0.3 [1.2]	15.2 ± 0.3 [1.1]	15.8 ± 0.3 [1.2]
	SNC-23-03	16.5 ± 0.3 [1.2]	15.1 ± 0.3 [1.1]	15.7 ± 0.3 [1.2]
Outer Bocatoma	SNC-18-35	12.6 ± 0.2 [0.9]	12.0 ± 0.2 [0.9]	12.4 ± 0.2 [0.9]
	SNC-18-37	12.1 ± 0.2 [0.9]	11.5 ± 0.2 [0.8]	11.8 ± 0.2 [0.9]
	SNC-18-38	12.7 ± 0.2 [0.9]	12.0 ± 0.2 [0.9]	12.2 ± 0.2 [0.9]
	SNC-18-39	12.4 ± 0.2 [0.9]	11.8 ± 0.2 [0.9]	12.2 ± 0.2 [0.9]
	SNC-23-07	12.9 ± 0.2 [0.9]	12.4 ± 0.2 [0.9]	12.7 ± 0.2 [0.9]
	SNC-23-08	13.3 ± 0.2 [1.0]	12.8 ± 0.2 [0.9]	13.0 ± 0.2 [0.9]
Inner Bocatoma	SNC-18-32	11.3 ± 0.2 [0.8]	11.0 ± 0.2 [0.8]	11.2 ± 0.2 [0.8]
	SNC-18-33	11.5 ± 0.2 [0.8]	11.2 ± 0.2 [0.8]	11.3 ± 0.2 [0.8]
	SNC-18-34	10.9 ± 0.2 [0.8]	10.8 ± 0.2 [0.8]	10.9 ± 0.2 [0.8]
Early Holocene	SNC-12-12	10.7 ± 0.2 [0.8]	10.6 ± 0.2 [0.8]	10.7 ± 0.2 [0.8]
Drift 5 moraine	SNC-12-10	0.3 ± 0.01 [0.03]	0.3 ± 0.01 [0.03]	0.3 ± 0.01 [0.03]
	SNC-12-11	0.6 ± 0.01 [0.05]	0.7 ± 0.01 [0.05]	0.6 ± 0.01 [0.05]
Ice-proximal BR	SNC-12-09A	03 ± 0.002 [0.003]	0.02 ± 0.002 [0.002]	0.03 ± 0.002 [0.002]
Cardenillo				
M18	B35	14.6 ± 0.4 [1.1]	13.7 ± 0.4 [1.1]	14.1 ± 0.4 [1.1]
	B36	15.5 ± 0.5 [1.2]	14.4 ± 0.5 [1.1]	14.9 ± 0.5 [1.1]
	B42	14.5 ± 0.6 [1.2]	13.7 ± 0.6 [1.1]	14.0 ± 0.6 [1.1]
	B43	13.8 ± 0.9 [1.3]	13.1 ± 0.8 [1.3]	13.4 ± 0.9 [1.3]
	B45	13.4 ± 0.6 [1.1]	12.8 ± 0.6 [1.1]	13.0 ± 0.6 [1.1]
	B46	11.5 ± 1.0 [1.3]	11.2 ± 1.0 [1.3]	11.3 ± 1.0 [1.3]
	B47	12.8 ± 0.8 [1.2]	12.2 ± 0.8 [1.2]	12.5 ± 0.8 [1.2]
M17	B48	13.8 ± 0.8 [1.2]	13.9 ± 0.8 [1.2]	13.4 ± 0.8 [1.2]
	B50	14.4 ± 0.7 [1.2]	13.6 ± 0.6 [1.1]	13.9 ± 0.6 [1.2]
	B51	14.2 ± 0.6 [1.2]	13.4 ± 0.6 [1.1]	13.7 ± 0.6 [1.2]
	B52	14.1 ± 0.7 [1.2]	13.3 ± 0.7 [1.2]	13.6 ± 0.7 [1.2]
M16	B30	11.5 ± 0.4 [0.9]	11.2 ± 0.4 [0.9]	11.3 ± 0.4 [0.9]
	B31	13.6 ± 0.8 [1.3]	13.0 ± 0.8 [1.2]	13.2 ± 0.8 [1.2]
	B32	14.3 ± 0.8 [1.3]	13.5 ± 0.7 [1.2]	13.8 ± 0.7 [1.2]
	B33	15.5 ± 0.7 [1.3]	14.4 ± 0.6 [1.2]	14.8 ± 0.6 [1.2]
	B34	13.9 ± 0.4 [1.1]	13.2 ± 0.4 [1.0]	13.5 ± 0.4 [1.0]
	B54	13.7 ± 1.1 [1.5]	13.0 ± 1.0 [1.4]	13.3 ± 1.1 [1.4]
	B55	13.6 ± 0.6 [1.1]	13.0 ± 0.6 [1.1]	13.2 ± 0.6 [1.1]
	B56	12.4 ± 0.7 [1.1]	11.7 ± 0.7 [1.1]	12.1 ± 0.7 [1.1]

