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We present an efficient, open-source formulation for coupled-cluster theory through
perturbative triples with domain-based local pair natural orbitals [DLPNO-
CCSD(T)]. Similar to the implementation of the DLPNO-CCSD(T) method found
in the ORCA package, the most expensive integral generation and contraction steps
associated with the CCSD(T) method are linear-scaling. In this work, we show that
the t;-transformed Hamiltonian allows for a less complex algorithm when evaluat-
ing the local CCSD(T) energy without compromising efficiency or accuracy. Our
algorithm yields sub-kJ mol™! deviations for relative energies when compared with
canonical CCSD(T), with typical errors being on the order of 0.1 kcal mol™!, using our
TightPNO parameters. We extensively tested and optimized our algorithm and pa-
rameters for non-covalent interactions, which have been the most difficult interaction
to model for orbital (PNO)-based methods historically. To highlight the capabilities

of our code, we tested it on large water clusters, as well as insulin (787 atoms).
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I. INTRODUCTION

Coupled-cluster (CC) theory®? is one of the greatest triumphs of modern quantum chem-
istry, allowing for the accurate evaluation of the electronic energy of a molecule in poly-
nomial time, as an approximation to solving the time-independent Schrodinger equation.
Full configuration interaction (FCI)3* seeks to provide the exact energy and wave function,
within a finite basis set. Unfortunately, FCI scales as O(N!) with respect to the size of the
molecule, rendering it very challenging for molecules larger than a few atoms. CC theory
allows for a systematic series of approximations to FCI, and its exponential ansatz allows

for size-extensivity of electronic energies. The basic equations for CC theory are
[Wee) = e’ [W) (1)
Ecc = (U | e "He" | ¥y) | (2)

where Wy is the reference Hartree-Fock wave function given by a single Slater determinant,
T is the electron excitation operator, and H is the molecular Hamiltonian, within the Born-
Oppenheimer approximation. With the T' operator, any number of electron excitations can
be considered, up to the number of electrons in the system. More excitations considered
means a larger runtime, in exchange for greater accuracy. Coupled-cluster methods are
defined by the highest level of electronic excitations that are considered. For the CCSD
method, 7' =T} + T5, such that

[Woesp) = e W) (3)

Eccsp = (g | e M [HeMHR) | ) (4)

where T} represents the excitation operator where one electron is excited from the ground-
state wave function, while T} is the two-electron excitation operator. The CCSD(T) method®
considers triples electronic excitations T3 in a perturbative manner using the CCSD wave
function. CCSD(T) is known as the “gold standard” method in quantum chemistry, with
errors in relative energy (versus FCI) often around 1 kcal mol™" or less,5® and often with
excellent agreement with experimental data.!”

Unfortunately, the cost of evaluating the CCSD wave function for a molecule scales

O(N?®), and CCSD(T) adds a non-iterative O(N7) step on top of the iterative CCSD method.
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This means that CCSD and CCSD(T) methods are intractable for systems with more than
around 30 atoms on a typical workstation. Therefore, it is useful to devise a series of approxi-
mations to CCSD and CCSD(T) that allow them to be useful for larger molecular complexes,
such as pharmaceutical molecules, protein fragments, and smaller whole proteins (like cram-
bin and insulin) to allow for increased applicability of high-accuracy quantum chemistry
to fields like drug discovery and computational biology. Currently, cheaper methods like
density functional theory (DFT)!13 or Mgller—Plesset perturbation theory (MP2)%1% are

applied to these problems, but they do not have the accuracy of coupled-cluster.

One such approach to increase the efficiency of coupled-cluster based methods is through
rank reduction. Parrish et al. have used orthogonal projectors to transform CCSD ampli-
tudes into smaller-ranked tensors.'6"!® Lesiuk has successfully applied such an approach
to CCSD(T).' Rank reduction can also be used in conjunction with tensor hypercon-
traction (THC) methods.??* Through the use of the CANDECOMP/PARAFAC (CP)
decomposition?* of the orthogonal projectors, Hohenstein et al. have applied THC to CCSD

amplitudes,'® while Jiang et al. recently applied this approach to the (T) correction.?

Another approach to this problem is to reformulate coupled-cluster theory through lo-

26-46 29,30

cal correlation methods, especially methods that use pair natural orbitals (PNOs)
(triples natural orbitals (TNOs)® are used for the triples terms). State-of-the-art PNO-
based coupled-cluster methods include the in the domain-based local pair natural orbital
[DLPNO-CCSD(T)] method*®# in ORCA;*" the pair natural orbital local [PNO-LCCSD(T)]
method**® in Molpro;® and the local natural orbital [LNO-CCSD(T)] method?*¢ in
MRCC.* ORCA’s DLPNO-CCSD(T) algorithm has been executed on system sizes con-
taining more than 1000 atoms,’’ far greater than the 30 atoms using canonical CCSD(T)
methods. As used in practice, these methods are reasonably accurate approximations to
canonical CCSD(T) at a greatly reduced computational cost. Approximations are often
made to the (T) correction which render it not fully equivalent to its canonical variant,
such as through the semi-canonical (T0) algorithm.?® However, alternative formulations,
such as the iterative (T) algorithm, also known as (T1) (not to be confused with the ¢;
transformation),* do yield the canonical result in the limit of very tight cutoffs. In either
case, errors relative to canonical CCSD(T) are typically proportional to system size (are

“size extensive”), and good accuracy can typically be maintained by proper selection of

parameters and/or (T) algorithm.5°
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To contribute to the development of these highly efficient and popular PNO-based meth-
ods, and to make these methods more accessible to the quantum chemistry community, we
implemented our own version of the DLPNO-CCSD(T) method in the open-source Psi4
package.®® While working on this project, it has been brought to our attention that the
DLPNO-CCSD(T) method has previously been implemented in the open-source SEREN-
ITY program.’?®3 However, the implementation in SERENITY only treats triples through
the semi-canonical (T0) treatment,®

the first open-source implementation of DLPNO-CCSD(T) that includes an iterative (T)

so this work, to the best of our knowledge, represents

algorithm to account for the non-canonical local orbitals.** The difference between semi-
canonical (T0) and iterative (T) will be further elaborated in later sections.

In this work, we make use of the ¢;-transformed Hamiltonian to reduce the complexity
of the CCSD equations,® and we present our own set of LCCSD working equations that
minimize common sources of error in PNO-based methods, like PNO projection error. We
have also developed a set of parameters that allow our code to yield relative energies with
deviations on the order of 0.1 kcal mol™! from canonical CCSD(T), called TightPNO, fol-
lowing the convention of Neese et al.3*% We test our code extensively on relative energies,
including interaction energies and conformation energies. Weak, non-covalent interactions
have historically been a challenge for local correlation methods.?® We also present results
for some of the largest systems on which a canonical CCSD(T) computation have been
performed, the 16 and 17-molecule water cluster conformers with an aug-cc-pV'TZ basis
set.”® We compare our results to ORCA’s implementation of DLPNO-CCSD(T), as well
as a canonical MP2/CCSD(T) many-body expansion method.’” Finally, we benchmark our
algorithm on a whole insulin chain (787 atoms),”® a system significantly beyond the reach

of conventional coupled-cluster theory.

II. THEORY
A. Notation

We use the following conventions to describe the indices of matrices and tensors appearing

in this work:

e [, v, A\, 0: atomic orbitals; these range from 1 to nys, the number of basis functions

4
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1,7J,k,l: canonical and local occupied molecular orbitals; these range from 1 to nec,

the number of occupied orbitals

a, b, c,d: canonical virtual molecular orbitals; these range from 1 to n,;., the number

of virtual orbitals
p,q, 1, s: general canonical molecular orbitals; these range from 1 to ngee + Nyire
1, U, X, o: projected atomic orbitals; these range from 1 to ny

zzij,ﬁij,iij,&ij: projected atomic orbitals localized to pair ij; these range from 1 to
Npao,ij, tumber of PAOs local to LMO pair ¢j

ijks Vijk, Nijk, Oijk: projected atomic orbitals localized to triplet ijk; these range from

1 t0 Npqo,iji, number of PAOs local to LMO triplet ijk

a;j, bij, cij, d;;: Pair natural orbitals in each pair domain 4j; these range from 1 to

Nypno.ij, NumMber of PNOs in the domain of LMO pair ¢j

@ik, bijk, Cijk, dijr: Triples natural orbitals in each triplet domain ijk; these range from

1 t0 Nno,iji, number of TNOs in the domain of LMO triplet ijk

P, @Q): auxiliary basis functions for density-fitted ERIs; these range from 1 to ngu.,

number of auxiliary basis functions for density fitting

P;;, Q;j: local auxiliary basis functions in each pair domain ¢j; these range from 1 to

Nauz,ij, Tumber of auxiliary basis functions local to LMO pair ¢j

Piji, Qiji: local auxiliary basis functions in each triplet domain 7jk; these range from

1 t0 Nguz,ijk, number of auxiliary basis functions local to LMO triplet ijk

The relative sizes of these indices are typically:

