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We present an efficient, open-source formulation for coupled-cluster theory through

perturbative triples with domain-based local pair natural orbitals [DLPNO-

CCSD(T)]. Similar to the implementation of the DLPNO-CCSD(T) method found

in the ORCA package, the most expensive integral generation and contraction steps

associated with the CCSD(T) method are linear-scaling. In this work, we show that

the t1-transformed Hamiltonian allows for a less complex algorithm when evaluat-

ing the local CCSD(T) energy without compromising efficiency or accuracy. Our

algorithm yields sub-kJ mol−1 deviations for relative energies when compared with

canonical CCSD(T), with typical errors being on the order of 0.1 kcal mol−1, using our

TightPNO parameters. We extensively tested and optimized our algorithm and pa-

rameters for non-covalent interactions, which have been the most difficult interaction

to model for orbital (PNO)-based methods historically. To highlight the capabilities

of our code, we tested it on large water clusters, as well as insulin (787 atoms).
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I. INTRODUCTION

Coupled-cluster (CC) theory1,2 is one of the greatest triumphs of modern quantum chem-

istry, allowing for the accurate evaluation of the electronic energy of a molecule in poly-

nomial time, as an approximation to solving the time-independent Schrödinger equation.

Full configuration interaction (FCI)3,4 seeks to provide the exact energy and wave function,

within a finite basis set. Unfortunately, FCI scales as O(N !) with respect to the size of the

molecule, rendering it very challenging for molecules larger than a few atoms. CC theory

allows for a systematic series of approximations to FCI, and its exponential ansatz allows

for size-extensivity of electronic energies. The basic equations for CC theory are

|ΨCC⟩ = eT |Ψ0⟩ , (1)

ECC =
〈
Ψ0 | e−THeT | Ψ0

〉
, (2)

where Ψ0 is the reference Hartree–Fock wave function given by a single Slater determinant,

T is the electron excitation operator, and H is the molecular Hamiltonian, within the Born-

Oppenheimer approximation. With the T operator, any number of electron excitations can

be considered, up to the number of electrons in the system. More excitations considered

means a larger runtime, in exchange for greater accuracy. Coupled-cluster methods are

defined by the highest level of electronic excitations that are considered. For the CCSD

method, T = T1 + T2, such that

|ΨCCSD⟩ = e(T1+T2) |Ψ0⟩ , (3)

ECCSD =
〈
Ψ0 | e−(T1+T2)He(T1+T2) | Ψ0

〉
. (4)

where T1 represents the excitation operator where one electron is excited from the ground-

state wave function, while T2 is the two-electron excitation operator. The CCSD(T) method5

considers triples electronic excitations T3 in a perturbative manner using the CCSD wave

function. CCSD(T) is known as the “gold standard” method in quantum chemistry, with

errors in relative energy (versus FCI) often around 1 kcal mol−1 or less,6–9 and often with

excellent agreement with experimental data.10

Unfortunately, the cost of evaluating the CCSD wave function for a molecule scales

O(N6), and CCSD(T) adds a non-iterativeO(N7) step on top of the iterative CCSD method.

2

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

02
19

96
3

 26 August 2025 14:54:41



This means that CCSD and CCSD(T) methods are intractable for systems with more than

around 30 atoms on a typical workstation. Therefore, it is useful to devise a series of approxi-

mations to CCSD and CCSD(T) that allow them to be useful for larger molecular complexes,

such as pharmaceutical molecules, protein fragments, and smaller whole proteins (like cram-

bin and insulin) to allow for increased applicability of high-accuracy quantum chemistry

to fields like drug discovery and computational biology. Currently, cheaper methods like

density functional theory (DFT)11–13 or Møller–Plesset perturbation theory (MP2)14,15 are

applied to these problems, but they do not have the accuracy of coupled-cluster.

One such approach to increase the efficiency of coupled-cluster based methods is through

rank reduction. Parrish et al. have used orthogonal projectors to transform CCSD ampli-

tudes into smaller-ranked tensors.16–18 Lesiuk has successfully applied such an approach

to CCSD(T).19 Rank reduction can also be used in conjunction with tensor hypercon-

traction (THC) methods.20–23 Through the use of the CANDECOMP/PARAFAC (CP)

decomposition24 of the orthogonal projectors, Hohenstein et al. have applied THC to CCSD

amplitudes,18 while Jiang et al. recently applied this approach to the (T) correction.25

Another approach to this problem is to reformulate coupled-cluster theory through lo-

cal correlation methods,26–46 especially methods that use pair natural orbitals (PNOs)29,30

(triples natural orbitals (TNOs)35 are used for the triples terms). State-of-the-art PNO-

based coupled-cluster methods include the in the domain-based local pair natural orbital

[DLPNO-CCSD(T)] method40,44 in ORCA;47 the pair natural orbital local [PNO-LCCSD(T)]

method41,45 in Molpro;48 and the local natural orbital [LNO-CCSD(T)] method43,46 in

MRCC.49 ORCA’s DLPNO-CCSD(T) algorithm has been executed on system sizes con-

taining more than 1000 atoms,40 far greater than the 30 atoms using canonical CCSD(T)

methods. As used in practice, these methods are reasonably accurate approximations to

canonical CCSD(T) at a greatly reduced computational cost. Approximations are often

made to the (T) correction which render it not fully equivalent to its canonical variant,

such as through the semi-canonical (T0) algorithm.35 However, alternative formulations,

such as the iterative (T) algorithm, also known as (T1) (not to be confused with the t1

transformation),44 do yield the canonical result in the limit of very tight cutoffs. In either

case, errors relative to canonical CCSD(T) are typically proportional to system size (are

“size extensive”), and good accuracy can typically be maintained by proper selection of

parameters and/or (T) algorithm.50
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To contribute to the development of these highly efficient and popular PNO-based meth-

ods, and to make these methods more accessible to the quantum chemistry community, we

implemented our own version of the DLPNO-CCSD(T) method in the open-source Psi4

package.51 While working on this project, it has been brought to our attention that the

DLPNO-CCSD(T) method has previously been implemented in the open-source SEREN-

ITY program.52,53 However, the implementation in SERENITY only treats triples through

the semi-canonical (T0) treatment,35 so this work, to the best of our knowledge, represents

the first open-source implementation of DLPNO-CCSD(T) that includes an iterative (T)

algorithm to account for the non-canonical local orbitals.44 The difference between semi-

canonical (T0) and iterative (T) will be further elaborated in later sections.

In this work, we make use of the t1-transformed Hamiltonian to reduce the complexity

of the CCSD equations,54,55 and we present our own set of LCCSD working equations that

minimize common sources of error in PNO-based methods, like PNO projection error. We

have also developed a set of parameters that allow our code to yield relative energies with

deviations on the order of 0.1 kcal mol−1 from canonical CCSD(T), called TightPNO, fol-

lowing the convention of Neese et al.34,40 We test our code extensively on relative energies,

including interaction energies and conformation energies. Weak, non-covalent interactions

have historically been a challenge for local correlation methods.36 We also present results

for some of the largest systems on which a canonical CCSD(T) computation have been

performed, the 16 and 17-molecule water cluster conformers with an aug-cc-pVTZ basis

set.56 We compare our results to ORCA’s implementation of DLPNO-CCSD(T), as well

as a canonical MP2/CCSD(T) many-body expansion method.57 Finally, we benchmark our

algorithm on a whole insulin chain (787 atoms),58 a system significantly beyond the reach

of conventional coupled-cluster theory.

II. THEORY

A. Notation

We use the following conventions to describe the indices of matrices and tensors appearing

in this work:

• µ, ν, λ, σ: atomic orbitals; these range from 1 to nbf , the number of basis functions
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• i, j, k, l: canonical and local occupied molecular orbitals; these range from 1 to nocc,

the number of occupied orbitals

• a, b, c, d: canonical virtual molecular orbitals; these range from 1 to nvirt, the number

of virtual orbitals

• p, q, r, s: general canonical molecular orbitals; these range from 1 to nocc + nvirt

• µ̃, ν̃, λ̃, σ̃: projected atomic orbitals; these range from 1 to nbf

• µ̃ij, ν̃ij, λ̃ij, σ̃ij: projected atomic orbitals localized to pair ij; these range from 1 to

npao,ij, number of PAOs local to LMO pair ij

• µ̃ijk, ν̃ijk, λ̃ijk, σ̃ijk: projected atomic orbitals localized to triplet ijk; these range from

1 to npao,ijk, number of PAOs local to LMO triplet ijk

• aij, bij, cij, dij: Pair natural orbitals in each pair domain ij; these range from 1 to

npno,ij, number of PNOs in the domain of LMO pair ij

• aijk, bijk, cijk, dijk: Triples natural orbitals in each triplet domain ijk; these range from

1 to ntno,ijk, number of TNOs in the domain of LMO triplet ijk

• P,Q: auxiliary basis functions for density-fitted ERIs; these range from 1 to naux,

number of auxiliary basis functions for density fitting

• Pij, Qij: local auxiliary basis functions in each pair domain ij; these range from 1 to

naux,ij, number of auxiliary basis functions local to LMO pair ij

• Pijk, Qijk: local auxiliary basis functions in each triplet domain ijk; these range from

1 to naux,ijk, number of auxiliary basis functions local to LMO triplet ijk

The relative sizes of these indices are typically:

npno,ij < ntno,ijk ≪ npao,ij < npao,ijk < naux,ij < naux,ijk ∼ O(1) . (5)

nocc ≪ nvirt < nbf < nnaux ∼ O(N) . (6)

where N is the system size represented by the number of atoms.
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B. t1-transformed Formulation of CCSD

In the CCSD method, the T cluster operator is truncated to only include single and

double excitation contributions. An alternate way to formulate CCSD is to fold the effects

of the single excitations back into the Hamiltonian operator.54 In this alternate formulation

ECCSD =
〈
Ψ0 | e−T2H̃eT2 | Ψ0

〉
, (7)

where

H̃ = e−T1HeT1 , (8)