	B57	12.4 ± 0.8 [1.2]	11.8 ± 0.7 [1.1]	12.1 ± 0.7 [1.1]
M15	B25	12.2 ± 0.4 [1.0]	11.6 ± 0.4 [0.9]	11.9 ± 0.4 [0.9]
	B27	11.6 ± 0.8 [0.9]	11.2 ± 0.5 [0.9]	11.4 ± 0.5 [0.9]
	B28	11.9 ± 0.4 [0.9]	11.4 ± 0.4 [0.9]	11.6 ± 0.4 [0.9]
	B29	12.1 ± 0.5 [1.0]	11.5 ± 0.4 [0.9]	11.7 ± 0.5 [0.9]
M14	B21	10.9 ± 0.3 [0.8]	10.8 ± 0.3 [0.8]	10.9 ± 0.3 [0.8]
	B22	11.8 ± 0.3 [0.9]	11.3 ± 0.3 [0.9]	11.5 ± 0.4 [0.9]
	B23	11.4 ± 0.6 [1.0]	11.1 ± 0.6 [1.0]	11.2 ± 0.6 [1.0]
	B23bis	11.9 ± 0.9 [1.2]	11.4 ± 0.9 [1.2]	11.6 ± 0.9 [1.2]
	B59	11.5 ± 0.4 [0.9]	11.2 ± 0.4 [0.9]	11.3 ± 0.4 [0.9]
	B59bis	12.4 ± 0.5 [1.0]	11.7 ± 0.5 [1.0]	12.0 ± 0.5 [1.0]
	B60	10.7 ± 0.5 [0.9]	10.6 ± 0.5 [0.9]	10.7 ± 0.5 [0.9]
	B61	11.2 ± 0.5 [0.9]	11.0 ± 0.5 [0.9]	11.1 ± 0.5 [0.9]
M13	B62	11.2 ± 0.4 [0.9]	11.0 ± 0.4 [0.9]	11.1 ± 0.4 [0.9]
	B15	9.8 ± 1.0 [1.2]	9.9 ± 1.0 [1.2]	10.0 ± 1.0 [1.2]
	B16	11.0 ± 0.7 [1.0]	10.9 ± 0.7 [1.0]	11.0 ± 0.7 [1.0]
	B17	10.7 ± 0.8 [1.1]	10.7 ± 0.8 [1.1]	10.8 ± 0.8 [1.1]
Roche moutonnée	B19	11.9 ± 0.8 [1.1]	11.4 ± 0.7 [1.1]	11.6 ± 0.8 [1.1]
	B11	10.8 ± 0.3 [0.8]	10.7 ± 0.3 [0.8]	10.8 ± 0.3 [0.8]
M12	B14	11.7 ± 0.4 [0.9]	11.2 ± 0.3 [0.9]	11.4 ± 0.4 [0.9]
	B7	1.1 ± 0.1 [0.1]	1.2 ± 0.1 [0.2]	1.1 ± 0.1 [0.1]
	B8	1.2 ± 0.1 [0.2]	1.4 ± 0.2 [0.2]	1.3 ± 0.1 [0.2]
M4	B10	2.1 ± 0.2 [0.3]	2.6 ± 0.3 [0.3]	2.4 ± 0.2 [0.3]
	B1	0.2 ± 0.03 [0.03]	0.2 ± 0.03 [0.03]	0.2 ± 0.03 [0.03]
	B1bis	0.5 ± 0.1 [0.1]	0.5 ± 0.1 [0.1]	0.5 ± 0.1 [0.1]
	B2	1.2 ± 0.1 [0.2]	1.4 ± 0.2 [0.2]	1.3 ± 0.1 [0.2]
	B5	0.3 ± 0.04 [0.4]	0.2 ± 0.03 [0.4]	0.3 ± 0.03 [0.4]

