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Abstract: Maximum entropy (MaxEnt) models are a class of statistical models that use the maximum
entropy principle to estimate probability distributions from data. Due to the size of modern data sets,
MaxEnt models need efficient optimization algorithms to scale well for big data applications. State-of-
the-art algorithms for MaxEnt models, however, were not originally designed to handle big data sets;
these algorithms either rely on technical devices that may yield unreliable numerical results, scale
poorly, or require smoothness assumptions that many practical MaxEnt models lack. In this paper, we
present novel optimization algorithms that overcome the shortcomings of state-of-the-art algorithms
for training large-scale, non-smooth MaxEnt models. Our proposed first-order algorithms leverage
the Kullback–Leibler divergence to train large-scale and non-smooth MaxEnt models efficiently.
For MaxEnt models with discrete probability distribution of n elements built from samples, each
containing m features, the stepsize parameter estimation and iterations in our algorithms scale on
the order of O(mn) operations and can be trivially parallelized. Moreover, the strong ℓ1 convexity
of the Kullback–Leibler divergence allows for larger stepsize parameters, thereby speeding up the
convergence rate of our algorithms. To illustrate the efficiency of our novel algorithms, we consider
the problem of estimating probabilities of fire occurrences as a function of ecological features in the
Western US MTBS-Interagency wildfire data set. Our numerical results show that our algorithms
outperform the state of the art by one order of magnitude and yield results that agree with physical
models of wildfire occurrence and previous statistical analyses of wildfire drivers.

Keywords: primal–dual method; maximum entropy estimation; Kullback–Leibler divergence; wildfire science
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1. Introduction

Maximum entropy (MaxEnt) models are a class of density estimation methods that
use the maximum entropy principle [1] to reproduce key statistics of data sets. Historically
used in physics [1,2], engineering [3–5], and statistics [6] applications, MaxEnt models
are now frequently used for large-scale machine learning problems in natural language
processing [7–12], social science [13–15], neuroscience [16–18], ecological modeling [19–28],
and wildfire science [29–31]. MaxEnt models in machine learning must often estimate
probability distributions from big data sets comprising hundreds of thousands to billions of
samples or features or both [32]. Due to this enormous number, large-scale MaxEnt models
need efficient and robust algorithms to perform well.

State-of-the-art algorithms for MaxEnt models, however, were not originally designed
to handle big data sets; these algorithms either rely on technical devices that may yield
unreliable numerical results [33], scale poorly in size [9,34], or require smoothness assump-
tions that many MaxEnt models lack in practice [10]. These limitations make it essentially

Entropy 2024, 26, 691. https://doi.org/10.3390/e26080691 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26080691
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-6672-6750
https://doi.org/10.3390/e26080691
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26080691?type=check_update&version=3


Entropy 2024, 26, 691 2 of 24

impossible to scale MaxEnt models to big data applications without adequate and costly
computational resources [35,36]. This constraint on computational resources, in particu-
lar, has been recently identified as a crucial challenge to overcome for using large-scale
MaxEnt models in climate change and wildfire studies within a reasonable amount of run
time [27,28,30,37].

1.1. Contributions of This Paper

In this paper, we present novel optimization algorithms that overcome the short-
comings of state-of-the-art algorithms used for training large-scale, non-smooth MaxEnt
models. Our proposed algorithms are first-order accelerated nonlinear primal–dual hybrid
gradient (NPDHG) algorithms, whose theory was provided by two authors of this paper
in [38], based on the Kullback–Leibler divergence. Using the Kullback–Leibler divergence
over the classical proximal operator makes it possible to train large-scale and non-smooth
MaxEnt models much more efficiently than the state of the art. In particular, we show
that, for a MaxEnt model with a discrete probability distribution of n elements built from
samples each containing m features, the stepsize parameter estimation and iterations in
our algorithms all scale on the order of O(mn) operations. This significantly improves on
the known complexity bound of O(min(m2n, mn2)) operations for computing the optimal
stepsize parameters of classical first-order optimization methods, such as the linear PDHG
or forward–backward splitting methods. We also show, as a consequence, that, for a given
tolerance level ϵ > 0, our algorithms provably compute solutions using on the order of
O(mn/

√
ϵ) or O(mn/ log(1/ϵ)) operations, the order depending on the smoothness of

the MaxEnt model and which are optimal with respect to the Nesterov class of optimal
first-order methods [39]. Moreover, the computational bottleneck consists of matrix–vector
multiplications, which can be trivially parallelized, and so our proposed algorithms exhibit
scalable parallelism. Finally, we show that the strong convexity of the Kullback–Leibler
divergence with respect to the ℓ1 norm naturally allows for significantly larger stepsize
parameters, thereby substantially speeding up the convergence rate of our algorithms.

To illustrate the efficiency of our novel algorithms on large-scale problems, we present
an application to wildfire science. Specifically, we consider the problem of estimating the
probabilities of fire occurrences across the western US as a function of ecological features.
To do so, we fit elastic net, non-overlapping group lasso, and ℓ∞ MaxEnt models to a
large number of hyperparameters using our proposed algorithms and the state-of-the-art
forward–backward splitting and coordinate descent STRUCTMAXENT2 algorithms [40,41].
Our numerical results show that our algorithms outperform the two latter algorithms by at
least one order of magnitude, and yield results that are in good agreement with physical
models of wildfire occurrence [42,43] as well as previous statistical analyses of wildfire
drivers [29–31,44].

1.2. Organization of This Paper

This paper is organized as follows. In Section 2, we present our setup, we describe
how MaxEnt models work, and we review three popular non-smooth MaxEnt models that
are challenging to train with big data sets: the elastic net, group lasso, and ℓ∞ regularized
MaxEnt models. In Section 3, we explain why large-scale, non-smooth MaxEnt models
are particularly challenging to train from big data sets, and we describe the state-of-
the-art algorithms for training these MaxEnt models and their limitations. In Section 4,
we describe our approach for estimating MaxEnt models with NPDHG optimization
methods, derive explicit algorithms for regularized MaxEnt models, and explain why our
algorithms overcome the limitations of state-of-the-art algorithms. In Section 5, we present
an application of our algorithms to wildfire science, where we train a large number of
MaxEnt models on the Western US MTBS-Interagency (WUMI) wildfire data set [45] to
estimate the probabilities of fire occurrences as a function of ecological features. Finally, we
review our results and outline directions for future work in Section 6.
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2. Preliminaries
2.1. Setup

Suppose we receive l independent, identically distributed samples {v1, . . . , vl} ⊂ I
from an unknown distribution D. We assume throughout, without of loss of generality,
that the input space I ≡ {1, . . . , n}. In addition, suppose we have a prior probability
distribution pprior on I that encapsulates some prior knowledge about the samples or
unknown distribution. Finally, suppose we have access to a set of features from the
samples via a bounded feature map Φ : I → Rm. Then, how do we estimate the unknown
distribution D from the prior distribution pprior, the samples {v1, . . . , vl}, and the feature
map Φ?

The maximum entropy principle offers a systematic way to answer this question. It
states that the distribution that best estimates the unknown distribution D is the one that
remains as close as possible to the prior probability pprior while matching the features
{Φ(v1), . . . , Φ(vl)} exactly or as closely as possible, in some suitable sense. Specifically,
let ∆n denote the n-dimensional probability simplex and suppose pprior ∈ int ∆n (i.e.,
pprior(j) > 0 for every j ∈ {1, . . . , n}). We measure the closeness of a probability distribution
p ∈ ∆n to the prior probability pprior using the Kullback–Leibler divergence DKL : ∆n ×
int ∆n → R:

DKL(p ∥ pprior) =
n

∑
j=1

p(j) log
(

p(j)/pprior(j)
)
. (1)

Next, let D̂ denote the empirical distribution induced by samples {v1, . . . , vl}:

D̂(j) =
1
l
|{1 ⩽ i ⩽ l | vi = j}|. (2)

In addition, let ED̂ [Φ] denote the empirical average of the features induced by the samples
and let Ep[Φ] denote the model average induced by a probability distribution p ∈ ∆n:

ED̂ [Φ] =
n

∑
j=1

D̂(j)Φ(j) and Ep[Φ] =
n

∑
j=1

p(j)Φ(j).