Npno,ij < Ninoyijk < Npao,ij < Npao,ijk < Nauz,ij < Nauz,ijk ™ O(l) . (5)

Noce K Nyirt < Nyy < Npaquz ~ O(N) . (6)

where N is the system size represented by the number of atoms.
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B. t;-transformed Formulation of CCSD

In the CCSD method, the T' cluster operator is truncated to only include single and
double excitation contributions. An alternate way to formulate CCSD is to fold the effects

of the single excitations back into the Hamiltonian operator.®® In this alternate formulation

ECCSD = <\I/0 ‘ €7T2f[€T2 | \I/0> y (7)
where
H=e¢TtHe | (8)
T1 — t?Eai 5 (9)
Ty =t} Ey By - (10)

In singlet, closed-shell CCSD, FE,; can be formulated as

Eai = CLZCLZ‘ + ELL&Z‘ s (11)

where the barred creation/annihilation operators refer to the beta spin orbitals and non-
barred refer to the alpha spin orbitals. The quantity ¢t is known as the singles amplitude,
and t%b is known as the doubles amplitude. In the t;-transformed formalism, the amplitudes

are updated through iteratively solving the corresponding residual equations

Re = (0o | e He™ | W) | (12)
RY = (0¥ | e He™ | V) | (13)
with

R
1 =4 — —* 14
e (14)

Rab

ab __ jab 1)
tij - tij - ) (15)

€q T € — € — €
where ¢; and ¢, represent orbital energies obtained from the diagonal elements of the Fock

operator in the MO basis. The residual update equations are much more simplified compared

6
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to the traditional formulation of CCSD® since all terms involving singles excitations no
longer arise explicitly. The t;-transformed formalism of CCSD initially did not see much
use after its introduction due to the cost of transforming conventional, four-center ERIs
every iteration.”® However, DePrince et al.?® showed that using this formalism for CCSD is
much more advantageous in the context of using the density-fitting (DF')/resolution-of-the-
identity (RI)%8 or Cholesky decomposition (CD)% ™ approximations for the two-electron

integrals. In this formalism, the two-electron integrals are approximated as:

(palrs) ~ (pa| P)(PIQ)~(Qlrs) , (16)

where P and () represent auxiliary basis functions. This can be rewritten as:

(pqlrs) = BBy (17)

rs )

where

BY = (Q|P)"2(Plpq) - (18)

We present our working equations based on the formalism of DePrince et al.,>® with
equation 31 in this work reflecting a corrected sign error from the original work. Terms
with a single overhead tilde represent t;-dressed quantities, and their explicit form is defined

later.

~ ~on |1
Ry = Kij + A + B + P’ | SC5 + O + Dij + B + G| (19)

where
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R = BB | (20)

AY =t BeBY (21)

BY =t Bl (22)

e = —tiengs | (23)

D§b = %ugzég,g , (24)

B = £2F), (25)

G = 12 F (26)

with

M = BEBY +tBE By (27)
s = BRBS — BB (28)
i = (2BIBE — BAB) + Lui 2BIBE — BIBY) (29)
]?bc = ﬁbc - U’Z?Blc?inQc ) (30)
Fyy = Fuy + ! BSBE (31)

P,L»‘;.b is a permutation operator and is defined PZ‘J‘I’(XZI’) = Xiajb +X be The quantity u%b is the

antisymmetrized doubles amplitude and is defined as uf;’ = Qt%? — tfja The singles residual

takes the form

R = Fp + A% + B + C* (32)
where
A? = udBEBY, (33)
B = —ulBYB? (34)
Cct = ﬁkcu% (35)

The DF/RI or CD integrals dressed with the singles amplitude take the form5®

8
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BY = B9 + BYta

ka“i >

36
B2 = BY

wa )

37

BY = BY —1¢B% + BY1® — 12BY1Y 38

(36)
(37)
(38)
BY = BY —19B% | (39)

Since Bl-% does not transform under ¢;-dressing (Equation 37), the terms in the singles and
doubles amplitudes involving integrals of that type do not need to be dressed. The dressed

Fock matrices are, analogously,

Fi = Fyi + Fiqt] | (40)
Fio = Fy (41)
Foi = Foy — t3Fp + Fopt? — t8Fpt? (42)
Fu = Fy —t{Fy (43)

where

Fyy = Fpy + [2(rslke) — (relks)]t; . (44)

The energy expression, is
Eccsp = (t57 + t5t7)[2(ial jb) — (ib|ja)] . (45)

C. Perturbative Triples Correction in CCSD(T)

Though CCSD, with its size-extensive treatment of single and double excitation operators,

provides a good description of dynamic electron correlation, it is often not sufficient for

chemical accuracy.” ™ Chemical accuracy, in this context, is defined to be a relative energy

E: error of 1 kcal mol™! or lower, compared to either the FCI energy or experimental results.

E A full treatment of triples (CCSDT) costs, iteratively, O(N®). A cheaper way to consider

E% the effect of triples is the perturbative (T) treatment as devised by Raghavachari et al.® In
<l

restricted, single-reference, closed-shell coupled cluster theory, £r) can be expressed as?

L.

9
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1AW + Wit + Wil (Vi — Vigit)

E) = : Uk Wk 16
= 3 ei-l—ej—kek—ea—eb—ec ’ ( )
with
ik = Prl(ialbd)tig — (ialjl)ty) (47)
Vi = Wik + Ps[ti (jblke)] . (48)

Following the formalism of Lesiuk,” we define P; and Pg, or the “long” and “short” per-

mutation operators as

Po(ASS) = Al + A2 + A% + A5z AT+ A7 (49)
Ps(ASh) = A + A% + AT (50)

In the (T) formalism, the triples amplitude takes the form

abc

abe __ ijk
tijk - ) (51)
€+ €+ € —€ — € — €

Using the triples amplitude, as well as the permutational symmetry of the energy denomi-
nator, one can rewrite the expression for the (T) energy as:
abe (41 abe cba | 21 eab
By =1t - (§ e — 2V + gvmk ) (52)
In order to reduce memory costs, in our implementation of the DLPNO-CCSD(T) algorithm,
the indices are restricted such that i < j < k (no restriction on the virtual indices). The
energy expression can now be rewritten as,
abe
B =G, o  yy 26,7050k (53)
X (BVpe — AV — 4Vl — AV + 2V + 2V5)

2, ?, 1, 1,

D. Overview of Domain-Based Pair Natural Orbital (DLPNO)

In this section, we provide a brief overview of all of the different localization techniques in-
volved in the DLPNO approach as defined by Neese et al.?%343540 For a more comprehensive

understanding, the reader is referred to the original papers.

10
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1. Local Molecular Orbitals (LMOs)

To localize the occupied molecular orbitals, one applies a unitary transformation to the

Hartree-Fock /SCF molecular orbitals, to limit their spatial extent®

Cyi = CuiUsi . (54)

82,83 approaches can be used to effectively

The Foster-Boys®#? or Pipek—Mezey localization
localize the MOs. For all computations presented here, we use the Foster-Boys approach,
following the work of Riplinger et al.*® Localizing molecular orbitals reduces the number of
“strongly correlated pairs” of molecular orbitals ij from O(N?) to O(N). In this context,
we define “significantly correlated pairs” to be pairs that need to be treated with MP2 or
a higher level of correlation. Otherwise, a dipole estimate®® is sufficient for a description
of non-significantly correlated pairs. In our work, similar to the previous work by Valeev,
Neese, and coworkers,*’ we divide our LMO pairs ij into four classes: dipole pairs, semi-
canonical MP2 pairs, weak MP2 pairs, and strong pairs. Dipole pairs [which scale O(N?)]
are treated using an inexpensive dipole estimate. Semi-canonical MP2 pairs, scaling O(N),
are treated using semi-canonical MP2 in the projected atomic orbital (PAO) basis, while
weak MP2 pairs, scaling O(NN), are treated with full iterative LMP2. The surviving pairs,
the strong pairs, scaling O(N), are treated at the CCSD level. For the (T) correction,
triplets ijk are determined from strong pairs and weak MP2 pairs, so the number of rele-
vant triplets is also linear scaling. For clarity, “semi-canonical MP2” is obtained by using
the standard (canonical) MP2 energy expression, and the effect of off-diagonal LMO Fock
matrix elements that would contribute in the case of non-canonical Hartree-Fock orbitals
are neglected. In the case of canonical molecular orbitals, “semi-canonical MP2” is the ex-
act MP2 energy. However, when localized molecular orbitals are used, the full MP2 energy

requires an iterative solution.

Though the Foster-Boys or Pipek—Mezey localization procedure is O(N?) and determin-
ing the dipole pair contribution is O(N?), these steps have such a small prefactor that they

do not significantly affect the computation time of systems studied in this work.

