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1 Introduction

Observables in quantum field theory (QFT), such as S-matrix elements, are unchanged
under field redefinitions of the Lagrangian, even though Green functions do change. Thus,
observable quantities are determined in terms of field-redefinition invariants constructed
from the Lagrangian. The fields in a QFT take values in a manifold M such as the curved
three-sphere S3 for SU(2) chiral perturbation theory. Field redefinitions correspond to
coordinate transformations on M, so field-redefinition invariants are coordinate invariant
quantities built out of geometrical objects such as the Riemann curvature tensor of M.
The one-loop renormalization of scalar QFTs using a geometrical approach was studied in
refs. [1, 2]. The method was generalized to include gauge fields [3, 4] and fermions [5-7].
Closely related work by other groups can be found in [3, 8-16]. In this paper, we restrict
our discussion to scalar QFTs.

't Hooft [17] computed the one-loop counterterm for a renormalizable scalar field theory
containing terms with up to two derivatives in the Lagrangian. The one-loop counterterm
formula of ’t Hooft [17] requires the scalar kinetic term be canonical, i.e.

L = 5 (D) (D)’ (1.1

as in a renormalizable QFT. Effective field theories (EFTs) such as the Standard Model
Effective Field Theory (SMEFT) or chiral perturbation theory (xPT) contain non-trivial



kinetic terms of the form

1

Lk = §9z'j(¢)(Du¢)i(D“¢)j, (1.2)

where g;;(¢), the metric on M, in general is non-trivial. Refs. [1, 2] derived a generalization
of 't Hooft’s formula that is valid for a general kinetic energy eq. (1.2). Radiative corrections
were given in terms of the Riemann curvature tensor constructed from g;;.

In a recent paper [18], referred to as paper I, we derived the two-loop counterterms and
anomalous dimensions for a scalar field theory with interactions up to two derivatives and
with a canonically normalized kinetic energy term, which is the two-loop version of 't Hooft’s
formula. In this paper, we use the geometric approach of refs. [1, 2] to extend the results of
paper I to an arbitrary scalar theory with interactions up to two derivatives. Our two-loop
result allows for a purely algebraic computation of the two-loop counterterms, i.e. we have
a universal formula for the counterterms in terms of the Riemann curvature Rg,.q, which
is determined from derivatives of the metric g;;.

In this paper, we use the Riemann normal coordinate expansion to compute the fluctuation
Lagrangian. The covariant formalism allows for a transformation to a local Cartan frame,
where the results of paper I can be used to compute the renormalization counterterms for a
general two-derivative scalar theory. The final result is coordinate invariant, so after deriving
it, we can use it in any coordinate system. The universal two-loop formula is applied to a
number of examples. It is used to compute the two-loop renormalization group equations
(RGE) for the O(n) EFT to dimension six, the two-loop RGE for the Standard Model
Effective Field Theory scalar sector to dimension six, and the two-loop RGE of SU(n) chiral
perturbation theory to order pS. Our geometric approach greatly simplifies the computation —
(a) The corrections are grouped into geometric objects such as the Riemann curvature tensor,
which transform covariantly under field redefinitions. (b) The two-derivative cubic interaction
in the fluctuation Lagrangian (D,n)(D,n)n vanishes in Riemann normal coordinates, even
though it is present under the usual background field method of taking ¢ — ¢ + n and
expanding in 7. Thus, the use of Riemann normal coordinates removes a large number
of counterterms that would otherwise have to be computed. (c) Factorizable diagrams do
not contribute to the anomalous dimensions. (d) The field theory for n has an O(n) gauge
symmetry, noted by 't Hooft [17], which restricts the form of the counterterms, and allows
one to determine them without having to compute higher-point amplitudes, even in an EFT.
(e) The computations are algebraic, i.e. one writes the metric g;;(¢) as a polynomial in
fields, computes the Riemann curvature tensor in terms of derivatives of g;;, and takes traces.
No Feynman diagrams need to be computed. The basic Feynman graphs give counterterm
coefficients which are universal for all EFTs and are tabulated in paper I.

This paper is organized as follows. In section 2, we discuss the Riemann normal coordinate
expansion, which is used in the derivation of the geometrical version of the two-loop formula.
Section 3 then derives the geometrical version of the two-loop results of paper I. Next, we
consider applications to specific scalar field theories. In sections 4, 5 and 6, the algebraic
two-loop formula is applied to the O(n) effective field theory to dimension six, SMEFT to
dimension six, and chiral perturbation theory to order p%, respectively. Our results for the
O(n) EFT agree with known results [19, 20] for n = 1,2. Our results for SMEFT agree with



known two-loop results for the SM when higher dimension operators are dropped [21-23],
and our results for yPT agree with ref. [24] . Finally, we present conclusions in section 7.

2 Riemann normal coordinate expansion

The theory we consider is an arbitrary scalar theory with up to two derivatives coupled to
external gauge fields. We follow the notation and analysis of refs. [1, 2]. The Lagrangian is

1

L= §9ij(¢)(Du¢)i(D#¢)j - V() (2.1)

where ¢ are real scalar fields which take values in a scalar manifold M. Complex scalar fields
are written in terms of real scalar fields. The scalar field metric is g;;(¢), and transforms as a
metric tensor under field redefinitions (i.e. coordinate transformations of M),

/ dg* d¢'
9ij = <8¢’i> <a¢,j>9kl- (2.2)

Indices on M are lowered and raised using g;; and its inverse g*.

If the manifold M on which the scalar fields live has a symmetry, then some of them can
be local (gauge) symmetries. In this case, the potential V(¢) must also be invariant under
the gauged symmetries. The symmetries of M are generated by Killing vectors ¢, (¢) with
vanishing Lie derivative of the metric, %;, g = 0. They satisfy Killing’s equation

Vitja + Vjtm =0, (2.3)

where the covariant derivative V uses the metric compatible torsion-free Christoffel connection
computed from g;;. For symmetries which are gauged, we also require .Z; V' = 0 so that
the Lagrangian is gauge invariant.

The covariant derivative is

(Do) = 9u0' () + to,(6) Api () (2:4)

where the gauge fields A,(x) do not depend on ¢. The coupling constant and a factor of 4
has been absorbed into t,. The Killing vectors satisfy the Lie algebra

[t ts] = fop 'ty (2.5)

where the L.h.s. is a Lie bracket. Explicit expressions for the terms in eq. (2.1) in SMEFT
can be found in [1-3, 10].