We measure how the averages ED̂ [Φ] and Ep[Φ] match using a function H∗ : Rm → R ∪
{+∞} called the potential function. MaxEnt models combine the two measures described
above and seek to minimize the sum

inf
p∈∆n

f (p; t) = inf
p∈∆n

{
DKL(p ∥ pprior) + tH∗

(ED̂ [Φ]−Ep[Φ]

t

)}
(3)

where t > 0 is a hyperparameter selected using data-driven methods, e.g., cross-validation.
Standing assumptions: The potential function is proper, lower semicontinuous, con-

vex, and bounded from below by zero with H∗(0) = 0. Under the standing assumptions
above on the potential function, which are fairly general, the probability distribution D̂ is a
feasible point of (3). Moreover, the MaxEnt estimation problem (3) admits a unique global
solution (see ([46], Page 35, Proposition 1.2); uniqueness follows from the strong convexity
of the Kullback–Leibler divergence with respect to the ℓ1 norm [47–51]).

2.2. Dual Formulation and Optimality Conditions

The generalized MaxEnt problem (3) admits a dual problem corresponding to regular-
ized maximum a posteriori estimation [52]. To derive the dual problem, we first write the
second term on the right hand side of (3) in terms of its convex conjugate,

tH∗
(ED̂ [Φ]−Ep[Φ]

t

)
= sup

w∈Rm

{〈
w,ED̂ [Φ]−Ep[Φ]

〉
− tH(w)

}
,
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where we abuse notation and write the convex conjugate of H∗ as H. This lets us express
problem (3) in saddle-point form:

inf
p∈∆n

sup
w∈Rm

{〈
w,ED̂ [Φ]−Ep[Φ]

〉
− tH(w) + DKL(p ∥ pprior)

}
. (4)

Due to our assumptions on the potential function H∗, we can swap the infimum and
supremum ([46], Statement (4.1) on page 61). Using the convex conjugate formula

inf
p∈∆n

{
DKL(p ∥ pprior)−

〈
w,Ep[Φ]

〉}
= − log

[
n

∑
j=1

pprior(j)e⟨w,Φ(j)⟩
]

,

we obtain the dual problem of (3)

sup
w∈Rm

{〈
w,ED̂ [Φ]

〉
− tH(w)− log

[
n

∑
j=1

pprior(j)e⟨w,Φ(j)⟩
]}

. (5)

The dual problem (5) is a regularized maximum likelihood estimation problem over the
family of Gibbs distributions [41,52]. It has at least one global solution ([46], Proposition (1.2)
on page 35). Moreover, if (ps, ws) denotes a pair of solutions to the MaxEnt estimation
problem (3) and its dual (5), then this pair satisfies the optimality conditions

ED̂ [Φ]−Eps [Φ] ∈ t∂H(ws) and ps(j) =
pprior(j)e⟨w

s ,Φ(j)⟩

∑n
j=1 pprior(j)e⟨ws ,Φ(j)⟩ , (6)

for every j ∈ {1, . . . , n} where ∂H(ws) denotes the subdifferential of H at ws.

2.3. Examples of Non-Smooth MaxEnt Models

MaxEnt models differ in the choice of the prior distribution pprior, hyperparameter
t, and the potential function H∗. In practice, the prior distribution is often chosen to
be uniform and the hyperparameter is chosen via data-driven methods. The choice of
potential function depends on the application. The classical MaxEnt model uses the
indicator function

u 7→ H∗(u) =

{
0, if u = 0,

+∞ otherwise.

This forces the model average Ep[Φ] to be equal to the empirical average ED̂ [Φ]. However,
this is often too restrictive because the averages are expected to be close, and not equal,
with high probability. Forcing the model and empirical averages to be equal can lead to
severe over-fitting issues with big data sets, and more flexibility is therefore desired.

We review below three different non-smooth MaxEnt models that offer this flexibility:
the elastic net, group lasso, and ℓ∞-regularized MaxEnt models. We chose these models
because they are used extensively in statistics and machine learning but are also challenging
to train on big data sets due to their non-smoothness [20,26,27,53]. These models will also
be used for our numerical experiments and results in Section 5.

2.3.1. Elastic Net Regularized MaxEnt Models

These models use for potential function the relaxation of the convex conjugate of the
ℓ1-norm:

u 7→ H∗(u) ≡
(

1 − α

2
∥·∥2

2 + α∥·∥1

)∗
(u) =

1
2(1 − α)

m

∑
i=1

max(0, |ui| − α)2
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where α ∈ (0, 1). This yields the elastic net regularized maximum entropy estimation problem

min
p∈∆n

{
DKL(p ∥ pprior) +

1
2t(1 − α)

m

∑
i=1

max
(
0,
∣∣[ED̂ [Φ]]i − [Ep[Φ]]i

∣∣− tα
)2
}

. (7)

This type of regularization is frequently used for feature selection in machine learning [12,20,54,55].
The corresponding dual problem is

sup
w∈Rm

{〈
w,ED̂ [Φ]

〉
− t
(
(1 − α)

2
∥w∥2

2 + α∥w∥1

)
− log

[
n

∑
j=1

pprior(j)e⟨w,Φ(j)⟩
]}

. (8)

Thanks to the elastic net penalty (1−α)
2 ∥w∥2

2 + α∥w∥1, problem (8) is strongly concave and
has a unique solution.

An important aspect of the elastic net penalty is that it promotes sparsity; that is, it
leads to a solution with many entries equal to zero [56–58], the number depending on the
hyperparameter t and parameter α. Sparsity is useful when seeking accurate solutions
based only on a few features or when performing feature selection.

2.3.2. Group Lasso Regularized MaxEnt Models

These models are specified starting from the dual problem. Consider a partition G
of the components of a vector w ∈ Rm into g different and possibly overlapping groups
[w1, . . . , wg] with wg ∈ Rmg and ∪G

g=1wg = w. Let w 7→
∥∥wg

∥∥
2,g denote the ℓ2 norm over

the respective components of the gth group. Then, the dual version of the group lasso
regularized maximum entropy estimation problem is

sup
w∈Rm

{
⟨w,ED̂ [Φ]⟩ − t

G

∑
g=1

√
mg
∥∥wg

∥∥
2,g − log

[
n

∑
j=1

pprior(j)e⟨w,Φ(j)⟩
]}

. (9)

Thanks to the group lasso penalty ∑G
g=1

√mg
∥∥wg

∥∥
2,g, problem (10) is strictly concave and

so has at least one global solution. The corresponding primal problem follows from the
convex conjugate formula

u 7→ H∗(u) ≡
(

G

∑
g=1

√
mg∥·∥2,g

)∗

(u) =

{
0, if

∥∥ug
∥∥

2,g ⩽
√

mg for g = 1, . . . , G,

+∞, otherwise,

and it is therefore given by

min
p∈∆n

DKL(p ∥ pprior) s.t.
∥∥ED̂ [Φg]−Ep[Φg]

∥∥
2,g ⩽ t

√
mg for g = 1, . . . , G. (10)

Similarly to the elastic net penalty, the group lasso penalty promotes sparsity in the
global solutions of (9), but it differs in that it sets different blocks of components [w1, . . . , wg]
to zero at the same time.

