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1 Introduction

Observables in quantum field theory (QFT), such as S-matrix elements, are unchanged
under field redefinitions of the Lagrangian, even though Green functions do change. Thus,
observable quantities are determined in terms of field-redefinition invariants constructed
from the Lagrangian. The fields in a QFT take values in a manifold M such as the curved
three-sphere S3 for SU(2) chiral perturbation theory. Field redefinitions correspond to
coordinate transformations on M, so field-redefinition invariants are coordinate invariant
quantities built out of geometrical objects such as the Riemann curvature tensor of M.
The one-loop renormalization of scalar QFTs using a geometrical approach was studied in
refs. [1, 2]. The method was generalized to include gauge fields [3, 4] and fermions [5–7].
Closely related work by other groups can be found in [3, 8–16]. In this paper, we restrict
our discussion to scalar QFTs.

’t Hooft [17] computed the one-loop counterterm for a renormalizable scalar field theory
containing terms with up to two derivatives in the Lagrangian. The one-loop counterterm
formula of ’t Hooft [17] requires the scalar kinetic term be canonical, i.e.

LKE = 1
2(Dµϕ)i(Dµϕ)i , (1.1)

as in a renormalizable QFT. Effective field theories (EFTs) such as the Standard Model
Effective Field Theory (SMEFT) or chiral perturbation theory (χPT) contain non-trivial
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kinetic terms of the form

LKE = 1
2gij(ϕ)(Dµϕ)i(Dµϕ)j , (1.2)

where gij(ϕ), the metric on M, in general is non-trivial. Refs. [1, 2] derived a generalization
of ’t Hooft’s formula that is valid for a general kinetic energy eq. (1.2). Radiative corrections
were given in terms of the Riemann curvature tensor constructed from gij .

In a recent paper [18], referred to as paper I, we derived the two-loop counterterms and
anomalous dimensions for a scalar field theory with interactions up to two derivatives and
with a canonically normalized kinetic energy term, which is the two-loop version of ’t Hooft’s
formula. In this paper, we use the geometric approach of refs. [1, 2] to extend the results of
paper I to an arbitrary scalar theory with interactions up to two derivatives. Our two-loop
result allows for a purely algebraic computation of the two-loop counterterms, i.e. we have
a universal formula for the counterterms in terms of the Riemann curvature Rabcd, which
is determined from derivatives of the metric gij .

In this paper, we use the Riemann normal coordinate expansion to compute the fluctuation
Lagrangian. The covariant formalism allows for a transformation to a local Cartan frame,
where the results of paper I can be used to compute the renormalization counterterms for a
general two-derivative scalar theory. The final result is coordinate invariant, so after deriving
it, we can use it in any coordinate system. The universal two-loop formula is applied to a
number of examples. It is used to compute the two-loop renormalization group equations
(RGE) for the O(n) EFT to dimension six, the two-loop RGE for the Standard Model
Effective Field Theory scalar sector to dimension six, and the two-loop RGE of SU(n) chiral
perturbation theory to order p6. Our geometric approach greatly simplifies the computation —
(a) The corrections are grouped into geometric objects such as the Riemann curvature tensor,
which transform covariantly under field redefinitions. (b) The two-derivative cubic interaction
in the fluctuation Lagrangian (Dµη)(Dνη)η vanishes in Riemann normal coordinates, even
though it is present under the usual background field method of taking ϕ → ϕ + η and
expanding in η. Thus, the use of Riemann normal coordinates removes a large number
of counterterms that would otherwise have to be computed. (c) Factorizable diagrams do
not contribute to the anomalous dimensions. (d) The field theory for η has an O(n) gauge
symmetry, noted by ’t Hooft [17], which restricts the form of the counterterms, and allows
one to determine them without having to compute higher-point amplitudes, even in an EFT.
(e) The computations are algebraic, i.e. one writes the metric gij(ϕ) as a polynomial in
fields, computes the Riemann curvature tensor in terms of derivatives of gij , and takes traces.
No Feynman diagrams need to be computed. The basic Feynman graphs give counterterm
coefficients which are universal for all EFTs and are tabulated in paper I.

This paper is organized as follows. In section 2, we discuss the Riemann normal coordinate
expansion, which is used in the derivation of the geometrical version of the two-loop formula.
Section 3 then derives the geometrical version of the two-loop results of paper I. Next, we
consider applications to specific scalar field theories. In sections 4, 5 and 6, the algebraic
two-loop formula is applied to the O(n) effective field theory to dimension six, SMEFT to
dimension six, and chiral perturbation theory to order p6, respectively. Our results for the
O(n) EFT agree with known results [19, 20] for n = 1, 2. Our results for SMEFT agree with
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known two-loop results for the SM when higher dimension operators are dropped [21–23],
and our results for χPT agree with ref. [24] . Finally, we present conclusions in section 7.

2 Riemann normal coordinate expansion

The theory we consider is an arbitrary scalar theory with up to two derivatives coupled to
external gauge fields. We follow the notation and analysis of refs. [1, 2]. The Lagrangian is

L = 1
2gij(ϕ)(Dµϕ)i(Dµϕ)j − V (ϕ) (2.1)

where ϕ are real scalar fields which take values in a scalar manifold M. Complex scalar fields
are written in terms of real scalar fields. The scalar field metric is gij(ϕ), and transforms as a
metric tensor under field redefinitions (i.e. coordinate transformations of M),

g′ij =
(
∂ϕk

∂ϕ′ i

)(
∂ϕl

∂ϕ′ j

)
gkl . (2.2)

Indices on M are lowered and raised using gij and its inverse gij .
If the manifold M on which the scalar fields live has a symmetry, then some of them can

be local (gauge) symmetries. In this case, the potential V (ϕ) must also be invariant under
the gauged symmetries. The symmetries of M are generated by Killing vectors tα(ϕ) with
vanishing Lie derivative of the metric, Ltαg = 0. They satisfy Killing’s equation

∇itjα +∇jtiα = 0 , (2.3)

where the covariant derivative ∇ uses the metric compatible torsion-free Christoffel connection
computed from gij . For symmetries which are gauged, we also require LtαV = 0 so that
the Lagrangian is gauge invariant.

The covariant derivative is

(Dµϕ)i = ∂µϕ
i(x) + tiα(ϕ)Aα

µ(x) (2.4)

where the gauge fields Aµ(x) do not depend on ϕ. The coupling constant and a factor of i
has been absorbed into tα. The Killing vectors satisfy the Lie algebra

[tα, tβ ] = f γ
αβ tγ (2.5)

where the l.h.s. is a Lie bracket. Explicit expressions for the terms in eq. (2.1) in SMEFT
can be found in [1–3, 10].

Quantum corrections to eq. (2.1) are computed by writing ϕ = ϕ+η, where ϕ is an external
(background) field and η is an internal (quantum) field which is integrated over. The one-loop
correction is computed from the quadratic term in η, i.e. the second functional derivative
of the action. The expansion ϕ = ϕ + η introduces non-covariant terms in the functional
derivatives of the action [25, 26]. Under a change of coordinates, a vector V i transforms as

V ′ i =
(
∂ϕ′ i

∂ϕj

)
V j . (2.6)
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P0 η

Figure 1. Riemann normal coordinates on M. The red curve is a geodesic starting at P0 with
tangent vector η.

Note that ϕi is a coordinate which does not transform as a vector. In contrast, ηi = δϕi,
the variation of ϕi, is a vector, but its derivatives are not [1, 2, 25, 26]. This introduces
non-covariant terms in the functional derivatives and one-loop corrections. However, as
pointed out in the introduction, we can make field redefinitions without changing the S-
matrix. One can make a change of variables to restore manifest covariance of the functional
derivatives and the radiative corrections. The idea is to use Riemann normal coordinates
to parameterize the quantum fluctuations, which turns functional derivatives into covariant
functional derivatives [1, 2, 25, 26].