Quantum corrections to eq. (2.1) are computed by writing ¢ = ¢+n, where ¢ is an external
(background) field and 7 is an internal (quantum) field which is integrated over. The one-loop
correction is computed from the quadratic term in 7, i.e. the second functional derivative
of the action. The expansion ¢ = ¢ + 1 introduces non-covariant terms in the functional
derivatives of the action [25, 26]. Under a change of coordinates, a vector V* transforms as

i 8¢/z .
1% :<8¢j>w. (2.6)
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Figure 1. Riemann normal coordinates on M. The red curve is a geodesic starting at Py with
tangent vector 7).

Note that ¢ is a coordinate which does not transform as a vector. In contrast, n’ = 6¢?,
the variation of ¢’, is a vector, but its derivatives are not [1, 2, 25, 26]. This introduces
non-covariant terms in the functional derivatives and one-loop corrections. However, as
pointed out in the introduction, we can make field redefinitions without changing the S-
matrix. One can make a change of variables to restore manifest covariance of the functional
derivatives and the radiative corrections. The idea is to use Riemann normal coordinates
to parameterize the quantum fluctuations, which turns functional derivatives into covariant
functional derivatives [1, 2, 25, 26].

Let Py be a point on M with coordinates ¢. This is the point around which we compute
the fluctuation Lagrangian. The geodesic ¢(n, \) is a curve starting at Py with tangent
vector 7y and parameter A,

d¢'(n, \)

o =T, n(A=0)=mo, (2.7)

¢'(n,0) = ¢,
which satisfies the geodesic equation V,n = 0, or in coordinates,

d2 7 ) d ‘d k
d;; +r;k(¢)g% =0. (2.8)

The geodesic equation eq. (2.8) is homogeneous in A, so that ¢(n, \) = ¢(sn, \/s) under
rescaling by any constant s. A point P with coordinates ¢’(?P) has Riemann normal co-
ordinates 7°(P), where ¢*(P) = ¢*(n(P), 1), i.e. the starting velocity at Py such that the
geodesic reaches P at A = 1 is the Riemann normal coordinate n*(P). The advantage of
Riemann normal coordinates is that n(P) transforms as a vector at the point Py under

1

coordinate transformations.” The coordinate ¢' in Riemann normal coordinates is given

by the series expansion
i i i Lo ik Lz Gkl L ap Gk LT
¢" = o + X" — S A Do) " — A" Ui (o) 1™ — o A" Uiy (o) '™’ + -
(2.9)

where the series coefficients are evaluated by taking successive derivatives of the geodesic
equation eq. (2.8), and at each step replacing second derivatives of ¢’ by first derivatives

!Note that it is a vector at Po, not P.
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Figure 2. Skeleton graphs for two-loop corrections to the action. There can be an arbitrary number
of nm vertex insertions on the lines.

using eq. (2.8). The higher order terms involve generalized Christoffel symbols [27], which
are functions of the standard Christoffel symbols and their derivatives. The background field
¢o(x) is a function of the spacetime point x, so the above procedure gives the quantum field
n(z) by using eq. (2.9) point-by-point in x to parameterize the fluctuation ¢(x) — ¢o(x).

The variation of the action is computed by differentiating S[¢(n, )] w.r.t. A, and eval-
uating the derivatives at A = 0. Expanding the action in the geodesic fluctuation 7 to
quadratic order in 7 yields

) . 52 )
Slp+ 1) = S[g) + 22 1( 5y 93

5o n' + 2 \ 5gisgi ”W) 'y +0(n’), (2.10)

where the terms transform as tensors at Py. The second functional derivative of S has
been replaced by the covariant second functional derivative when using Riemann normal
coordinates.

The two-loop contributions to the functional integral are shown in figure 2. The graphs
involve n?, 3 and n* interactions, so we need the expansion of the action to fourth order in
1. This can be done efficiently by using a coordinate-free notation, and differentiating the
action four times w.r.t. the geodesic parameter A\. We start by computing the derivatives of
D, ¢, which are needed in the evaluation of derivatives of the action. Its first derivative is

VA(DL9) = VA(0ud + taAD) = VA(8u8) + (Vata) Al (2.11)

since the gauge field is independent of the scalar field. The connection is torsion free,
T(X,Y)=VxY -VyX —[X,Y] =0, and [0y, 0,] = 0, since partial derivatives commute, so

Va(0u9) = Vu(0r9) = Vyun (2.12)
and
VA(Dud) = Vun + (Vata) A% = Vun + (17 Vjita) A% = Dun, (2.13)

where the covariant derivative 2,n was defined in [1, 2]. The covariant derivative & acts
on tensors, and can be used to differentiate tensors with an arbitrary number of indices.
In coordinates,

(Zun)’ = (Bun’ + Tiy0ud™n’) + AL (th , +Thyth) 0’ = V' + Aln? V8
= (00’ + At ) + T (90" + thAL) nf = (D)’ + T (Do)’ . (2.14)



The first form shows that Z,n is coordinate invariant, and the second form shows that &7 is

gauge invariant. The gauge generators acting on vectors such as 1’ are ¢ ;> as shown in [1].
The geodesic derivative of 2,7 is ?

VaZum =V [v,m + (vAta)Ag} = VAV + (VaVala) A% (2.15)
The first term is
VaVun = [V)n Vu]n +V,Van = R(n, 8;&5)77 (2.16)

since Van = V,n = 0 by the geodesic equation, and using the definition of the Riemann
curvature, R(X,Y)Z = [Vx,Vy|Z — Vix y]Z. Eq. (2.16) is the geodesic deviation equation,

VaVa(0u0) = R(1, 0ug)n - (2.17)
We also have
VaViata = R(n,ta)n (2.18)
which follows from Kostant’s equation for a Killing vector
V,;Vith = Ryt (2.19)

Combining eq. (2.16) and eq. (2.18) gives the gauge invariant form of the geodesic deviation
equation,

v/\(‘@u ) - R(nv DM¢>77 ) (22(])

for the derivative of Z,n. Eq. (2.13) and eq. (2.20) are sufficient to compute all higher A
derivatives of D,¢. For example, the next derivative is
VaAVA(Zun) = VA [R(n, Dud)n] = (VAR)(n, Dud)n + R(n, VADu¢)n
= ("ViR)(n, Dud)n + R(n, Zun)n (2.21)
since Vyn = 0, and is cubic in 7.
We can now compute the variation of the Lagrangian eq. (2.1) to fourth order by repeated

application of eq. (2.13), eq. (2.20), and metric compatibility of the connection, Vg = 0.
The variations are