2.3.3. ℓ∞-Regularized MaxEnt Models

These models use for potential function the convex conjugate of the ℓ∞ norm,

u 7→ H∗(u) ≡ ∥u∥∗∞ = {û ∈ Rm | ∥u − û∥1 ⩽ 1},

which is the characteristic set of the ℓ1 ball with unit radius. This yields the ℓ∞-regularized
maximum entropy estimation problem

min
p∈∆n

{
DKL(p ∥ pprior) + t

∥∥∥∥ED̂ [Φ]−Ep[Φ]

t

∥∥∥∥∗
∞

}
. (11)
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This type of regularization is used for certain machine learning problems, including ma-
trix factor decomposition, and in robust statistics applications (see, e.g., [53,59]). The
corresponding dual problem is

sup
w∈Rm

{
⟨w,ED̂ [Φ]⟩ − t∥w∥∞ − log

[
n

∑
j=1

pprior(j)e⟨w,Φ(j)⟩
]}

(12)

Thanks to the ℓ∞ norm, problem (12) is strictly concave and has at least one global solution.

3. Related Work
3.1. Large-Scale Sparse MaxEnt Models: Computational Challenges

Estimating a probability distribution from the MaxEnt model (3) can be computationally
prohibitive for big data sets. To illustrate this point, suppose the MaxEnt model (3) with
hyperparameter t ⩾ 0 has a global solution ps(t). Let pϵ(t) ∈ ∆n with ϵ > 0 denote an
ϵ-approximate solution to the global solution ps(t), that is, the objective function f in (3) satisfies

f (pϵ(t); t)− f (ps(t); t) < ϵ.

If the potential function H∗ is smooth (equivalently, its conjugate H is strongly convex), the
best achievable rate of convergence for computing pϵ(t) with t > 0 in the Nesterov class
of optimal first-order methods is linear O(log(1/ϵ)) in the number of operations [39]. If
H is not smooth, then the optimal convergence rate is sublinear O(1/

√
ϵ) in the number

of operations.
These rates, while optimal, require carefully fine-tuned stepsize parameters. In classi-

cal first-order optimization algorithms, these stepsize parameters are fine-tuned using a
precise estimate of the largest singular value of the linear operator A : ∆n → Rm defined by

Ap =
n

∑
j=1

p(j)Φ(j) = Ep[Φ]. (13)

Unfortunately, computing the largest singular value of the linear operator A in (13) accu-
rately is often computationally expensive for large matrices due to its prohibitive cubic
cost of O(min (m2n, mn2)) operations [60]. In this situation, line search methods and other
heuristics can sometime be employed to bypass this issue, but they typically slow down the
convergence speed. Another approach is to compute a crude estimate of the largest singular
value of the matrix A, but doing so significantly reduces convergence speed as well. In
fact, even if the largest singular value can be computed quickly, the resulting stepsize
parameters may be much smaller than what is permissible to maintain convergence, that
is, the largest singular value itself may be a poor estimate for determining how large the
stepsize parameters are allowed to be to maintain convergence. This point will discussed
in more detail in Section 4.1 when we describe our proposed NPDHG algorithms.

This issue makes solving the MaxEnt model (3) difficult and laborious. Even worse,
in some applications, the appropriate value of the hyperparameter t in (3) is difficult
to guess and must be selected by repeatedly solving (3) from a large pool of values of
hyperparameters, a process that can become particularly time-consuming and resource
intensive for big data sets. This issue has driven much research in developing robust and
efficient algorithms to minimize computational costs and maximize model performance.

3.2. State-of-the-Art Methods for Large-Scale, Non-Smooth MaxEnt Models

State-of-the-art methods for computing solutions to large-scale, non-smooth MaxEnt
models are based on coordinate descent algorithms [61–64] and first-order optimization
algorithms such as forward–backward splitting [40,65,66]. We will discuss these methods
below, but note that other types of methods have been developed for MaxEnt models;
see, e.g., [10,41,67,68] for surveys and comparisons of different algorithms. In particular,
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we will not consider second-order-based methods suitable for smooth MaxEnt models
such as limited-memory BFGS algorithms [10,69] since this work focuses on non-smooth
MaxEnt models.

Coordinate descent methods. The state of the art is a coordinate descent algorithm based
on a technical device called infinitely weighted logistic regression (IWLR) [26,33]. The
IWLR method approximates a MaxEnt model as a logistic regression model and then fits the
approximate logistic regression model using an existing, efficient optimization algorithm
for logistic regression. This indirect approach was proposed because efficient and scalable
coordinate descent algorithms were already available for fitting logistic regression models,
which in [33] was an earlier version of the GLMNET software package [63]. The IWLR
method remains the state of the art for this reason. It is implemented, for example, in the
MaxEnt package available in the R programming language [26,63].

The IWLR method, however, is an approximate technical device that is not guaranteed
to work, a fact acknowledged by the authors who proposed the method [33], and therefore
may not produce reliable numerical results. Coordinate descent algorithms themselves are
generally non-parallelizable and often lack robustness and good convergence properties.
For example, the aforementioned GLMNET software package approximates the logarithm
term in logistic regression models with a quadratic term to fit the models efficiently. With-
out costly stepsize optimization, which GLMNET avoids to improve performance, the
GLMNET implementation may not converge [62,70]. A case in point is that [71] provides
two numerical experiments in which GLMNET does not converge.

Other coordinate descent algorithms have been developed to compute solutions to
non-smooth MaxEnt models directly (see, e.g., [64,72]) but they are also generally non-
parallelizable and often lack robustness and good convergence properties. Finally, another
issue is that many coordinate descent algorithms, including GLMNET, were designed for
sparse MaxEnt models (e.g., the elastic net and group lasso regularized MaxEnt models
described in Section 2.3) and those algorithms depend on the sparsity of the model to
converge quickly [54]. It would be desirable to have fast optimization methods for when
the feature mapping (13) is dense, as this often occurs in practice.

First-order methods. First-order optimization algorithms such as the forward–backward
splitting algorithm are popular because they are robust and can provably compute ϵ-
approximate solutions of (3) with an optimal rate of convergence. However, as discussed
in detail at the end of the previous subsection, achieving this rate of convergence requires
fine-tuning the stepsize parameters using an accurate estimate of the largest singular value
of the feature mapping (13), and this estimate is typically computationally expensive for
large matrices. This problem makes classical first-order optimization algorithms inefficient
and impractical in estimating probability densities from large-scale MaxEnt models.

Summary. The current state-of-the-art algorithms for estimating probability densities from
MaxEnt models either produce unreliable numerical results, lack scalable parallelism, or
scale poorly in size. These shortcomings in terms of robustness and efficiency make it
challenging to use non-smooth, large-scale MaxEnt models in applications without access
to adequate and costly computational resources. The next section presents novel, efficient,
and robust accelerated NPDHG optimization methods that address these shortcomings.

4. Main Results

We describe here our approach for computing solutions to the generalized MaxEnt
problem (3) using accelerated NPDHG optimization methods [38]. In addition to the
standing assumptions on the potential function H∗, we assume we can compute efficiently
the proximal operator of the convex conjugate of the potential function
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arg min
w∈Rm

{
λH(w) +

1
2
∥w − ŵ∥2

2

}
,

for every λ > 0 and ŵ ∈ Rm. These assumptions are satisfied for most potential functions
used in practice, including for the potential functions described in Section 2.3.

4.1. Methodology

We start with the saddle-point formulation (4) of the generalized MaxEnt estimation
problem (3). Based on the work two of the authors provided in [38], we propose to split the
infimum and supremum in the saddle-point problem (4) using an iterative NPDHG scheme
that alternates between a nonlinear proximal ascent step based on the Kullback–Leibler
divergence and a linear proximal descent step.