T1 = taiEai , (9)

T2 = tabijEaiEbj . (10)

In singlet, closed-shell CCSD, Eai can be formulated as

Eai = a†aai + ā†aāi , (11)

where the barred creation/annihilation operators refer to the beta spin orbitals and non-

barred refer to the alpha spin orbitals. The quantity tai is known as the singles amplitude,

and tabij is known as the doubles amplitude. In the t1-transformed formalism, the amplitudes

are updated through iteratively solving the corresponding residual equations

Ra
i =

〈
Ψa

i | e−T2H̃eT2 | Ψ0

〉
, (12)

Rab
ij =

〈
Ψab

ij | e−T2H̃eT2 | Ψ0

〉
, (13)

with

tai = tai −
Ra

i

ϵa − ϵi
, (14)

tabij = tabij −
Rab

ij

ϵa + ϵb − ϵi − ϵj
, (15)

where ϵi and ϵa represent orbital energies obtained from the diagonal elements of the Fock

operator in the MO basis. The residual update equations are much more simplified compared
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to the traditional formulation of CCSD59 since all terms involving singles excitations no

longer arise explicitly. The t1-transformed formalism of CCSD initially did not see much

use after its introduction due to the cost of transforming conventional, four-center ERIs

every iteration.54 However, DePrince et al.55 showed that using this formalism for CCSD is

much more advantageous in the context of using the density-fitting (DF)/resolution-of-the-

identity (RI)60–68 or Cholesky decomposition (CD)69–71 approximations for the two-electron

integrals. In this formalism, the two-electron integrals are approximated as:

(pq|rs) ≈ (pq|P )(P |Q)−1(Q|rs) , (16)

where P and Q represent auxiliary basis functions. This can be rewritten as:

(pq|rs) ≈ BQ
pqB

Q
rs , (17)

where

BQ
pq = (Q|P )−

1
2 (P |pq) . (18)

We present our working equations based on the formalism of DePrince et al.,55 with

equation 31 in this work reflecting a corrected sign error from the original work. Terms

with a single overhead tilde represent t1-dressed quantities, and their explicit form is defined

later.

Rab
ij = K̃ab

ij + Aab
ij +Bab

ij + P̂ ab
ij

[
1

2
Cab

ij + Cab
ji +Dab

ij + Eab
ij +Gab

ij

]
, (19)

where
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K̃ab
ij = B̃Q

aiB̃
Q
bj , (20)

Aab
ij = tcdij B̃

Q
acB̃

Q
bd , (21)

Bab
ij = tabklβ

kl
ij , (22)

Cab
ij = −tbckjγac

ki , (23)

Dab
ij =

1

2
ubc
jkδ

ac
ik , (24)

Eab
ij = tacij

˜̃
F bc , (25)

Gab
ij = −tabik

˜̃
F kj , (26)

with

βkl
ij = B̃Q

kiB̃
Q
lj + tcdijB

Q
kcB

Q
ld , (27)

γac
ki = B̃Q

kiB̃
Q
ac −

1

2
tadli B

Q
kdB

Q
lc , (28)

δacik = (2B̃Q
aiB

Q
kc − B̃Q

kiB̃
Q
ac) +

1

2
uad
il (2B

Q
ldB

Q
kc −BQ

lcB
Q
kd) , (29)˜̃

F bc = F̃bc − ubd
klB

Q
ldB

Q
kc , (30)˜̃

F kj = F̃kj + ucd
ljB

Q
kdB

Q
lc . (31)

P̂ ab
ij is a permutation operator and is defined P̂ ab

ij (X
ab
ij ) = Xab

ij +Xba
ji . The quantity uab

ij is the

antisymmetrized doubles amplitude and is defined as uab
ij = 2tabij − tbaij . The singles residual

takes the form

Ra
i = F̃ai + Aa

i +Ba
i + Ca

i , (32)

where

Aa
i = ucd

kiB
Q
kcB̃

Q
ad , (33)

Ba
i = −uac

kl B̃
Q
kiB

Q
lc , (34)

Ca
i = F̃kcu

ac
ik . (35)

The DF/RI or CD integrals dressed with the singles amplitude take the form55
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B̃Q
ki = BQ

ki +BQ
kat

a
i , (36)

B̃Q
ia = BQ

ia , (37)

B̃Q
ai = BQ

ai − takB
Q
ki +BQ

abt
b
i − takB

Q
kbt

b
i , (38)

B̃Q
ab = BQ

ab − takB
Q
kb , (39)

Since BQ
ia does not transform under t1-dressing (Equation 37), the terms in the singles and

doubles amplitudes involving integrals of that type do not need to be dressed. The dressed

Fock matrices are, analogously,

F̃ki = F̄ki + F̄kat
a
i , (40)

F̃ia = F̄ia , (41)

F̃ai = F̄ai − takF̄ki + F̄abt
b
i − takF̄kbt

b
i , (42)

F̃ab = F̄ab − takF̄kb , (43)

where

F̄rs = Frs + [2(rs|kc)− (rc|ks)]tck , (44)

The energy expression, is

ECCSD = (tabij + tai t
b
j)[2(ia|jb)− (ib|ja)] . (45)

C. Perturbative Triples Correction in CCSD(T)

Though CCSD, with its size-extensive treatment of single and double excitation operators,

provides a good description of dynamic electron correlation, it is often not sufficient for

chemical accuracy.72–78 Chemical accuracy, in this context, is defined to be a relative energy

error of 1 kcal mol−1 or lower, compared to either the FCI energy or experimental results.

A full treatment of triples (CCSDT) costs, iteratively, O(N8). A cheaper way to consider

the effect of triples is the perturbative (T) treatment as devised by Raghavachari et al.5 In

restricted, single-reference, closed-shell coupled cluster theory, E(T) can be expressed as25
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E(T) =
1

3

(4W abc
ijk +W bca

ijk +W cab
ijk )(V

abc
ijk − V cba

ijk )

ϵi + ϵj + ϵk − ϵa − ϵb − ϵc
, (46)

with

W abc
ijk = PL[(ia|bd)tcdkj − (ia|jl)tcbkl] , (47)

V abc
ijk = W abc

ijk + PS[t
a
i (jb|kc)] , (48)

Following the formalism of Lesiuk,79 we define PL and PS, or the “long” and “short” per-

mutation operators as

PL(A
abc
ijk) = Aabc

ijk + Aacb
ikj + Abac

jik + Abca
jki + Acab

kij + Acba
kji , (49)

PS(A
abc
ijk) = Aabc

ijk + Abac
jik + Acab

kij . (50)

In the (T) formalism, the triples amplitude takes the form

tabcijk =
W abc

ijk

ϵi + ϵj + ϵk − ϵa − ϵb − ϵc
, (51)

Using the triples amplitude, as well as the permutational symmetry of the energy denomi-

nator, one can rewrite the expression for the (T) energy as:

E(T ) = tabcijk · (
4

3
V abc
ijk − 2V cba

ijk +
2

3
V cab
ijk ) , (52)

In order to reduce memory costs, in our implementation of the DLPNO-CCSD(T) algorithm,

the indices are restricted such that i ≤ j ≤ k (no restriction on the virtual indices). The

energy expression can now be rewritten as,

E(T ) =
tabcijk

1 + (δij + δjk + δik) + 2δijδjkδik
(53)

× (8V abc
ijk − 4V bac

ijk − 4V acb
ijk − 4V cab

ijk + 2V bca
ijk + 2V cab

ijk ) .

D. Overview of Domain-Based Pair Natural Orbital (DLPNO)

In this section, we provide a brief overview of all of the different localization techniques in-

volved in the DLPNO approach as defined by Neese et al.29,34,35,40 For a more comprehensive

understanding, the reader is referred to the original papers.
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1. Local Molecular Orbitals (LMOs)

To localize the occupied molecular orbitals, one applies a unitary transformation to the

Hartree–Fock/SCF molecular orbitals, to limit their spatial extent80

CL
µi = CµjUji . (54)

The Foster–Boys81,82 or Pipek–Mezey localization82,83 approaches can be used to effectively

localize the MOs. For all computations presented here, we use the Foster–Boys approach,

following the work of Riplinger et al.40 Localizing molecular orbitals reduces the number of

“strongly correlated pairs” of molecular orbitals ij from O(N2) to O(N). In this context,

we define “significantly correlated pairs” to be pairs that need to be treated with MP2 or

a higher level of correlation. Otherwise, a dipole estimate39 is sufficient for a description

of non-significantly correlated pairs. In our work, similar to the previous work by Valeev,

Neese, and coworkers,40 we divide our LMO pairs ij into four classes: dipole pairs, semi-

canonical MP2 pairs, weak MP2 pairs, and strong pairs. Dipole pairs [which scale O(N2)]

are treated using an inexpensive dipole estimate. Semi-canonical MP2 pairs, scaling O(N),

are treated using semi-canonical MP2 in the projected atomic orbital (PAO) basis, while

weak MP2 pairs, scaling O(N), are treated with full iterative LMP2. The surviving pairs,

the strong pairs, scaling O(N), are treated at the CCSD level. For the (T) correction,

triplets ijk are determined from strong pairs and weak MP2 pairs, so the number of rele-

vant triplets is also linear scaling. For clarity, “semi-canonical MP2” is obtained by using

the standard (canonical) MP2 energy expression, and the effect of off-diagonal LMO Fock

matrix elements that would contribute in the case of non-canonical Hartree-Fock orbitals

are neglected. In the case of canonical molecular orbitals, “semi-canonical MP2” is the ex-

act MP2 energy. However, when localized molecular orbitals are used, the full MP2 energy

requires an iterative solution.

Though the Foster–Boys or Pipek–Mezey localization procedure is O(N3) and determin-

ing the dipole pair contribution is O(N2), these steps have such a small prefactor that they

do not significantly affect the computation time of systems studied in this work.
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2. Projected Atomic Orbitals (PAOs)

Compared to localizing the occupied space, localizing the virtual space is challenging.