0L = g(Dun, D'¢) — V\V |
1 1 1
5L = 59(1?(777 D, ¢)n, D*¢) + 59(%77, D"'n) — A

1 2 1
$L = Zg((VAR) (0, Dud), D) + Zg(R(, Db}, 71) = =VAVAVAV.,

1 1 1
5L = ﬁg((VAVAR)(n, D,¢)n, D'¢) + Zg((VAR)(n, Duo)n, 2"n) + gg(R(n, Dunn, 2'n)

1
+ ~g(R(n, Dué)n, R(n, D $)n)

5 VAaVAVAVAY), (2.22)

1
_ﬂ<



where we have included the 1/n! prefactor in the n'" variation, and used the symmetry of
the Riemann tensor g(R(A, B)D,C) = g(R(C, D)B, A).? The second order term eq. (2.22)
was given in [2, (50)][1, (3.42)], and used to compute the one-loop corrections. Here we
need the third and fourth order terms to compute the two-loop corrections. The Lagrangian
expansion in terms of quantum fields defined with respect to geodesic coordinates found in
eq. (2.22) has previously been derived in the context of the non-linear sigma models in two
space-time dimensions [28-30]. In the next section, we combine eq. (2.22) with the result
in paper I to obtain the general two-loop counterterms.

3 Derivation of the two-loop formula

We briefly summarize the results of paper I on the two-loop counterterm formula. The
derivation relies on the second, third, and fourth order fluctuations terms having the form

1 1
L® = Z(Dm)a(D"n)® + = Xapn®n®
2

2
L = Agpen®n®n® + Aa|bc( 1)’ + Aab|c( ) (D)’
LY = Bapeann"nn® + Bliyog(Dun) 0’ nn® + Bly (D) (Do) nn, (3.1)
where
(D) = 0™ + (Nu)ast” (3:2)

and the coefficients (N)qp, Xap, etc. are functions of the background field, and satisfy the

symmetry relations

Né‘b%—Né;:O

Al AL+ A

albe

a|bcd + Bb\cda + Bc|dab d|abc =0, (33)

c|ab 0,

i.e. the completely symmetric parts of N#, A* and B*” vanish. The coefficients are also
symmetric under permutation of 7 indices, and simultaneous permutation of D,n indices.
The field-strength tensor is defined by

Y =Dy, Dy = OuNy, — 0Ny + [Ny, N, (3.4)

The terms in eq. (2.22) have the structure of the terms in eq. (3.1). They involve at
most two first covariant derivatives of 7, Z,n. There are no terms with second derivatives
of n, 2,%,n. The cubic term has either n3 terms or nnZn terms; there is no nZn%n term
with two first derivatives. This feature greatly simplifies the computations required for the
two-loop correction. In the extension of 't Hooft’s formula to two loops, we do not need to
include the Ag bu‘c interaction. If we had instead used a naive expansion ¢ — ¢ + 7, there
would in general be such two-derivative terms in the cubic Lagrangian, making the two-loop

2In component notation g(R(A, B)D,C) = Ry, C*D? A¥ B!,



result far more complicated. The quartic term has n*, n*Zn and n?2,n%,n terms. The
term with two first derivatives in the original Lagrangian eq. (2.1) has their Lorentz indices
contracted, so the B ;]C , interaction is proportional to 7.

Loop corrections to the action eq. (2.1) can be computed using the expansion in quantum
fluctuations eq. (2.22). We are free to make field redefinitions, which leave the S-matrix
invariant. It is not possible to make field redefinitions (coordinate transformations) in the
original Lagrangian eq. (2.1) to make the metric trivial, ¢;j(¢) — d;;. The obstruction to
finding such a transformation is the non-vanishing of the Riemann curvature tensor R;jxi(¢),
which depends on second derivatives of the metric g;;. The 't Hooft formula is not directly
applicable for general Lagrangians such as eq. (2.1), since the formula is only valid for a
canonical kinetic term proportional to d;;.

A big advantage of using Riemann normal coordinates is that the expansion is in powers
of n* which transforms like a vector, unlike ¢’ which is a coordinate. To simplify the radiative
corrections, we can go to a local orthonormal (Cartan) frame by introducing vielbeins,

9i5(0) = €} ($)e}(¢)0ab (3.5)

and transform all tensors to the local frame. This frame is a non-coordinate basis, i.e. we
can make a local choice of tangent vectors satisfying eq. (3.5), but we cannot integrate
this to a change of coordinates which makes the metric trivial if the Riemann curvature is
non-vanishing. Local frame indices will be denoted by a,b, ¢, .... The metric tensor in the
local frame is 6,,. The tangent vector n' in the local frame becomes

" =el(dm', (3.6)

which is a field redefinition on the quantum field, and does not change the S-matrix.

The variation of the action in the local frame takes the same form as eq. (2.22) with
coordinate indices ¢, j, k, . .. replaced by local frame indices a, b, c,.... The second variation
of the action eq. (2.22) is

L= (D)ol P"n) +  Raea Dud)aP* (D0) — L Va0V . (37)
This second variation has the same form as eq. (3.1) with
Xap = —Racha (D) (D" $)" = Va V3V . (3.8)
The covariant derivative eq. (2.14) is
(Zum)® = 0" + wiy '’ + Vtin AT (3.9)
where wfj is the Cartan connection. Comparing with eq. (3.2), N#* is
NI = wigp 019" + Vita AR (3.10)

where we can lower local frame indices using the metric d4,. The metric compatible Cartan
connection wjqp is antisymmetric in a, b, as is the derivative of the Killing vector Vtg, so



that N is automatically antisymmetric in a, b, as required in eq. (3.3). The commutator
of two covariant derivatives eq. (3.4) gives [1]

[Y/ﬂ/]ab = [glu 9}/] - Rabcd(DH¢)c(DV¢)d + vbtgF;?y (311>
using properties of the Killing vector. The one-loop counterterm formula of 't Hooft is
(1) 1 1 ba _ 1 vyba
=—F|—- — —(Yu)a(YH A2
‘Cc. . 1672¢ 4 ab 24( . ) b( ) (3 )

which is only valid if the kinetic term has canonical normalization 4, and (N,)q is anti-
symmetric. Both conditions are satisfied in the local Cartan frame, so we can use eq. (3.12)
with X and Y}, given in eq. (3.8) and eq. (3.11).