More precisely, let τ0 > 0 and σ0 > 0 be two stepsize parameters satisfying the inequality

τ0σ0

(
max

j∈{1,...,n}
∥Φ(j)∥2

2

)
⩽ 1, (14)

let θ0 = 0, let w−1 = w0 ∈ int dom H, let z0 ∈ Rm, and define the initial probability
distribution p0 ∈ ∆n through the constant z0 via

p0(j) =
pprior(j)e⟨z0,Φ(j)⟩

∑n
j=1 pprior(j)e⟨z0,Φ(j)⟩ (15)

for each j ∈ {1, . . . , n}. Our proposed NPDHG iterative scheme computes the iterates

pk+1 = arg min
p∈∆n

{
τkDKL(p ∥ pprior)− τk

〈
wk + θk(wk − wk−1),Ep[Φ]

〉
+ DKL(p ∥ pk)

}
ŵk+1 = wk + σk(ED̂ [Φ]−Epk+1 [Φ]),

wk+1 = arg min
w∈Rm

{
tσk H(w) +

1
2
∥w − ŵk+1∥2

2

}
,

θk+1 = 1/
√

1 + τk, τk+1 = θk+1τk and σk+1 = σk/θk+1.

(16)

According to ([38], Proposition 4.1), the sequence of iterates pk converges strongly to the
unique solution of the generalized MaxEnt problem (3). Moreover, for any t ⩾ 0 and a
given tolerance level ϵ > 0, the scheme (16) provably computes an ϵ-approximate solution
pϵ(t) of the generalized MaxEnt model (3) in O(1/

√
ϵ) time. This rate of convergence is,

without further smoothness assumptions on the potential function H∗, the best achievable
rate of convergence with respect to the Nesterov class of optimal first-order methods [39].

The key element in this scheme is the choice of the Kullback–Leibler divergence as a
nonlinear proximal step in the first line of (16). We use it for two reasons: First, because
the Kullback–Leibler divergence already appears in the saddle-point problem (4). This
allows us to compute pk+1 explicitly. Indeed, thanks to the choice of initial probability
distribution (15), we have

pk+1(j) =
pprior(j)e⟨zk+1,Φ(j)⟩

∑n
j=1 pprior(j)e⟨zk+1,Φ(j)⟩ with zk+1 =

1
1 + τk

(zk + τk(wk + θk(wk − wk−1))) (17)

for each j ∈ {1, . . . , n}. See Appendix A for the derivation of (17).
Second, because the Kullback–Leibler divergence is 1-strongly convex with respect to

the ℓ1 norm, that is,

DKL(p ∥ pk) ⩾
1
2
∥p − pk∥2

1.

This fact follows from a fundamental result in information theory known as Pinsker’s
inequality [47–51]. In particular, this means that scheme (16) alternates between solving a
strongly convex problem over the space (Rn, ∥·∥1) and a concave problem over the space
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(Rm, ∥·∥2). The choice of these spaces is significant, for the induced operator norm ∥·∥op of
the linear operator A defined in (13) becomes

∥A∥op = sup
∥p∥1=1

∥Ap∥2 = max
j∈{1,...,n}

∥Φ(j)∥2.

This operator norm offers two crucial advantages: First, it can be computed in optimal
Θ(mn) time, or better if the features {Φ(j)}n

j=1 have structure, e.g., if they are sparse. This
means that the stepsize parameters τ0 and σ0 of the NPDHG scheme can be computed
in (14), with equality, in optimal Θ(mn) time. This is important because, in classical
first-order optimization methods, we typically require a precise estimate of the largest
singular value of the feature mapping (13), namely the number

∥A∥2 = sup
∥x∥2=1

∥Ap∥2,

to fine-tune the stepsize parameters to gain an optimal convergence rate. However, as
discussed in detail in Section 3.1, this estimate is computationally expensive for large
matrices due to its prohibitive cubic cost of O(min (m2n, mn2)) operations. In contrast, our
NPDHG scheme (16) does not suffer from this computational bottleneck and therefore
scales well. Second, the operator norm ∥A∥op can be significantly smaller than the estimate
∥A∥2, hence allowing for bigger stepsize parameters to further speed up convergence. (An
easy calculation yields max∥p∥2=1∥Ap∥2 ⩾ maxj∈{1,...,n}∥Φ(j)∥2.)

Summary. To solve the generalized MaxEnt estimation problem (3) and its dual problem (5),
let τ0 > 0 and σ0 > 0 be two stepsize parameters satisfying inequality (14), let θ0 = 0,
let w−1 = w0 ∈ int dom H, let z0 ∈ Rm, and define an initial probability distribution p0
through z0 via (15). Then, compute the iterates

zk+1 = (zk + τk(wk + θk(wk − wk−1)))/(1 + τk),

pk+1(j) =
pprior(j)e⟨zk+1,Φ(j)⟩

∑n
j=1 pprior(j)e⟨zk+1,Φ(j)⟩ for j ∈ {1, . . . , n},

ŵk+1 = wk + σk(ED̂ [Φ]−Epk+1 [Φ]),

wk+1 = arg min
w∈Rm

{
tσk H(w) +

1
2
∥w − ŵk+1∥2

2

}
,

θk+1 = 1/
√

1 + τk, τk+1 = θk+1τk and σk+1 = σk/θk+1,

(18)

until convergence is achieved. As all parameters and updates can be computed in O(mn)
time, for any t ⩾ 0 and a given tolerance level ϵ > 0, the overall complexity for computing
an ϵ-approximate solution pϵ(t) is O(mn/

√
ϵ).

4.2. Algorithm for Smooth Potential Functions

The iterative scheme (18) does not require the potential function H∗ to be smooth. If,
however, the potential function H∗ is γH∗ -smooth (equivalently, H is 1

γH∗ -strongly convex)
for some γH∗ > 0, then we can modify the NPDHG iterative scheme (18) to achieve a linear
rate of convergence. More precisely, let t > 0 and introduce the stepsize parameters

θ = 1 − t

2γH∗∥A∥2
op


√

1 +
4γH∗∥A∥2

op

t
− 1

, τ =
1 − θ

θ
and σ =

γH∗τ

t
. (19)



Entropy 2024, 26, 691 10 of 24

Let w−1 = w0 ∈ int dom H, let z0 ∈ Rm, and define p0 through z0 via (15). Then, the
explicit NPDHG iterative scheme is

zk+1 = (zk + τ(wk + θ(wk − wk−1)))/(1 + τ),

pk+1(j) =
pprior(j)e⟨zk+1,Φ(j)⟩

∑n
j=1 pprior(j)e⟨zk+1,Φ(j)⟩ for j ∈ {1, . . . , n},

ŵk+1 = wk + σ(ED̂ [Φ]−Epk+1 [Φ]),

wk+1 = arg min
w∈Rm

{
tσH(w) +

1
2
∥w − ŵk+1∥2

2

}
.

(20)

According to ([38], Proposition 4.3), the sequences of iterates pk and wk converge strongly
to the unique solution of the generalized MaxEnt estimation problem (3) and its dual prob-
lem (5). Moreover, for any t > 0 and a given tolerance level ϵ > 0, this scheme provably
computes an ϵ-approximate solution pϵ(t) of the generalized MaxEnt estimation prob-
lem (3) in O(log(1/ϵ)). This rate of convergence is the best achievable rate of convergence
with respect to the Nesterov class of optimal first-order methods [39]. As all parameters
and updates can be computed in O(mn) time, the overall complexity for computing an
ϵ-approximate solution pϵ(t) is O(mn log(1/ϵ)).

5. Application to Wildfire Science

To illustrate the efficiency of our novel algorithms on large-scale problems, we present
here an application to wildfire science. The problem at hand is to combine fire occurrence
data with ecological data in a fixed geographical region to estimate the probability of
fire occurrences as a function of ecological features. MaxEnt models achieve this goal
by translating fire occurrence and ecological data into probabilities of fire occurrences
and ecological features. This approach closely mirrors how MaxEnt models are used for
modeling species’ geographic distributions [19,20,22,24–28]. Another related goal is to
identify what ecological features correlate most with fire occurrences. This can be achieved
using a sparse MaxEnt model, e.g., an elastic net or group lasso regularized MaxEnt model,
to identify ecological features correlating significantly with fire occurrences.