Table 3. Reconstructed ELAs for dated landforms in the Lagunillas, Bocatoma, and Cardenillo drainages calculated using a range of AAR and BR values.

Landform	AAR	ELA (m)	BR	ELA (m)
Sisuma moraine (16.6 ± 0.4 ka)	0.6	4405	2	4399
	0.7	4337	3	4363
	0.8	4262	4	4338
	0.9	4161	5	4319
Bocatoma outer moraine (12.7 ± 0.4 ka)	0.6	4420	2	4418
	0.7	4356	3	4382
	0.8	4279	4	4357
	0.9	4186	5	4338
Bocatoma inner moraine (11.2 ± 0.3 ka)	0.6	4437	2	4443
	0.7	4386	3	4411
	0.8	4314	4	4389
	0.9	4240	5	4380
Bocatoma early Holocene (11.0 ± 0.2 ka)	0.6	4527	2	4547
	0.7	4487	3	4518
	0.8	4434	4	4499
	0.9	4357	5	4484
Bocatoma Drift 6 moraine (0.5 ± 0.2 ka)	0.6	4526	2	4552
	0.7	4493	3	4528
	0.8	4458	4	4511
	0.9	4403	5	4499
Bocatoma 1955 extent	0.6	4744	2	4756
	0.7	4707	3	4735
	0.8	4671	4	4721
	0.9	4626	5	4710
Pintada moraine (13.7 ± 0.4 ka)	0.6	4325	2	4311
	0.7	4295	3	4294
	0.8	4254	4	4281
	0.9	4196	5	4271
La Atravesada moraine (12.0 ± 0.2 ka)	0.6	4320	2	4319
	0.7	4296	3	4305
	0.8	4268	4	4294
	0.9	4229	5	4286
La Parada moraine (11.8 ± 0.05 ka)	0.6	4337	2	4330
	0.7	4305	3	4314
	0.8	4271	4	4303
	0.9	4229	5	4294
M18 moraine (13.8 ± 0.3 ka)	0.6	4719	2	4644
	0.7	4620	3	4589
	0.8	4420	4	4550
	0.9	4280	5	4520
M17 moraine (13.8 ± 0.8 ka)	0.6	4715	2	4657
	0.7	4618	3	4605
	0.8	4459	4	4568
	0.9	4305	5	4540
M16 moraine (13.3 ± 0.8 ka)	0.6	4714	2	4662
	0.7	4621	3	4612
	0.8	4477	4	4577
	0.9	4324	5	4549
M15 moraine	0.6	4722	2	4677

(11.9 ± 0.2 ka)	0.7	4632	3	4627
	0.8	4497	4	4592
	0.9	4335	5	4564
M14 moraine (11.4 ± 0.5 ka)	0.6	4753	2	4704
	0.7	4682	3	4653
	0.8	4549	4	4616
	0.9	4337	5	4587
M13 moraine (10.9 ± 0.4 ka)	0.6	4770	2	4734
	0.7	4712	3	4691
	0.8	4622	4	4660
	0.9	4425	5	4635
Cardenillo late Holocene (1.1 ± 0.1 ka)	0.6	4794	2	4760
	0.7	4736	3	4718
	0.8	4653	4	4687
	0.9	4474	5	4663
Cardenillo Drift 6 moraine (0.3 ± 0.2 ka)	0.6	4815	2	4788
	0.7	4762	3	4754
	0.8	4699	4	4729
	0.9	4577	5	4709
Cardenillo 1955 extent	0.6	4903	2	4920
	0.7	4858	3	4893
	0.8	4809	4	4875
	0.9	4751	5	4862

Quelccaya Ice Cap production rate input data from Kelly *et al.* (2015).