At first sight, this seems like an involved computation, having to first determine the
vielbeins which satisfy eq. (3.5), transform to the local frame, etc. However, the final expression
for the counterterm eq. (3.12) is coordinate invariant and written in terms of tensor quantities.
It can be evaluated in any frame. In particular, it can be evaluated in the original coordinate
basis — i.e. the entire transformation to the local frame is not actually needed to compute
the counterterms; it is only needed to make sure that the formuls in paper I can be applied.
For example, the one-loop counterterm in the local frame eq. (3.12) becomes

= ﬁ —%Xinkl g g’ — i[w”]’j Yyl (3.13)
in the original coordinate basis, where we have to be careful to raise and lower indices with
the metric tensor g;; and its inverse g%. The coordinate basis expressions for X and Y are

Xij = —Rigji(Dud)F (Dyuo) — ViV,;V,
Yw)'j =190, 2" ; = R (D) (D @) + Vith FS, (3.14)

and D,¢ is given in eq. (2.3). Eq. (3.14) is the result derived in refs. [1, 2]. Eq. (3.14) can
be computed using the original Lagrangian, without having to transform to a local frame.
The terms have the same form as eq. (3.8) and eq. (3.11) with local frame indices replaced
by coordinate indices. This method was used to compute the one-loop SMEFT anomalous
dimensions in the bosonic sector to dimension eight in ref. [3].

For the two-loop correction, we need the cubic plus quartic terms in eq. (2.22), from
which we can read off the expansion coefficients in eq. (3.1)

1
Aabe = =2V (@ViVe)V = 2 (VaRidee + Vo Redae + VeRadbe) (D) (D")°

1
18

1
A'Z|bc = g (Rabcd + Racbd) (DM¢)d
ALy =0

1 1
Baped = _ﬂvavbvcvdv - ﬂvavdeecf(D,ud))e(Dud))f
1

"6

Reabeecdg (D,u¢)f (D'u ¢)g Sym(ade)

1
Buled =1 (VaRapee) (DH )¢ sym(bed)

a

1
Bg;]cd = _ETIW/ (Racbd + Radbc) (315)



The notation sym(abed) and sym(bed) means the expressions have to be completely sym-
metrized in abed and in bed, i.e. we sum over the n! permutations and divide by n!. A
remarkable fact is that the coefficients A* and B* automatically satisfy the symmetry rela-
tions eq. (3.8) using the Bianchi identities Rypeq + Rbcad + Reabd = 0 and Vg Rpede + Vi Reade +
VeRapde = 0, just like the earlier result that N* was automatically antisymmetric in the local
frame. We also find that A" automatically vanishes. The above equations are tensorial,
and so can be used in the original coordinate basis i, j, k, ... being careful about raising
and lowering indices using g;;.

This derivation has been a lengthy one, but the final result is simple — Compute the
quantities A, A*, B, B*, B* using the expressions in eq. (3.15) in the original coordinate
frame, and substitute into the counterterm expressions eq. (4.1) and eq. (4.3) of paper I,
contracting upper indices with lower indices and raising and lowering indices using g;;.

The counterterms in paper I depend on the tensors X, Y, A, A*, B, B*, B* and their
covariant derivatives. Multiple covariant derivatives are given by repeated applications of
the covariant derivative 2 in eq. (2.14) which acts on tensors. ¢ is not a tensor, and its first
derivative is D¢ = 0,6 + toAj. Since D¢ is a tensor, subsequent covariant derivatives
are given by Z. There are two formulse which can be used to simplify multiple covariant

derivatives,

Du(Dyd)’ — Du(Dyd)’ = tLFS, |
[@w gl/]ij = (Yw)ij' (3'16)

These can be used to reorder the indices on multiple covariant derivatives of ¢ and transform
them to the form 2,(D"¢) which can be removed by a field redefinition. The tensors
X, Y A A" B, B B* also contain the Riemann curvature tensor, the potential V', and
their derivatives. Their Lie derivatives w.r.t. the Killing vectors t, vanish. Any tensor T'(¢)
with arbitrary number of upper and lower indices and vanishing Lie derivative w.r.t. the
Killing vectors t, has covariant derivative

2,T = (D,¢)" (V.T). (3.17)

If a tensor T satisfies .£;, T = 0, then so does it covariant derivative VT, because %, , V] =0
when t, is a Killing vector, which can be proved from the Kostant formula for a Killing
vector eq. (2.19). Eq. (3.17) then gives the covariant derivatives of A, A" etc. needed to
compute the counterterms.

An EFT has an expansion in powers of 1/M, where M is a high-energy scale much
larger than the scales in the EFT. The potential V up to terms of order ¢* is from the
renormalizable dimension-four part of the Lagrangian, so the terms up to four derivatives in V'
power-count as dimension-four terms. Note that even terms such as m?¢? are power-counted
as dimension four terms rather than dimension two, because m is a low scale in the EFT.
The mass term can be written in terms of the EFT power counting as (m/M)2M?2¢?, i.e. as a
dimension two operator with a m?/M? suppressed coefficient, and so acts as dimension four.
The same argument applies to other terms with dimension < 4 such as ¢? interactions. The
curvature Rgp.q has terms with two derivatives of the metric, or the square of one derivative
of the metric. These arise from (¢/M)? or the square of ¢/M terms in the metric respectively,

,10,



$0 Rapea ~ 1/M 2 is a dimension-six object. Similarly, VR ~ 1 /M 3 is dimension seven, and
R? ~ 1/M* and VVR ~ 1/M* are dimension eight.