One of the earliest attempts at virtual space localization was through projected atomic

orbitals (PAOs).84 Since the atomic orbital space spans the same subspace as the complete

MO space, a complete, localized, and linearly-dependent description of the virtual space can

be determined from the atomic orbitals and occupied MO coefficients. PAOs have a more

local character compared to canonical virtual molecular orbitals. The following equations

represent how PAOs are formed by projecting out the occupied MO space from the complete

AO space:

CPAO
µν̃ = δµν − CL

µiC
L
σiS

AO
σν , (55)

SPAO
µ̃ν̃ = CPAO

λµ̃ SAO
λσ CPAO

σν̃ . (56)

The CPAO coefficients give the contribution of atomic orbital µ to PAO ν̃, and SPAO repre-

sents the overlap matrix between two PAOs. Next, the PAOs are normalized

CPAO
µν̃ = (SPAO

ν̃ν̃ )−
1
2CPAO

µν̃ . (57)

and the PAO overlaps are non-iteratively recomputed using the new PAO coefficients.

One early attempt at creating local-correlation algorithms was by Schütz, Hetzer, and

Werner,85 who used LMOs and PAOs to implement a local version of MP2.14 In their work,

they gave each occupied molecular orbital pair its own set of PAOs, taking advantage of the

limited spatial overlap between LMOs and PAOs. The concept of giving every MO pair its

own virtual space is a precursor to PNO (pair natural orbital) based algorithms. Werner

and coworkers later extended the same framework to CCSD86 and CCSD(T)87 methods. In

these methods, a set of redundant, linearly-dependent PAOs is assigned to each LMO based

on the spatial overlap of the PAO with the LMO. In our work, following Pinski, Riplinger,

Valeev, and Neese,39 the overlap is computed through a measure called the “differential

overlap integral” (DOI).

DOIiµ̃ = (iµ̃|iµ̃)
1
2 . (58)
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If the value of the integral is greater than a given tolerance TCUT DO, then the PAO

µ̃ is included in the domain of LMO i. The PAOs included in the domain of a pair ij

are the union of the PAOs included in the domain of LMO i combined with the PAOs

in the domain of LMO j. After the PAOs in the pair domain of pair ij are determined,

linear dependencies are removed through an algorithm like Partial Cholesky, and then the

resulting space is transformed into a canonical basis (forming a diagonal Fock matrix, and

thus orbital energies for these transformed versions of the virtual orbitals for LMO pair ij).

The resulting PAOs will be called canonical PAOs.

Fµ̃ij ν̃ij = ϵµ̃ij
δµ̃ij ν̃ij = Xµ̃µ̃ij

FPAO
µ̃ν̃ Xν̃ν̃ij . (59)

3. Pair Natural Orbitals (PNOs)

To mitigate the high crossover points associated with using projected atomic orbitals

(PAOs), Neese et al. introduced pair natural orbitals (PNOs) for correlated methods such

as CEPA,29 and CCSD.30 PNOs are eigenvectors of the pair density of a molecular orbital

pair ij.

Dab
ij =

1

1 + δij
[uac

ij t
bc
ij + uca

ij t
cb
ij ] , (60)

The pair density can computed through canonical virtual orbitals or PAOs. In their original

work, Neese et al.29 constructed PNOs from canonical virtual orbitals, using amplitudes from

a preceding MP2 calculation. In a later work, Riplinger et al.34 updated their methodology

by computing PNOs using canonical PAOs, from semicanonical MP2 amplitudes. This is

known as the domain-based local pair natural orbital (DLPNO) approach.

D
µ̃ij ν̃ij
ij = XPNO,ij

µ̃ijaij
nocc,ij
aij

XPNO,ij
ν̃ijaij

. (61)

The eigenvectors, XPNO,ij
µ̃ijaij

, represent the transformation from canonical PAOs to PNOs, and

their eigenvalues nocc,ij
aij

represent the occupation numbers corresponding to each pair natural

orbital.

The PNOs are then truncated to form a more compact description of the virtual space

spanned by each pair ij. In our method, there are three criteria we use for determining
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significant PNOs. If any one of the following three criteria is met, then the PNO is considered

significant.

• Occupation Criterion: All PNOs with an occupation number greater than TCUT PNO

will be included. We will dub this the occupation cutoff.

• Energy Criterion: Every PNO is included, from highest to lowest occupation num-

ber, until the pair energy computed from only those PNOs, as a ratio of the total

semicanonical MP2 energy for the pair ij, is greater than TCUT ENERGY.

• Trace Criterion: Every PNO is included, from highest to lowest occupation number,

until the sum of their occupation numbers, divided by the total virtual occupation

number sum, is greater than TCUT TRACE.

In the demonstrations of the algorithm presented here, we will use tighter cutoffs in order to

best capture the effects of non-covalent interations. We present results using TCUT PNO =

10−7, TCUT ENERGY = 0.997, and TCUT TRACE = 0.999. The occupation criterion was the

original method of truncating PNOs introduced by Riplinger et al. in the ORCA package47

in the DLPNO-CCSD algorithm.34 The energy criterion was first introduced by the work of

Schwilk et al. in the Molpro package48 in their PNO-LCCSD algorithm.41 After the truncated

PNO basis is constructed, the truncated PNOs are canonicalized to give orbital energies for

the pair ij.

For diagonal pairs ii, a tighter occupation cutoff is used, with the occupation number

criterion TCUT PNO scaled by TDIAG SCALE = 10−3 when determining significant PNOs. These

PNOs are also assigned to the singles amplitudes of orbital i.

For the (T) algorithm, it is possible to build a compact virtual space for LMO triplets

ijk, by forming a triplet density,34 through the average of pair densities of pairs ij, jk, and

ik.

Dijk =
1

3
(Dij +Djk +Dik) . (62)

In our algorithm, a PAO space is first built for triplet ijk by merging the PAO spaces

of LMOs i, j, and k, at a looser tolerance TCUT DO TRIPLES (default 10−2), and then the

combined PAO space is canonicalized. Next, the pair densities for ij, jk, and ik are computed

using converged LCCSD amplitudes for strong pairs, and LMP2 amplitudes for weak pairs,
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and then each projected into the canonical PAO space for triplet ijk. The projected densities

are then averaged to form the triplet density, which is subsequently diagonalized to form

the triples natural orbitals (TNOs). In this work, only the occupation criterion TCUT TNO

(default 10−9) is used for the selection of TNOs. The use of an analogous energy or trace

criterion for triples is not considered but would be an interesting avenue for future research.

4. Local Density Fitting

To reduce the cost of integral computation, in this algorithm, similar to the previous work

by Riplinger et al.,34,40 only a subset of auxiliary basis functions is used, rather than the full

set of auxiliary basis functions, in using the DF/RI approximation for two-electron integrals.

The Mulliken population of electrons of LMO i for each center A is used to determine local

auxiliary function domains.88

P i
µν = CL

µiSµνC
L
νi , (63)

qiA = 2
∑
µ∈A

∑
ν

P i
µν ·

P i
µµ

P i
µµ + P i

νν

. (64)

If qiA for local molecular orbital i on atom A is greater than TCUT MKN, then all of the

auxiliary basis functions centered on atom A are in the local auxiliary domain of LMO i.

Thus, the subset of auxiliary basis functions (Qij) local to pair ij is the union of the local

auxiliary domains on LMO i and LMO j.

III. WORKING EQUATIONS

In this section we present the working equations for our DLPNO-CCSD(T) implementa-

tion. We will use our sets of working equations for density-fitted, t1-dressed CCSD and (T)

as presented in the Theory section as a starting point, following the work of DePrince et

al.55 For a baseline derivation, we use these following heuristics:

• The virtual space of singles amplitudes for LMO i uses the diagonal PNOs of pair ii

• The virtual space of doubles amplitudes for LMO pair ij uses PNOs of pair ij
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• PNO overlap matrices are used in the event of a mismatch in virtual spaces (defined

below)

Saij
akl

= XPNO,ij
µ̃aij

SPAO
µ̃ν̃ XPNO,kl

ν̃akl
, (65)

For example, equation 22 becomes

B
aijbij
ij = (Saij

akl
taklbklkl S

bij
bkl
)βkl

ij . (66)

as the PNOs of pair kl from the doubles amplitudes need to be transformed into the PNOs

of pair ij.

Converting integrals to the PNO basis is less straightforward, and the different ways to

formulate integrals from a speed/accuracy trade-off perspective is presented in the next

section.

A. Discussion of PNO Projection Error

Integrals can either be directly formed from the PAO basis, or approximated using PNO

overlap matrices. For example, integrals of type (iakl|jbkl) can be derived in two ways

(iakl|jbkl) = XPNO,kl
µ̃akl

(iµ̃|jν̃)XPNO,kl
ν̃bkl

, (67)

or

(iakl|jbkl) ≈ Sakl
aij

(iaij|jbij)Sbkl
bij

. (68)

Using the projection approximation is advantageous in that building and storing integrals

of type (iakl|jbkl) is significantly more expensive (requiring an index loop over ij and kl in

storage) than projecting integrals of type (iaij|jbij) (only requiring an index loop over ij).

Using the projection approximation, such as in equation 68, is akin to using the PNO basis

of ij in a resolution of the identity (RI) operator

∑
aij

|aij⟩ ⟨aij| ≈ 1 . (69)

16

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

02
19

96
3

 26 August 2025 14:54:41



This is not always a good approximation, as it assumes that the span of the PNOs of pairs

ij is close enough to the span of the PNOs of pairs kl. The error resulting from building

integrals from the projection approximation is defined as the “projection error.”34,41 The

projection error decreases as the PNO cutoff is tightened. Interestingly enough, using the

projection approximation does not induce large errors for most terms, even if it is sometimes

even used repeatedly. However, for contributions to Rab
ij that are linear in tabij , as well as

certain terms involved in dressing the Fock matrix, the projection approximation cannot be

applied without bringing large errors. After extensive experimentation, we have determined

a set of working equations that best balance speed and accuracy, derived from the original set

of equations presented in this work, transformed to the local basis. For terms that explicitly

show four-center integrals, the integrals are first computed from the sparse three-center

integrals through local density-fitting and LMO/PAO sparsity39,40 and stored explicitly in

sparse-format as four-index quantities, while for terms that involve three-center integrals,

the four-index quantities are never explicitly formed. Select terms in some equations are

bolded to ease reader comprehension and highlight design choices that balance accuracy and

efficiency.