For this application, we use the Western US MTBS-Interagency (WUMI) wildfire data
set [45], which we describe in Section 5.1 below. We formulate the problem of combining
the fire occurrence and ecological data from the WUMI wildfire data set into a MaxEnt esti-
mation problem in Section 5.2. Using this data, we then fit the elastic net, (non-overlapping)
group lasso, and ℓ∞ MaxEnt models for a large number of hyperparameters weighting the
regularization. We detail this fitting procedure and the explicit NPDHG algorithms for
these MaxEnt models in Section 5.3. Following this, we compare in Section 5.4 the running
times required to fit the aforementioned MaxEnt models using our NPDHG algorithms
with the forward–backward splitting algorithm [40,65] and the STRUCTMAXENT2 coordi-
nate descent algorithm of [41]. Finally, in Section 5.5, we interpret the results obtained from
fitting the aforementioned MaxEnt models to the WUMI wildfire data set.

5.1. WUMI Wildfire Data Set

The Western US MTBS-Interagency wildfire data set [45] consists of all fires (⩾1 km2)
from multiple state and federal agencies, supplemented by satellite observations of large
fires (⩾4 km2) from the Monitoring Trends in Burn Severity (MTBS) program, in the
continental United States west of 103◦ W longitude. For this application, we extracted all
wildfires from the WUMI data set that occurred between 1984 and 2020 inclusive (accessed
18 May 2023). The locations of all fires used are shown in Figure 1.

Next, following the procedure outlined in [44], we overlay the fire locations on a
12 km × 12 km grid to construct a data frame of prevailing climate, vegetation, topographic,
and human-related features for each fire. Altogether we include a total of 35 potential
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fire-related features from various sources; we provide a summary of all features used in
our analysis along with their sources in Appendix B. For each grid cell, we also provide an
index identifying its Environmental Protection Agency (EPA) Level III ecoregion. Defined
on the basis of roughly homogeneous climate and vegetation patterns, ecoregions are
commonly used in the wildfire science literature to identify climate–fire relationships at a
coarse spatial scale [29,73]. The full WUMI wildfire data set with associated fire-related
features for all months from 1984 to 2020 is publicly available as part of the Stochastic
Machine Learning for wildfire activity in the western US (SMLFire1.0) package [44].

Figure 1. Wildfire activity in the western United States from 1984 to 2020. (Left) Fire locations
of all fires (black dots) in the Western US MTBS-Interagency (WUMI) data set; also shown are
three ecological divisions characterized by their primary vegetation type—forests (green), deserts
(yellow), and plains (gray). (Right) Prior distribution indicating mean fire probability across all
calendar months.

5.2. Data Preprocessing

We construct a weakly informative prior [74,75] for incorporating existing knowledge
of wildfire conducive environmental conditions in our MaxEnt model. First, we prepare a
training data set of 10,000 fire occurrences and absences chosen randomly across all months
between 1984 and 2020 correlated with the values of 35 fire-related features described in
the previous section. The features are averaged over each calendar month (i.e., January,
February, . . . ) between 1984 and 2020. We then apply min–max scaling to each feature,
ensuring that all features lie in the same range. Second, we construct two Random Forest
(RF) models, one each for fires in dry (May–September) and wet (October–April) seasons
respectively. We withhold 20% of the training data to tune the model hyperparameters,
such that the optimal hyperparameters ensure a trade-off between model precision and
recall. Next, we predict the fire probability for all grid cells with fire-related features using
either the trained wet or dry season RF model depending on the calendar month. Since
the MaxEnt algorithm assumes a presence-only framework, that is, the absence of fires in a
grid cell does not imply a non-zero fire probability, we impute grid cells without a fire with
probability pnfire = min(pfire)/10. Last, we normalize the prior probability distribution to
ensure that the fire probability across all grid cells sums up to one. For convenience, we
represent the prior distribution as the normalized mean of 12 monthly fire probabilities
predicted by the RF models in Figure 1.

To construct the empirical distribution D̂, we divide the study region into its 18 differ-
ent EPA level III ecoregions and weigh the relative frequencies of fire among the ecoregions
using the following strategy. For each ecoregion r ∈ {1, . . . , 18}, let nr,total denote the total
number of grid cells in ecoregion r and let nr,fire denote the total number grid cell in ecore-
gion r where at least one fire was recorded. In addition, let Z = ∑18

r=1
nr,fire
nr,total

denote the sum
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of the proportions of grid cells where at least one fire was recorded among all ecoregions.
Then, we compute the empirical probability at cell j ∈ {1, . . . , n}, D̂(j), as follows:

D̂(j) =
1
Z


0 if no fire was recorded in grid cell j,
1/nr,total if at least one fire was recorded in grid j and the grid

cell j belongs to ecoregion r
(21)

This construction gives the empirical distribution more weight to ecoregions where fires
are more frequent and widespread.

5.3. Fitting Procedure and Algorithmic Setup

For the analysis, we fit six different MaxEnt models to the wildfire data: four elastic
net MaxEnt models with parameters α = {0.95, 0.4, 0.15, 0.05}, a non-overlapping group
lasso MaxEnt model, and an ℓ∞-regularized MaxEnt model. For each model, we fit a
regularization path of 141 hyperparameters as follows:

t(l) =

{
(1 − l/100)t(0) from l = 0 to 50
(0.5 − (l − 50)/200)t(0) from l = 51 to 140,

where t(0) depends on the MaxEnt model and corresponds to the smallest hyperparameter
for which the primal and dual solutions are equal to the prior distribution and zero. More
precisely, for each model we set (p(0), w(0)) = (pprior, 0) and compute the sequence of so-
lutions {(p(l), w(l))}140

l=1 of the corresponding MaxEnt primal and dual problems (7) and (8)
with hyperparameter t = t(l).

We chose these MaxEnt models to study the impact of the regularization on the primal
and dual solutions as a function of the hyperparameters. In particular, for the elastic net
and non-overlapping group lasso MaxEnt models, we are interested in identifying the set
of features that are selected or discarded as a function of the sequence of hyperparameters
{t(l)}140

l=0. In the parts below, we describe the value of t(0) and the NPDHG algorithm used
for each model.

5.3.1. Elastic Net MaxEnt Models

For these MaxEnt models, the smallest hyperparameter for which the solutions to the
primal and dual problems (7) and (8) are equal to the prior distribution and zero is

t(0) =
∥∥∥ED̂ [Φ]−Epprior [Φ]

∥∥∥
∞

/α.

This follows from the optimality condition

ED̂ [Φ]−Eps [Φ]− t(1 − α)ws ∈ tα∂∥·∥1ws (22)

and computing the smallest parameter t for which (22) is satisfied at (ps, ws) = (pprior, 0).
For the elastic net MaxEnt model with α = 0.95, we use the NPDHG algorithm (18)

(with sublinear convergence rate), while, for the models with α = {0.4, 0.15, 0.05}, we
use the NPDHG algorithm (20) (with linear convergence rate). Starting from l = 1, we
compute the pair of solutions (p(l), w(l)) to the primal and dual problems (7) and (8) at
hyperparameter t = t(l) using the previously computed pair of solutions (p(l−1), w(l−1))
by setting the initial vectors z0 = w0 = w(l−1) in both NPDHG algorithms. For the stepsize
parameters, we set θ0 = 0, τ0 = 2, and σ0 = 1/2∥∥A∥∥2

op in (18), and we set θ, τ, and
σ according to the formulas in (19) with γH∗ = 1 − α in (20). We compute the update



Entropy 2024, 26, 691 13 of 24

wk+1 in both NPDHG algorithms using the classical soft thresholding operator [66,76,77].
Specifically, for any λ > 0, ŵ ∈ Rm, and i ∈ {1, . . . , m} we have

[
arg min

w∈Rm

{
λ∥w∥1 +

1
2
∥w − ŵ∥2

2

}]
i

≡ [shrink1(ŵ, λ)]i =


[ŵ]i − λ if [ŵ]i > λ,

0 if |[ŵ]i| ⩽ λ,

[ŵ]i + λ if [ŵ]i < −λ,

and so, for every λ > 0, α ∈ [0, 1], ŵ ∈ Rm and i ∈ {1, . . . , m} we have[
arg min

w∈Rm

{
λ

(
α∥w∥1 +

(1 − α)

2
∥w∥2

2

)
+

1
2
∥w − ŵ∥2

2

}]
i

=
[shrink1(ŵ, λα)]i

1 + λ(1 − α)
.