Data selected from ice-D calibration site for v.3 of the UW online calculator. Dataset includes 12 of the 15 total
Cut and paste data below into the online calculator: <https://hess.ess.washington.edu/math/v3/v3.html>

K2015-Q-40 -13.94420 -70.89360 4853 std 1.5 2.29 0.9980 0.00e+00 0;
K2015-Q-40 true_t HUANCANE2A 12200 560;
K2015-Q-40 Be-10 quartz 5.452e+05 1.342e+04 KNSTD;
K2015-Q-42 -13.94500 -70.89290 4857 std 1.6 2.29 0.9960 4.51e-04 0;
K2015-Q-42 true_t HUANCANE2A 12200 560;
K2015-Q-42 Be-10 quartz 5.673e+05 9.690e+03 KNSTD;
K2015-Q-43 -13.94370 -70.89530 4844 std 1.5 2.29 0.9990 4.51e-04 0;
K2015-Q-43 true_t HUANCANE2A 12200 560;
K2015-Q-43 Be-10 quartz 5.533e+05 1.361e+04 KNSTD;
K2015-Q-44 -13.94500 -70.89540 4849 std 2.0 2.29 1.0000 0.00e+00 0;
K2015-Q-44 true_t HUANCANE2A 12200 560;
K2015-Q-44 Be-10 quartz 5.540e+05 1.364e+04 KNSTD;
K2015-Q-46 -13.94630 -70.89240 4863 std 0.9 2.29 1.0000 4.51e-04 0;
K2015-Q-46 true_t HUANCANE2A 12200 560;
K2015-Q-46 Be-10 quartz 5.716e+05 1.403e+04 KNSTD;
K2015-Q-47 -13.94630 -70.89210 4865 std 2.1 2.29 1.0000 4.51e-04 0;
K2015-Q-47 true_t HUANCANE2A 12200 560;
K2015-Q-47 Be-10 quartz 5.714e+05 1.158e+04 07KNSTD;
K2015-Q-48 -13.94610 -70.89270 4862 std 3.4 2.29 0.9980 4.51e-04 0;
K2015-Q-48 true_t HUANCANE2A 12200 560;
K2015-Q-48 Be-10 quartz 5.896e+05 1.350e+04 07KNSTD;
K2015-Q-49 -13.94580 -70.89350 4851 std 5.1 2.29 1.0000 4.51e-04 0;
K2015-Q-49 true_t HUANCANE2A 12200 560;
K2015-Q-49 Be-10 quartz 5.863e+05 1.107e+04 KNSTD;
K2015-Q-83 -13.94400 -70.89230 4856 std 3.2 2.29 0.9750 0.00e+00 0;
K2015-Q-83 true_t HUANCANE2A 12200 560;
K2015-Q-83 Be-10 quartz 4.954e+05 9.280e+03 07KNSTD;
K2015-Q-135 -13.94680 -70.88620 4863 std 2.3 2.29 0.9990 4.51e-04 0;
K2015-Q-135 true_t HUANCANE2A 12200 560;
K2015-Q-135 Be-10 quartz 5.159e+05 1.150e+04 07KNSTD;
K2015-Q-136 -13.94630 -70.88650 4866 std 2.3 2.29 0.9930 4.51e-04 0;
K2015-Q-136 true_t HUANCANE2A 12200 560;
K2015-Q-136 Be-10 quartz 4.993e+05 1.196e+04 07KNSTD;
K2015-Q-137 -13.94570 -70.88550 4870 std 2.1 2.29 0.9990 4.51e-04 0;
K2015-Q-137 true_t HUANCANE2A 12200 560;
K2015-Q-137 Be-10 quartz 5.433e+05 1.020e+04 07KNSTD;

I samples from the Huancance IIa moraines; three samples (Q-40a, 44a, and 83a) were omitted by the from the
[cal_in.html](#)

the original calibration and thus are not included here (see section 4.2.1 in Kelly et al. (2015)).