Let P0 be a point on M with coordinates ϕi
0. This is the point around which we compute

the fluctuation Lagrangian. The geodesic ϕi(η, λ) is a curve starting at P0 with tangent
vector η0 and parameter λ,

ϕi(η, 0) = ϕi
0,

dϕi(η, λ)
dλ = ηi(λ), η(λ = 0) = η0 , (2.7)

which satisfies the geodesic equation ∇ηη = 0, or in coordinates,

d2ϕi

dλ2 + Γi
jk(ϕ)

dϕj

dλ
dϕk

dλ = 0 . (2.8)

The geodesic equation eq. (2.8) is homogeneous in λ, so that ϕi(η, λ) = ϕi(sηi, λ/s) under
rescaling by any constant s. A point P with coordinates ϕi(P) has Riemann normal co-
ordinates ηi(P), where ϕi(P) = ϕi(η(P), 1), i.e. the starting velocity at P0 such that the
geodesic reaches P at λ = 1 is the Riemann normal coordinate ηi(P). The advantage of
Riemann normal coordinates is that η(P) transforms as a vector at the point P0 under
coordinate transformations.1 The coordinate ϕi in Riemann normal coordinates is given
by the series expansion

ϕi = ϕi
0 + ληi − 1

2λ
2 Γi

jk(ϕ0) ηjηk − 1
3!λ

3 Γi
jkl(ϕ0) ηjηkηl − 1

4!λ
4 Γi

jklr(ϕ0) ηjηkηlηr + . . .

(2.9)

where the series coefficients are evaluated by taking successive derivatives of the geodesic
equation eq. (2.8), and at each step replacing second derivatives of ϕi by first derivatives

1Note that it is a vector at P0, not P.
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(a) (b)

Figure 2. Skeleton graphs for two-loop corrections to the action. There can be an arbitrary number
of ηη vertex insertions on the lines.

using eq. (2.8). The higher order terms involve generalized Christoffel symbols [27], which
are functions of the standard Christoffel symbols and their derivatives. The background field
ϕ0(x) is a function of the spacetime point x, so the above procedure gives the quantum field
η(x) by using eq. (2.9) point-by-point in x to parameterize the fluctuation ϕ(x)− ϕ0(x).

The variation of the action is computed by differentiating S[ϕ(η, λ)] w.r.t. λ, and eval-
uating the derivatives at λ = 0. Expanding the action in the geodesic fluctuation η to
quadratic order in η yields

S[ϕ+ η] = S[ϕ] + δS

δϕi
ηi + 1

2

(
δ2S

δϕiδϕj
− Γk

ij

δS

δϕk

)
ηiηj +O(η3) , (2.10)

where the terms transform as tensors at P0. The second functional derivative of S has
been replaced by the covariant second functional derivative when using Riemann normal
coordinates.

The two-loop contributions to the functional integral are shown in figure 2. The graphs
involve η2, η3 and η4 interactions, so we need the expansion of the action to fourth order in
η. This can be done efficiently by using a coordinate-free notation, and differentiating the
action four times w.r.t. the geodesic parameter λ. We start by computing the derivatives of
Dµϕ, which are needed in the evaluation of derivatives of the action. Its first derivative is

∇λ(Dµϕ) = ∇λ(∂µϕ+ tαA
α
µ) = ∇λ(∂µϕ) + (∇λtα)Aα

µ (2.11)

since the gauge field is independent of the scalar field. The connection is torsion free,
T (X,Y ) = ∇XY −∇Y X − [X,Y ] = 0, and [∂λ, ∂µ] = 0, since partial derivatives commute, so

∇λ(∂µϕ) = ∇µ(∂λϕ) = ∇µη , (2.12)

and

∇λ(Dµϕ) = ∇µη + (∇λtα)Aα
µ = ∇µη + (ηj∇jtα)Aα

µ ≡ Dµη , (2.13)

where the covariant derivative Dµη was defined in [1, 2]. The covariant derivative D acts
on tensors, and can be used to differentiate tensors with an arbitrary number of indices.
In coordinates,

(Dµη)i =
(
∂µη

i + Γi
kj∂µϕ

kηj
)
+Aβ

µ

(
tiβ,j

+ Γi
jk t

k
β

)
ηj = ∇µη

i +Aβ
µη

j∇jt
i
β

=
(
∂µη

i +Aβ
µt

i
β,j
ηj
)
+ Γi

kj

(
∂µϕ

k + tkβA
β
µ

)
ηj = (Dµη)i + Γi

kj(Dµϕ)kηj . (2.14)
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The first form shows that Dµη is coordinate invariant, and the second form shows that Dµη is
gauge invariant. The gauge generators acting on vectors such as ηi are tiβ,j

, as shown in [1].
The geodesic derivative of Dµη is

∇λDµη = ∇λ

[
∇µη + (∇λtα)Aα

µ

]
= ∇λ∇µη + (∇λ∇λtα)Aα

µ . (2.15)

The first term is

∇λ∇µη = [∇λ,∇µ]η +∇µ∇λη = R(η, ∂µϕ)η (2.16)

since ∇λη = ∇ηη = 0 by the geodesic equation, and using the definition of the Riemann
curvature, R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z. Eq. (2.16) is the geodesic deviation equation,

∇λ∇λ(∂µϕ) = R(η, ∂µϕ)η . (2.17)

We also have

∇λ∇λtα = R(η, tα)η (2.18)

which follows from Kostant’s equation for a Killing vector

∇j∇k t
i
α = Ri

kjl t
l
α . (2.19)

Combining eq. (2.16) and eq. (2.18) gives the gauge invariant form of the geodesic deviation
equation,

∇λ(Dµη) = R(η,Dµϕ)η , (2.20)

for the derivative of Dµη. Eq. (2.13) and eq. (2.20) are sufficient to compute all higher λ
derivatives of Dµϕ. For example, the next derivative is

∇λ∇λ(Dµη) = ∇λ [R(η,Dµϕ)η] = (∇λR)(η,Dµϕ)η +R(η,∇λDµϕ)η
= (ηi∇iR)(η,Dµϕ)η +R(η,Dµη)η (2.21)

since ∇λη = 0, and is cubic in η.
We can now compute the variation of the Lagrangian eq. (2.1) to fourth order by repeated

application of eq. (2.13), eq. (2.20), and metric compatibility of the connection, ∇g = 0.
The variations are

δL = g(Dµη,D
µϕ)−∇λV ,

δ2L = 1
2g(R(η,Dµϕ)η,Dµϕ) + 1

2g(Dµη,D
µη)− 1

2∇λ∇λV ,

δ3L = 1
6g((∇λR)(η,Dµϕ)η,Dµϕ) + 2

3g(R(η,Dµϕ)η,Dµη)− 1
6∇λ∇λ∇λV ,

δ4L = 1
24g((∇λ∇λR)(η,Dµϕ)η,Dµϕ) + 1

4g((∇λR)(η,Dµϕ)η,Dµη) + 1
6g(R(η,Dµη)η,Dµη)

+ 1
6g(R(η,Dµϕ)η,R(η,Dµϕ)η)− 1

24(∇λ∇λ∇λ∇λV ) , (2.22)
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where we have included the 1/n! prefactor in the nth variation, and used the symmetry of
the Riemann tensor g(R(A,B)D,C) = g(R(C,D)B,A).2 The second order term eq. (2.22)
was given in [2, (50)][1, (3.42)], and used to compute the one-loop corrections. Here we
need the third and fourth order terms to compute the two-loop corrections. The Lagrangian
expansion in terms of quantum fields defined with respect to geodesic coordinates found in
eq. (2.22) has previously been derived in the context of the non-linear sigma models in two
space-time dimensions [28–30]. In the next section, we combine eq. (2.22) with the result
in paper I to obtain the general two-loop counterterms.