11
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2. Projected Atomic Orbitals (PAOs)

Compared to localizing the occupied space, localizing the virtual space is challenging.
One of the earliest attempts at virtual space localization was through projected atomic
orbitals (PAOs).® Since the atomic orbital space spans the same subspace as the complete
MO space, a complete, localized, and linearly-dependent description of the virtual space can
be determined from the atomic orbitals and occupied MO coefficients. PAOs have a more
local character compared to canonical virtual molecular orbitals. The following equations
represent how PAOs are formed by projecting out the occupied MO space from the complete
AO space:

Ciéo = O — Ciictfisjzf) ) (55)
S50 = Ch08% Cos® (56)

SPAO

The CPAC coefficients give the contribution of atomic orbital x to PAO 7, and repre-
sents the overlap matrix between two PAOs. Next, the PAOs are normalized
_1
Cin® = (S55°)72Ci° . (57)

and the PAO overlaps are non-iteratively recomputed using the new PAO coefficients.

One early attempt at creating local-correlation algorithms was by Schiitz, Hetzer, and
Werner,® who used LMOs and PAOs to implement a local version of MP2.** In their work,
they gave each occupied molecular orbital pair its own set of PAOs, taking advantage of the
limited spatial overlap between LMOs and PAOs. The concept of giving every MO pair its
own virtual space is a precursor to PNO (pair natural orbital) based algorithms. Werner
and coworkers later extended the same framework to CCSD®® and CCSD(T)®" methods. In
these methods, a set of redundant, linearly-dependent PAQOs is assigned to each LMO based
on the spatial overlap of the PAO with the LMO. In our work, following Pinski, Riplinger,
Valeev, and Neese,? the overlap is computed through a measure called the “differential

overlap integral” (DOI).

DOL = (ifilifi)? . (58)

12
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If the value of the integral is greater than a given tolerance Tour.po, then the PAO
i is included in the domain of LMO i. The PAOs included in the domain of a pair ij
are the union of the PAOs included in the domain of LMO ¢ combined with the PAOs
in the domain of LMO j. After the PAOs in the pair domain of pair ij are determined,
linear dependencies are removed through an algorithm like Partial Cholesky, and then the
resulting space is transformed into a canonical basis (forming a diagonal Fock matrix, and
thus orbital energies for these transformed versions of the virtual orbitals for LMO pair ij).

The resulting PAOs will be called canonical PAOs.

Fvy = €2, Oy, = Xgigigy P> X - (59)

MGG =

3. Pair Natural Orbitals (PNOs)

To mitigate the high crossover points associated with using projected atomic orbitals
(PAOs), Neese et al. introduced pair natural orbitals (PNOs) for correlated methods such
as CEPA,? and CCSD.3° PNOs are eigenvectors of the pair density of a molecular orbital

pair %j.

ab __

acybe caych
ij m[uu ti; + w; tij] ) (60)

The pair density can computed through canonical virtual orbitals or PAOs. In their original

1.29

work, Neese et al.*” constructed PNOs from canonical virtual orbitals, using amplitudes from

a preceding MP2 calculation. In a later work, Riplinger et al.3*

updated their methodology
by computing PNOs using canonical PAOs, from semicanonical MP2 amplitudes. This is

known as the domain-based local pair natural orbital (DLPNQO) approach.

ﬁ”;zj _ PNO,Z] occ,ij PNO,Z]
Dl] - ﬁijaij naij X’ﬁijaij . (61)

The eigenvectors, Xézj\;ioj’ij , represent the transformation from canonical PAOs to PNOs, and
their eigenvalues nng” represent the occupation numbers corresponding to each pair natural
orbital.

The PNOs are then truncated to form a more compact description of the virtual space

spanned by each pair 5. In our method, there are three criteria we use for determining

13
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significant PNOs. If any one of the following three criteria is met, then the PNO is considered

significant.

e Occupation Criterion: All PNOs with an occupation number greater than Tour pno

will be included. We will dub this the occupation cutoff.

e Energy Criterion: Every PNO is included, from highest to lowest occupation num-
ber, until the pair energy computed from only those PNOs, as a ratio of the total

semicanonical MP2 energy for the pair 77, is greater than Tour ENERGY -

e Trace Criterion: Every PNO is included, from highest to lowest occupation number,
until the sum of their occupation numbers, divided by the total virtual occupation

number sum, is greater than TouT TRACE.

In the demonstrations of the algorithm presented here, we will use tighter cutoffs in order to
best capture the effects of non-covalent interations. We present results using Toyr_ pyvo =
1077, Tour eneray = 0.997, and Teut trace = 0.999. The occupation criterion was the
original method of truncating PNOs introduced by Riplinger et al. in the ORCA package?”
in the DLPNO-CCSD algorithm.?* The energy criterion was first introduced by the work of
Schwilk et al. in the Molpro package®® in their PNO-LCCSD algorithm.*! After the truncated
PNO basis is constructed, the truncated PNOs are canonicalized to give orbital energies for
the pair 7.

For diagonal pairs ii, a tighter occupation cutoff is used, with the occupation number
criterion Teyur pno scaled by Thiac scare = 1072 when determining significant PNOs. These
PNOs are also assigned to the singles amplitudes of orbital i.

For the (T) algorithm, it is possible to build a compact virtual space for LMO triplets
ijk, by forming a triplet density,?* through the average of pair densities of pairs ij, jk, and
ik.

1

In our algorithm, a PAO space is first built for triplet ijk by merging the PAO spaces
of LMOs i, j, and k, at a looser tolerance Toyr po rrrpres (default 1072), and then the
combined PAO space is canonicalized. Next, the pair densities for ij, jk, and ik are computed

using converged LCCSD amplitudes for strong pairs, and LMP2 amplitudes for weak pairs,

14
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and then each projected into the canonical PAO space for triplet ijk. The projected densities
are then averaged to form the triplet density, which is subsequently diagonalized to form
the triples natural orbitals (TNOs). In this work, only the occupation criterion Toyr rnvo
(default 107?) is used for the selection of TNOs. The use of an analogous energy or trace

criterion for triples is not considered but would be an interesting avenue for future research.

4. Local Density Fitting

To reduce the cost of integral computation, in this algorithm, similar to the previous work
by Riplinger et al.,?*4? only a subset of auxiliary basis functions is used, rather than the full
set of auxiliary basis functions, in using the DF /RI approximation for two-electron integrals.
The Mulliken population of electrons of LMO i for each center A is used to determine local

auxiliary function domains.®®

P, =CLS.,ClL (63)
=2 : . 4
%A= ;; p Pz _|_ Pz (64)

If ¢;4 for local molecular orbital 7 on atom A is greater than Toyr vk, then all of the
auxiliary basis functions centered on atom A are in the local auxiliary domain of LMO 1.
Thus, the subset of auxiliary basis functions (@;;) local to pair ¢j is the union of the local

auxiliary domains on LMO ¢ and LMO j.

III. WORKING EQUATIONS

In this section we present the working equations for our DLPNO-CCSD(T) implementa-
tion. We will use our sets of working equations for density-fitted, ¢;-dressed CCSD and (T)

as presented in the Theory section as a starting point, following the work of DePrince et

al.%® For a baseline derivation, we use these following heuristics:

e The virtual space of singles amplitudes for LMO 7 uses the diagonal PNOs of pair i1

e The virtual space of doubles amplitudes for LMO pair 75 uses PNOs of pair ij

15
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e PNO overlap matrices are used in the event of a mismatch in virtual spaces (defined

below)

aij _ v PNO,ij GPAO v PNO,kl
Saka - Xﬁa' Sﬁg Xﬁakz ’ (65)
For example, equation 22 becomes
aijbij _ ( caijparibe qbisy gkl
By = (Saiatp ™S, ) B - (66)

as the PNOs of pair kl from the doubles amplitudes need to be transformed into the PNOs

of pair j.

Converting integrals to the PNO basis is less straightforward, and the different ways to
formulate integrals from a speed/accuracy trade-off perspective is presented in the next

section.

A. Discussion of PNO Projection Error

Integrals can either be directly formed from the PAO basis, or approximated using PNO

overlap matrices. For example, integrals of type (iax|jbx) can be derived in two ways

(il jou) = Xy ™ (0711 77) X ™ (67)
or
(iag|jbrr) = Sett (iais|jbig) Sy - (68)

Using the projection approximation is advantageous in that building and storing integrals
of type (iag|jbr) is significantly more expensive (requiring an index loop over ij and kl in
storage) than projecting integrals of type (ia;;|jb;;) (only requiring an index loop over ij).
Using the projection approximation, such as in equation 68, is akin to using the PNO basis

of 7j in a resolution of the identity (RI) operator

D laig) (al = 1 (69)
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This is not always a good approximation, as it assumes that the span of the PNOs of pairs
17 is close enough to the span of the PNOs of pairs kl. The error resulting from building
integrals from the projection approximation is defined as the “projection error.”34#! The
projection error decreases as the PNO cutoff is tightened. Interestingly enough, using the
projection approximation does not induce large errors for most terms, even if it is sometimes
even used repeatedly. However, for contributions to R?;’ that are linear in t?]b, as well as
certain terms involved in dressing the Fock matrix, the projection approximation cannot be
applied without bringing large errors. After extensive experimentation, we have determined
a set of working equations that best balance speed and accuracy, derived from the original set
of equations presented in this work, transformed to the local basis. For terms that explicitly
show four-center integrals, the integrals are first computed from the sparse three-center
integrals through local density-fitting and LMO/PAO sparsity®*1° and stored explicitly in
sparse-format as four-index quantities, while for terms that involve three-center integrals,
the four-index quantities are never explicitly formed. Select terms in some equations are

bolded to ease reader comprehension and highlight design choices that balance accuracy and

efficiency.