Finally, we let the NPDHG algorithms run for at least 40 iterations before checking for
convergence. We stop the NPDHG algorithms when the optimality condition (22) is
satisfied within some tolerance 10−5:∥∥ED̂ [Φ]−Epk [Φ]− t(1 − α)wk

∥∥
∞ ⩽ tα(1 + 10−5).

5.3.2. Non-Overlapping Group Lasso MaxEnt Model

For this MaxEnt model, we divide the features into five disjoint groups of features, as
described in Appendix B. Then, the smallest hyperparameter for which the solutions to the
primal and dual problems (7) and (8) are equal to the prior distribution and zero is

t(0) = max
g∈{1,...,5}

{∥∥ED̂ [Φg]−Ep[Φg]
∥∥

2,g/
√

mg

}
,

where mg is the number of features in the gth group. This follows from the optimality condition

ED̂ [Φ]−Eps [Φ] ∈
5⋃

g=1

{
t
√

mg∂∥·∥2,g

}
ws

g (23)

and computing the smallest parameter t for which (23) is satisfied at (ps, ws) = (pprior, 0).
For this model, we use the NPDHG algorithm (18). Starting from l = 1, we compute

the pair of solutions (p(l), w(l)) to the primal and dual problems (10) and (9) at hyperpa-
rameter t = t(l) using the previously computed pair of solutions (p(l−1), w(l−1)) by setting
the initial vectors z0 = w0 = w(l−1). For the stepsize parameters, we set θ0 = 0, τ0 = 2,
and σ0 = 1/2∥∥A∥∥2

op. We compute the update wk+1 in (18) using the following proximal
operator formula: for every group g ∈ {1. . . . , 5}, λ > 0 and ŵ ∈ Rm,

arg min
w∈Rm

{
λ
√

mg∥w∥2,g +
1
2
∥w − ŵ∥2

2,g

}
= max

(
0, 1 − λ

√
mg/∥ŵ∥2

)
ŵ.

Finally, we let the NPDHG algorithms run for at least 40 iterations before checking for
convergence. We stop the NPDHG algorithms when the optimality condition (23) is
satisfied within some tolerance 10−5:

max
g∈{1,...,5}

∥∥ED̂ [Φ]−Epk [Φ]
∥∥

2,g ⩽ t(1 + 10−5).

5.3.3. ℓ∞-Regularized MaxEnt Model

For this MaxEnt model, the smallest hyperparameter for which the solutions to the
primal and dual problems (7) and (8) are equal to the prior distribution and zero is

t(0) =
∥∥∥ED̂ [Φ]−Epprior [Φ]

∥∥∥
1
.
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This follows from the optimality condition

ED̂ [Φ]−Eps [Φ] ∈ t∂∥·∥∞(ws) (24)

and computing the smallest parameter t for which (24) is satisfied at (ps, ws) = (pprior, 0).
For this model, we use the NPDHG algorithm (18). Starting from l = 1, we compute

the pair of solutions (p(l), w(l)) to the primal and dual problems (11) and (12) at hyperpa-
rameter t = t(l) using the previously computed pair of solutions (p(l−1), w(l−1)) by setting
the initial vectors z0 = w0 = w(l−1). For the stepsize parameters, we set θ0 = 0, τ0 = 2,
and σ0 = 1/2∥∥A∥∥2

op. Finally, we compute the update wk+1 in (18) using Moreau’s
decomposition ([78], Theorem 3.2.5): for every λ > 0 and ŵ ∈ Rm,

arg min
w∈Rm

{
λ∥w∥∞ +

1
2
∥w − ŵ∥2

2

}
= ŵ − arg min

∥w∥1⩽λ

1
2
∥w − ŵ∥2

2.

The second term on the right amounts to projecting ŵ on the ℓ1 ball of radius λ. There
are fast algorithms for doing do; we use Algorithm 1 described in [79]. Finally, we let
the NPDHG algorithms run for at least 40 iterations before checking for convergence. We
stop the NPDHG algorithms when the optimality condition (24) is satisfied within some
tolerance 10−5: ∥∥ED̂ [Φ]−Epk [Φ]

∥∥
1 ⩽ t(1 + 10−5).

5.4. Comparison of Timings

In this section, we compare the run times of our NPDHG algorithms with two
state-of-the-art optimization algorithms for solving non-smooth MaxEnt models: the
forward–backward splitting algorithm (specifically, Algorithm 5 in [65]; see also [40,66])
and the STRUCTMAXENT2 coordinate descent algorithm from [41,64]. All numerical ex-
periments were performed on a single core Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz.

We initially chose the GLMNET implementation [26,33] in MATLAB 2023b over
STRUCTMAXENT2 for the numerical comparisons, but we found that GLMNET produced
unreliable numerical solutions when compared to both the NPDHG and forward–backward
splitting algorithms. We also tried using GLMNET’s implementation in the R language, but
to no avail. We think this problem arises because, as discussed in Section 3.2, the GLMNET
algorithm approximates a MaxEnt model as a logistic regression model and then invokes a
coordinate descent method tailored to logistic regression to approximate the solution to
the MaxEnt model. Our observations suggest this approach does not work well for our
data set. In contrast, we found that the STRUCTMAXENT2 algorithm produced correct
numerical results.

For the forward–backward splitting algorithm, the stepsize parameters were set to
1/∥A∥2 and 1 (corresponding to τ and t0 in Algorithm 5 of [65]) and, for computing the pair
of solutions (p(l), w(l)) at hyperparameter t(l), the initial iterate was set to w(l−1). In addi-
tion, for the elastic net MaxEnt models, the acceleration quantity
q = (1 − α)t(l)/(∥A∥2 + (1 − α)t(l)) was employed. We used the stopping criteria of the
NPDHG algorithms for the forward–backward splitting algorithms. For the coordinate de-
scent algorithm, we modified the STRUCTMAXENT2 algorithm from ([41], pp. 305–306) to
make it applicable to the elastic net penalty. For computing the pair of solutions (p(l), w(l))
at hyperparameter t(l), the initial iterate was set to w(l−1). We did not use the STRUCTMAX-
ENT2 algorithm for the non-overlapping group lasso or ℓ∞-regularized MaxEnt models, as
it was not designed for these MaxEnt models. We used the stopping criteria of the NPDHG
algorithms for the STRUCTMAXENT2 algorithm.

Table 1 shows the average timings for computing the entire regularization path of
the WUMI wildfire data set using the coordinate descent, forward–backward splitting,
and NPDHG algorithms. All timings were averaged over five runs and, for the forward–
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backward splitting and NPDHG algorithms, they include the time required to compute all
the stepsize parameters. All algorithms were implemented in MATLAB.

Table 1. Timings results (in seconds) for fitting the MaxEnt models described in Section 5.3. All
timings are averaged over five runs.