3 Derivation of the two-loop formula

We briefly summarize the results of paper I on the two-loop counterterm formula. The
derivation relies on the second, third, and fourth order fluctuations terms having the form

L(2) = 1
2(Dµη)a(Dµη)a + 1

2Xabη
aηb

L(3) = Aabcη
aηbηc +Aµ

a|bc(Dµη)aηbηc +Aµν
ab|c(Dµη)a(Dνη)bηc

L(4) = Babcdη
aηbηcηd +Bµ

a|bcd(Dµη)aηbηcηd +Bµν
ab|cd(Dµη)a(Dνη)bηcηd , (3.1)

where

(Dµη)a ≡ ∂µη
a + (Nµ)abη

b , (3.2)

and the coefficients (Nµ)ab, Xab, etc. are functions of the background field, and satisfy the
symmetry relations

Nµ
ab +Nµ

ba = 0 ,
Aµ

a|bc +Aµ
b|ca +Aµ

c|ab = 0 ,

Bµ
a|bcd +Bµ

b|cda +Bµ
c|dab +Bµ

d|abc = 0 , (3.3)

i.e. the completely symmetric parts of Nµ, Aµ and Bµν vanish. The coefficients are also
symmetric under permutation of η indices, and simultaneous permutation of Dµη indices.
The field-strength tensor is defined by

Yµν = [Dµ, Dν ] = ∂µNν − ∂νNµ + [Nµ, Nν ] . (3.4)

The terms in eq. (2.22) have the structure of the terms in eq. (3.1). They involve at
most two first covariant derivatives of η, Dµη. There are no terms with second derivatives
of η, DµDνη. The cubic term has either η3 terms or ηηDη terms; there is no ηDηDη term
with two first derivatives. This feature greatly simplifies the computations required for the
two-loop correction. In the extension of ’t Hooft’s formula to two loops, we do not need to
include the Aµν

ab|c interaction. If we had instead used a naive expansion ϕ → ϕ + η, there
would in general be such two-derivative terms in the cubic Lagrangian, making the two-loop

2In component notation g(R(A, B)D, C) = RijklC
iDjAkBl.

– 7 –



J
H
E
P
0
2
(
2
0
2
4
)
1
3
1

result far more complicated. The quartic term has η4, η3Dη and η2DµηDµη terms. The
term with two first derivatives in the original Lagrangian eq. (2.1) has their Lorentz indices
contracted, so the Bµν

ab|cd interaction is proportional to ηµν .
Loop corrections to the action eq. (2.1) can be computed using the expansion in quantum

fluctuations eq. (2.22). We are free to make field redefinitions, which leave the S-matrix
invariant. It is not possible to make field redefinitions (coordinate transformations) in the
original Lagrangian eq. (2.1) to make the metric trivial, gij(ϕ) → δij . The obstruction to
finding such a transformation is the non-vanishing of the Riemann curvature tensor Rijkl(ϕ),
which depends on second derivatives of the metric gij . The ’t Hooft formula is not directly
applicable for general Lagrangians such as eq. (2.1), since the formula is only valid for a
canonical kinetic term proportional to δij .

A big advantage of using Riemann normal coordinates is that the expansion is in powers
of ηi which transforms like a vector, unlike ϕi which is a coordinate. To simplify the radiative
corrections, we can go to a local orthonormal (Cartan) frame by introducing vielbeins,

gij(ϕ) = ea
i (ϕ)eb

j(ϕ)δab (3.5)

and transform all tensors to the local frame. This frame is a non-coordinate basis, i.e. we
can make a local choice of tangent vectors satisfying eq. (3.5), but we cannot integrate
this to a change of coordinates which makes the metric trivial if the Riemann curvature is
non-vanishing. Local frame indices will be denoted by a, b, c, . . .. The metric tensor in the
local frame is δab. The tangent vector ηi in the local frame becomes

ηa = ea
i (ϕ)ηi , (3.6)

which is a field redefinition on the quantum field, and does not change the S-matrix.
The variation of the action in the local frame takes the same form as eq. (2.22) with

coordinate indices i, j, k, . . . replaced by local frame indices a, b, c, . . .. The second variation
of the action eq. (2.22) is

δ2L = 1
2(Dµη)a(Dµη)a + 1

2Rabcd(Dµϕ)aηbηc(Dµϕ)d − 1
2η

aηb∇a∇bV . (3.7)

This second variation has the same form as eq. (3.1) with

Xab = −Racbd(Dµϕ)c(Dµϕ)d −∇a∇bV . (3.8)

The covariant derivative eq. (2.14) is

(Dµη)a = ∂µη
a + ωa

ib ∂µϕ
iηb +∇bt

a
αη

bAα
µ , (3.9)

where ωa
ib is the Cartan connection. Comparing with eq. (3.2), Nµ is

Nµ
ab = ωiab ∂

µϕi +∇bt
α
aA

µ
α , (3.10)

where we can lower local frame indices using the metric δab. The metric compatible Cartan
connection ωiab is antisymmetric in a, b, as is the derivative of the Killing vector ∇bt

α
a , so
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that Nµ
ab is automatically antisymmetric in a, b, as required in eq. (3.3). The commutator

of two covariant derivatives eq. (3.4) gives [1]

[Yµν ]ab = [Dµ,Dν ] = Ra
bcd(Dµϕ)c(Dνϕ)d +∇bt

a
αF

α
µν (3.11)

using properties of the Killing vector. The one-loop counterterm formula of ’t Hooft is

L(1)
c.t. =

1
16π2ϵ

[
−1
4XabX

ba − 1
24(Yµν)ab(Y µν)ba

]
(3.12)

which is only valid if the kinetic term has canonical normalization δab, and (Nµ)ab is anti-
symmetric. Both conditions are satisfied in the local Cartan frame, so we can use eq. (3.12)
with X and Yµν given in eq. (3.8) and eq. (3.11).

At first sight, this seems like an involved computation, having to first determine the
vielbeins which satisfy eq. (3.5), transform to the local frame, etc. However, the final expression
for the counterterm eq. (3.12) is coordinate invariant and written in terms of tensor quantities.
It can be evaluated in any frame. In particular, it can be evaluated in the original coordinate
basis — i.e. the entire transformation to the local frame is not actually needed to compute
the counterterms; it is only needed to make sure that the formulæ in paper I can be applied.
For example, the one-loop counterterm in the local frame eq. (3.12) becomes

L = 1
16π2ϵ

[
−1
4XijXkl g

ikgjl − 1
24[Y

µν ]ij [Yµν ]j i

]
(3.13)

in the original coordinate basis, where we have to be careful to raise and lower indices with
the metric tensor gij and its inverse gij . The coordinate basis expressions for X and Y are

Xij = −Rikjl(Dµϕ)k(Dµϕ)l −∇i∇jV ,

(Yµν)i
j = [Dµ,Dν ]ij = Ri

jkl(Dµϕ)k(Dνϕ)l +∇jt
i
αF

α
µν , (3.14)

and Dµϕ is given in eq. (2.3). Eq. (3.14) is the result derived in refs. [1, 2]. Eq. (3.14) can
be computed using the original Lagrangian, without having to transform to a local frame.
The terms have the same form as eq. (3.8) and eq. (3.11) with local frame indices replaced
by coordinate indices. This method was used to compute the one-loop SMEFT anomalous
dimensions in the bosonic sector to dimension eight in ref. [3].