B. LCCSD Working Equations

First, let us define some integral and amplitude intermediates:

tit = SRt (70)
Tpg = (palrs) (71)
Kpq = (prlgs) , (72)
Ly = 2K — K3 (73)

(74)

rq pg

rs __ TS __ TS
Mpq = 2qu Jpq .

For the contributions to the Rfj’ residual,
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a;zbi; a;j 10Kk QOij
Bij - (S‘I;Jlt Sbkl) iy
aijbij _ Qaij A kiCki QCk bkacky _ azackj bij bkacka
Cii ™ = =5a Vet Sepity; Sb St )
1
aijbij aij §%ikCik QCik o, bjrcik @35 Ckj ’LJ chak
D = Safi% cin Wik Sb + 21‘/—’ S ;
aijbi]- _ aijci]- o
B =1 bijeij o
Gaz‘jbz‘j _ (Saz fainbi bz‘j)ﬁ ,
1J - ik ik bik kj »
The intermediates are redefined as
Kkl ng Qi cijdiy pQij PQij
iy = B B" TtV By B,
aRiCri __ _~akz lclm kaz akzckz _Abkl bklckl ClifOki __ g 401l Qdi; dklckl Ck
ik — ¢ N fi Ko gonif S wiganidii g fedcia gev:
QikCik __ tauchCm _|_ $bik p rCriORT __ ZblkLblkclkSCkztazk + = Samu%zdzz Sdzl Lckldkl SCik
ik - kby; Clk dp;
= _ bij bkldkl Ckldkl ¢
bijei; = Pbijei; — bk K ™s e

Fij = Fiy + (Sghwy;

ciidyy adyg, cirdi
SIS VK

Similarly, the singles residuals in the diagonal PNO basis take the form

where

R = ﬁa“z + A% 4 B% 4 O

A% — qudkz Cridk; Sa” 'tvauummdkz SCszCkldledki
v ki l ki
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ka;c Crl dgi

B;l” — Sazz uz;clckl [K'Lclcl + le klckl]

Akl

C«:Lu — Sau azkczk Fka )

Here are the relevant DF' integrals dressed with the singles amplitudes

18
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B = BYY + BUI T (91)
HQij Qij  F8ij pQij Qi; 7bi;  J0ij pQij 7bij
Baijji = Baijji — 1, By’ + Baijjbijti L=t ]Bkb:jt'i " (92)
HQij Qij Taij Qi
Baijjbij = Baijjbij - tk ]Bkszj . (93)

For the dressed Fock matrices, since we are not using canonical MOs, we derived these

equations from the work of Werner and coworkers*!

Ej = F’LJ + Fi(}jjtijj ) (94)
Eaij _ Sg;]chékcm%%k : (95)
ﬁam = Fam - ftvzuﬁkl + Faiibiit’?ii - %Vltzuﬁkbutf“ ) (96)
~ _ ~i
aijbi; = Faijbij - tk‘ijbij ) (97)
where
Fyj=Fy + [2J59 — Ko (98)
ij = L' ij gi 1l
Fuo, = 2BE B, — BE B2 6 (99)
Faui = 2BBet — B, Bl (100)
nl Qij Qij Qij Qij 13¢5
Faijbij = eaij5aijbij + [2Ba,-jjbijBkciJj - BaijjcijBkb.,;Jj]tk:J : (101)

In our formalism, we dress our Fock matrices directly in the PNO space, rather than the
PAO space, as is done by Werner and coworkers in their PNO-LCCSD algorithm in Molpro*!.
In our working equations for DLPNO-CCSD, the terms have a slightly different structure
than the original set of working equations from canonical ¢;-transformed DF-CCSD. One
notable modification is the expansion of the ¢;-dressed integrals and the removal of the
leading two-virtual integrals in equations 83 and 84 from their canonical counterparts and
expressing their contributions explicitly in equations 78 and 79. This is done since PNO
projection errors are greatest in terms containing linear doubles amplitude contributions to
the doubles residual. In addition, even though the R;‘f and R{ residuals are only updated
over strong pairs, weak MP2 pairs also contribute to the residual of strong pairs. Because of

this, the DF integrals from equations 91-93 are only constructed over strong pairs to save
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memory costs. Therefore, the t;-dressed integrals are expanded explicitly in other parts
of the working equations as well, in equations 78, 79, 88 and 89. Certain Fock matrix
contributions also have a unique form. Equation 95 is not constructed from equation 99,
since the former is looped over strong pairs and the latter is looped over both strong pairs
and weak LMP2 pairs. Finally, equation 101 is built with the explicit DF integrals, and not
through projecting integrals of type (kcgg|aribix) (errors too large) or building integrals of
type (kcgr|aijbi;) (too expensive to store) as a trade off between speed and accuracy. For

the sake of absolute clarity, and reproducibility, the energy expression we used was

Erecsp = (857" + 8787 Li" (102)

where the singles and doubles residual updates can be computed in three equivalent, equally

valid formalisms

R
T 103
! eaij - EZ ( )
’ R
= (104)
Q55 Qg5 K13
’ R}
t?”— = % 5 (105)
a;ja;; Ez
ai;bi
R
a;ijbij i
gt — , (106)
! €a;; T €by — Fii — Fjj
ab
R
a;ibi; ij
it , (107)
’ Faijaij + Fbijbij — Iy — Fj;
aijbi]-
tg;jbw'_ = — ~Rij . (108)
Faijaij + Fbijbij — i — F’jj

As shown above, both dressed and undressed Fock matrices can be used for the energy
denominators for the residual updates. At convergence, the computed energies will be
equivalent. This is presented for reader comprehension and to reduce the confusion between

the equations as presented in other works.
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C. (T) Working Equations

Most of the triples equations are trivially carried over from the canonical (T) equations.
Still, we present the W and V intermediates as they are computed in the TNO basis in our
code for the sake of completeness. The two-electron integrals are never stored in the (T)
algorithm, but computed on-the-fly from sparse three-center integrals and contracted into

the intermediates as needed:

Wi = Py (iage bigedige) [Se 6 ™ Sg7*) — (llkeqe) Sad“t5 Sy, (109)
Vgt ohes = W osesr 4 Pyt S (jbigelken)] (110)

Since we are in the LMO basis where the Fock matrix is not diagonal, we need to itera-
tively solve for the full (T) energy.44%5 The approximation where the triples amplitudes are
not corrected for off-diagonal LMO Fock matrix elements is called the semi-canonical (T0)
approximation.®**! In this work, we will not use the semicanonical (T0) approximation in
any of our test cases, as it is known to be problematic for certain systems.**45 The triples

amplitudes are iteratively updated as

QijkbijkCijk a;ikbijkCijk QikbijkCijk - 3
Rz’jk - Wijk: - tijk (Eaijk + €b;jk + €eije — fu - f]j - fkk:)
. p0uikbRC K QijRDiRCiie gaakbakcir QijkbijkCije a;1bij1¢i51 o@ijkbijkCijr
z :fdtljk Saljkbljkcljk z :fﬂltilk Sailkbilkcilk E fkltijl Saijlbajlcajl ’
I#£i 1] 1£k
(111)
Raijkbijkcijk
tt‘lgikbijkcijk_ _ ijk (112)
i .
! €agjr, T €byn T ey — Fyi — F}j — Fie

In the iterative (T) algorithm, unlike in the semi-canonical (T0) algorithm, all three

taijkbijkcz‘jk W“ijkbijkcijk

a;ikbijkCijk
ijk » Wik V;

, and V. intermediates need to be stored. The T3 amplitudes

need to be stored and updated, with the W intermediate stored to compute the residual, and
the V intermediate stored to compute the energy (Equation 53). Though the memory costs

for storing these quantities may appear to be excessive due to its O(n;;xn? ) scaling,

pno_ijk

the memory requirements are often similar or less than the memory requirements for the
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preceding DLPNO-CCSD computation. This is because the TNO space used in the iterative
(T) computation is smaller than the one used in the semi-canonical (T0) computation, and
additionally, applying the index restriction ¢ < 7 < k reduces costs by a factor of 6. There
is an option to perform disk I/O with these triples intermediates, through the keyword
WRITE_TRIPLES, but we do not anticipate the average user needing to use this. For
example, in a uracil dimer computation in the cc-pVDZ basis set (Tight PNO convergence),
the total storage requirement for the DLPNO-CCSD computation is around 8.40 GiB, while
the requirements for the triples intermediates is around 2.36 GiB each (total of around 7.09

GiB).