4 The O(n) EFT

The O(n) EFT is the O(n) model including higher dimension operators. Our formalism
applies to Lagrangians with up to two derivatives, so the O(n) Lagrangian has the form

L= A0 0"0) + B(90,0)(0 0"6) ~ V (4.1

where A, B and V are functions of (¢ - ¢), and ¢ is an n-component real scalar field. Loop
corrections will generate higher derivative terms in the Lagrangian, which are implicitly
added to eq. (4.1). While these are not included in the formule derived earlier, we can
still consistently compute radiative corrections using eq. (4.1) — the result is the value of
the counterterms in the complete theory when the higher derivative coefficients are set to
zero. For example, in SMEFT we can compute the S-function for the dimension eight H*D*
operators (D, H'D,H)(D"H'D*H) from insertions of dimension-six operators, but not the
contribution of the dimension-eight operator to its own S-function.
One can make a field redefinition,

¢ =o' flp- ) (4.2)
and eliminate the B term in eq. (4.1). We will work to dimension six using the Lagrangian
1 " 1, A 9
L= 5(@@-8 ¢)—A—§m (¢'¢)—Z(¢'¢)

+ CE(¢- 0)(0ug - 0"¢) + C1(¢ - 9)* + Ca(¢ - 0u0)?, (4.3)

where A is the cosmological constant, and Cg, C1, Cy are coefficients of the dimension-six
terms and have mass dimension —2. The field redefinition eq. (4.2) allows one to remove
a linear combination of Cg and C5; the linear combination which cannot be eliminated is
2CE — Cy. We work in the basis where Cy = 0. The loop corrections generate Cs, and we
use field redefinitions to eliminate Cs and go back to the Co = 0 basis.

The metric and inverse metric are

917 = 6i5(1+2Cg(¢- 9)), g7 =871 -2Cp(6-9)), (4.4)
the Christoffel symbol is
I\ = 2Cp [5,@@- + 8l — 5jk¢>i] , (4.5)
and the curvature is
Rijr = 4CE [640;1 — 61 (4.6)

where the difference between up and down indices for F;k and R;j is dimension eight.
Including counterterms, the bare Lagrangian is

£= 326000 0°6) — [N+ M) = 5 Z0(m® + 12, )(6 - 8) — i Z3O+ den) (0 07
+ 12 Z(C + Crea ) (- )(0u6 - 9"0) + W Z3(Cr + Crea ) (6 0)°. (4.7)
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The explicit expressions for the counterterms are given in appendix A. The anomalous
dimensions and 't Hooft consistency conditions can be computed from the counterterms,
using the expressions given in paper I. The anomalous dimensions are (where C=pdC /dp)?

A= {;nm4}l+{0}2 (4.8)

{ (n42)Am? 8nm4CE}1+{—10(n+2))\2m2+E;O(n—&—2)/\m4C’E} (4.9)
2

A= {2 (n+8)A 16(n—|—3))\m2C'E—24(n—|—4)m2Cl}1

+{ 2(3n+14)\3+ 33 (22n+113))\2m20E+480(n+4))\m201} (4.10)
2
CE:{4(n+2))\C’E}1+{—34(n+2))\20E}2 (4.11)
Ch = {20)\20E+6(n+ 14)>\01}1+ {—2(23n+259))\3CE—42(7n+54))\201} (4.12)
2

where the subscripts outside the curly braces denote the one-loop and two-loop contributions.
The 't Hooft consistency conditions are satisfied. The anomalous dimensions of the O(n) EFT
were compute previously in refs. [19, 20] for n = 1 and n = 2. We agree with their results for
n = 1 to two-loop order; they have results to 5 loops. They use a dimension-six basis different
from ours for n = 2. The parameters in eq. (4.3) in terms of those of refs. [19, 20] are

1
3138

1 1 1
A=g9. Cp=90,  Ci=- g0 = 209 (413)

4

Our two-loop results for n = 2 agree with refs. [19, 20], which give results up to four loops.*

We find that the 't Hooft consistency condition is not satisfied for Z4, which implies
that the field anomalous dimension is infinite,

o= {—4<n_1>m20E}1+i{4<n—1><n+2>Am20E}2+{<n+2>A2—§<n+2>Am20E}2
(4.14)

The infinite contribution to ~4 is proportional to m? times a dimension-six coefficient, and
to (n —1). The anomalous dimensions eq. (4.8)—(4.12) are finite, even though 4 enters in
their computation through the Zy factors in eq. (4.7).

An infinite 4 arises because of the use of field redefinitions. Instead of the usual shift
¢ — ¢ +n, we use the expansion in eq. (2.9), which corresponds to a non-linear redefinition
ofn, n - n— F?knj n*/2 + .... We can understand the origin of infinite field anomalous
dimensions from the well-studied case of penguin graphs in the weak interactions. Consider
the one-loop graph of figure 3 due to the insertion of a four-fermion operator (¢y,1) (¥ 4),
which leads to a divergence proportional to (¢y,1)9, F#”. One can make a field redefinition to

3All { }1 terms should be multiplied by 1/(167?) and all { }» terms by 1/(167%)2.

“There is a typo in refs. [19, 20], where the ¢® operator is given with a normalization 1/(6! 8) instead of
1/(3! 3! 8). We thank Jasper Nepveu for informing us of this. With this change, our result differs in the sign
of the 45¢2/2 two-loop term in the C’éG) — C’f) entry of the anomalous dimension matrix.
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Figure 3. Penguin graph.

Figure 4. ¢ + ¢ — 9 + 1 scattering amplitude.

replace the (@’y“w)&,F MY by a four-fermion counterterm (nyuz/;)(ﬂfy“¢). The ¢+ — 1+
scattering amplitude has contributions from the penguin graph and the 1% counterterm, as
shown in figure 4, and the sum of the two graphs is finite, and gives a finite S-matrix element.
However, the three-point correlation function <@¢AH> given by the penguin graph in figure 3
is infinite, as there is no longer a (¢y,1)d, F"" counterterm to cancel the divergence. As a
result the field A, is not finite, and can have divergent correlation functions. The reason is
that the field redefinition to remove the @W/;)aVF MY operator is an infinite field redefinition.
In our example, the divergent contribution to 7, is proportional to (n — 1), and so vanishes
if there is only a single scalar field, in which case the Riemann curvature vanishes. The
coupling constants m?, A, etc. are related to observable S-matrix elements, and so are not
affected by field redefinitions.

An interesting example of an infinite field anomalous dimension was discussed in detail
recently [31-33]. The authors found that the three-loop S-functions in the SM were divergent,
which could be compensated by making an infinite flavor rotation of the fields.

5 SMEFT

We apply our two-loop formula to compute the two-loop scalar renormalization in SMEFT
to dimension six. We include the SM Higgs sector, as well as insertions of the dimension
six operators

Cu, Cuns Cups Cug, Caws Cup, Caws, Cpuz Cuio Cup Cuino (5.1)

and compute their anomalous dimensions from internal scalar loops. The two-loop coun-
terterms are given in appendix B.