STRUCTMAXENT2 Forward–Backward Splitting NPDHG

Elastic net (α = 0.95) 5562.19 4208.01 365.55

Elastic net (α = 0.40) 1018.73 1407.22 113.53

Non-overlapping group lasso N/A 3036.38 278.14

ℓ∞-regularization N/A 2534.65 289.98

The NPDHG algorithm outperformed both the forward–backward splitting and coor-
dinate descent algorithms by at least one order of magnitude. In particular, we observed
that the NPDHG algorithm required far fewer iterations to achieve convergence compared
to both the forward–backward splitting and STRUCTMAXENT2 algorithms. This difference
is because the stepsize parameters for the NPDHG algorithm were much larger compared
to either the forward–backward splitting or the STRUCTMAXENT2 algorithm. Indeed,
the stepsize parameters for the NPDHG and forward–backward splitting algorithms are
inversely proportional to the norms ∥A∥op and ∥A∥2, and for the wildfire data set these
were ∥A∥op ≈ 3.30 and ∥A∥2 ≈ 854.08. Thus, larger stepsize parameters were permitted
thanks to the Kullback–Leibler divergence term in the NPDHG algorithm, enabling a major
speedup gain.

5.5. Analysis of the MaxEnt Regularization Paths and Estimated Fire Probabilities

As a final validation step for the NPDHG algorithm, we use the fitted MaxEnt models
to compute the normalized mean fire probability in each grid cell for all calendar months
between 1984 and 2020. The probabilities are visualized in Figures 2 and 3. In each case, we
have chosen the prior distribution as a benchmark for our spatial plots of fire probability.

The spatial fire probabilities for α = {0.95, 0.40, 0.15, 0.05} are shown in Figure 2. The
range of α values roughly corresponds to varying the regularization from a purely l1 norm
(α = 1) to a purely l2 norm (α = 0). For each value of α, we also consider the evolution
of the spatial fire probability as we vary the hyperparameter t along the regularization
path, or equivalently include additional features while fitting the MaxEnt model to wildfire
data. Broadly, we observe that, for a fixed value of t/tmax, the ratio of predicted to prior
fire probability decreases in sharpness as α decreases. On the other hand, for a fixed α,
decreasing t/tmax values enables the model to make sharper distinctions between grid cells
with high and low fire probability as evidenced by the sharper contrast between the prior
and predicted fire probabilities. We also note a similar pattern in Figure 3 for the MaxEnt
models with non-overlapping group lasso (corresponding roughly to the elastic net case
with α = 1) and the l∞-MaxEnt models, all of which converge to the empirical distribution
quicker than any of the elastic net cases.

In Figure 4, we show the cumulative number of non-zero coefficients at fixed intervals
along the regularization path for different α values. The plot helps in visualizing the t/tmax
values at which new features are introduced in the elastic net MaxEnt model, with the
dashed vertical lines indicating the first time a feature from a new group is selected. Across
all α values, we find that features appear in the same order, with fire weather features
being selected first, followed by topography, vegetation, human, and antecedent features.
We tabulate the final set of non-zero features at the end of the regularization path for
α = {0.95, 0.05} across various groups in Table 2. These selected features are in good
agreement with physical models of wildfire occurrence [42,43] as well as previous statistical
analyses of wildfire drivers [29–31,44].
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Figure 2. Spatial probability plot for different hyperparameter values with elastic net penalty
parameter α = {0.95, 0.40, 0.15, 0.05}.

Figure 3. Same as Figure 2 but for (left) the non-overlapping group lasso with α = 1 and (right) the
l∞ MaxEnt models, respectively.
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Table 2. List of non-zero features at the end of the regularization path for two elastic net penalty
parameters, organized by different feature groups. See Appendix B for additional description of the
selected features.

Feature Group α = 0.95 α = 0.05

Fire weather

Tmax Tmax VPD
Prec Prec Tmin

Wind Wind VPDmax3

FM1000 FM1000 VPDmax7

Tminmax3 Tminmax3 Tmaxmax3

Lightning Lightning Tmaxmax7

Tminmax7 SWEmax

Topography
Slope Slope Southness

Southness

Vegetation
Grassland Biomass Forest

Shrub

Human

Camp_dist Camp_dist Road_dist
Camp_num Camp_num

Urban Urban
Popdensity Popdensity

Antecedent
AvgPrec2mo AvgPrec2mo AntPreclag2

AvgVPD3mo AntPreclag1
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Figure 4. Number of non-zero coefficients along the regularization path plots for elastic net penalty
parameter α = {0.95, 0.40, 0.15, 0.05}. The dashed vertical lines highlight the t/tmax value at which
the first feature of the group indicated by inset text is selected.
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6. Discussion

In this paper, we have introduced novel first-order NPDHG algorithms that overcome
the shortcomings of state-of-the-art algorithms for training large-scale, non-smooth Max-
Ent models. The crucial ingredient common to our algorithms is the Kullback–Leibler
divergence. Using it over the classical proximal operator makes it possible to train large-
scale and non-smooth MaxEnt models much more efficiently than the state of the art. In
particular, all stepsize parameters and iterations in our algorithms can be calculated on
the order O(mn) operations, improving on the complexity bound of O(min(m2n, mn2))
operations for computing the optimal stepsize parameters of classical first-order optimiza-
tion methods, such as the linear PDHG or forward–backward splitting methods. As a
consequence, for a given tolerance level ϵ > 0, our algorithms provably compute solutions
using on the order of O(mn/

√
ϵ) or O(mn/ log(1/ϵ)) operations, the order depending on

the smoothness of the MaxEnt model and which is optimal with respect to the Nesterov
class of optimal first-order methods [39]. Moreover, the computational bottleneck consists
of matrix–vector multiplications, which can be trivially parallelized, and so our algorithms
exhibit scalable parallelism.

Finally, we have shown that the strong convexity of the Kullback–Leibler divergence with
respect to the ℓ1 norm allows for significantly larger stepsize parameters, thereby speeding up
the convergence rate of our algorithms. This was, in particular, observed in Section 5, when we
applied our algorithms to fit the WUMI wildfire data set [45] on several non-smooth MaxEnt
models to estimate the probabilities of fire occurrences as a function of ecological features.
Our algorithms outperformed the state-of-the-art forward–backward splitting and coordinate
descent STRUCTMAXENT2 algorithms by at least one order of magnitude. They also yielded
results that are in good agreement with physical models of wildfire occurrence [42,43] as well
as previous statistical analyses of wildfire drivers [29–31,44]. Future work will explore the
scalability of our algorithms for modeling daily scale wildfire probability [80]. It will also
explore how the choices of different informative priors affect the MaxEnt models using
prediction accuracy as a metric.

We expect our algorithms to provide efficient methods for solving non-smooth Max-
Ent models that arise in large-scale machine learning applications beyond the wildfire
application explored in this paper. An interesting future direction, albeit tangential to the
focus of this work, would be to prove learning guarantees for the MaxEnt problem (3)
for arbitrary choices of potential functions, similarly to [19,64], for the choice of ℓ1 and ℓ2
norms as potential functions. This would provide some means to assess the “quality” of the
probability distribution estimated from the MaxEnt problem. Another direction that would
be interesting and impactful is to extend our algorithms to continuous regularized MaxEnt
models and prove rigorously that they work: interesting because the continuous version of
the MaxEnt problem is an infinite dimensional problem, which makes this problem more
technically challenging, impactful because such an algorithm would enable a much broader
class of probability distributions to be used in MaxEnt modeling.
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Appendix A. Derivation of Update (17)

We divide the derivation into two parts, first deriving an expression for the update
pk+1 in terms of the previous iterate pk and then deriving the explicit update for pk+1 as in
the third line of (16).

Part 1. First, note the minimization problem

min
p∈∆n

{
τkDKL(p ∥ pprior)− τk

〈
wk + θk(wk − wk−1),Ep[Φ]

〉
+ DKL(p ∥ pk)

}
has a unique global minimum, denoted by pk+1, in the relative interior of the unit simplex
∆n for every k ∈ N. See ([38], Proposition 4.1) for details and note that Proposition 4.1
applies because the Kullback–Leibler divergence is strongly convex with respect to the ℓ1
norm in its first argument.