IV. IMPLEMENTATION DETAILS
A. CCSD Algorithm Details

Much of our prescreening to classify pairs in the DLPNO-CCSD algorithm is derived
from the original work of Valeev, Neese, and coworkers.?>% We first screen out the dipole
pairs based on the Tcuyr posj and Teur pre cutoffs, the overlap and energy criteria used
to ensure that LMOs ¢ and j are non-overlapping. Next, we determine the semicanonical
MP2 pairs as all non-dipole pairs with an energy contribution less than Tyt pairs.mp2-
The latter is done using an initial prescreening procedure that us looser in cutoffs.*’ In the
third step, we recompute the semicanonical LMP2 amplitudes for surviving pairs (non-dipole
or semicanonical) through the refined prescreening procedure,’ and compute PNOs for the
LMP2 procedure using Tcur_pnomp2, LcuT ENERGY MP2, and Teur TRACE MP2- Pairs are then
divided into weak LMP2 pairs or strong pairs based on their energy through Tcyr paIrs-
Next, LMP2 energies and amplitudes are computed for both weak and strong pairs using
the tighter PNOs. Finally, the PNOs are recomputed at looser cutoffs from converged
LMP2 amplitudes with Tcur pvo, TcuT ENERGY, and Tout TrRACE, With only the strong pair
amplitudes being updated in the LCCSD iterations; the weak MP2 pair amplitudes are saved
for the (T) algorithm. The total DLPNO-CCSD energy thus contains contributions from
all four pair classes, as well as a PNO truncation correction® from strong pairs and weak
MP2 pairs. The PNO truncation is computed as the difference between the semicanonical

LMP2 energy computed in the initial, tighter PNO basis (Tcur_pno.vp2) and the PAO basis,
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summed with the difference between the LMP2 energy computed using the tighter PNOs
used for LMP2 and the looser PNOs (Tcyt_pno) used for LCCSD.

EprpNo-cesp = ELCCSD[strong pairs] + AEﬂLMP2[Weak MP2 pairs]
+ AE1SC—LMP2[svs-micanonical MP2 pairs] + AEwdipole[dipole pairs]

+ AEﬁPNO[strong pairs + weak MP2 pairs] - (113)

We present values for the most relevant parameters used in the DLPNO-CCSD algorithm,
as reported in this section and throughout this work, in Table I. The presented values are
those corresponding to the Tight PNO/NormalPNO convergence settings for our code. We
will present all our results with TightPNO.

TABLE I. Parameters of our DLPNO-CCSD algorithm for Tight PNO and NormalPNO settings

Parameter Description TightPNO Value NormalPNO Value
TcuT PNO LCCSD PNO occupation criterion 1077 3.33 x 1077
TCUT_ENERGY LCCSD PNO energy criterion 0.997 0.99
TCUT TRACE LCCSD PNO trace criterion 0.999 0.99
TCUT PNO_MP2 LMP2 PNO occupation criterion 107° 3.33 x 107?
TCUT ENERGY _MP2 LMP2 PNO energy criterion 0.999 0.997
TCUT TRACE.MP2 LMP2 PNO trace criterion 0.9999 0.999
TDIAG SCALE Scale of TcyT_pno for diagonal pairs 0.001 0.001
TouT.DO LMO/PAO DOI criterion for pair domains 0.005 0.01
TcuT DO LMO/LMO DOI criterion for dipole pairs 10~° 1075
TcuT PRE Dipole energy cutoff for pair screening 1077 1076
TCcUT.PAIRS Strong/weak pair cutoff 10°° 10~*
TCUT PAIRS.MP2 Weak /semicanonical pair cutoff 106 10=6
TCUT MKN Local density fitting Mullikan tolerance 1073 1073
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B. Triples Algorithm Procedures

We model our triples algorithm based on a combination of features from DLPNO-
CCSD(T) in ORCA* and PNO-LCCSD(T) in Molpro,* in order to optimize speed and
accuracy. First, we use the triples prescreening algorithm as presented by Ma and Werner.*?
We first compute the semicanonincal (T0) energy for each possible triplet ijk, derived from
combinations of pairs 75, jk, and ¢k, at least one of which is a strong pair, at a weaker TNO
tolerance (Tcut. tnoprE). All triplets ijk for which the absolute value of the energy is lower
than (Tcur TriPLES.PRE) are screened out and not further considered, but the sum of their
energy contributions is saved and accounted for. We will term these triplets that did not
survive the prescreening as the “screened triplets.” The rest of the algorithm is derived from
the work of Neese and coworkers,** where the TNOs of the surviving triplets are then recom-
puted at a tighter tolerance (Toyr.rno), in order to obtain a more accurate semi-canonical
(T0) energy. The TNOs are then recomputed at a looser tolerance for the iterative (T) step
to reduce the cost of storing triples amplitudes and intermediates. To this end, the energies
of the triplets are sorted and the approximately 20% of triplets that account for at least

744 and the rest deemed

90% of the semi-canonical (T0) energy are deemed “strong triplets,
“weak triplets,” For the “strong triplets,” the TNOs are recomputed at a looser tolerance
TCUT,TNO . TSTRONG,SCALE and the “weak triplets” at TCUT,TNO . TWEAK,SCALE for the full

iterative (T) algorithm. The final (T) energy is as follows:

Eprpno-(T) = Z Ef%) [Tcur.nol+ Z (Eszlg —Eégp’%)) [Tourrno X TSTRONG_SCALE]

1<j<k ijk€Estrong triplets

+ Z ( EZ]Tk) —Efff%)) [Tcur rvo X TWEAK SCALE)+ Z AEE%]B) [TcuT TNO_PRE) -

ijkEweak triplets ijk€Escreened triplets

(114)

The default values for the triples parameters are presented in Table II (values are the same

across all PNO convergences)
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TABLE II. Default values of our DLPNO-(T) parameters for all settings

Parameter Description Default Value
TcuT.TNO TNO occupation criterion 1079
TCUT. TNO_PRE TNO occupation criterion in “screened triplets” 10°7
TCUT_ TRIPLES._PRE “Screened triplets” energy cutoff 107
TCUT DO.TRIPLES LMO/PAO DOI criterion for triples domains 102
TCUT MKN_TRIPLES Local density fitting tolerance for triples 102
TSTRONG_SCALE Iterative (T) strong triplet TcuT.rno scaling 10
TWEAK SCALE Iterative (T) weak triplet TcuT.rNno scaling 100

C. Discussion on Memory Usage

For the integrals, the quantities are stored in RAM based on their form in the working
equations. For example, Kfjjbij and ijijbij are stored as a list of matrices (of dimension
Npnos; * Mpno;;) indexed by the index of pair 77, while the non-projected integrals J;Zj i and
K7™ (used to form M;”“’) are stored as a nested list of matrices of dimension Npnoy; " Mpnog,; »
with the first index being the LMO pair 77, and the second index being the LMO index k;;,
which represents all LMOs £ such that ki and kj are both strong or weak pairs. The DF
B B9

integrals B, ~B*" are similarly stored as a nested list, with the first index being the
kija;j a;jb;j

LMO pair 77, and the second index being the auxiliary function index g;; in the domain of ij

for each set of matrices. The non-projected J and K integrals, as well as the DF integrals,
Qij

Bf;bj integrals to disk, through the keywords WRITE_QIA_PNO, and WRITE_QAB_PNO.

need only to be stored for strong pairs. There is an option to store the expensive B

Algorithms that explain how the non-projected integrals (J;,;* and Kj;;’*’) are formed are

included in the appendix.

All the dressed Fock matrices are computed and stored, while only the dressed integrals
E(?WJZ (list of matrices of dimension Nguz,; * Npno,, indexed by ij) and é,?ﬂjz (list of matrices of
dimension Nguq,; - Nimo,; indexed by ij) are stored, due to the reduced memory requirements).

For most computations, the largest contributor to memory cost is the Sgkj PNO overlap
integrals, which are stored as a nested list indexed by LMO pair 7j and then LMO pair kl.

Since these quantities are only used for the B;;’ % and EZ” "I intermediates (Equations 77
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and 80), to reduce the cost of the PNO overlap integrals, we have developed a semi-direct
low memory overlap algorithm for PNO matrices, where PNO overlaps of the form S{fki ,
as well as S;:j and Sg;: are stored in RAM, and S;:l’ is computed through the semi-direct

algorithm. This can be toggled by the setting LOW_MEMORY_OVERLAP. The algorithm

for this is presented in the appendix.

D. Computational Details

For all correlated computations, the frozen-core approximation is used. Unless otherwise
stated, TightPNO convergence is used for all computations. All timings are performed
on 16 cores of an Intel Xeon 6136 CPU (3.0 GHz processing speed with 1 TB of RAM)
unless otherwise stated. Typical quantum chemistry algorithms benefit from access to large
amounts of RAM, especially for computations on the largest systems considered here. Yet,
DLPNO-CCSD(T) computations can also be carried out with the resources available to the
average user, who can find our code in a development branch of the freely available Psi4

program.®!