For the two-loop correction, we need the cubic plus quartic terms in eq. (2.22), from
which we can read off the expansion coefficients in eq. (3.1)

Aabc = −1
6∇(a∇b∇c)V − 1

18 (∇aRbdce +∇bRcdae +∇cRadbe) (Dµϕ)d(Dµϕ)e

Aµ
a|bc =

1
3 (Rabcd +Racbd) (Dµϕ)d

Aµν
ab|c = 0

Babcd = − 1
24∇a∇b∇c∇dV − 1

24∇a∇dRbecf (Dµϕ)e(Dµϕ)f

+ 1
6ReabfRecdg(Dµϕ)f (Dµϕ)g sym(abcd)

Bµ
a|bcd = 1

4 (∇dRabce) (Dµϕ)e sym(bcd)

Bµν
ab|cd = − 1

12η
µν (Racbd +Radbc) (3.15)
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The notation sym(abcd) and sym(bcd) means the expressions have to be completely sym-
metrized in abcd and in bcd, i.e. we sum over the n! permutations and divide by n!. A
remarkable fact is that the coefficients Aµ and Bµ automatically satisfy the symmetry rela-
tions eq. (3.8) using the Bianchi identities Rabcd +Rbcad +Rcabd = 0 and ∇aRbcde +∇bRcade +
∇cRabde = 0, just like the earlier result that Nµ was automatically antisymmetric in the local
frame. We also find that Aµν automatically vanishes. The above equations are tensorial,
and so can be used in the original coordinate basis i, j, k, . . . being careful about raising
and lowering indices using gij .

This derivation has been a lengthy one, but the final result is simple — Compute the
quantities A,Aµ, B,Bµ, Bµν using the expressions in eq. (3.15) in the original coordinate
frame, and substitute into the counterterm expressions eq. (4.1) and eq. (4.3) of paper I,
contracting upper indices with lower indices and raising and lowering indices using gij .

The counterterms in paper I depend on the tensors X,Y,A,Aµ, B,Bµ, Bµν and their
covariant derivatives. Multiple covariant derivatives are given by repeated applications of
the covariant derivative D in eq. (2.14) which acts on tensors. ϕ is not a tensor, and its first
derivative is Dµϕ = ∂µϕ + tαA

α
µ. Since Dµϕ is a tensor, subsequent covariant derivatives

are given by D . There are two formulæ which can be used to simplify multiple covariant
derivatives,

Dµ(Dνϕ)i − Dν(Dµϕ)i = tiαF
α
µν ,

[Dµ,Dν ]ij = (Yµν)i
j . (3.16)

These can be used to reorder the indices on multiple covariant derivatives of ϕ and transform
them to the form Dµ(Dµϕ) which can be removed by a field redefinition. The tensors
X,Y,A,Aµ, B,Bµ, Bµν also contain the Riemann curvature tensor, the potential V , and
their derivatives. Their Lie derivatives w.r.t. the Killing vectors tα vanish. Any tensor T (ϕ)
with arbitrary number of upper and lower indices and vanishing Lie derivative w.r.t. the
Killing vectors tα has covariant derivative

DµT = (Dµϕ)i (∇iT ) . (3.17)

If a tensor T satisfies LtαT = 0, then so does it covariant derivative ∇T , because [Ltα ,∇] = 0
when tα is a Killing vector, which can be proved from the Kostant formula for a Killing
vector eq. (2.19). Eq. (3.17) then gives the covariant derivatives of A, Aµ, etc. needed to
compute the counterterms.

An EFT has an expansion in powers of 1/M , where M is a high-energy scale much
larger than the scales in the EFT. The potential V up to terms of order ϕ4 is from the
renormalizable dimension-four part of the Lagrangian, so the terms up to four derivatives in V
power-count as dimension-four terms. Note that even terms such as m2ϕ2 are power-counted
as dimension four terms rather than dimension two, because m is a low scale in the EFT.
The mass term can be written in terms of the EFT power counting as (m/M)2M2ϕ2, i.e. as a
dimension two operator with a m2/M2 suppressed coefficient, and so acts as dimension four.
The same argument applies to other terms with dimension < 4 such as ϕ3 interactions. The
curvature Rabcd has terms with two derivatives of the metric, or the square of one derivative
of the metric. These arise from (ϕ/M)2 or the square of ϕ/M terms in the metric respectively,
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so Rabcd ∼ 1/M2 is a dimension-six object. Similarly, ∇R ∼ 1/M3 is dimension seven, and
R2 ∼ 1/M4 and ∇∇R ∼ 1/M4 are dimension eight.

4 The O(n) EFT

The O(n) EFT is the O(n) model including higher dimension operators. Our formalism
applies to Lagrangians with up to two derivatives, so the O(n) Lagrangian has the form

L = 1
2A (∂µϕ · ∂µϕ) +B (ϕ · ∂µϕ)(ϕ · ∂µϕ)− V (4.1)

where A, B and V are functions of (ϕ · ϕ), and ϕ is an n-component real scalar field. Loop
corrections will generate higher derivative terms in the Lagrangian, which are implicitly
added to eq. (4.1). While these are not included in the formulæ derived earlier, we can
still consistently compute radiative corrections using eq. (4.1) — the result is the value of
the counterterms in the complete theory when the higher derivative coefficients are set to
zero. For example, in SMEFT we can compute the β-function for the dimension eight H4D4

operators (DµH
†DνH)(DνH†DµH) from insertions of dimension-six operators, but not the

contribution of the dimension-eight operator to its own β-function.
One can make a field redefinition,

ϕi = φif(φ · φ) (4.2)

and eliminate the B term in eq. (4.1). We will work to dimension six using the Lagrangian

L = 1
2(∂µϕ · ∂µϕ)− Λ− 1

2m
2(ϕ · ϕ)− λ

4 (ϕ · ϕ)2

+ CE(ϕ · ϕ)(∂µϕ · ∂µϕ) + C1(ϕ · ϕ)3 + C2(ϕ · ∂µϕ)2 , (4.3)

where Λ is the cosmological constant, and CE , C1, C2 are coefficients of the dimension-six
terms and have mass dimension −2. The field redefinition eq. (4.2) allows one to remove
a linear combination of CE and C2; the linear combination which cannot be eliminated is
2CE − C2. We work in the basis where C2 = 0. The loop corrections generate C2, and we
use field redefinitions to eliminate C2 and go back to the C2 = 0 basis.

The metric and inverse metric are

gij = δij(1 + 2CE(ϕ · ϕ)) , gij = δij(1− 2CE(ϕ · ϕ)) , (4.4)

the Christoffel symbol is

Γi
jk = 2CE

[
δi

kϕj + δi
jϕk − δjkϕ

i
]
, (4.5)

and the curvature is

Rijkl = 4CE [δilδjk − δikδjl] , (4.6)

where the difference between up and down indices for Γi
jk and Rijkl is dimension eight.