,13,



The anomalous dimensions due to scalar loops, with subscripts denoting the one-loop
and two-loop contributions, are

A= {;mﬁ}ﬁ{o}% (5.2)

gy = { 12A—4m¥ Crri+2my Cup | mi+A{—60A+80m3; Cy—20m% Cup b miy
(5.3)
A= {24\ 1123, Crr = 320m% Cun +120m% oy D}1

+{=812X3 = 240Am3, Cpy +1096X*m3; Cpys — 28203 Crap }_, (5.4)

Cy = {IOSACH —16072C0 +48)\20HD}1 4 { —3444X2C 4+ T968N3 Clpro — 1992)\3CHD}

[\

(5.:5)

Cuo = {24)\CHD}1+{—204)\20HD}2 , (5.6)
Cyp= {12/\CHD}1+{—144)\2CHD}2 : (5.7)
C’T:{12>\Cr}1+{—60>\20r}2, re{HG,HG,HW,HW ,HB,HB}, (5.8)
¢, = {4)\Cr}1+{—28)\20r}2 , re {HWB,HWB}. (5.9)

The one-loop contributions agree with the known values [34-36]. The two loop contributions
with the dimension-six coefficients set to zero agree with the known two loop values for the
SM [21-23]. Note that there are very large coefficients in the two-loop anomalous dimensions.
The 't Hooft consistency conditions for the couplings listed above are satisfied.

The Higgs field anomalous dimension is divergent at two loops, i.e. the 't Hooft consistency
conditions are not satisfied,

1
Vi = {3m§ICHD}1 + {—elsAqucHD + 6% — 8Am%,Cyo + 2Am§{CHD}2 (5.10)

and the divergent term agrees with eq. (4.14) for n = 4 on replacing m? and Cg by their
equivalent SMEFT couplings, m?> — —m?%,/2, Cg — Cpun/2.

6 xPT

The final example we consider is chiral perturbation theory. We study the counterterms
for the QCD chiral lagrangian for n flavors, with the symmetry breaking pattern SU(n) x
SU(n) — SU(n). The notation follows refs. [24, 37], except that we use a Minkowski signature
for the spacetime metric. We restrict ourselves to the pure chiral theory without external

sources. The chiral Lagrangian is written in terms of a field wu,

(@) = eF™® (@) = 79(2)T° (ToT?) = %5@1) (6.1)
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where f ~ 93MeV is the pion decay constant, and (-) denotes a trace. Under chiral
SU(n) x SU(n), u(z) transforms as

u(z) — Ru(z)h ™ (z) = h(x)u(z) L™ (6.2)

where L and R are the left- and right-handed SU(n) transformations, and h(x) is defined
implicitly through eq. (6.2). The field U(x) = u(x)? transforms as U(z) — RU(z)L L.
Note that L and R are global transformations, and do not depend on z, since we have not
included external gauge fields.

Chiral perturbation theory has a systematic expansion in powers of p?, where p is the
external momentum of the pions. The leading term is the order p? Lagrangian,

72
Lo = T (uyu) | (6.3)
where
u,, = i(ul du —udul). (6.4)
The order p* Lagrangian is
Ly = Lo (wyuyufu’y + Ly (u-u)® + Lo (uyu,) (ubu”) + Ls <(u : u)2> (6.5)

with four independent coefficients in the absence of external sources. The coefficients in
eq. (6.5) include counterterm contributions,

- 1 1 ~ -
— -2 )
L; = (clu,) ¢ _216?111 + L;(,U/):| , (6.6)
where fz are the counterterms, IALZ'(,u) are the finite renormalized couplings, and c?u? =

p2e7=1/(4m). The renormalized coefficients satisfy the renormalization group equations

dL; 1 4
=———1I;. 6.7
Fap = 16n2 (6.7)
The pb Lagrangian is
115
Lo =) K, (6.8)
=1

with coefficients K; and operators Y; listed in ref. [24]. The coefficients K; include counterterm
contributions, and are given in terms of renormalized couplings K by

K; =

(C,LL)_46 1 1 2(2) I 1 50 1 1 A(L)

—— r K] .
12 4€? (1672)? R (6:9)

2e 1672 * 2e 1672 *
)

counterterms from one-loop graphs with an insertion of the p* Lagrangian. The renormalized

B(1.2)

are the counterterms for two-loop graphs from the p? Lagrangian, and f‘gL are the

couplings satisfy the renormalization group equations

dE7 1 ropm )
- or) P 6.10
lu’ dILL ].6772 |: 1 + ) ( )
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't Hooft’s consistency conditions for the 1/e? pole are

dri®) 1~
= :—@rg) (6.11)
which become
(L)
~(2) o™ A
2l =3 LTy (6.12)
w 0Ly

using eq. (6.7). Egs. (6.11), (6.12) are known as Weinberg’s consistency conditions [38] for
xPT, and provide a check on the two-loop result.

In the presence of external sources, there are 115 terms in the pb Lagrangian. There
are 21 operators listed in ref. [24] which are non-zero when external sources are turned off
— Y7_¢ and Yi9_g3. However, in the absence of external sources, these operators are not all

linearly independent. There are two linear relations,’
0 =Y+ 2Ys +6Ys — 2Y50 + 2Y57,
0=4Y7 — Y3+ 3Y5 — 4Y49 — 2Y59 + 8Y54 + 2Y58 — 4Y5o, (613)

leaving 19 independent operators. In the presence of external sources, the linear combinations
in eq. (6.13) are proportional to operators involving external sources, on using field redefini-
tions. The choice in ref. [24] was to include the linear combinations in eq. (6.13) rather than the
corresponding source-dependent operators. We have used eq. (6.13) to eliminate Y57 and Y.

The first relation in eq. (6.13) explains one feature of the counterterms found in ref. [24].
There is a contribution to I'%) proportional to Eg,

1 1 3 1 1 >

f‘Z(L)}/; = Eg (—Y2 — =Yy — Yo+ Y50 — - Ys7 (6.14)

8 4 4 4 4

from table V in ref. [24]. Ly is not a coefficient in the p* Lagrangian eq. (6.5), and should not
contribute to the counterterm. It multiplies the operator i(f ,u,u,) in the p* Lagrangian,
which vanishes when there are no external fields. The linear combination eq. (6.14) vanishes
on using eq. (6.13).