V. RESULTS
A. Dimer Interaction Energies

We first present the results of our DLPNO-CCSD and (T) algorithms on the S22 data
set,?” consisting of 22 dimers of sizes ranging from water-water to adenine-thymine. The in-
teractions of the S22 dimers can be primarily hydrogen-bonded (HB), dispersion-dominated
(DD), or mixed influence (MX).? For a fair comparison of our algorithm, we compared the
results to canonical DF-CCSD and DF-CCSD(T) as implemented in Psi4, using the same
RI basis sets for the correlated computations.?® For these tests, we use the cc-pVDZ, jun-cc-
pVDZ, and cc-pVTZ orbital basis sets.”**? For the unfamiliar reader, the jun-cc-pVDZ basis
set adds a set of diffuse functions for all heavy atoms up to shell [ — 1, where [ represents the
highest angular momentum shell, from the cc-pVDZ basis. All computations are performed
with the counterpoise (CP) correction.”® The results comparing DLPNO-CCSD to canon-
ical DF-CCSD are presented in Table III, and comparisons between DLPNO-CCSD(T) to
DF-CCSD(T) are shown in Table IV. We present the results of the interaction energy errors
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in aggregate for each basis set, as well as for each interaction type for each basis set.

As shown in the tables, at the TightPNO convergence, the algorithm is accurate enough
to yield interaction energy errors of MAE 0.06 kcal mol™! or less in every basis set for
CCSD, and 0.10 kcal mol™! or less for CCSD(T). For the NormalPNO convergence, the
MAE is typically on the order of 0.2 — 0.3 kcal mol™" for both CCSD and CCSD(T), with
the MAE for the dispersion-dominated complexes being larger, around 0.5 — 0.6 kcal mol ™!
(detailed results are presented in the supporting information). Generally speaking, DLPNO-
CCSD/DLPNO-CCSD(T) is the most accurate when modeling dimers bound by mixed
influences, versus modeling hydrogen-bonded or dispersion-dominated dimers. It is also
shown that adding diffuse functions (as in the case of the jun-cc-pVDZ basis set) helps
reduce the errors associated with modeling dispersion interactions relative to DF-CCSD(T).
For dispersion-dominated complexes, it is not recommended to use NormalPNO convergnce,

which is consistent with the findings of Kallay and coworkers.3¢

TABLE III. TightPNO DLPNO-CCSD error statistics compared to canonical DF-CCSD reference
(kcal mol™1). jun-cc-pVDZ augments the cc-pVDZ basis by adding diffuse functions for all heavy

atoms up to shell [, — 1.

Basis Set (Count) ME MAE RMSE Std Dev  Min Max

cc-pVDZ (22) 0.017 0.063 0.088 0.086 —0.168 0.175
HB (7) 0.046 0.047 0.066 0.048 -0.006 0.132
DD (8) 0.033 0.105 0.128 0.124 -0.168 0.175
MX (7) -0.029 0.031 0.037 0.024 -0.074 0.007

jun-cc-pVDZ (22) 0.005 0.058 0.083 0.083 —0.243 0.122

HB (7) 0.044 0.054 0.068 0.052 -0.033 0.115
DD (8) -0.011 0.089 0.119 0.119 -0.243 0.122
MX (7) -0.015 0.025 0.031 0.027 -0.054 0.020
cc-pVTZ (22) 0.021 0.052 0.078 0.075 —0.200 0.141
HB (7) 0.054 0.054 0.071 0.046 -0.001 0.128
DD (8) 0.013 0.086 0.110 0.109 -0.200 0.141
MX (7) -0.003 0.011 0.015 0.014 -0.030 0.020
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TABLE IV. TightPNO DLPNO-CCSD(T) error statistics compared to canonical DF-CCSD(T)
reference (kcal mol™!). jun-cc-pVDZ augments the cc-pVDZ basis by adding diffuse functions for

all heavy atoms up to shell I — 1.

Basis Set (Count) ME MAE RMSE Std Dev Min Max

cc-pVDZ (22) 0.079 0.084 0.132 0.105 —0.025 0.312

HB (7) 0.116 0.116  0.145 0.088 0.008 0.280
DD (8) 0.115 0.115 0.170 0.126  0.002 0.312
MX (7) 0.003 0.018 0.020 0.020 -0.025 0.032

jun-cc-pVDZ (22) 0.070 0.079 0.113 0.089 —0.054 0.270

HB (7) 0.117 0.117 0.139 0.076  0.028 0.270
DD (8) 0.072 0.089 0.127 0.105 -0.054 0.229
MX (7) 0.020 0.028  0.046 0.042 -0.027 0.116

cc-pVTZ (22) 0.100 0.100 0.141 0.099 0.003 0.296

HB (7) 0.140 0.140 0.171 0.099 0.017 0.296
DD (8) 0.116 0.116 0.162 0.113 0.003 0.282
MX (7) 0.042 0.042 0.054 0.034 0.005 0.099

B. Potential Energy Surfaces

Next, we examined the potential energy surface along the dissociation of a uracil dimer
pair, from the S66x8 data set of Rezac et al.?® The dimer is displaced along an axis par-
allel to the two hydrogen bonds, at 0.9, 0.95, 1.0, 1.05, 1.1, 1.25, 1.5, and 2.0 times the
average distance of the two hydrogen bonds (R, = 1.805 A). As shown in Figure 1, the
DLPNO-CCSD/DLPNO-CCSD(T) dissociation curves match their respective canonical ref-
erences, and DLPNO-CCSD(T) also effectively captures the (T) correlation effects. The
computation is performed in the cc-pVTZ basis set, with counterpoise (CP) correction, with
DF-CCSD/(T) used for the canonical reference. For canonical DF-CCSD(T), the compu-
tations take around 8 hours per dimer on 48 cores of the Intel Xeon 6136 specified in the
Computational Details, while for DLPNO-CCSD(T), it takes around 35 minutes per dimer,

with the computation involving more separated dimers being faster (39 minutes for 0.9R,,,
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26 minutes for 2.0R,,).
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FIG. 1. Counterpoise (CP) corrected cc-pVTZ interaction energies for uracil dimer base pair along

the (frozen monomer) dissociation curve

We also plot the errors of DLPNO-CCSD/(T) with respect to the canonical DF-
CCSD/(T) results along the dissociation curve, as shown in Figure 2. As expected, the
errors decrease as the system becomes more well separated, since the magnitude of the
inter-molecular correlation decreases. The CCSD and CCSD(T) errors are 0.17 and 0.36
kcal mol™, respectively, at 0.9R., separation, and at 2.0R,,, the errors decrease to 0.01 and
0.08 kecal mol~t. The relatively higher magnitude of errors around equilibrium and closer
contacts is to be expected due to the local approximations, and are controllable through

tightening the parameters.
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FIG. 2. Errors along the frozen monomer dissociation curve for uracil dimer base pair, defined as

the canonical DF-CCSD/(T) interaction energy subtracted from the DLPNO-CCSD/(T) result
C. Large Water Cluster Conformation Energies

For a more rigorous test of the accuracy of our DLPNO-CCSD(T) implementation, we
consider some of the larger systems for which canonical CCSD(T) results are available: con-
formers of (H,0),s and (H,O),,, in the aug-cc-pVTZ basis, from the work of Xantheas and
coworkers.® In their work, they computed canonical CCSD(T) reference values using super-
computing resources at the massive ORNL Leadership Computing Facility. They used the
CRAY XT5 partition, containing a total of 18,684 compute nodes and 224,208 processing
cores with more than 300 TB of memory.>® In contrast, all of our computations were run on
a single computing node with 32 CPU cores and 450 GB of RAM. Xantheas and coworkers
presented results for five different conformers of (H,0),, and two different conformers of

(HyO),;. There are four possible conformers of (H,O),,, but not all their computations
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finished since they ran out of computing time. Table V presents the relative conformational
energies for (H,0),, and (H,0),, as computed by Xantheas and coworkers, by our DLPNO-
CCSD(T) algorithm, and by the DLPNO-CCSD(T) algorithm in ORCA. For ORCA, we
used their default TightPNO cutoff values (different than ours), for version 5.0.4. For com-
pleteness, we also include results from the work of Bates, Tschumper, and coworkers®” who
developed a highly accurate many-body expansion method to obtain absolute energies for the
conformers close to the canonical CCSD(T) values, called the “CCSD(T):MP2 3-body:many-
body” method, which means that all monomer, dimer, and trimer contributions are treated
at the CCSD(T) level, and the other contributions are treated with MP2. We will refer to
that as “3b:mb” as shorthand.