B. LCCSD Working Equations

First, let us define some integral and amplitude intermediates:

t̃akli = Sakl
aii

taiii , (70)

Jrs
pq = (pq|rs) , (71)

Krs
pq = (pr|qs) , (72)

Lrs
pq = 2Krs

pq −Ksr
pq , (73)

M rs
pq = 2Krs

pq − Jrs
pq . (74)

For the contributions to the Rab
ij residual,
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K̃
aijbij
ij = B̃

Qij

aiji
B̃

Qij

bijj
, (75)

A
aijbij
ij = t

cijdij
ij B̃Qij

aijcij
B̃

Qij

bijdij
, (76)

B
aijbij
ij = (Saij

akl
taklbklkl S

bij
bkl
)βkl

ij , (77)

C
aijbij
ij = −Saij

aki
γakicki
ki Scki

ckj
t
bkjckj
kj S

bij
bkj
− J

aijckj
ik S

bij
bkj

t
bkjckj
kj , (78)

D
aijbij
ij =

1

2
Saij
aik

δaikcikik Scik
cjk

u
bjkcjk
jk S

bij
bjk

+
1

2
M

aijckj
ik S

bij
bjk

u
bjkcjk
jk , (79)

E
aijbij
ij = t

aijcij
ij

˜̃
F bijcij , (80)

G
aijbij
ij = −(Saij

aik
taikbikik S

bij
bik
)
˜̃
F kj , (81)

The intermediates are redefined as

βkl
ij = B̃

Qij

ki B̃
Qij

lj + t
cijdij
ij B

Qij

kcij
B

Qij

ldij
, (82)

γakicki
ki = −t̃aki

l J lcki
ki + t̃bkii Jakicki

kbki
− t̃bkli Kbklckl

kl Scki
ckl

t̃aki
l − 1

2
Saki
ali

talidlili Sdli
dkl
Kdklckl

kl Scki
ckl

, (83)

δaikcikik = −t̃aik
l M lcik

ik + t̃biki M ckiaki
kbki

− t̃blki Lblkclk
lk Scki

clk
t̃aik
l +

1

2
Saik
ail

uaildil
il Sdil

dkl
Lckldkl
kl Scik

ckl
,

(84)˜̃
F bijcij = F̃bijcij − S

bij
bkl
ubkldkl
kl Kckldkl

kl Scij
ckl

, (85)˜̃
F kj = F̃kj + (Sclk

clj
u
cljdlj
lj Sdlk

dlj
)Kclkdlk

lk . (86)

Similarly, the singles residuals in the diagonal PNO basis take the form

Raii
i = F̃aiii + Aaii

i +Baii
i + Caii

i , (87)

where

Aaii
i = uckidki

ki Kckidki
kaki

Saii
aki
− t̃aiil uckidki

ki Scki
ckl

Kckldkl
kl Sdki

dkl
, (88)

Baii
i = −Saii

akl
uaklckl
kl [Kickl

kl + t̃bkli Kbklckl
kl ] , (89)

Caii
i = Saii

aik
uaikcik
ik F̃kcik . (90)

Here are the relevant DF integrals dressed with the singles amplitudes

18

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

02
19

96
3

 26 August 2025 14:54:41



B̃
Qij

ki = B
Qij

ki +B
Qij

kaij
t̃
aij
i , (91)

B̃
Qij

aiji
= B

Qij

aiji
− t̃

aij
k B

Qij

ki +B
Qij

aijbij
t̃
bij
i − t̃

aij
k B

Qij

kbij
t̃
bij
i , (92)

B̃
Qij

aijbij
= B

Qij

aijbij
− t̃

aij
k B

Qij

kbij
. (93)

For the dressed Fock matrices, since we are not using canonical MOs, we derived these

equations from the work of Werner and coworkers41

F̃ij = F ij + F icjj t
cjj
j , (94)

F̃iaij = Saij
aik

Laikcik
ik t̃cikk , (95)

F̃aiii = F aiii − t̃aiik F ki + F aiibiit
bii
i − t̃aiik F kbiit

bii
i , (96)

F̃aijbij = F aijbij − t̃
aij
k F kbij , (97)

where

F ij = Fij + [2J
kcij
ij −K

kcij
ji ]t̃

cij
k , (98)

F iakl = [2BQkl
iakl

BQkl
mckl
−BQkl

ickl
BQkl

makl
]t̃cklm , (99)

F aiii = [2BQii

aiii
BQii

kcii
−BQii

aiicii
BQii

ki ]t̃ciik , (100)

F aijbij = ϵaijδaijbij + [2B
Qij

aijbij
B

Qij

kcij
−B

Qij
aijcijB

Qij

kbij
]t̃

cij
k . (101)

In our formalism, we dress our Fock matrices directly in the PNO space, rather than the

PAO space, as is done by Werner and coworkers in their PNO-LCCSD algorithm in Molpro41.

In our working equations for DLPNO-CCSD, the terms have a slightly different structure

than the original set of working equations from canonical t1-transformed DF-CCSD. One

notable modification is the expansion of the t1-dressed integrals and the removal of the

leading two-virtual integrals in equations 83 and 84 from their canonical counterparts and

expressing their contributions explicitly in equations 78 and 79. This is done since PNO

projection errors are greatest in terms containing linear doubles amplitude contributions to

the doubles residual. In addition, even though the Rab
ij and Ra

i residuals are only updated

over strong pairs, weak MP2 pairs also contribute to the residual of strong pairs. Because of

this, the DF integrals from equations 91–93 are only constructed over strong pairs to save
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memory costs. Therefore, the t1-dressed integrals are expanded explicitly in other parts

of the working equations as well, in equations 78, 79, 88 and 89. Certain Fock matrix

contributions also have a unique form. Equation 95 is not constructed from equation 99,

since the former is looped over strong pairs and the latter is looped over both strong pairs

and weak LMP2 pairs. Finally, equation 101 is built with the explicit DF integrals, and not

through projecting integrals of type (kckk|akkbkk) (errors too large) or building integrals of

type (kckk|aijbij) (too expensive to store) as a trade off between speed and accuracy. For

the sake of absolute clarity, and reproducibility, the energy expression we used was

ELCCSD = (t
aijbij
ij + t̃

aij
i t̃

bij
j )L

aijbij
ij . (102)

where the singles and doubles residual updates can be computed in three equivalent, equally

valid formalisms

taiii − =
Raii

i

ϵaij − Fii

, (103)

taiii − =
Raii

i

Faijaij − Fii

, (104)

taiii − =
Raii

i

F̃aijaij − F̃ii

, (105)

t
aijbij
ij − =

R
aijbij
ij

ϵaij + ϵbij − Fii − Fjj

, (106)

t
aijbij
ij − =

R
aijbij
ij

Faijaij + Fbijbij − Fii − Fjj

, (107)

t
aijbij
ij − =

R
aijbij
ij

F̃aijaij + F̃bijbij − F̃ii − F̃jj

. (108)

As shown above, both dressed and undressed Fock matrices can be used for the energy

denominators for the residual updates. At convergence, the computed energies will be

equivalent. This is presented for reader comprehension and to reduce the confusion between

the equations as presented in other works.
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C. (T) Working Equations

Most of the triples equations are trivially carried over from the canonical (T) equations.

Still, we present the W and V intermediates as they are computed in the TNO basis in our

code for the sake of completeness. The two-electron integrals are never stored in the (T)

algorithm, but computed on-the-fly from sparse three-center integrals and contracted into

the intermediates as needed:

W
aijkbijkcijk
ijk = PL[(iaijk|bijkdijk)[S

cijk
ckj t

ckjdkj
kj S

dijk
dkj

]− (jl|kcijk)S
aijk
ail tailbilil S

bijk
bil

] , (109)

V
aijkbijkcijk
ijk = W

aijkbijkcijk
ijk + PS[t

aii
i S

aijk
aii (jbijk|kcijk)] , (110)

Since we are in the LMO basis where the Fock matrix is not diagonal, we need to itera-

tively solve for the full (T) energy.44,45 The approximation where the triples amplitudes are

not corrected for off-diagonal LMO Fock matrix elements is called the semi-canonical (T0)

approximation.34,44 In this work, we will not use the semicanonical (T0) approximation in

any of our test cases, as it is known to be problematic for certain systems.44,45 The triples

amplitudes are iteratively updated as

R
aijkbijkcijk
ijk = W

aijkbijkcijk
ijk − t

aijkbijkcijk
ijk (ϵaijk + ϵbijk + ϵcijk − fii − fjj − fkk)

−
∑
l ̸=i

filt
aljkbljkcljk
ljk S

aijkbijkcijk
aljkbljkcljk

−
∑
l ̸=j

fjlt
ailkbilkcilk
ilk S

aijkbijkcijk
ailkbilkcilk

−
∑
l ̸=k

fklt
aijlbijlcijl
ijl S

aijkbijkcijk
aijlbajlcajl

,

(111)

t
aijkbijkcijk
ijk − =

R
aijkbijkcijk
ijk

ϵaijk + ϵbijk + ϵcijk − Fii − Fjj − Fkk

. (112)

In the iterative (T) algorithm, unlike in the semi-canonical (T0) algorithm, all three

t
aijkbijkcijk
ijk , W

aijkbijkcijk
ijk , and V

aijkbijkcijk
ijk intermediates need to be stored. The T3 amplitudes

need to be stored and updated, with the W intermediate stored to compute the residual, and

the V intermediate stored to compute the energy (Equation 53). Though the memory costs

for storing these quantities may appear to be excessive due to its O(nijkn
3
pno ijk) scaling,

the memory requirements are often similar or less than the memory requirements for the
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preceding DLPNO-CCSD computation. This is because the TNO space used in the iterative

(T) computation is smaller than the one used in the semi-canonical (T0) computation, and

additionally, applying the index restriction i ≤ j ≤ k reduces costs by a factor of 6. There

is an option to perform disk I/O with these triples intermediates, through the keyword

WRITE TRIPLES, but we do not anticipate the average user needing to use this. For

example, in a uracil dimer computation in the cc-pVDZ basis set (TightPNO convergence),

the total storage requirement for the DLPNO-CCSD computation is around 8.40 GiB, while

the requirements for the triples intermediates is around 2.36 GiB each (total of around 7.09

GiB).