Having established that the minimum pk+1 exists and is unique, we introduce the
Karush–Kuhn–Tucker multipliers ξ ∈ R and µ ∈ Rn to write the minimization problem for
pk+1 in terms of an unconstrained optimization problem:

min
p∈Rn

ξ∈R
µ∈Rn

{
τkDKL(p ∥ pprior)− τk

〈
wk + θk(wk − wk−1),Ep[Φ]

〉
+ DKL(p ∥ pk) + ξ

(
1 −

n

∑
j=1

p(j)

)
− ⟨µ, p⟩

}
.

We can invoke the Karush–Kuhn–Tucker Theorem and use the linearity constraint qualifi-
cations to find that pk+1 satisfies the first-order optimality condition

τk log(pk+1(j)/pprior(j)) + τk − τk⟨wk + θk(wk − wk−1), Φ(j)⟩
+ log(pk+1(j)/pk(j)) + 1 − ξ − [µ]j = 0

(A1)

for each j ∈ {1, . . . , n} [81]. Moreover, the complementary slackness condition ⟨µ, pk+1⟩ = 0
with the fact that pk+1 > 0 for every j ∈ {1, . . . , m} implies µ = 0.

Next, we use the first-order optimality condition to compute pk+1(j) explicitly, rear-
ranging (A1) in terms of log(pk+1(j)), using µ = 0, and taking the exponential yield

pk+1(j) =
(

e(ξ−1)/(1+τk)−1
)(

(pprior(j))τk pk(j)eτk⟨wk+θk(wk−wk−1),Φ(j)⟩
)1/(1+τk)

Since ∑n
j=1 pk+1(j) = 1, we find that ξ satisfies the relation

eτkξ/(1+τk)−1 =
1

∑n
j=1

(
(pprior(j))τk pk(j)eτk⟨wk+θk(wk−wk−1),Φ(j)⟩

)1/(1+τk)
.

Hence,

pk+1(j) =

(
(pprior(j))τk pk(j)eτk⟨wk+θk(wk−wk−1),Φ(j)⟩

)1/(1+τk)

∑n
j=1

(
(pprior)τk (j)pk(j)eτk⟨wk+θk(wk−wk−1),Φ(j)⟩

)1/(1+τk)

for each j ∈ {1, . . . , n}. This yields an explicit update for pk+1 in terms of the previous
iterate pk.

Part 2. We now induce on k to prove that the explicit expression for the update pk+1 in the
third line of (16) is correct. For k = 0, we have

p0(j) =
pprior(j)e⟨z0,Φ(j)⟩

∑n
j=1 pprior(j)e⟨z0,Φ(j)⟩
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and so ((
pprior(j)

)τ0 p0(j)eτ0⟨w0+θ0(w0−w−1),Φ(j)⟩
)1/(1+τ0)

=
pprior(j)e⟨(z0+τ0(w0+θ0(w0−w−1)))/(1+τ0),Φ(j)⟩(

∑n
j=1 pprior(j)e⟨z0,Φ(j)⟩

)1/(1+τ0)
.

Writing
z1 = (z0 + τ0(w0 + θ0(w0 − w−1)))/(1 + τ0),

the term inside the exponential on the numerator simplifies to ⟨z1, Φ(j)⟩. Hence,

((
pprior(j)

)τ0 p0(j)eτ0⟨w0+θ0(w0−w−1),Φ(j)⟩
)1/(1+τ0)

=
pprior(j)e⟨z1,Φ(j)⟩(

∑n
j=1 pprior(j)e⟨z0,Φ(j)⟩

)1/(1+τ0)
.

It follows on substitution that

p1(j) =
pprior(j)e⟨z1,Φ(j)⟩

∑n
j=1 pprior(j)e⟨z1,Φ(j)⟩

for every j ∈ {1, . . . , n}.
For arbitrary k ∈ N, we use the induction hypothesis

pk(j) =
pprior(j)e⟨zk ,Φ(j)⟩

∑n
j=1 pprior(j)e⟨zk ,Φ(j)⟩

to find ((
pprior(j)

)τk pk(j)eτk⟨wk+θk(wk−wk−1),Φ(j)⟩
)1/(1+τk)

=
pprior(j)e⟨(zk+τk(wk+θk(wk−wk−1)))/(1+τk),Φ(j)⟩(

∑n
j=1 pprior(j)e⟨zk ,Φ(j)⟩

)1/(1+τk)
.

Writing
zk+1 = (zk + τk(wk + θk(wk − wk−1)))/(1 + τk),

the term inside the exponential on the numerator simplifies to ⟨zk+1, Φ(j)⟩. Hence,

((
pprior(j)

)τk pk(j)eτ0k⟨wk+θk(wk−wk−1),Φ(j)⟩
)1/(1+τk)

=
pprior(j)e⟨zk+1,Φ(j)⟩(

∑n
j=1 pprior(j)e⟨zk ,Φ(j)⟩

)1/(1+τk)
.

It follows on substitution that

pk+1(j) =
pprior(j)e⟨zk+1,Φ(j)⟩

∑n
j=1 pprior(j)e⟨zk+1,Φ(j)⟩

for every j ∈ {1, . . . , n}, which proves the desired result.

Appendix B. Summary of Features Extracted from the WUMI Wildfire Data Set

We provide here a summary of all the features used in our statistical analysis. The
features are aggregated to a 12 km spatial resolution during data preprocessing. Consid-
ering each feature’s M antecedent month average and maximum X-day running average
components as distinct features, the total number of features considered in our analysis
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adds up to 35. We organize the features into five groups with each group reflecting a major
environmental driver of fire occurrences. These groups are also an important ingredient of
the non-overlapping group lasso MaxEnt model.

Table A1. Summary table for all input features organized by group, identifier, description, spatial
resolution of raw data, and source of data.

Feature Group Identifier Description Resolution Source

Fire weather

VPD Mean vapor pressure deficit 5 km Climgrid [82], PRISM [83]

VPDmaxX Maximum X-day running average of VPD;
X ∈ {3, 7}

9 km UCLA-ERA5 [84]

Tmax Daily maximum temperature 5 km Climgrid

TmaxmaxX Maximum X-day running average of Tmax 9 km UCLA-ERA5
Tmin Daily minimum temperature 5 km Climgrid

TminmaxX Maximum X-day running average of Tmin 9 km UCLA-ERA5
Prec Precipitation total 5 km Climgrid

SWEmean Mean snow water equivalent 500 m NSIDC [85]
SWEmax Daily maximum snow water equivalent 500 m NSIDC
FM1000 1000 h dead fuel moisture 4 km gridMET [86]

FFWImax7 Maximum 7-day running average of
Fosberg Fire Weather Index

9 km UCLA-ERA5

Wind Mean wind speed 9 km UCLA-ERA5
Lightning Lightning strike density 500 m NLDN [87,88]

Antecedent

AntVPDMmon Average VPD in M antecedent months;
M ∈ {2, 3}

5 km Climgrid

AntPrecMmon Average precipitation total in M
antecedent months; M ∈ {2, 4}

5 km Climgrid

AntPreclag1 Mean annual precipitation in lag year 1 5 km Climgrid
AntPreclag2 Mean annual precipitation in lag year 2 5 km Climgrid

AvgSWE3mon Average snow water equivalent in 3
antecedent months

500 m NSIDC

Vegetation

Forest Fraction of forest landcover 30 m NLCD
Grassland Fraction of grassland cover 30 m NLCD
Shrubland Fraction of shrubland cover 30 m NLCD
Biomass Aboveground biomass map 300 m Ref. [89]

Human

Urban Fraction of land covered by urban areas 30 m NLCD
Camp_num Mean number of camp grounds 1 km Open source
Camp_dist Mean distance from nearest camp ground 1 km Open source
Road_dist Mean distance from nearest highway 1 km Open source

Popdensity Mean population density 1 km SILVIS [90]
Housedensity Mean housing density 1 km SILVIS

Topography
Slope Mean slope 1 m USGS

Southness Mean south-facing degree of slope 1 m USGS
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