Including counterterms, the bare Lagrangian is

L = 1
2Zϕ(∂µϕ · ∂µϕ)− [Λ + Λc.t.]−

1
2Zϕ(m2 +m2

c.t.)(ϕ · ϕ)− 1
4µ

2ϵZ2
ϕ(λ+ λc.t.)(ϕ · ϕ)2

+ µ2ϵZ2
ϕ(CE + CEc.t.)(ϕ · ϕ)(∂µϕ · ∂µϕ) + µ4ϵZ3

ϕ(C1 + C1c.t.)(ϕ · ϕ)3 . (4.7)
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The explicit expressions for the counterterms are given in appendix A. The anomalous
dimensions and ’t Hooft consistency conditions can be computed from the counterterms,
using the expressions given in paper I. The anomalous dimensions are (where Ċ ≡ µ dC/dµ)3

Λ̇=
{1
2nm

4
}

1
+{0}2 (4.8)

ṁ2 =
{
2(n+2)λm2−8nm4CE

}
1
+
{
−10(n+2)λ2m2+80

3 (n+2)λm4CE

}
2

(4.9)

λ̇=
{
2(n+8)λ2−16(n+3)λm2CE−24(n+4)m2C1

}
1

+
{
−12(3n+14)λ3+32

3 (22n+113)λ2m2CE+480(n+4)λm2C1

}
2

(4.10)

ĊE = {4(n+2)λCE}1+
{
−34(n+2)λ2CE

}
2

(4.11)

Ċ1 =
{
20λ2CE+6(n+14)λC1

}
1
+
{
−8
3(23n+259)λ3CE−42(7n+54)λ2C1

}
2

(4.12)

where the subscripts outside the curly braces denote the one-loop and two-loop contributions.
The ’t Hooft consistency conditions are satisfied. The anomalous dimensions of the O(n) EFT
were compute previously in refs. [19, 20] for n = 1 and n = 2. We agree with their results for
n = 1 to two-loop order; they have results to 5 loops. They use a dimension-six basis different
from ours for n = 2. The parameters in eq. (4.3) in terms of those of refs. [19, 20] are

λ = 1
4g, CE = 1

4gC
(6)
4 , C2 = −1

4gC
(6)
4 , C1 = 1

3! 3! 8g
2C

(6)
6 . (4.13)

Our two-loop results for n = 2 agree with refs. [19, 20], which give results up to four loops.4

We find that the ’t Hooft consistency condition is not satisfied for Zϕ, which implies
that the field anomalous dimension is infinite,

γϕ =
{
−4(n−1)m2CE

}
1
+1
ϵ

{
4(n−1)(n+2)λm2CE

}
2
+
{
(n+2)λ2− 8

3(n+2)λm2CE

}
2

(4.14)

The infinite contribution to γϕ is proportional to m2 times a dimension-six coefficient, and
to (n− 1). The anomalous dimensions eq. (4.8)–(4.12) are finite, even though γϕ enters in
their computation through the Zϕ factors in eq. (4.7).

An infinite γϕ arises because of the use of field redefinitions. Instead of the usual shift
ϕ→ ϕ+ η, we use the expansion in eq. (2.9), which corresponds to a non-linear redefinition
of η, η → η − Γi

jkη
jηk/2 + . . .. We can understand the origin of infinite field anomalous

dimensions from the well-studied case of penguin graphs in the weak interactions. Consider
the one-loop graph of figure 3 due to the insertion of a four-fermion operator (ψγµψ)(ψγµψ),
which leads to a divergence proportional to (ψγµψ)∂νF

µν . One can make a field redefinition to
3All { }1 terms should be multiplied by 1/(16π2) and all { }2 terms by 1/(16π2)2.
4There is a typo in refs. [19, 20], where the ϕ6 operator is given with a normalization 1/(6! 8) instead of

1/(3! 3! 8). We thank Jasper Nepveu for informing us of this. With this change, our result differs in the sign
of the 45g2/2 two-loop term in the C

(6)
6 − C

(6)
4 entry of the anomalous dimension matrix.
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Figure 3. Penguin graph.

Figure 4. ψ + ψ → ψ + ψ scattering amplitude.

replace the (ψγµψ)∂νF
µν by a four-fermion counterterm (ψγµψ)(ψγµψ). The ψ+ψ → ψ+ψ

scattering amplitude has contributions from the penguin graph and the ψ4 counterterm, as
shown in figure 4, and the sum of the two graphs is finite, and gives a finite S-matrix element.
However, the three-point correlation function

〈
ψψAµ

〉
given by the penguin graph in figure 3

is infinite, as there is no longer a (ψγµψ)∂νF
µν counterterm to cancel the divergence. As a

result the field Aµ is not finite, and can have divergent correlation functions. The reason is
that the field redefinition to remove the (ψγµψ)∂νF

µν operator is an infinite field redefinition.
In our example, the divergent contribution to γϕ is proportional to (n− 1), and so vanishes
if there is only a single scalar field, in which case the Riemann curvature vanishes. The
coupling constants m2, λ, etc. are related to observable S-matrix elements, and so are not
affected by field redefinitions.

An interesting example of an infinite field anomalous dimension was discussed in detail
recently [31–33]. The authors found that the three-loop β-functions in the SM were divergent,
which could be compensated by making an infinite flavor rotation of the fields.

5 SMEFT

We apply our two-loop formula to compute the two-loop scalar renormalization in SMEFT
to dimension six. We include the SM Higgs sector, as well as insertions of the dimension
six operators

CH , CH□, CHD, CHG, CHW , CHB, CHW B, CHG̃
, C

HW̃
, C

HB̃
, C

HW̃ B
, (5.1)

and compute their anomalous dimensions from internal scalar loops. The two-loop coun-
terterms are given in appendix B.
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The anomalous dimensions due to scalar loops, with subscripts denoting the one-loop
and two-loop contributions, are

Λ̇=
{1
2m

4
H

}
1
+{0}2 , (5.2)

ṁ2
H =

{
12λ−4m2

HCH□+2m2
HCHD

}
1
m2

H+λ
{
−60λ+80m2

HCH□−20m2
HCHD

}
2
m2

H ,

(5.3)

λ̇=
{
24λ2+12m2

HCH−32λm2
HCH□+12λm2

HCHD

}
1

+
{
−312λ3−240λm2

HCH+1096λ2m2
HCH□−282λ2m2

HCHD

}
2
, (5.4)

ĊH =
{
108λCH−160λ2CH□+48λ2CHD

}
1
+
{
−3444λ2CH+7968λ3CH□−1992λ3CHD

}
2
,

(5.5)

ĊH□= {24λCH□}1+
{
−204λ2CH□

}
2
, (5.6)

ĊHD = {12λCHD}1+
{
−144λ2CHD

}
2
, (5.7)

Ċr = {12λCr}1+
{
−60λ2Cr

}
2
, r∈{HG,HG̃,HW,HW̃ ,HB,HB̃} , (5.8)

Ċr = {4λCr}1+
{
−28λ2Cr

}
2
, r∈{HWB,HW̃B} . (5.9)

The one-loop contributions agree with the known values [34–36]. The two loop contributions
with the dimension-six coefficients set to zero agree with the known two loop values for the
SM [21–23]. Note that there are very large coefficients in the two-loop anomalous dimensions.
The ’t Hooft consistency conditions for the couplings listed above are satisfied.

The Higgs field anomalous dimension is divergent at two loops, i.e. the ’t Hooft consistency
conditions are not satisfied,

γH =
{
3m2

HCH□

}
1
+
{
−1
ϵ
18λm2

HCH□ + 6λ2 − 8λm2
HCH□ + 2λm2

HCHD

}
2

(5.10)

and the divergent term agrees with eq. (4.14) for n = 4 on replacing m2 and CE by their
equivalent SMEFT couplings, m2 → −m2

H/2, CE → CH□/2.