IV. IMPLEMENTATION DETAILS

A. CCSD Algorithm Details

Much of our prescreening to classify pairs in the DLPNO-CCSD algorithm is derived

from the original work of Valeev, Neese, and coworkers.39,40 We first screen out the dipole

pairs based on the TCUT DO ij and TCUT PRE cutoffs, the overlap and energy criteria used

to ensure that LMOs i and j are non-overlapping. Next, we determine the semicanonical

MP2 pairs as all non-dipole pairs with an energy contribution less than TCUT PAIRS MP2.

The latter is done using an initial prescreening procedure that us looser in cutoffs.40 In the

third step, we recompute the semicanonical LMP2 amplitudes for surviving pairs (non-dipole

or semicanonical) through the refined prescreening procedure,40 and compute PNOs for the

LMP2 procedure using TCUT PNO MP2, TCUT ENERGY MP2, and TCUT TRACE MP2. Pairs are then

divided into weak LMP2 pairs or strong pairs based on their energy through TCUT PAIRS.

Next, LMP2 energies and amplitudes are computed for both weak and strong pairs using

the tighter PNOs. Finally, the PNOs are recomputed at looser cutoffs from converged

LMP2 amplitudes with TCUT PNO, TCUT ENERGY, and TCUT TRACE, with only the strong pair

amplitudes being updated in the LCCSD iterations; the weak MP2 pair amplitudes are saved

for the (T) algorithm. The total DLPNO-CCSD energy thus contains contributions from

all four pair classes, as well as a PNO truncation correction39 from strong pairs and weak

MP2 pairs. The PNO truncation is computed as the difference between the semicanonical

LMP2 energy computed in the initial, tighter PNO basis (TCUT PNO MP2) and the PAO basis,
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summed with the difference between the LMP2 energy computed using the tighter PNOs

used for LMP2 and the looser PNOs (TCUT PNO) used for LCCSD.

EDLPNO-CCSD = ELCCSD[strong pairs] +∆ELMP2[weak MP2 pairs]

+∆ESC-LMP2[semicanonical MP2 pairs] +∆Edipole[dipole pairs]

+∆EPNO[strong pairs + weak MP2 pairs] . (113)

We present values for the most relevant parameters used in the DLPNO-CCSD algorithm,

as reported in this section and throughout this work, in Table I. The presented values are

those corresponding to the TightPNO/NormalPNO convergence settings for our code. We

will present all our results with TightPNO.

TABLE I. Parameters of our DLPNO-CCSD algorithm for TightPNO and NormalPNO settings

Parameter Description TightPNO Value NormalPNO Value

TCUT PNO LCCSD PNO occupation criterion 10−7 3.33× 10−7

TCUT ENERGY LCCSD PNO energy criterion 0.997 0.99

TCUT TRACE LCCSD PNO trace criterion 0.999 0.99

TCUT PNO MP2 LMP2 PNO occupation criterion 10−9 3.33× 10−9

TCUT ENERGY MP2 LMP2 PNO energy criterion 0.999 0.997

TCUT TRACE MP2 LMP2 PNO trace criterion 0.9999 0.999

TDIAG SCALE Scale of TCUT PNO for diagonal pairs 0.001 0.001

TCUT DO LMO/PAO DOI criterion for pair domains 0.005 0.01

TCUT DO ij LMO/LMO DOI criterion for dipole pairs 10−5 10−5

TCUT PRE Dipole energy cutoff for pair screening 10−7 10−6

TCUT PAIRS Strong/weak pair cutoff 10−5 10−4

TCUT PAIRS MP2 Weak/semicanonical pair cutoff 10−6 10−6

TCUT MKN Local density fitting Mullikan tolerance 10−3 10−3
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B. Triples Algorithm Procedures

We model our triples algorithm based on a combination of features from DLPNO-

CCSD(T) in ORCA44 and PNO-LCCSD(T) in Molpro,45 in order to optimize speed and

accuracy. First, we use the triples prescreening algorithm as presented by Ma and Werner.45

We first compute the semicanonincal (T0) energy for each possible triplet ijk, derived from

combinations of pairs ij, jk, and ik, at least one of which is a strong pair, at a weaker TNO

tolerance (TCUT TNO PRE). All triplets ijk for which the absolute value of the energy is lower

than (TCUT TRIPLES PRE) are screened out and not further considered, but the sum of their

energy contributions is saved and accounted for. We will term these triplets that did not

survive the prescreening as the “screened triplets.” The rest of the algorithm is derived from

the work of Neese and coworkers,44 where the TNOs of the surviving triplets are then recom-

puted at a tighter tolerance (TCUT TNO), in order to obtain a more accurate semi-canonical

(T0) energy. The TNOs are then recomputed at a looser tolerance for the iterative (T) step

to reduce the cost of storing triples amplitudes and intermediates. To this end, the energies

of the triplets are sorted and the approximately 20% of triplets that account for at least

90% of the semi-canonical (T0) energy are deemed “strong triplets,”44 and the rest deemed

“weak triplets,” For the “strong triplets,” the TNOs are recomputed at a looser tolerance

TCUT TNO · TSTRONG SCALE and the “weak triplets” at TCUT TNO · TWEAK SCALE for the full

iterative (T) algorithm. The final (T) energy is as follows:

EDLPNO-(T) =
∑
i≤j≤k

Eijk
(T0)[TCUT TNO]+

∑
ijk∈strong triplets

(Eijk
(T)−E

ijk
(T0))[TCUT TNO×TSTRONG SCALE]

+
∑

ijk∈weak triplets

(Eijk
(T)−E

ijk
(T0))[TCUT TNO×TWEAK SCALE]+

∑
ijk∈screened triplets

∆Eijk
(T0)[TCUT TNO PRE] .

(114)

The default values for the triples parameters are presented in Table II (values are the same

across all PNO convergences)
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TABLE II. Default values of our DLPNO-(T) parameters for all settings

Parameter Description Default Value

TCUT TNO TNO occupation criterion 10−9

TCUT TNO PRE TNO occupation criterion in “screened triplets” 10−7

TCUT TRIPLES PRE “Screened triplets” energy cutoff 10−7

TCUT DO TRIPLES LMO/PAO DOI criterion for triples domains 10−2

TCUT MKN TRIPLES Local density fitting tolerance for triples 10−2

TSTRONG SCALE Iterative (T) strong triplet TCUT TNO scaling 10

TWEAK SCALE Iterative (T) weak triplet TCUT TNO scaling 100

C. Discussion on Memory Usage

For the integrals, the quantities are stored in RAM based on their form in the working

equations. For example, K
aijbij
ij and J

aijbij
ij are stored as a list of matrices (of dimension

npnoij · npnoij) indexed by the index of pair ij, while the non-projected integrals J
aijckj
ik and

K
aijckj
ik (used to formM

aijckj
ik ) are stored as a nested list of matrices of dimension npnoij ·npnokj ,

with the first index being the LMO pair ij, and the second index being the LMO index kij,

which represents all LMOs k such that ki and kj are both strong or weak pairs. The DF

integrals B
Qij

kijaij
B

Qij

aijbij
are similarly stored as a nested list, with the first index being the

LMO pair ij, and the second index being the auxiliary function index qij in the domain of ij

for each set of matrices. The non-projected J and K integrals, as well as the DF integrals,

need only to be stored for strong pairs. There is an option to store the expensive B
Qij

kijaij

B
Qij

aijbij
integrals to disk, through the keywords WRITE QIA PNO, and WRITE QAB PNO.

Algorithms that explain how the non-projected integrals (J
aijckj
ik and K

aijckj
ik ) are formed are

included in the appendix.

All the dressed Fock matrices are computed and stored, while only the dressed integrals

B̃
Qij

aiji
(list of matrices of dimension nauxij

· npnoij indexed by ij) and B̃
Qij

kiji
(list of matrices of

dimension nauxij
·nlmoij indexed by ij) are stored, due to the reduced memory requirements).

For most computations, the largest contributor to memory cost is the S
aij
bkl

PNO overlap

integrals, which are stored as a nested list indexed by LMO pair ij and then LMO pair kl.

Since these quantities are only used for the B
aijbij
ij and E

aijbij
ij intermediates (Equations 77
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and 80), to reduce the cost of the PNO overlap integrals, we have developed a semi-direct

low memory overlap algorithm for PNO matrices, where PNO overlaps of the form S
aij
bkk

,

as well as S
aij
bkj

and S
aij
bik

are stored in RAM, and S
aij
bkl

is computed through the semi-direct

algorithm. This can be toggled by the setting LOW MEMORY OVERLAP. The algorithm

for this is presented in the appendix.