Weinberg’s power counting rule for yPT implies that the order p? scattering amplitude is
given by tree graphs with vertices from the p? Lagrangian. The order p* scattering amplitude
is given by tree graphs with one insertion of the p* Lagrangian and arbitrary p? vertices,
or one-loop graphs with only p? vertices. The pS amplitude is given by tree graphs with
one insertion of the p Lagrangian or two insertions of the p* Lagrangian (and arbitrary p?
vertices), one-loop graphs with one insertion of the p* Lagrangian (and arbitrary p? vertices),
or two-loop graphs involving only p? interactions.

The fields in xPT live on a coset space G/H, which is the group manifold SU(n) for
QCD chiral perturbation theory. The independent coordinates can be chosen to be 7% defined
in eq. (6.1), and the pion covariant derivative [42, 43] is

1
D,m = U= oy — 6702[%, [7,0um]] + ... (6.15)
5The existence of two relations was noted in refs. [39-41]. The linear relations can be obtained from
table 3.13 in [39] after replacing relation 26 by 2 x (26) + (63) + 2 x (76) + (137) = 0.
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The Riemann curvature tensor is

1
Raped = ﬁfabgfcdg +... (616)

where fgup. are the SU(n) structure constants. In the notation of refs. [24, 37], the chiral
covariant derivative acting on a field X that transforms as X — hXh~! is

1
VX =0, X + [T, X] r,= i(uTﬁuu + udyul) (6.17)

and the curvature (field-strength) is

1

i
[V, VX = [T, X] Ty = 7 L ] = 5 f o (6.18)

where fi,, = 0 when external sources are turned off. T',, is the curvature eq. (6.16) on
rescaling by (2/f)? from the normalization of D, relative to u,,.
For a Lie group, the covariant derivative of the Riemann curvature tensor vanishes,

veRabcd =0. (6.19)

This greatly simplifies the computation of loop corrections, since many terms in the tensors
X, Y, A, A" B, B*, B* and their covariant derivatives vanish. With external sources set to

zero, the tensors take the simple form:
Xab = _Racbd(Duﬂ>c(Du7r)da
[Yuu]ab = Rabcd(D;ﬂT)c(Duﬂ—)dv

Aape =0,
Aglpe = % (Rabed + Racba) (DF)
Al =0
Baped = éReabeecdg(DuW)f(D“ﬁ)g sym(abed)
ngcd =0
Bibjea = —%n“” (Racbd + Radve) - (6.20)

The one-loop graphs from the p? Lagrangian generate order p* counterterms using
eq. (3.12). We can expand about m = 0, and compare our counterterms with eq. (6.5) to
get the one-loop counterterm coefficients

~ n ~ 1 =~ 1 =~ n
I'y=— I'h=— Ty=- s = — 6.21
0 48 3 1 16 ) 2 3 ; 3 24 3 ( )
which agrees with [24, (3.14)].
The two-loop graphs from the p? Lagrangian generate order p® counterterms I' 2(2) and
I‘gl) which are listed in table 1. These agree with table IV of [24] using the identities eq. (6.13)

to eliminate Y57 and Ygo. The agreement provides a highly non-trivial check of our method.
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Y r@ 16720 NG

1 % + 6—14n2 —% — ﬁnQ 127?,L0 + 3L1 + 1L2 —|— nL3
2 %n 63%2” %Er 24”L + 15 Lr

3 _4% + ﬁnQ 2304 + 27648”2 Tlsnio - %El - %22 + 9*167”@3
4 —%n 332671 —%EG — 2nfﬂ{ — %nfﬂ" — —LT
5 _%”2 _% 2746948n2 zllé”LO + %f’l - %EQ + %"E?)
6 —%n _1%2” _Z 6nLT — ZnLT — —L’"
49 *%RQ % + ﬁrﬂ %’I’Lio — %El + %_/[:2 — %nig
50 Ln 2n —iLp 4+ Ly + 113

51 o 55 iLh

52 _%”2 128 + 13824”2 _%”LO - %Ll + %L2 %”L?’
53 —an —2en Ly — 5L

54 ﬁnZ —% — %7’9 —%nio + %El — %22 + %TZZ;J,
55 —n ~Ln 215 — 2nly+ LL;

56 ~ % 15 —5L4

58 ﬁnz % 1318324n2 2—147’@0 + El — %f/z + énf@,
59 _Tizn 2284” AG - %Eg

61 s —2n Ly + 514

62 — 13" — 5357 — Ly — gnls — 5L

63 -4 - —2L}

Table 1. The counterterms for the p® Lagrangian. The first column lists the operator Y;. Y57 and
Y50 were eliminated using eq. (6.13). The second and third columns list the 1/ and 1/e counterterm
coefficients i@) and sz) from two-loop graphs from the p? Lagrangian. The last column lists the 1/e
one-loop counterterm from an insertion of the p* Lagrangian. The normalization is given in eq. (6.9).
The counterterms agree with ref. [24] after using eq. (6.13).
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We also need the one-loop corrections with an insertion of the p* Lagrangian eq. (6.5).
The p* Lagrangian has four derivatives, but at most one derivative acting on a single field, and
our method can still be used. The one-loop graphs are computed by expanding the Lagrangian
to second order in the quantum field 7, i.e. by taking the second derivative of the Lagrangian
in the Riemann normal coordinate expansion of section 2. Using the basic equations eq. (2.13)
and eq. (2.20) for the derivatives on fields, the second variation of the p* Lagrangian is

Copn®n® = 2E0<R(n, wy)n uy ut u’) + 2E1(R(n, w)nut) (uy, v’y + 222<R(7], wy)n Uy ) (uh u”)
+ Ly [(R(n, w)n u wy u”) + (R(n, w)n uy u” ul)] (6.22)

ch =0 (6.23)

Cl (V) (Vun)? = Lo [4(V,un Vo u u”) + 2(V i u, Vi u”)]
+ Z1 [2<vu77 Vi) (u, u”) + 4<vu77 u)(Vyn uy>]
+ Lo [2(V,m Vum) (uh u”) + 2(V,mu ) (VFnu”) + 20V u ) (V7 ut)]
+ Ls[2(V,m VP u, u”) + 2(V,m Vonu” o) + (Vanu Vonu) + (Vg u, Vnut)]
(6.24)

on comparing with the general second variation eq. (3.10) in paper I. The one-loop counterterm
in eq. (3.11) of paper I gives the results in the f‘l(-L) column of table 1, and agrees with [24]
using eq. (6.13).°

In the general case, one-loop corrections from higher derivative terms with at most a single
derivative on each field can be computed the same way. First, the fluctuation Lagrangian

is computed to quadratic order in n to determine the coefficients Cyp, C*, and C!}’, and

ab
then, the one-loop counterterms are computed from eq. (3.11) of paper I. This was also
used to compute the one-loop RGE in SMEFT from dimension-eight H*D* operators, which
agrees with the previous calculation of ref. [44] using diagrammatic methods. The H*D*
contribution to the SMEFT RGEs is given in appendix C.