UW v.3 online calculator input data for all samples reported in Table 1

Sample groupings below correspond to those given in Table 1

Sample ID	Latitude	Longitude	Elevation	Atmosphere	Thickness
<i>Pre-Pintada</i>					
SNC-12-01	6.3619	-72.3350	4010	std	1.0
SNC-18-17	6.3600	-72.3313	4048	std	3.0
<i>Pintada</i>					
SNC-12-02	6.3585	-72.3314	4059	std	0.5
SNC-12-03	6.3578	-72.3309	4068	std	1.0
SNC-18-13	6.3591	-72.3293	4045	std	1.1
SNC-18-14	6.3588	-72.3301	4051	std	1.3
SNC-18-15	6.3583	-72.3304	4075	std	2.1
SNC-18-18	6.3590	-72.3325	4048	std	1.5
SNC-18-19	6.3591	-72.3326	4046	std	1.8
SNC-18-20	6.3591	-72.3326	4046	std	1.3
SNC-18-21	6.3597	-72.3329	4044	std	1.6
SNC-18-22	6.3606	-72.3333	4040	std	2.0
SNC-18-23	6.3603	-72.3331	4043	std	1.5
<i>Cuadrada</i>					
SNC-12-08	6.3555	-72.3314	4057	std	1.3
<i>La Atravesada</i>					
SNC-12-07	6.3536	-72.3306	4057	std	1.6
<i>La Parada</i>					
SNC-12-04	6.3505	-72.3289	4083	std	2.2
SNC-12-05	6.3501	-72.3297	4076	std	2.0
SNC-12-06	6.3494	-72.3295	4071	std	0.6
<i>Sisuma</i>					
SNC-18-40	6.3674	-72.3350	3963	std	1.2
SNC-18-41	6.3674	-72.3351	3964	std	1.3
SNC-23-01	6.3687	-72.3353	3968	std	1.9
SNC-23-02	6.3681	-72.3351	3970	std	2.6
SNC-23-03	6.3678	-72.3351	3978	std	2.8
<i>Outer Bocatoma</i>					
SNC-18-35	6.3658	-72.3341	3966	std	2.1
SNC-18-37	6.3674	-72.3344	3956	std	2.8
SNC-18-38	6.3673	-72.3343	3956	std	3.2
SNC-18-39	6.3671	-72.3345	3959	std	1.4
SNC-23-07	6.3675	-72.3344	3978	std	1.6
SNC-23-08	6.3671	-72.3345	3978	std	2.8
<i>Inner Bocatoma</i>					
SNC-18-32	6.3664	-72.3316	4025	std	2.7
SNC-18-33	6.3664	-72.3317	4024	std	1.3
SNC-18-34	6.3663	-72.3317	4025	std	1.3
<i>Early Holocene</i>					
SNC-12-12	6.3647	-72.3217	4180	std	4.4
<i>Drift 5</i>					

SNC-12-10	6.3645	-72.3209	4202	std	2.0
SNC-12-11	6.3645	-72.3209	4202	std	4.9
<i>Ice-proximal BR</i>					
SNC-12-09A	6.3657	-72.3040	4723	std	2.3
<i>M18</i>					
B35	6.5069	-72.3489	3998	std	3.5
B36	6.5068	-72.3489	3998	std	3
B42	6.5076	-72.3482	4024	std	4
B43	6.5075	-72.3483	4020	std	3
B45	6.5072	-72.3486	4005	std	4
B46	6.5070	-72.3487	3999	std	2
B47	6.5070	-72.3487	4000	std	3
<i>M17</i>					
B48	6.5088	-72.3468	4046	std	2
B50	6.5088	-72.3468	4049	std	1.5
B51	6.5089	-72.3468	4051	std	2.5
B52	6.5089	-72.3468	4050	std	2
<i>M16</i>					
B30	6.5081	-72.3451	4059	std	2.5
B31	6.5081	-72.3451	4059	std	2.5
B32	6.5081	-72.3449	4060	std	2
B33	6.5082	-72.3448	4065	std	2.5
B34	6.5082	-72.3448	4064	std	2
B54	6.5109	-72.3442	4086	std	2.5
B55	6.5109	-72.34425	4086	std	2
B56	6.5110	-72.34422	4088	std	3
B57	6.51105	-72.34439	4087	std	2.5
<i>M15</i>					
B25	6.50981	-72.34429	4059	std	5.5
B27	6.50987	-72.34428	4062	std	3
B28	6.50987	-72.34428	4062	std	5.5
B29	6.5097	-72.34430	4058	std	5.5
<i>M14</i>					
B21	6.51	-72.34272	4079	std	1
B22	6.50995	-72.3427	4078	std	2
B23	6.50988	-72.34263	4076	std	3
B23bis	6.50988	-72.34263	4076	std	3
B59	6.51256	-72.34179	4175	std	2.5
B59bis	6.51256	-72.34179	4175	std	2.5
B60	6.51254	-72.34176	4175	std	3
B61	6.51251	-72.34173	4175	std	2
B62	6.51247	-72.34176	4175	std	2
<i>M13</i>					
B15	6.51245	-72.34066	4139	std	2
B16	6.51252	-72.34072	4135	std	3
B17	6.51259	-72.34079	4137	std	2
B19	6.51308	-72.34072	4133	std	2