D. Computational Details

For all correlated computations, the frozen-core approximation is used. Unless otherwise

stated, TightPNO convergence is used for all computations. All timings are performed

on 16 cores of an Intel Xeon 6136 CPU (3.0 GHz processing speed with 1 TB of RAM)

unless otherwise stated. Typical quantum chemistry algorithms benefit from access to large

amounts of RAM, especially for computations on the largest systems considered here. Yet,

DLPNO-CCSD(T) computations can also be carried out with the resources available to the

average user, who can find our code in a development branch of the freely available Psi4

program.51

V. RESULTS

A. Dimer Interaction Energies

We first present the results of our DLPNO-CCSD and (T) algorithms on the S22 data

set,89 consisting of 22 dimers of sizes ranging from water-water to adenine-thymine. The in-

teractions of the S22 dimers can be primarily hydrogen-bonded (HB), dispersion-dominated

(DD), or mixed influence (MX).90 For a fair comparison of our algorithm, we compared the

results to canonical DF-CCSD and DF-CCSD(T) as implemented in Psi4, using the same

RI basis sets for the correlated computations.55 For these tests, we use the cc-pVDZ, jun-cc-

pVDZ, and cc-pVTZ orbital basis sets.91,92 For the unfamiliar reader, the jun-cc-pVDZ basis

set adds a set of diffuse functions for all heavy atoms up to shell l−1, where l represents the

highest angular momentum shell, from the cc-pVDZ basis. All computations are performed

with the counterpoise (CP) correction.93 The results comparing DLPNO-CCSD to canon-

ical DF-CCSD are presented in Table III, and comparisons between DLPNO-CCSD(T) to

DF-CCSD(T) are shown in Table IV. We present the results of the interaction energy errors
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in aggregate for each basis set, as well as for each interaction type for each basis set.

As shown in the tables, at the TightPNO convergence, the algorithm is accurate enough

to yield interaction energy errors of MAE 0.06 kcal mol−1 or less in every basis set for

CCSD, and 0.10 kcal mol−1 or less for CCSD(T). For the NormalPNO convergence, the

MAE is typically on the order of 0.2 – 0.3 kcal mol−1 for both CCSD and CCSD(T), with

the MAE for the dispersion-dominated complexes being larger, around 0.5 – 0.6 kcal mol−1

(detailed results are presented in the supporting information). Generally speaking, DLPNO-

CCSD/DLPNO-CCSD(T) is the most accurate when modeling dimers bound by mixed

influences, versus modeling hydrogen-bonded or dispersion-dominated dimers. It is also

shown that adding diffuse functions (as in the case of the jun-cc-pVDZ basis set) helps

reduce the errors associated with modeling dispersion interactions relative to DF-CCSD(T).

For dispersion-dominated complexes, it is not recommended to use NormalPNO convergnce,

which is consistent with the findings of Kallay and coworkers.36

TABLE III. TightPNO DLPNO-CCSD error statistics compared to canonical DF-CCSD reference

(kcal mol−1). jun-cc-pVDZ augments the cc-pVDZ basis by adding diffuse functions for all heavy

atoms up to shell lmax − 1.

Basis Set (Count) ME MAE RMSE Std Dev Min Max

cc-pVDZ (22) 0.017 0.063 0.088 0.086 –0.168 0.175

HB (7) 0.046 0.047 0.066 0.048 –0.006 0.132

DD (8) 0.033 0.105 0.128 0.124 –0.168 0.175

MX (7) –0.029 0.031 0.037 0.024 –0.074 0.007

jun-cc-pVDZ (22) 0.005 0.058 0.083 0.083 –0.243 0.122

HB (7) 0.044 0.054 0.068 0.052 –0.033 0.115

DD (8) –0.011 0.089 0.119 0.119 –0.243 0.122

MX (7) –0.015 0.025 0.031 0.027 –0.054 0.020

cc-pVTZ (22) 0.021 0.052 0.078 0.075 –0.200 0.141

HB (7) 0.054 0.054 0.071 0.046 –0.001 0.128

DD (8) 0.013 0.086 0.110 0.109 –0.200 0.141

MX (7) –0.003 0.011 0.015 0.014 –0.030 0.020
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TABLE IV. TightPNO DLPNO-CCSD(T) error statistics compared to canonical DF-CCSD(T)

reference (kcal mol−1). jun-cc-pVDZ augments the cc-pVDZ basis by adding diffuse functions for

all heavy atoms up to shell lmax − 1.

Basis Set (Count) ME MAE RMSE Std Dev Min Max

cc-pVDZ (22) 0.079 0.084 0.132 0.105 –0.025 0.312

HB (7) 0.116 0.116 0.145 0.088 0.008 0.280

DD (8) 0.115 0.115 0.170 0.126 0.002 0.312

MX (7) 0.003 0.018 0.020 0.020 –0.025 0.032

jun-cc-pVDZ (22) 0.070 0.079 0.113 0.089 –0.054 0.270

HB (7) 0.117 0.117 0.139 0.076 0.028 0.270

DD (8) 0.072 0.089 0.127 0.105 –0.054 0.229

MX (7) 0.020 0.028 0.046 0.042 –0.027 0.116

cc-pVTZ (22) 0.100 0.100 0.141 0.099 0.003 0.296

HB (7) 0.140 0.140 0.171 0.099 0.017 0.296

DD (8) 0.116 0.116 0.162 0.113 0.003 0.282

MX (7) 0.042 0.042 0.054 0.034 0.005 0.099

B. Potential Energy Surfaces

Next, we examined the potential energy surface along the dissociation of a uracil dimer

pair, from the S66x8 data set of Rezac et al.94 The dimer is displaced along an axis par-

allel to the two hydrogen bonds, at 0.9, 0.95, 1.0, 1.05, 1.1, 1.25, 1.5, and 2.0 times the

average distance of the two hydrogen bonds (Req = 1.805 Å). As shown in Figure 1, the

DLPNO-CCSD/DLPNO-CCSD(T) dissociation curves match their respective canonical ref-

erences, and DLPNO-CCSD(T) also effectively captures the (T) correlation effects. The

computation is performed in the cc-pVTZ basis set, with counterpoise (CP) correction, with

DF-CCSD/(T) used for the canonical reference. For canonical DF-CCSD(T), the compu-

tations take around 8 hours per dimer on 48 cores of the Intel Xeon 6136 specified in the

Computational Details, while for DLPNO-CCSD(T), it takes around 35 minutes per dimer,

with the computation involving more separated dimers being faster (39 minutes for 0.9Req,
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26 minutes for 2.0Req).

FIG. 1. Counterpoise (CP) corrected cc-pVTZ interaction energies for uracil dimer base pair along

the (frozen monomer) dissociation curve

We also plot the errors of DLPNO-CCSD/(T) with respect to the canonical DF-

CCSD/(T) results along the dissociation curve, as shown in Figure 2. As expected, the

errors decrease as the system becomes more well separated, since the magnitude of the

inter-molecular correlation decreases. The CCSD and CCSD(T) errors are 0.17 and 0.36

kcal mol−1, respectively, at 0.9Req separation, and at 2.0Req, the errors decrease to 0.01 and

0.08 kcal mol−1. The relatively higher magnitude of errors around equilibrium and closer

contacts is to be expected due to the local approximations, and are controllable through

tightening the parameters.
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FIG. 2. Errors along the frozen monomer dissociation curve for uracil dimer base pair, defined as

the canonical DF-CCSD/(T) interaction energy subtracted from the DLPNO-CCSD/(T) result

C. Large Water Cluster Conformation Energies

For a more rigorous test of the accuracy of our DLPNO-CCSD(T) implementation, we

consider some of the larger systems for which canonical CCSD(T) results are available: con-

formers of (H2O)16 and (H2O)17, in the aug-cc-pVTZ basis, from the work of Xantheas and

coworkers.56 In their work, they computed canonical CCSD(T) reference values using super-

computing resources at the massive ORNL Leadership Computing Facility. They used the

CRAY XT5 partition, containing a total of 18,684 compute nodes and 224,208 processing

cores with more than 300 TB of memory.56 In contrast, all of our computations were run on

a single computing node with 32 CPU cores and 450 GB of RAM. Xantheas and coworkers

presented results for five different conformers of (H2O)16 and two different conformers of

(H2O)17. There are four possible conformers of (H2O)17, but not all their computations
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finished since they ran out of computing time. Table V presents the relative conformational

energies for (H2O)16 and (H2O)17 as computed by Xantheas and coworkers, by our DLPNO-

CCSD(T) algorithm, and by the DLPNO-CCSD(T) algorithm in ORCA. For ORCA, we

used their default TightPNO cutoff values (different than ours), for version 5.0.4. For com-

pleteness, we also include results from the work of Bates, Tschumper, and coworkers57 who

developed a highly accurate many-body expansion method to obtain absolute energies for the

conformers close to the canonical CCSD(T) values, called the “CCSD(T):MP2 3-body:many-

body” method, which means that all monomer, dimer, and trimer contributions are treated

at the CCSD(T) level, and the other contributions are treated with MP2. We will refer to

that as “3b:mb” as shorthand.

E3b:mb/CCSD(T):MP2 = EMP2(all) +
∑
A

ECCSD(T)(A)− EMP2(A)

+
∑
AB

∆ECCSD(T)(AB)−∆EMP2(AB) +
∑
ABC

∆ECCSD(T)(ABC)−∆EMP2(ABC) . (115)

The conformation energies are computed with respect to the lowest energy conformer for

each series of conformers. All three approximate methods correctly identify the lowest energy

conformer (albeit in ORCA, boat-a and 4444-a have nearly identical energies). Compared

to the DLPNO-CCSD(T) algorithm in ORCA, the DLPNO-CCSD(T) algorithm we imple-

mented gives closer answers to the canonical CCSD(T) value for the conformation energies

in all cases. We believe this to be the case because of our use of additional criteria (energy

and occupation) for PNO selection, as well as a tighter TDIAG SCALE compared to ORCA

(0.001 compared to 0.03). This is evident in the boat-a conformation for (H2O)16, where the

number of PNOs for our pairs range from 11-149 (average of 44), while ORCA ranges from

6-73 (average of 25). Additionally, our criterion for the initial consideration of triplets (2

weak pairs vs 1 in ORCA) allow our code to recover more triples energy compared to ORCA.