6 χPT

The final example we consider is chiral perturbation theory. We study the counterterms
for the QCD chiral lagrangian for n flavors, with the symmetry breaking pattern SU(n)×
SU(n) → SU(n). The notation follows refs. [24, 37], except that we use a Minkowski signature
for the spacetime metric. We restrict ourselves to the pure chiral theory without external
sources. The chiral Lagrangian is written in terms of a field u,

u(x) = e
i
f

π(x)
π(x) = πa(x)T a ⟨T aT b⟩ = 1

2δ
ab (6.1)
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where f ∼ 93MeV is the pion decay constant, and ⟨ · ⟩ denotes a trace. Under chiral
SU(n) × SU(n), u(x) transforms as

u(x) → Ru(x)h−1(x) = h(x)u(x)L−1 (6.2)

where L and R are the left- and right-handed SU(n) transformations, and h(x) is defined
implicitly through eq. (6.2). The field U(x) = u(x)2 transforms as U(x) → RU(x)L−1.
Note that L and R are global transformations, and do not depend on x, since we have not
included external gauge fields.

Chiral perturbation theory has a systematic expansion in powers of p2, where p is the
external momentum of the pions. The leading term is the order p2 Lagrangian,

L2 = f2

4 ⟨uµ u
µ⟩ , (6.3)

where

uµ = i(u† ∂µu− u ∂µu
†) . (6.4)

The order p4 Lagrangian is

L4 = L̂0 ⟨uµuνu
µuν⟩+ L̂1 ⟨u · u⟩2 + L̂2 ⟨uµuν⟩ ⟨uµuν⟩+ L̂3

〈
(u · u)2

〉
(6.5)

with four independent coefficients in the absence of external sources. The coefficients in
eq. (6.5) include counterterm contributions,

L̂i = (cµ)−2ϵ
[
− 1
2ϵ

1
16π2 Γ̂i + L̂r

i (µ)
]
, (6.6)

where Γ̂i are the counterterms, L̂r
i (µ) are the finite renormalized couplings, and c2µ2 =

µ2eγ−1/(4π). The renormalized coefficients satisfy the renormalization group equations

µ
dL̂r

i

dµ = − 1
16π2 Γ̂i . (6.7)

The p6 Lagrangian is

L6 =
115∑
i=1

KiYi (6.8)

with coefficients Ki and operators Yi listed in ref. [24]. The coefficients Ki include counterterm
contributions, and are given in terms of renormalized couplings Kr

i by

Ki =
(cµ)−4ϵ

f2

[
− 1
4ϵ2

1
(16π2)2 Γ̂

(2)
i + 1

2ϵ
1

16π2 Γ̂
(1)
i + 1

2ϵ
1

16π2 Γ̂
(L)
i +Kr

i

]
(6.9)

Γ̂(1,2)
i are the counterterms for two-loop graphs from the p2 Lagrangian, and Γ̂(L)

i are the
counterterms from one-loop graphs with an insertion of the p4 Lagrangian. The renormalized
couplings satisfy the renormalization group equations

µ
dKr

i

dµ = 1
16π2

[
2Γ̂(1)

i + Γ̂(L)
i

]
. (6.10)
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’t Hooft’s consistency conditions for the 1/ϵ2 pole are

µ
dΓ̂(L)

i

dµ = − 1
8π2 Γ̂

(2)
i (6.11)

which become

2 Γ̂(2)
i =

∑
k

∂Γ̂(L)
i

∂L̂r
k

Γ̂k (6.12)

using eq. (6.7). Eqs. (6.11), (6.12) are known as Weinberg’s consistency conditions [38] for
χPT, and provide a check on the two-loop result.

In the presence of external sources, there are 115 terms in the p6 Lagrangian. There
are 21 operators listed in ref. [24] which are non-zero when external sources are turned off

— Y1−6 and Y49−63. However, in the absence of external sources, these operators are not all
linearly independent. There are two linear relations,5

0 = Y2 + 2Y4 + 6Y6 − 2Y50 + 2Y57 ,

0 = 4Y1 − Y3 + 3Y5 − 4Y49 − 2Y52 + 8Y54 + 2Y58 − 4Y60 , (6.13)

leaving 19 independent operators. In the presence of external sources, the linear combinations
in eq. (6.13) are proportional to operators involving external sources, on using field redefini-
tions. The choice in ref. [24] was to include the linear combinations in eq. (6.13) rather than the
corresponding source-dependent operators. We have used eq. (6.13) to eliminate Y57 and Y60.

The first relation in eq. (6.13) explains one feature of the counterterms found in ref. [24].
There is a contribution to Γ̂(L) proportional to L̂r

9,

Γ̂(L)
i Yi = L̂r

9

(
−1
8Y2 −

1
4Y4 −

3
4Y6 +

1
4Y50 −

1
4Y57

)
, (6.14)

from table V in ref. [24]. L̂9 is not a coefficient in the p4 Lagrangian eq. (6.5), and should not
contribute to the counterterm. It multiplies the operator i⟨f+µνuµuν⟩ in the p4 Lagrangian,
which vanishes when there are no external fields. The linear combination eq. (6.14) vanishes
on using eq. (6.13).

Weinberg’s power counting rule for χPT implies that the order p2 scattering amplitude is
given by tree graphs with vertices from the p2 Lagrangian. The order p4 scattering amplitude
is given by tree graphs with one insertion of the p4 Lagrangian and arbitrary p2 vertices,
or one-loop graphs with only p2 vertices. The p6 amplitude is given by tree graphs with
one insertion of the p6 Lagrangian or two insertions of the p4 Lagrangian (and arbitrary p2

vertices), one-loop graphs with one insertion of the p4 Lagrangian (and arbitrary p2 vertices),
or two-loop graphs involving only p2 interactions.

The fields in χPT live on a coset space G/H, which is the group manifold SU(n) for
QCD chiral perturbation theory. The independent coordinates can be chosen to be πa defined
in eq. (6.1), and the pion covariant derivative [42, 43] is

Dµπ = −f2 uµ = ∂µπ − 1
6f2 [π, [π, ∂µπ]] + . . . (6.15)

5The existence of two relations was noted in refs. [39–41]. The linear relations can be obtained from
table 3.13 in [39] after replacing relation 26 by 2 × (26) + (63) + 2 × (76) + (137) = 0.
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The Riemann curvature tensor is

Rabcd = 1
f2 fabgfcdg + . . . (6.16)

where fabc are the SU(n) structure constants. In the notation of refs. [24, 37], the chiral
covariant derivative acting on a field X that transforms as X → hXh−1 is

∇µX = ∂µX + [Γµ, X] Γµ = 1
2(u

†∂µu+ u∂µu
†) (6.17)

and the curvature (field-strength) is

[∇µ,∇ν ]X = [Γµν , X] Γµν = 1
4 [uµ, uν ]−

i

2f+µν (6.18)

where f+µν = 0 when external sources are turned off. Γµν is the curvature eq. (6.16) on
rescaling by (2/f)2 from the normalization of Dµπ relative to uµ.