Roche Moutonnée

B11	6.51119	-72.33775	4137	std	3
B14	6.51119	-72.33775	4137	std	2
M12					
B7	6.51184	-72.3369	4147	std	3.5
B8	6.51194	-72.33698	4147	std	4
B10	6.51207	-72.33718	4142	std	1.5
M4					
B1	6.50956	-72.33397	4209	std	2
B1bis	6.50956	-72.33397	4209	std	2
B2	6.50961	-72.33398	4203	std	2
B5	6.51063	-72.33369	4203	std	2.5

Density	Shielding	Erosion	Collection year	Sample ID	Nuclide
2.7	0.990	0	2012;	SNC-12-01	Be-10
2.7	0.987	0	2018;	SNC-18-17	Be-10
2.7	0.990	0	2012;	SNC-12-02	Be-10
2.7	0.990	0	2012;	SNC-12-03	Be-10
2.7	0.977	0	2018;	SNC-18-13	Be-10
2.7	0.972	0	2018;	SNC-18-14	Be-10
2.7	0.985	0	2018;	SNC-18-15	Be-10
2.7	0.990	0	2018;	SNC-18-18	Be-10
2.7	0.990	0	2018;	SNC-18-19	Be-10
2.7	0.990	0	2018;	SNC-18-20	Be-10
2.7	0.990	0	2018;	SNC-18-21	Be-10
2.7	0.991	0	2018;	SNC-18-22	Be-10
2.7	0.991	0	2018;	SNC-18-23	Be-10
2.7	0.990	0	2012;	SNC-12-08	Be-10
2.7	0.990	0	2012;	SNC-12-07	Be-10
2.7	0.990	0	2012;	SNC-12-04	Be-10
2.7	0.990	0	2012;	SNC-12-05	Be-10
2.7	0.990	0	2012;	SNC-12-06	Be-10
2.7	0.985	0	2018;	SNC-18-40	Be-10
2.7	0.986	0	2018;	SNC-18-41	Be-10
2.7	0.978	0	2023;	SNC-23-01	Be-10
2.7	0.978	0	2023;	SNC-23-02	Be-10
2.7	0.978	0	2023;	SNC-23-03	Be-10
2.7	0.982	0	2018;	SNC-18-35	Be-10
2.7	0.985	0	2018;	SNC-18-37	Be-10
2.7	0.985	0	2018;	SNC-18-38	Be-10
2.7	0.988	0	2018;	SNC-18-39	Be-10
2.7	0.985	0	2023;	SNC-23-07	Be-10
2.7	0.985	0	2023;	SNC-23-08	Be-10
2.7	0.985	0	2018;	SNC-18-32	Be-10
2.7	0.985	0	2018;	SNC-18-33	Be-10
2.7	0.987	0	2018;	SNC-18-34	Be-10
2.7	0.970	0	2012;	SNC-12-12	Be-10