For the boat-a configuration, our DLPNO-CCSD absolute energy is 0.3 kcal mol−1 lower,

while the (T) contribution is 0.4 kcal mol−1 lower, leading to a net difference of around 0.7

kcal mol−1.

Surprisingly, even though the 3b:mb method gives more accurate absolute energies than

our DLPNO-CCSD(T) method, the two methods reproduce conformation energies of compa-

rable accuracy. This shows that with a tight enough tolerance, local correlation methods can

capture subtle higher-order, many-body electron correlation effects. The absolute energies
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are included in the supplementary material.

TABLE V. Relative conformation energies (kcal mol−1) using canonical CCSD(T) from the work

of Yoo et al.,56 compared with DLPNO-CCSD(T) as implemented in this paper and the implemen-

tation in ORCA,44 as well as the 3b:mb MP2/CCSD(T) method of Bates et al.57

isomer ∆Ecanon ∆EPSI4 ∆EORCA ∆E3b:mb

(H2O)16

boat-a 0.25 0.35 0.00 0.36

boat-b 0.42 0.51 0.15 0.60

antiboat 0.51 0.63 0.27 0.67

4444-a (abab) 0.00 0.00 0.00 0.00

4444-b (aabb) 0.54 0.52 0.59 0.57

(H2O)17

sphere 0.00 0.00 0.00 0.00

522’5 0.71 0.77 0.39 0.77

441’44 X 0.79 0.78 1.10

L-Shape X 1.49 1.34 1.55
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D. Timings and Scaling

For timings, we tested our code on a growing series of three-dimensional water and

benzene clusters (geometries available in the supporting information), as shown in Figures 3

and 4. We performed our tests in the cc-pVDZ, jun-cc-pVDZ, and cc-pVTZ basis sets. In

these figures, we present log-log plots, using our timings to calculate the empirical scaling

of our algorithm. We used a log-log regression of the walltime (in minutes) compared to the

system size (by number of basis functions) to perform our analysis, in order to fit a function

of the form t = a ·nb, where the t is the run-time, a is the pre-factor, n the system size, and b

the computational scaling. The results of our analysis are presented in Figures 3 and 4. For

each system, across all basis sets, the empirical scalings are all below cubic scaling, with non-

diffuse basis sets scaling quadratic or less. Even though the linear scaling regime has not been

achieved yet with our system sizes, the observed scaling show a drastic improvement from

the seventh power scaling of canonical CCSD(T). Due to the three-dimensional nature of

these systems, we do not expect the onset of linear scaling to occur until later, as opposed to

previous tests on linear alkanes in ORCA.40 The steps that are formally higher scaling, such

as molecular orbital localization, and dipole pair prescreening, have such a low prefactor

that they do not affect timings at all, and none of the new features we incorporated in

this algorithm, such as the t1-transformation of integrals and Fock matrices, scale more

than linearly. The results of the analysis performed for the DLPNO-CCSD as well as the

DLPNO-(T) components of the computation are presented in the supplementary material.

Finally, to assess the limits of the capabilities of our algorithm, we tested our code on an

insulin peptide hormone, as show in Figure 5. The geometry was obtained from the work of

Bykov et al.,58 and is also presented in the supplementary material. For this computation,

we used the def2-SV(P) basis set of Weigend et al.,95 with 6458 basis functions. In Table VI,

we present the DLPNO-CCSD(T) correlation energy, as well as its various contributions, at

both the NormalPNO and TightPNO convergences. In Table VII, we present timings for

the most important portions of the computation (excluding SCF). For these sets of timings,

we used 32 CPU cores on a single 2nd generation AMD EPYC Rome (2.9 GHz processing

speed, 2000 GB RAM) as part of the Sapelo2 computing cluster at the University of Georgia.

The computation is performed completely in-core (excluding SCF). Finally, in Table VIII,

we present local domain information at both levels of convergence. As shown in Table VI,
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FIG. 3. Water cluster timings and empirical scaling with the DLPNO-CCSD(T) method. System

sizes range from 4–64 water molecules, presented for each basis set.

NormalPNO recovers about 99.96% of the TightPNO DLPNO-CCSD correlation energy,

and 99.94% of the overall DLPNO-CCSD(T) correlation energy.

Although the LCCSD strong pair correlation energy at the NormalPNO convergence is

significantly less than the LCCSD strong pair energy at the TightPNO convergence, the

LMP2 weak pair correction makes up the majority of that difference. This highlights the

importance of the contribution of weak pairs in DLPNO-CCSD(T). In the timings on Table

VII, the TightPNO computation takes about 3 times as long as the NormalPNO compu-

tation, with DLPNO-CCSD taking much longer due to significantly larger PNO domain

sizes for the tighter criterion. For this computation, we used a preliminary version of the

LOW MEMORY OVERLAP algorithm, where only the PNO overlap matrices of the form

S
aij
bkj

and S
aij
bik

are stored in RAM, and all other types are computed on the fly. This is signif-
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FIG. 4. Benzene cluster timings and empirical scaling with the DLPNO-CCSD(T) method. System

sizes range from 1–10 benzene molecules, presented for each basis set.

icantly less efficient than the current implementation (as described earlier in Section IV), so

this led to a the disproportionate amount of time spent in the LCCSD iterations. The time

spent in the LCCSD iterations would be significantly less with the current code. One fact

to highlight is that the dipole correction, though nominally scaling O(N2), is far from being

a bottleneck in either computation. The triples contribution becomes less of a bottleneck

at tighter PNO convergences, due to the efficiency of our triples prescreening algorithm,

as highlighted in Table VIII. Table VIII also highlights the locality of the pair and triplet

domains in a large system like insulin, with both the virtual and auxiliary domains being

significantly less than the span of the entire molecule.
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FIG. 5. 3D Structure of insulin (787 atoms)
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TABLE VI. Energy information for insulin/def2-SVP at NormalPNO and TightPNO convergence

(mEh, unless otherwise stated)

NormalPNO TightPNO Diff. Diff. (kcal mol−1)

DLPNO-CCSD(T) Correlation Energy –62393.798 –62433.591 –39.8 –25.0

DLPNO-CCSD Contribution –60265.340 –60289.967 –24.6 –15.5

LCCSD Correlation Energy –58868.909 –59952.074 –1083.2 –679.7

Weak Pair Contribution –1248.806 –253.246 995.6 624.7

Semicanonical Contribution –45.786 –54.920 –9.1 –5.7

Dipole Pair Correction –23.966 –8.017 15.9 10.0

PNO Truncation Correction –77.873 –21.711 56.2 35.2

DLPNO-(T) Contribution –2128.458 –2143.624 –15.2 –9.5

DLPNO-(T0) Energy –1999.977 –2011.485 –11.5 –7.2

Iterative (T) Contribution –118.583 –119.840 –1.3 –0.8

Prescreened Triplets Correction –9.897 –12.299 –2.4 –1.5
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TABLE VII. Timings for insulin using DLPNO-CCSD(T) algorithm at NormalPNO and TightPNO

NormalPNO TightPNO

Total Wall Time (s) 44906 (0.52 days) 128090 (1.48 days)

DLPNO-CCSD 66% 83%

Orbital Localization/Sparsity Prep 5% 2%

Dipole Pair Correction 0% 0%

Semicanonical MP2 Pair Correction 0% 0%

LMO/PAO DF Ints 16% 7%

PNO Formation and PNO-LMP2 1% 1%

PNO Overlap Integrals 0% 0%

Integral PNO Transformation 6% 7%

Local CCSD Iterations 38% 66%

DLPNO-(T) 34% 17%

TNO Formation 6% 2%

Semicanonical (T0) 23% 12%

Iterative (T) 6% 3%
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TABLE VIII. Domain information for insulin/def2-SVP at NormalPNO and TightPNO conver-

gence

NormalPNO TightPNO

Orbital Information

Atoms 787 787

Basis Functions 6458 6458

Frozen Core Orbitals 429 429

Active Core Orbitals 1117 1117

Virtual Orbitals 4912 4912

Auxiliary Basis Functions (RI) 24872 24872

Pair Information

Total LMO pairs (non-unique) 1247689 1247689

Dipole pairs 996002 (79.8%) 857900 (68.8%)

Semicanonical LMP2 pairs 147500 (11.8%) 284386 (22.8%)

Weak Pairs 87590 (7.0%) 64954 (5.2%)

Strong Pairs 16597 (1.3%) 40449 (3.2%)

NAUX per pair 597 598

PAOs per pair 255 348

PNOs per pair (LMP2) 33 60

PNOs per pair (LCCSD) 16 30

Triplet Information

Total LMO triplets (unique) 232901202 232901202

Initial Triplets 601572 (0.3%) 955435 (0.4%)

Final Triplets 292805 (0.1%) 296016 (0.1%)

TNOs per triplet (Prescreening) 26 22

TNOs per triplet (T0) 52 60

TNOs per triplet (T) 30 32
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VI. CONCLUSION

In this work, we have presented an open-source DLPNO-CCSD(T) algorithm, and demon-

strated that it can accurately model non-covalent interactions. The deviations for relative

energies compared to canonical CCSD(T) are typically on the order of 0.1 kcal mol−1 or less

with our given set of parameters (at the TightPNO convergence). Our emphasis on accu-

racy has resulted in some modifications to previously published local PNO based CCSD(T)

algorithms, such that the resulting code appears to provide improved accuracy when using

“TightPNO” cutoff parameters. We have also shown our code to be competitive in accu-

racy compared to many-body expansion methods based on canonical CCSD(T). Even when

taking advantage of our code’s high accuracy, we have been able to keep many of the useful

properties associated with the original DLPNO-CCSD(T) algorithm,34,35,40,44 such as its low

scaling and increased efficacy with larger basis sets. This code is now publicly available to

view and execute in a development branch of Psi4, and will be widely available in a future

release of the Psi4 software. In the future, we plan to test and optimize our code to study

even larger systems than those presented in this paper, as well as explore additional ways to

reduce projection errors without compromising the efficiency of our algorithm. Combined

with advances in computing technology such as with massively parallel computing96–112 and

GPUs,113–120 an open-source version of DLPNO-CCSD(T) will also allow the development

of local coupled-cluster codes which take advantage of these new hardware developments,

enabling coupled-cluster calculations on much larger systems than previously imaginable.