Espemb/ccsp(rympz = Evpe(all) + Z Eccspry(A) — Enpa(A)
A

+ ) AEccsp(r)(AB) — AEypa(AB) + Y © AEcespr)(ABC) — AEypa(ABC) . (115)
AB ABC

The conformation energies are computed with respect to the lowest energy conformer for
each series of conformers. All three approximate methods correctly identify the lowest energy
conformer (albeit in ORCA, boat-a and 4444-a have nearly identical energies). Compared
to the DLPNO-CCSD(T) algorithm in ORCA, the DLPNO-CCSD(T) algorithm we imple-
mented gives closer answers to the canonical CCSD(T) value for the conformation energies
in all cases. We believe this to be the case because of our use of additional criteria (energy
and occupation) for PNO selection, as well as a tighter Tprag.scare compared to ORCA
(0.001 compared to 0.03). This is evident in the boat-a conformation for (H,O),4, where the
number of PNOs for our pairs range from 11-149 (average of 44), while ORCA ranges from
6-73 (average of 25). Additionally, our criterion for the initial consideration of triplets (2
weak pairs vs 1 in ORCA) allow our code to recover more triples energy compared to ORCA.
For the boat-a configuration, our DLPNO-CCSD absolute energy is 0.3 kcal mol~! lower,
while the (T) contribution is 0.4 kcal mol™ lower, leading to a net difference of around 0.7
kcal mol~*.

Surprisingly, even though the 3b:mb method gives more accurate absolute energies than
our DLPNO-CCSD(T) method, the two methods reproduce conformation energies of compa-
rable accuracy. This shows that with a tight enough tolerance, local correlation methods can

capture subtle higher-order, many-body electron correlation effects. The absolute energies
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are included in the supplementary material.

TABLE V. Relative conformation energies (kcal mol~!) using canonical CCSD(T) from the work
of Yoo et al.,’0 compared with DLPNO-CCSD(T) as implemented in this paper and the implemen-
tation in ORCA,** as well as the 3b:mb MP2/CCSD(T) method of Bates et al.>”

AlP
f‘"&: Publishing

isomer AEcanon AEps14 AEorca AEsb:mb
(H,0),4

boat-a 0.25 0.35 0.00 0.36
boat-b 0.42 0.51 0.15 0.60
antiboat 0.51 0.63 0.27 0.67
4444-a (abab) 0.00 0.00 0.00 0.00
4444-b (aabb) 0.54 0.52 0.59 0.57
(H,0),,

sphere 0.00 0.00 0.00 0.00
522’5 0.71 0.77 0.39 0.77
441’44 X 0.79 0.78 1.10
L-Shape X 1.49 1.34 1.55
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D. Timings and Scaling

For timings, we tested our code on a growing series of three-dimensional water and
benzene clusters (geometries available in the supporting information), as shown in Figures 3
and 4. We performed our tests in the cc-pVDZ, jun-cc-pVDZ, and cc-pV'TZ basis sets. In
these figures, we present log-log plots, using our timings to calculate the empirical scaling
of our algorithm. We used a log-log regression of the walltime (in minutes) compared to the
system size (by number of basis functions) to perform our analysis, in order to fit a function
of the form ¢ = a-n’, where the ¢ is the run-time, a is the pre-factor, n the system size, and b
the computational scaling. The results of our analysis are presented in Figures 3 and 4. For
each system, across all basis sets, the empirical scalings are all below cubic scaling, with non-
diffuse basis sets scaling quadratic or less. Even though the linear scaling regime has not been
achieved yet with our system sizes, the observed scaling show a drastic improvement from
the seventh power scaling of canonical CCSD(T). Due to the three-dimensional nature of
these systems, we do not expect the onset of linear scaling to occur until later, as opposed to
previous tests on linear alkanes in ORCA.*° The steps that are formally higher scaling, such
as molecular orbital localization, and dipole pair prescreening, have such a low prefactor
that they do not affect timings at all, and none of the new features we incorporated in
this algorithm, such as the t;-transformation of integrals and Fock matrices, scale more
than linearly. The results of the analysis performed for the DLPNO-CCSD as well as the

DLPNO-(T) components of the computation are presented in the supplementary material.

Finally, to assess the limits of the capabilities of our algorithm, we tested our code on an
insulin peptide hormone, as show in Figure 5. The geometry was obtained from the work of
Bykov et al.,’® and is also presented in the supplementary material. For this computation,
we used the def2-SV(P) basis set of Weigend et al.,? with 6458 basis functions. In Table VI,
we present the DLPNO-CCSD(T) correlation energy, as well as its various contributions, at
both the NormalPNO and TightPNO convergences. In Table VII, we present timings for
the most important portions of the computation (excluding SCF). For these sets of timings,
we used 32 CPU cores on a single 2nd generation AMD EPYC Rome (2.9 GHz processing
speed, 2000 GB RAM) as part of the Sapelo2 computing cluster at the University of Georgia.
The computation is performed completely in-core (excluding SCF). Finally, in Table VIII,

we present local domain information at both levels of convergence. As shown in Table VI,
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FIG. 3. Water cluster timings and empirical scaling with the DLPNO-CCSD(T) method. System

sizes range from 4-64 water molecules, presented for each basis set.

NormalPNO recovers about 99.96% of the TightPNO DLPNO-CCSD correlation energy,
and 99.94% of the overall DLPNO-CCSD(T) correlation energy.

Although the LCCSD strong pair correlation energy at the NormalPNO convergence is
significantly less than the LCCSD strong pair energy at the TightPNO convergence, the
LMP2 weak pair correction makes up the majority of that difference. This highlights the
importance of the contribution of weak pairs in DLPNO-CCSD(T). In the timings on Table
VII, the TightPNO computation takes about 3 times as long as the NormalPNO compu-
tation, with DLPNO-CCSD taking much longer due to significantly larger PNO domain
sizes for the tighter criterion. For this computation, we used a preliminary version of the
LOW_MEMORY_OVERLAP algorithm, where only the PNO overlap matrices of the form
S;fkj and Sgi " are stored in RAM, and all other types are computed on the fly. This is signif-
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FIG. 4. Benzene cluster timings and empirical scaling with the DLPNO-CCSD(T) method. System

sizes range from 1-10 benzene molecules, presented for each basis set.

icantly less efficient than the current implementation (as described earlier in Section IV), so
this led to a the disproportionate amount of time spent in the LCCSD iterations. The time
spent in the LCCSD iterations would be significantly less with the current code. One fact
to highlight is that the dipole correction, though nominally scaling O(N?), is far from being
a bottleneck in either computation. The triples contribution becomes less of a bottleneck
at tighter PNO convergences, due to the efficiency of our triples prescreening algorithm,
as highlighted in Table VIII. Table VIII also highlights the locality of the pair and triplet
domains in a large system like insulin, with both the virtual and auxiliary domains being

significantly less than the span of the entire molecule.

35

LpSivL G20z Isnbny 9z



26 August 2025 14:54:41

FIG. 5. 3D Structure of insulin (787 atoms)
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TABLE VI. Energy information for insulin/def2-SVP at NormalPNO and TightPNO convergence

(mEh, unless otherwise stated)

NormalPNO TightPNO

Diff. Diff. (kcal mol™1)

DLPNO-CCSD(T) Correlation Energy —62393.798 —62433.591 —-39.8 -25.0
DLPNO-CCSD Contribution —60265.340 —60289.967 —24.6 -15.5
LCCSD Correlation Energy -58868.909 —59952.074 —1083.2 —679.7
Weak Pair Contribution -1248.806  —253.246  995.6 624.7
Semicanonical Contribution —45.786 -54.920 -9.1 -5.7
Dipole Pair Correction —23.966 -8.017 15.9 10.0
PNO Truncation Correction —77.873 -21.711 56.2 35.2
DLPNO-(T) Contribution -2128.458 -2143.624 -15.2 -9.5
DLPNO-(T0) Energy -1999.977 -2011.485 -11.5 ~7.2
Iterative (T) Contribution -118.583 -119.840  -1.3 0.8
Prescreened Triplets Correction —9.897 -12.299 —2.4 -1.5
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TABLE VII. Timings for insulin using DLPNO-CCSD(T) algorithm at NormalPNO and TightPNO

NormalPNO TightPNO

Total Wall Time (s) 44906 (0.52 days) 128090 (1.48 days)
DLPNO-CCSD 66% 83%
Orbital Localization/Sparsity Prep 5% 2%

Dipole Pair Correction 0% 0%
Semicanonical MP2 Pair Correction 0% 0%
LMO/PAO DF Ints 16% ™%

PNO Formation and PNO-LMP2 1% 1%

PNO Overlap Integrals 0% 0%
Integral PNO Transformation 6% ™%

Local CCSD Iterations 38% 66%
DLPNO-(T) 34% 17%
TNO Formation 6% 2%
Semicanonical (T0) 23% 12%
Iterative (T) 6% 3%
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TABLE VIII. Domain information for insulin/def2-SVP at NormalPNO and TightPNO conver-

gence

NormalPNO TightPNO
Orbital Information
Atoms 787 787
Basis Functions 6458 6458
Frozen Core Orbitals 429 429
Active Core Orbitals 1117 1117
Virtual Orbitals 4912 4912
Auxiliary Basis Functions (RI) 24872 24872
Pair Information
Total LMO pairs (non-unique) 1247689 1247689