2.7	0.970	0	2012;	SNC-12-10	Be-10
2.7	0.970	0	2012;	SNC-12-11	Be-10
2.7	0.980	0	2012;	SNC-12-09A	Be-10
2.7	0.993	0	2012;	B35	Be-10
2.7	0.993	0	2012;	B36	Be-10
2.7	0.996	0	2012;	B42	Be-10
2.7	0.995	0	2012;	B43	Be-10
2.7	0.994	0	2012;	B45	Be-10
2.7	0.992	0	2012;	B46	Be-10
2.7	0.994	0	2012;	B47	Be-10
2.7	0.995	0	2012;	B48	Be-10
2.7	0.995	0	2012;	B50	Be-10
2.7	0.993	0	2012;	B51	Be-10
2.7	0.996	0	2012;	B52	Be-10
2.7	0.993	0	2012;	B30	Be-10
2.7	0.991	0	2012;	B31	Be-10
2.7	0.992	0	2012;	B32	Be-10
2.7	0.994	0	2012;	B33	Be-10
2.7	0.993	0	2012;	B34	Be-10
2.7	0.995	0	2012;	B54	Be-10
2.7	0.995	0	2012;	B55	Be-10
2.7	0.994	0	2012;	B56	Be-10
2.7	0.993	0	2012;	B57	Be-10
2.7	0.994	0	2012;	B25	Be-10
2.7	0.994	0	2012;	B27	Be-10
2.7	0.994	0	2012;	B28	Be-10
2.7	0.993	0	2012;	B29	Be-10
2.7	0.989	0	2012;	B21	Be-10
2.7	0.990	0	2012;	B22	Be-10
2.7	0.989	0	2012;	B23	Be-10
2.7	0.989	0	2012;	B23bis	Be-10
2.7	0.996	0	2012;	B59	Be-10
2.7	0.996	0	2012;	B59bis	Be-10
2.7	0.996	0	2012;	B60	Be-10
2.7	0.996	0	2012;	B61	Be-10
2.7	0.996	0	2012;	B62	Be-10
2.7	0.987	0	2012;	B15	Be-10
2.7	0.987	0	2012;	B16	Be-10
2.7	0.986	0	2012;	B17	Be-10
2.7	0.988	0	2012;	B19	Be-10

2.7	0.985	0	2012;	B11	Be-10
2.7	0.985	0	2012;	B14	Be-10
2.7	0.986	0	2012;	B7	Be-10
2.7	0.989	0	2012;	B8	Be-10
2.7	0.988	0	2012;	B10	Be-10
2.7	0.976	0	2012;	B1	Be-10
2.7	0.976	0	2012;	B1bis	Be-10
2.7	0.976	0	2012;	B2	Be-10
2.7	0.984	0	2012;	B5	Be-10

Mineral	10Be atoms/g	1 σ	AMS standard
quartz	4.53E+05	8.74E+03	07KNSTD;
quartz	4.32E+05	8.00E+03	07KNSTD;
quartz	4.32E+05	1.13E+04	07KNSTD;
quartz	3.97E+05	9.08E+03	07KNSTD;
quartz	3.71E+05	6.67E+03	07KNSTD;
quartz	3.86E+05	7.14E+03	07KNSTD;
quartz	3.94E+05	7.31E+03	07KNSTD;
quartz	3.87E+05	7.18E+03	07KNSTD;
quartz	3.77E+05	8.29E+03	07KNSTD;
quartz	3.91E+05	7.33E+03	07KNSTD;
quartz	3.83E+05	6.11E+03	07KNSTD;
quartz	3.71E+05	6.96E+03	07KNSTD;
quartz	3.81E+05	7.07E+03	07KNSTD;
quartz	2.66E+05	5.01E+03	07KNSTD;
quartz	3.28E+05	5.37E+03	07KNSTD;
quartz	3.26E+05	6.14E+03	07KNSTD;
quartz	3.23E+05	5.29E+03	07KNSTD;
quartz	3.27E+05	6.17E+03	07KNSTD;
quartz	4.11E+05	7.88E+03	07KNSTD;
quartz	4.36E+05	7.30E+03	07KNSTD;
quartz	4.59E+05	8.32E+03	07KNSTD;
quartz	4.46E+05	8.50E+03	07KNSTD;
quartz	4.42E+05	8.74E+03	07KNSTD;
quartz	3.39E+05	6.52E+03	07KNSTD;
quartz	3.21E+05	6.17E+03	07KNSTD;
quartz	3.36E+05	5.98E+03	07KNSTD;
quartz	3.36E+05	5.94E+03	07KNSTD;
quartz	3.51E+05	5.75E+03	07KNSTD;
quartz	3.57E+05	6.66E+03	07KNSTD;
quartz	3.10E+05	5.96E+03	07KNSTD;
quartz	3.21E+05	6.77E+03	07KNSTD;
quartz	3.05E+05	5.65E+03	07KNSTD;
quartz	3.07E+05	6.83E+03	07KNSTD;