VII. SUPPLEMENTARY MATERIAL

The geometries for insulin, as well as the water and benzene clusters used for the scaling

tests are available in the supplementary material. We have also included NormalPNO error

statistics for the S22 test set, absolute energies for the water clusters from Xantheas and

coworkers, as well as scaling analyses for the DLPNO-CCSD and DLPNO-(T) portions of the

computation for the water and benzene clusters. We have additionally included (DLPNO)-

CCSD/(T) relative energies for each of the S22 dimers, the uracil dimer, and wall times for

each of the scaling tests.
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Appendix A: Computation and Storage of Non-Projected Integrals

In the following algorithms, both in this section and the next section, for user clar-

ity, algorithms are presented with restricted index i ≤ j over all strong pairs to increase

efficiency. lmopair to paos[ij] represents all PAOS µ̃ij that are in the domain of ij (deter-

mined by TCUT DO), lmopair to ribfs[ij] represents all auxiliary basis functions on atoms in

the Mulliken fitting domain of pair ij (determined by TCUT MKN), while lmopair to lmos[ij]

represents all LMOs k, such that ik and kj are both strong or weak pairs.
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Algorithm 1 Linear-scaling Computation of K
aijbkj
ik - Used in Equation 79 (as part of

M
aijbkj
ik )

for ij in strong pairs do ▷ Loop over all strong ij pairs, i ≤ j

(Pij |iν̃ij)← (P |mν̃)[lmopair to ribfs[ij], i, lmopair to paos[ij]] ▷ Get slice from (P |mν̃)

A
Qij

iaij
← (Qij |Pij)

−1(Pij |iν̃ij)XPNO
ν̃ijaij

if i ̸= j then ▷

(Pij |jν̃ij)← (P |mν̃)[lmopair to ribfs[ij], j, lmopair to paos[ij]] ▷ Get slice from (P |mν̃)

A
Qij

jaij
← (Qij |Pij)

−1(Pij |jν̃ij)XPNO
ν̃ijaij

end if

for Qij in lmopair to ribfs[ij] do

for kij in lmo pairs to lmos[ij] do

Kkij ν̃kj ← (Q|mν̃)[Qij , kij , lmo pair to lmos[kj]] ▷ Get slice from (Q|mν̃)

Kkijbkj ← Kkij ν̃kjX
PNO
ν̃kjbkj

K
aijbkj
ik += A

Qij

iaij
Kkijbkj

if i ̸= j then

Kkij ν̃ij ← (Q|mν̃)[Qij , kij , lmo pair to lmos[ik]] ▷ Get slice from (Q|mν̃)

Kkijbik ← Kkij ν̃ikX
PNO
ν̃ikbik

K
aijbik
jk += A

Qij

jaij
Kkijbik ▷ Form jk analog

end if

end for

end for

end for
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Algorithm 2 Linear-scaling Computation of J
aijbkj
ik - Used in Equations 78 and 79 (as part

of M
aijbkj
ik )

for ij in strong pairs do ▷ Loop over all strong ij pairs, i ≤ j

pair ext domain← List[int] ▷ Form extended domain for pairs

for kij in lmo pairs to lmos[ij] do

k ← lmo pairs to lmos[ij][kij ]

pair ext domain = pair ext domain ∪ lmo to paos[k]

end for

(Pij |ikij)← (P |mn)[lmopair to ribfs[ij], i, lmopair to lmos[ij]] ▷ Get slice from (P |mn)

A
Qij

ikij
← (Qij |Pij)

−1(Pij |ikij)

if i ̸= j then

(Pij |jkij)← (P |mn)[lmopair to ribfs[ij], j, lmopair to lmos[ij]] ▷ Get slice from (P |mn)

A
Qij

jkij
← (Qij |Pij)

−1(Pij |jkij)

end if

for Qij in lmopair to ribfs[ij] do

J µ̃ij ν̃ijext
← (Q|µ̃ν̃)[Qij , lmopair to paos[ij], pair ext domain] ▷ Get slice from (Q|µ̃ν̃)

Jaij ν̃ijext
← XPNO

µ̃ijaij
J µ̃ij ν̃ijext

for kij in lmo pairs to lmos[ij] do

Jaij µ̃kj
← Jaij ν̃ijext

[All,pair ext domain ∩ lmo pair to paos[kj]]

Jaijbkj ← Jaij µ̃kj
XPNO

µ̃kjbkj

J
aijbkj
ik += A

Qij

ikij
Jaijbkj

if i ̸= j then

Jaij µ̃ik
← Jaij ν̃ijext

[All,pair ext domain ∩ lmo pair to paos[ik]]

Jaijbik ← Jaij µ̃ik
XPNO

µ̃ikbik

J
aijbik
jk += A

Qij

jkij
Jaijbik ▷ Form jk analog

end if

end for

end for

end for
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Appendix B: Low Memory PNO Overlap Algorithm

Algorithm 3 Semi-direct algorithm for forming S
aij
bkl

, and relavent contractions

for ij in strong pairs do ▷ Loop over all strong ij pairs, i ≤ j

pair ext domain← List[int] ▷ Form extended domain for pairs

for kij , lij in lmo pairs to lmos[ij]× lmo pairs to lmos[ij] do

k, l← lmo pairs to lmos[ij][kij ], lmo pairs to lmos[ij][lij ]

kl← lmo pair index[k][l]

if kl ∈ strong pairs ∪ weak pairs then

pair ext domain = pair ext domain ∪ lmo pairs to paos[kl]

end if

end for

Sij ← submatrix rows and columns(SPAO, lmo pair to paos[ij], pair ext domain)

S′
ij ← XPNO

ij Sij ▷ Transform first index of overlap matrix to PNO space of ij

B
aijbij
ij ← 0 ▷ Initialize B

aijbij
ij˜̃

F bijcij ← F̃bijcij ▷ Equation 85a

for kij , lij in lmo pairs to lmos[ij]× lmo pairs to lmos[ij] do

k, l← lmo pairs to lmos[ij][kij ], lmo pairs to lmos[ij][lij ]

kl← lmo pair index[k][l]

if kl ∈ strong pairs ∪ weak pairs then

S′′
ij ← submatrix columns(S′

ij, pair ext domain ∩ lmo pair to paos[kl])

S
aij
bkl
← (S′′

ij)aij ν̃klX
PNO
ν̃klbkl

B
aijbij
ij += (S

aij
aklT

aklbkl
kl S

bij
bkl

)βkl
ij ▷ Equation 77˜̃

F bijcij −= S
bij
bkl

ubkldklkl Kckldkl
kl S

cij
ckl ▷ Equation 85b

end if

end for

E
aijbij
ij ← t

aijcij
ij

˜̃
F bijcij +

˜̃
F aijcij t

cijbij
ij ▷ Equation 80, second term added to account for P ab

ij

R
aijbij
ij += B

aijbij
ij + E

aijbij
ij ▷ Add contributions to doubles residual

if i ̸= j then

R
bijaij
ji += B

bijaij
ji + E

bijaij
ji ▷ Add relevant contributions for ji

end if

end for
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43P. R. Nagy and M. Kállay, J. Chem. Phys. 146, 214106 (2017).

44Y. Guo, C. Riplinger, U. Becker, D. G. Liakos, Y. Minenkov, L. Cavallo, and F. Neese,

J. Chem. Phys. 148, 011101 (2018).

46

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

02
19

96
3

 26 August 2025 14:54:41



45Q. Ma and H.-J. Werner, J. Chem. Theory Comput. 14, 198 (2018).
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63O. Vahtras, J. Almlöf, and M. Feyereisen, Chem. Phys. Lett. 213, 514 (1993).

47

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

02
19

96
3

 26 August 2025 14:54:41



64A. P. Rendell and T. J. Lee, J. Chem. Phys. 101, 400 (1994).
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thy, S. Kumar, E. Mutlu, B. Palmer, A. Panyala, B. Peng, R. M. Richard, T. P. Straatsma,

P. Sushko, E. F. Valeev, M. Valiev, H. J. J. van Dam, J. M. Waldrop, D. B. Williams-

49

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

02
19

96
3

 26 August 2025 14:54:41



Young, C. Yang, M. Zalewski, and T. L. Windus, Chem. Rev. 121, 4962 (2021).

112J. A. Calvin, C. Peng, V. Rishi, A. Kumar, and E. F. Valeev, Chem. Rev. 121, 1203

(2021).

113D. Datta and M. S. Gordon, J. Chem. Theory Comput. 19, 7640 (2023).

114S. Seritan, C. Bannwarth, B. S. Fales, E. G. Hohenstein, S. I. L. Kokkila-Schumacher,

N. Luehr, J. W. Snyder, C. Song, A. V. Titov, I. S. Ufimtsev, and T. J. Mart́ınez, J.

Chem. Phys. 152, 224110 (2020).

115Z. Wang, M. Guo, and F. Wang, Phys. Chem. Chem. Phys. 22, 25103 (2020).

116C. Peng, J. A. Calvin, and E. F. Valeev, Int. J. Quantum Chem. 119, e25894 (2019).

117I. A. Kaliman and A. I. Krylov, J. Comput. Chem. 38, 842 (2017).

118A. E. DePrince, M. R. Kennedy, B. G. Sumpter, and C. D. Sherrill, Mol. Phys. 112, 844

(2014).

119W. Ma, S. Krishnamoorthy, O. Villa, and K. Kowalski, J. Chem. Theory Comput. 7,

1316 (2011).

120A. E. DePrince and J. R. Hammond, J. Chem. Theory Comput. 7, 1287 (2011).

50

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

02
19

96
3

 26 August 2025 14:54:41