For a Lie group, the covariant derivative of the Riemann curvature tensor vanishes,

∇eRabcd = 0 . (6.19)

This greatly simplifies the computation of loop corrections, since many terms in the tensors
X,Y,A,Aµ, B,Bµ, Bµν and their covariant derivatives vanish. With external sources set to
zero, the tensors take the simple form:

Xab = −Racbd(Dµπ)c(Dµπ)d ,

[Yµν ]ab = Rabcd(Dµπ)c(Dνπ)d ,

Aabc = 0 ,

Aµ
a|bc =

1
3 (Rabcd +Racbd) (Dµπ)d

Aµν
ab|c = 0

Babcd = 1
6ReabfRecdg(Dµπ)f (Dµπ)g sym(abcd) ,

Bµ
a|bcd = 0

Bµν
ab|cd = − 1

12η
µν (Racbd +Radbc) . (6.20)

The one-loop graphs from the p2 Lagrangian generate order p4 counterterms using
eq. (3.12). We can expand about π = 0, and compare our counterterms with eq. (6.5) to
get the one-loop counterterm coefficients

Γ̂0 = n

48 , Γ̂1 = 1
16 , Γ̂2 = 1

8 , Γ̂3 = n

24 , (6.21)

which agrees with [24, (3.14)].
The two-loop graphs from the p2 Lagrangian generate order p6 counterterms Γ̂(2)

i and
Γ̂(1)

i which are listed in table 1. These agree with table IV of [24] using the identities eq. (6.13)
to eliminate Y57 and Y60. The agreement provides a highly non-trivial check of our method.
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Y Γ̂(2)
i 16π2Γ̂(1)

i Γ̂(L)
i

1 5
48 + 1

64n
2 − 67

576 − 7
1728n

2 1
12nL̂0 + 3L̂1 + 1

6 L̂2 + 17
24nL̂3

2 1
576n − 31

6912n
5
24 L̂

r
0 − 1

24nL̂
r
2 + 5

48 L̂
r
3

3 − 5
48 + 1

2304n
2 61

2304 + 11
27648n

2 1
48nL̂0 − 7

6 L̂1 − 13
12 L̂2 + 1

96nL̂3

4 −11
72n − 49

3456n −5
4 L̂

r
0 − 2nL̂r

1 − 3
4nL̂

r
2 − 35

24 L̂
r
3

5 − 1
768n

2 − 23
256 − 49

27648n
2 −11

48nL̂0 + 11
6 L̂1 − 11

12 L̂2 + 5
96nL̂3

6 −13
32n − 5

192n −3
4 L̂

r
0 − 6nL̂r

1 − 9
4nL̂

r
2 − 27

8 L̂
r
3

49 − 5
576n

2 5
48 + 1

2304n
2 1

4nL̂0 − 4
3 L̂1 + 2

3 L̂2 − 13
24nL̂3

50 1
32n

5
128n −1

4 L̂
r
0 + 1

4nL̂
r
2 + 7

8 L̂
r
3

51 1
64

5
256

1
4 L̂

r
2

52 − 11
384n

2 17
128 + 77

13824n
2 −17

24nL̂0 − 1
3 L̂1 + 1

6 L̂2 − 49
48nL̂3

53 − 1
64n − 5

256n L̂r
0 − 5

4 L̂
r
3

54 1
48n

2 −17
64 − 13

3456n
2 −1

3nL̂0 + 2
3 L̂1 − 1

3 L̂2 + 7
6nL̂3

55 − 1
24n − 1

72n −2
3 L̂

r
0 − 2

3nL̂
r
2 + 1

3 L̂
r
3

56 − 1
32

3
128 −1

2 L̂
r
2

58 1
1152n

2 11
384 − 13

13824n
2 1

24nL̂0 + L̂1 − 1
2 L̂2 + 1

48nL̂3

59 − 1
192n

65
2304n L̂r

0 − 3
4 L̂

r
3

61 7
192n − 23

2304n L̂r
0 + 5

4 L̂
r
3

62 − 1
12n − 5

288n −13
3 L̂

r
0 − 1

3nL̂
r
2 − 5

6 L̂
r
3

63 −1
8 − 1

32 −2L̂r
2

Table 1. The counterterms for the p6 Lagrangian. The first column lists the operator Yi. Y57 and
Y60 were eliminated using eq. (6.13). The second and third columns list the 1/ϵ2 and 1/ϵ counterterm
coefficients Γ̂(2)

i and Γ̂(1)
i from two-loop graphs from the p2 Lagrangian. The last column lists the 1/ϵ

one-loop counterterm from an insertion of the p4 Lagrangian. The normalization is given in eq. (6.9).
The counterterms agree with ref. [24] after using eq. (6.13).
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We also need the one-loop corrections with an insertion of the p4 Lagrangian eq. (6.5).
The p4 Lagrangian has four derivatives, but at most one derivative acting on a single field, and
our method can still be used. The one-loop graphs are computed by expanding the Lagrangian
to second order in the quantum field η, i.e. by taking the second derivative of the Lagrangian
in the Riemann normal coordinate expansion of section 2. Using the basic equations eq. (2.13)
and eq. (2.20) for the derivatives on fields, the second variation of the p4 Lagrangian is

Cabη
aηb = 2L̂0⟨R(η, uµ)η uν u

µ uν⟩+ 2L̂1⟨R(η, uµ)η uµ⟩⟨uν u
ν⟩+ 2L̂2⟨R(η, uµ)η uν⟩⟨uµ uν⟩

+ L̂3
[
⟨R(η, uµ)η uµ uν u

ν⟩+ ⟨R(η, uµ)η uν u
ν uµ⟩

]
(6.22)

Cµ
ab = 0 (6.23)

Cµν
ab (∇µη)a(∇νη)b = L̂0 [4⟨∇µη∇νη u

µ uν⟩+ 2⟨∇µη uν ∇µη uν⟩]
+ L̂1 [2⟨∇µη∇µη⟩⟨uν u

ν⟩+ 4⟨∇µη u
µ⟩⟨∇νη u

ν⟩]
+ L̂2 [2⟨∇µη∇νη⟩⟨uµ uν⟩+ 2⟨∇µη uν⟩⟨∇µη uν⟩+ 2⟨∇µη uν⟩⟨∇νη uµ⟩]
+ L̂3

[
2⟨∇µη∇µη uν u

ν⟩+ 2⟨∇µη∇νη u
ν uµ⟩+ ⟨∇µη u

µ ∇νη u
ν⟩+ ⟨∇µη uν ∇νη uµ⟩

]
(6.24)

on comparing with the general second variation eq. (3.10) in paper I. The one-loop counterterm
in eq. (3.11) of paper I gives the results in the Γ̂(L)

i column of table 1, and agrees with [24]
using eq. (6.13).6

In the general case, one-loop corrections from higher derivative terms with at most a single
derivative on each field can be computed the same way. First, the fluctuation Lagrangian
is computed to quadratic order in η to determine the coefficients Cab, Cµ

ab and Cµν
ab , and

then, the one-loop counterterms are computed from eq. (3.11) of paper I. This was also
used to compute the one-loop RGE in SMEFT from dimension-eight H4D4 operators, which
agrees with the previous calculation of ref. [44] using diagrammatic methods. The H4D4

contribution to the SMEFT RGEs is given in appendix C.
Two-loop corrections are computed from η3 and η4 fluctuation terms. Higher derivative

interactions can generate (Dη)2η, (Dη)3, (Dη)3η and (Dη)4 interactions. The two-loop
counterterms can then be computed by the same method as given in paper I for the A-type
and B-type two-loop counterterms. However, we have not explicitly computed the counterterm
coefficients with these additional interactions, so we cannot determine the two-loop corrections
from higher derivative operators without additional work.

7 Conclusions

The geometric method has been used to compute the two-loop renormalization of generic
scalar QFTs, applying the counterterm formula developed in paper I. The counterterms
can be derived purely algebraically, in terms of covariant derivatives of the scalar potential

6In an earlier version of this paper, we found a discrepancy with the result of [24]. The source of this
discrepancy was that in eq. (3.11) of paper I, the terms 1

12 Cµν
ab Y µα

bc Y να
ca − 1

4 Cµν
ab Y να

bc Y µα
ca were instead written

as 1
12 Cµν

ab Y να
bc Y µα

ca − 1
4 Cµν

ab Y µα
bc Y να

ca . We thank J. Bijnens, G. Colangelo, and G. Ecker for help resolving
this discrepancy.
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and Riemann curvature tensor, which are computed by taking derivatives of polynomial
coefficients in the Lagrangian. We have applied the method to the O(n) EFT, the Higgs
sector of the SMEFT, and chiral perturbation theory. The agreement with previous results
computed by other methods provides a highly non-trivial check on our calculation.