Dipole pairs
Semicanonical LMP2 pairs

Weak Pairs

Strong Pairs

996002 (79.8%)
147500 (11.8%)

87590 (7.0%)
16597 (1.3%)

857900 (68.8%)
284386 (22.8%)

64954 (5.2%)
40449 (3.2%)

NAUX per pair 597 598

PAOQOs per pair 255 348

PNOs per pair (LMP2) 33 60

PNOs per pair (LCCSD) 16 30
Triplet Information

Total LMO triplets (unique) 232901202 232901202

Initial Triplets

Final Triplets

TNOs per triplet (Prescreening)

TNOs per triplet (T0)
TNOs per triplet (T)

601572 (0.3%)
292805 (0.1%)
26
52
30

955435 (0.4%)
296016 (0.1%)
22
60
32
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VI. CONCLUSION

In this work, we have presented an open-source DLPNO-CCSD(T) algorithm, and demon-
strated that it can accurately model non-covalent interactions. The deviations for relative
energies compared to canonical CCSD(T) are typically on the order of 0.1 kcal mol™! or less
with our given set of parameters (at the TightPNO convergence). Our emphasis on accu-
racy has resulted in some modifications to previously published local PNO based CCSD(T)
algorithms, such that the resulting code appears to provide improved accuracy when using
“Tight PNO” cutoff parameters. We have also shown our code to be competitive in accu-
racy compared to many-body expansion methods based on canonical CCSD(T). Even when
taking advantage of our code’s high accuracy, we have been able to keep many of the useful
properties associated with the original DLPNO-CCSD(T) algorithm 34354944 guch as its low
scaling and increased efficacy with larger basis sets. This code is now publicly available to
view and execute in a development branch of Psi4, and will be widely available in a future
release of the Psi4 software. In the future, we plan to test and optimize our code to study
even larger systems than those presented in this paper, as well as explore additional ways to
reduce projection errors without compromising the efficiency of our algorithm. Combined

96-112 and

with advances in computing technology such as with massively parallel computing
GPUs,"3120 an open-source version of DLPNO-CCSD(T) will also allow the development
of local coupled-cluster codes which take advantage of these new hardware developments,

enabling coupled-cluster calculations on much larger systems than previously imaginable.

VII. SUPPLEMENTARY MATERIAL

The geometries for insulin, as well as the water and benzene clusters used for the scaling
tests are available in the supplementary material. We have also included NormalPNO error
statistics for the S22 test set, absolute energies for the water clusters from Xantheas and
coworkers, as well as scaling analyses for the DLPNO-CCSD and DLPNO-(T) portions of the
computation for the water and benzene clusters. We have additionally included (DLPNO)-
CCSD/(T) relative energies for each of the S22 dimers, the uracil dimer, and wall times for

each of the scaling tests.
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Appendix A: Computation and Storage of Non-Projected Integrals

In the following algorithms, both in this section and the next section, for user clar-
ity, algorithms are presented with restricted index ¢ < j over all strong pairs to increase
efficiency. lmopair_to_paos[ij] represents all PAOS fi;; that are in the domain of ij (deter-
mined by Tcur.po), lmopair_to_ribfs[ij] represents all auxiliary basis functions on atoms in
the Mulliken fitting domain of pair ij (determined by TcuTt.vmkn), while Imopair_to_lmos|ij]

represents all LMOs k, such that ik and kj are both strong or weak pairs.

41

LpSivL G20z Isnbny 9z



Publishing

AIP

N

Algorithm 1 Linear-scaling Computation of Kf,jjb’“j - Used in Equation 79 (as part of

M)

for ¢j in strong_pairs do

(Pijlivi;) <= (P|mv)[lmopair_to_ribfs[ij], 7, Imopair_to_paos[ij]]

AR (Qu| Pry) (P ) XENO

i5 Qi

if ¢ # j then

(Pij|jvij) < (P|mv)[lmopair_to_ribfs[ij], j, Imopair_to_paos[ij]]

A% (Qij|Pyg) L (P j7ig) XENO

Jaij Vijaij
end if
for ();; in lmopair_to_ribfs[ij] do
for k;; in Imo_pairs_to_lmos[ij] do

Fkij;kj — (QImv)[Qij, kij, Imo_pair_to_lmos|kj]]

PNO

Khisbry < Ky, Xﬁkjbkj

K;lk] Y ot= Ag:]K Kijbr;
if i # j then
Ky,,5,, < (QImD)[Qij, kij, Tmo_pair_to_lmos[ik]]

_ yPNO
i Vik " Uip by,

Kkijbik — Ky,
aijbiv | 2 Qij 7=
Kjk; += Aja,-]- Kkijbik
end if
end for

end for

end for

> Loop over all strong ij pairs, ¢ < j

> Get slice from (P|mv)

>

> Get slice from (P|mv)

> Get slice from (Q|mv)

> Get slice from (Q|mv)

> Form jk analog
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Algorithm 2 Linear-scaling Computation of J;,” "3 _ Used in Equations 78 and 79 (as part
of M;cijbkj>

for ij in strong_ pairs do > Loop over all strong ij pairs, ¢ < j

pair_ext_domain <— List[int] > Form extended domain for pairs
for k;; in Imo_pairs_to_lmos[ij] do
k < lmo_pairs_to_lmos[ij] [k;;]
pair_ext_domain = pair_ext_domain U lmo_to_paos[k]
end for
(Pijliksj) < (P|mn)[lmopair_to_ribfs[ij], ¢, Imopair_to_lmos|ij]] > Get slice from (P|mn)
AR (Qij|Py) (P ki)
if ¢ # j then
(Pijljkij) < (P|mn)[lmopair_to_ribfs[ij], j, Imopair_to_Imos[ij]] > Get slice from (P|mn)
ALY (Qu|Py) (Pl
end if

for Q;; in lmopair_to_ribfs[ij] do

jﬁiﬁijext — (Q|uv)[Q;j, Imopair_to_paos[ij], pair_ext_domain)] > Get slice from (Q|pv)
5 PNOTJ_ _
JaiTijee < X [iijaij BVt

for k;; in Imo_pairs_to_lmos[ij] do

J —J All, pair_ext_domain N lmo_pair_to_paos[kj]]

AijVij ext [

_ PNO
@ij [k Xﬁkjbkj

@ij g
Jaijbkj —J

aijbry | Qi
Jik += Az‘k:ij J b
if i # j then

Jai i < Ja;

ags it All, pair_ext_domain N lmo_pair_to_paos[ik]]

JVij ext [

_ PNO
@i ik ™ [ b

jaijbik < j
Jaijbik . AQz‘jj > F ik 1
ik = A Jaijbi orm jk analog
end if
end for

end for

end for

LpSivL G20z Isnbny 9z

Publishing

AIP

N

43



Publishing

AIP

N

Appendix B: Low Memory PNO Overlap Algorithm

Algorithm 3 Semi-direct algorithm for forming SZ;; , and relavent contractions

for ¢j in strong_pairs do > Loop over all strong ij pairs, ¢ < j
pair_ext_domain <— List[int] > Form extended domain for pairs
for k;;,l;; in lmo_pairs_to_lmos|ij] x Imo_pairs_to_lmos[ij] do

k,l < Imo_pairs_to_lmos[ij][k;;], Imo_pairs_to_lmos|ij][l;;]
Kkl < lmo_pair_index[k][1]
if kl € strong_pairs U weak_pairs then
pair_ext_domain = pair_ext_domain U lmo_pairs_to_paos[kl]
end if
end for

S;; < submatrix_rows_and_columns(SPAQ, Imo_pair_to_paos[ij], pair_ext_domain)

ng — XSNOSU > Transform first index of overlap matrix to PNO space of ij
B 0 > Initialize B’
ﬁbijcij — ﬁbijcij > Equation 85a

for k;;,l;; in Imo_pairs_to_lmos[ij] X Imo_pairs_to_lmos[ij] do
k,l < Imo_pairs_to_lmos[ij][k;;], Imo_pairs_to_lmos|ij][l;;]
kl < lmo_pair_index[k][1]
if kl € strong_pairs U weak_pairs then

Sj; < submatrix_columns(Sj;, pair_ext_domain N Imo_pair_to_paos[kl])

Saij . (S{’) - xPNO

b 1/ Qi VRl Dy by
aijbij | ¢ o@ijrpagiber gbisy gkl :
B = (Sap Ty Sbkl) 4 > Equation 77
= b . b d c d Cii .
Fhyje; —= Syougy ™ K Sy > Equation 85b
end if
end for
@ijbij aijcij T = Cijbij . d dded f ab
E;; b Foyey T Fagjeti; > Equation 80, second term added to account for Py
b b b . . .
R?]“ V4= B?j” 74 E?j” “ > Add contributions to doubles residual
if ¢ # j then
bijaij bijaij b”(lz] . . ..
Rjz. 4= Bji + Ej; > Add relevant contributions for ji
end if

end for
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