Two-loop corrections are computed from 7% and n* fluctuation terms. Higher derivative
interactions can generate (Dn)?n, (Dn)3, (Dn)3n and (Dn)?* interactions. The two-loop
counterterms can then be computed by the same method as given in paper I for the A-type
and B-type two-loop counterterms. However, we have not explicitly computed the counterterm
coefficients with these additional interactions, so we cannot determine the two-loop corrections

from higher derivative operators without additional work.

7 Conclusions

The geometric method has been used to compute the two-loop renormalization of generic
scalar QFTs, applying the counterterm formula developed in paper I. The counterterms
can be derived purely algebraically, in terms of covariant derivatives of the scalar potential

In an earlier version of this paper, we found a discrepancy with the result of [24]. The source of this

discrepancy was that in eq. (3.11) of paper I, the terms 5 CY YAV — 1CH Y Y E™ were instead written
as SO YL OYEY — 2CHYEYY ™. We thank J. Bijnens, G. Colangelo, and G. Ecker for help resolving

this discrepancy.
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and Riemann curvature tensor, which are computed by taking derivatives of polynomial
coefficients in the Lagrangian. We have applied the method to the O(n) EFT, the Higgs
sector of the SMEFT, and chiral perturbation theory. The agreement with previous results
computed by other methods provides a highly non-trivial check on our calculation.

The results in this paper are for scalar loops. The method is generalizable to gauge and
fermion loops, as has already been done for one-loop renormalization [3—7].
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A Two-loop Counterterms for the O(n) EFT

Using our one-loop and two-loop formulae gives the counterterms for the O(n) EFT listed
below. The subscripts 1,2 denote the one-loop and two-loop contributions, respectively
(see footnote 3).

z¢:1+1{4(n Dm’Cg} + 12{4(n D(n+2)Am’Cr )

1 1 4
+{ —(n+2)A%+ (n—|—2))\mQC’E} (A1)
€ 2 3 2
1 4 11
Act. =~ nm +{n(n+2))\m4—n2m60p;} (A.2)
€ 4 1 62 4 2
1
m2, = 6{(71—1—2))\171 4nm4CE} +6—2{(n+2)(n+5))\2m2—2(n—|—2)(7n+6))\m4CE
2
—6(n+2)(nt4)miCy},+ {—2(71—1—2))\27712—1—?f)(n+2)/\m4C’E} (A3)
2

1 1
Ao = {(n+8))\2—8(n+3))\m2CE—12(n+4)m201}1+6—2{(n+8)2)\3
—12(2n*+21n+50)A>’m*Cg —36(n+4) (n+10)Am*C1 },,

1
+= {—3(3n+ 14)\3+ 2(22n+113) 20E+120(n+4)Am2(11} (A.4)
2
1 1
Cres. =~ {10)\2C’E+3(n+14)/\01}1+6—2{5(7n—|—62))\?’C’E+3(n+14)(2n+25))\201}2
1

+= {—§(23n+259)/\30E—221(7114—54))\201} (A.5)
€ 2

Cper = - {2+ DACr}, + 5 {3+ D (n+ )N Ty - {—127(71+2)A20E}2 (A.6)
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B Two-loop counterterms for SMEFT
The one- and two-loop counterterms for the scalar sector of SMEFT are

= 1—1—% {_3CHDm%I}1+% {—3)\2+4CHD)\m§{—CHD)\m%I}2+El2 {—18CH|])\m%{}2

(B.1)
1(1 1 (3 1 1
Ac.t.ze{4771[}{}14‘62{zAm%_QCHDm?{+4CHDm?{}2 (B-2)
2 1 4
1 2 4 4
+3 {542 mH+1SCHmH—7SCHD)\mH+SOCHD/\mH}2
1
+= {—15X2m3; +20C o mly —5CHp mi | (B.3)
1
Aot =~ {12)\2+60Hm%{—160H5Am§{~|—60HD)\m%{}1
1
+5 (144X +252C g Am¥; — 67200\ m +216Cy D)\2m%{}2
L1 141
- { T8\ — 6OCH)\mH+274CHD)\2mH—CHD)\2mH}2 (B.4)
1 2 2
(Cit)es. =~ {B4CHA=80C A +24C DA }1
1
+3 {17820 \? —36000HD>\3+1008CHD)\3}2
1
4= {—861CH/\2+1992CHD)\3—498CHD)\3}2 (B.5)
€
(CHD)e.t. f7{1zcmA}1 {144CHD)\2} {—516’HD/\2}2 (B.6)
1
(Crp)es. =~ {6CHDA}, + {54CHD)\2} {736CHD)\2} (B.7)
€ 2
1 1
(Crles. = —{6CHGA}, + {54CH(;)\2} —{-150meN}, (B.8)
for r = HG,HG HW, HW HB, HB and
1 1 )
(C )ct = f{QCHWB)\}l {14CHWB)\ } + E {_7CHWB)\ }2 (B.9>

for r = HWB,HWB.

C SMEFT H*D* insertions

The contributions of H*D* insertions to the SMEFT renormalization group equations up
to dimension eight (with 1/(1672) absorbed into the definition of d/dt) are:

3 3 9
: 19 19 23
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Crr = —18)\2m% C) . — 22X°m% "C2) . — 320%m%; *CC) (C.3)

HiDa >
Cro = —2xm% "CG) . +223m3% €2 —6xm% "%, (C.4)
Cup = —4xm% O, +4xm¥ C2) L (C.5)
Cips = D0 O + o O 168 O (C.6)

T e = 634 a2 el - %V )+ 442 8L (C.7)

2, =203 ) — 2007 )L (C.8)

T =82 O+ §A )+ §A ). (C.9)

¢ L. = §>\ )+ 8N O+ §A ). (C.10)

) =163 CU) L+ 33—2>\ o)+ —A ). (C.11)

These agree with ref. [44].
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