The results in this paper are for scalar loops. The method is generalizable to gauge and
fermion loops, as has already been done for one-loop renormalization [3–7].
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A Two-loop Counterterms for the O(n) EFT

Using our one-loop and two-loop formulæ gives the counterterms for the O(n) EFT listed
below. The subscripts 1, 2 denote the one-loop and two-loop contributions, respectively
(see footnote 3).

Zϕ =1+1
ϵ

{
4(n−1)m2CE

}
1
+ 1
ϵ2

{
4(n−1)(n+2)λm2CE

}
2

+1
ϵ

{
−1
2(n+2)λ2+4

3(n+2)λm2CE

}
2

(A.1)

Λc.t. =
1
ϵ

{
nm4

4

}
1
+ 1
ϵ2

{1
4n(n+2)λm4−n2m6CE

}
2

(A.2)

m2
c.t. =

1
ϵ

{
(n+2)λm2−4nm4CE

}
1
+ 1
ϵ2
{
(n+2)(n+5)λ2m2−2(n+2)(7n+6)λm4CE

−6(n+2)(n+4)m4C1
}

2+
1
ϵ

{
−5
2(n+2)λ2m2+20

3 (n+2)λm4CE

}
2

(A.3)

λc.t. =
1
ϵ

{
(n+8)λ2−8(n+3)λm2CE−12(n+4)m2C1

}
1
+ 1
ϵ2
{
(n+8)2λ3

−12(2n2+21n+50)λ2m2CE−36(n+4)(n+10)λm2C1
}

2

+1
ϵ

{
−3(3n+14)λ3+8

3(22n+113)λ2m2CE+120(n+4)λm2C1

}
2

(A.4)

C1,c.t. =
1
ϵ

{
10λ2CE+3(n+14)λC1

}
1
+ 1
ϵ2
{
5(7n+62)λ3CE+3(n+14)(2n+25)λ2C1

}
2

+1
ϵ

{
−2
3(23n+259)λ3CE− 21

2 (7n+54)λ2C1

}
2

(A.5)

CE,c.t. =
1
ϵ
{2(n+2)λCE}1+

1
ϵ2
{
3(n+2)(n+4)λ2CE

}
2+

1
ϵ

{
−17

2 (n+2)λ2CE

}
2

(A.6)
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B Two-loop counterterms for SMEFT

The one- and two-loop counterterms for the scalar sector of SMEFT are

ZH =1+1
ϵ

{
−3CH□m

2
H

}
1
+1
ϵ

{
−3λ2+4CH□λm

2
H−CHDλm

2
H

}
2
+ 1
ϵ2

{
−18CH□λm

2
H

}
2

(B.1)

Λc.t. =
1
ϵ

{1
4m

4
H

}
1
+ 1
ϵ2

{3
2λm

4
H− 1

2CH□m
6
H+1

4CHDm
6
H

}
2

(B.2)

(m2
H)c.t. =

1
ϵ

{
6λm2

H−2CH□m
4
H+CHDm

4
H

}
1

+ 1
ϵ2

{
54λ2m2

H+18CHm
4
H−78CH□λm

4
H+30CHDλm

4
H

}
2

+1
ϵ

{
−15λ2m2

H+20CH□λm
4
H−5CHDλm

4
H

}
2

(B.3)

λc.t. =
1
ϵ

{
12λ2+6CHm

2
H−16CH□λm

2
H+6CHDλm

2
H

}
1

+ 1
ϵ2

{
144λ3+252CHλm

2
H−672CH□λ

2m2
H+216CHDλ

2m2
H

}
2

+1
ϵ

{
−78λ3−60CHλm

2
H+274CH□λ

2m2
H− 141

2 CHDλ
2m2

H

}
2

(B.4)

(CH)c.t. =
1
ϵ

{
54CHλ−80CH□λ

2+24CHDλ
2
}

1

+ 1
ϵ2

{
1782CHλ

2−3600CH□λ
3+1008CHDλ

3
}

2

+1
ϵ

{
−861CHλ

2+1992CH□λ
3−498CHDλ

3
}

2
(B.5)

(CH□)c.t. =
1
ϵ
{12CH□λ}1+

1
ϵ2

{
144CH□λ

2
}

2
+1
ϵ

{
−51CH□λ

2
}

2
(B.6)

(CHD)c.t. =
1
ϵ
{6CHDλ}1+

1
ϵ2

{
54CHDλ

2
}

2
+1
ϵ

{
−36CHDλ

2
}

2
(B.7)

(Cr)c.t. =
1
ϵ
{6CHGλ}1+

1
ϵ2

{
54CHGλ

2
}

2
+1
ϵ

{
−15CHGλ

2
}

2
(B.8)

for r = HG,HG̃,HW,HW̃ ,HB,HB̃, and

(Cr)c.t. =
1
ϵ
{2CHW Bλ}1 +

1
ϵ2

{
14CHW Bλ

2
}

2
+ 1
ϵ

{
−7CHW Bλ

2
}

2
(B.9)

for r = HWB,HW̃B.

C SMEFT H4D4 insertions

The contributions of H4D4 insertions to the SMEFT renormalization group equations up
to dimension eight (with 1/(16π2) absorbed into the definition of d/dt) are:

ṁ2
H = −3

2m
6
H

8
C

(1)
H4D4 −

3
4m

6
H

8
C

(2)
H4D4 −

9
4m

6
H

8
C

(3)
H4D4 , (C.1)

λ̇ = −19
3 λm

4
H

8
C

(1)
H4D4 −

19
6 λm

4
H

8
C

(2)
H4D4 −

23
2 λm

4
H

8
C

(3)
H4D4 , (C.2)
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ĊH = −18λ2m2
H

8
C

(1)
H4D4 − 22λ2m2

H
8
C

(2)
H4D4 − 32λ2m2

H
8
C

(3)
H4D4 , (C.3)

ĊH□ = −2λm2
H

8
C

(1)
H4D4 + 2λm2

H
8
C

(2)
H4D4 − 6λm2

H
8
C

(3)
H4D4 , (C.4)

ĊHD = −4λm2
H

8
C

(1)
H4D4 + 4λm2

H
8
C

(2)
H4D4 , (C.5)

8
ĊH8 = 56

3 λ
3 8
C

(1)
H4D4 +

184
3 λ3 8

C
(2)
H4D4 + 16λ3 8

C
(3)
H4D4 , (C.6)

8
Ċ

(1)
H6D2 = 64

3 λ
2 8
C

(1)
H4D4 −

124
3 λ2 8

C
(2)
H4D4 + 44λ2 8

C
(3)
H4D4 , (C.7)

8
Ċ

(2)
H6D2 = 20λ2 8

C
(1)
H4D4 − 20λ2 8

C
(2)
H4D4 , (C.8)

8
Ċ

(1)
H4D4 = 8λ 8

C
(1)
H4D4 +

8
3λ

8
C

(2)
H4D4 +

8
3λ

8
C

(3)
H4D4 , (C.9)

8
Ċ

(2)
H4D4 = 8

3λ
8
C

(1)
H4D4 + 8λ 8

C
(2)
H4D4 +

8
3λ

8
C

(3)
H4D4 , (C.10)

8
Ċ

(3)
H4D4 = 16λ 8

C
(1)
H4D4 +

32
3 λ

8
C

(2)
H4D4 +

80
3 λ

8
C

(3)
H4D4 . (C.11)

These agree with ref. [44].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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