quartz	1.01E+04	3.31E+02	07KNSTD;
quartz	1.80E+04	4.03E+02	07KNSTD;
<hr/>			
quartz	1.01E+03	7.02E+01	07KNSTD;
<hr/>			
quartz	3.98E+05	1.22E+04	NIST_27900;
quartz	4.24E+05	1.48E+04	NIST_27900;
quartz	3.99E+05	1.65E+04	NIST_27900;
quartz	3.82E+05	2.44E+04	NIST_27900;
quartz	3.64E+05	1.59E+04	NIST_27900;
quartz	3.18E+05	2.70E+04	NIST_27900;
quartz	3.50E+05	2.22E+04	NIST_27900;
<hr/>			
quartz	3.91E+05	2.18E+04	NIST_27900;
quartz	4.08E+05	1.89E+04	NIST_27900;
quartz	3.99E+05	1.80E+04	NIST_27900;
quartz	3.98E+05	2.04E+04	NIST_27900;
<hr/>			
quartz	3.25E+05	1.00E+04	NIST_27900;
quartz	3.83E+05	2.35E+04	NIST_27900;
quartz	4.06E+05	2.18E+04	NIST_27900;
quartz	4.39E+05	1.89E+04	NIST_27900;
quartz	3.96E+05	1.27E+04	NIST_27900;
quartz	3.93E+05	3.12E+04	NIST_27900;
quartz	3.92E+05	1.80E+04	NIST_27900;
quartz	3.53E+05	2.01E+04	NIST_27900;
quartz	3.56E+05	2.16E+04	NIST_27900;
<hr/>			
quartz	3.36E+05	1.22E+04	NIST_27900;
quartz	3.28E+05	1.34E+04	NIST_27900;
quartz	3.29E+05	1.14E+04	NIST_27900;
quartz	3.32E+05	1.27E+04	NIST_27900;
<hr/>			
quartz	3.14E+05	9.87E+03	NIST_27900;
quartz	3.36E+05	1.03E+04	NIST_27900;
quartz	3.23E+05	1.63E+04	NIST_27900;
quartz	3.37E+05	2.63E+04	NIST_27900;
quartz	3.45E+05	1.11E+04	NIST_27900;
quartz	3.69E+05	1.59E+04	NIST_27900;
quartz	3.18E+05	1.51E+04	NIST_27900;
quartz	3.37E+05	1.38E+04	NIST_27900;
quartz	3.36E+05	1.31E+04	NIST_27900;
<hr/>			
quartz	2.87E+05	2.91E+04	NIST_27900;
quartz	3.20E+05	1.93E+04	NIST_27900;
quartz	3.13E+05	2.31E+04	NIST_27900;
quartz	3.47E+05	2.27E+04	NIST_27900;

quartz	3.13E+05	1.01E+04	NIST_27900;
quartz	3.40E+05	1.05E+04	NIST_27900;
quartz	3.05E+04	3.21E+03	NIST_27900;
quartz	3.49E+04	3.85E+03	NIST_27900;
quartz	6.18E+04	6.22E+03	NIST_27900;
quartz	7.37E+03	8.51E+02	NIST_27900;
quartz	1.39E+04	3.65E+03	NIST_27900;
quartz	3.66E+04	3.88E+03	NIST_27900;
quartz	7.66E+03	1.06E+03	NIST_27900;