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The surface chemistry of the Fischer-Tropsch catalytic reaction over Co has
still several unknows. Here, we report an in-situ X-ray photoelectron spectro-
scopy study of Co(0001) and Co(1014), and in-situ high energy surface X-ray
diffraction of Co(0001), during the Fischer-Tropsch reaction at 0.15 bar - 1 bar
and 406 K - 548 K in a H,/CO gas mixture. We find that these Co surfaces
remain metallic under all conditions and that the coverage of chemisorbed
species ranges from 0.4-1.7 monolayers depending on pressure and tem-
perature. The adsorbates include CO on-top, C/-CHy and various longer
hydrocarbon molecules, indicating a rate-limiting direct CO dissociation
pathway and that only hydrocarbon species participate in the chain growth.
The accumulation of hydrocarbon species points to the termination step being
rate-limiting also. Furthermore, we demonstrate that the intermediate surface
species are highly dynamic, appearing and disappearing with time delays after
rapid changes in the reactants’ composition.

The Fischer-Tropsch (FT) reaction is an important industrial process,
as it produces higher hydrocarbons from synthesis gas (syngas, =1:2
CO:H, gas mixture) over Co, is an important industrial process'. The FT
reaction was used during earlier time as a way to avoid oil embargos for
some countries during World War Il and the Apartheid regime in South
Africa. In the current era it can become an important avenue for a

sustainable chemical industry if CO is generated from CO, via the
reverse water gas shift reaction where the CO, has been captured
either directly from the atmosphere or at an intense carbon source.
The hydrogen can be produced, not from the current steam reforming
process of methane, but instead through electrolysis of water where
the electricity is coming from a renewable source such as wind and
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solar. Presently, the Fischer-Tropsch reaction utilizes Fe, Ru or Co-
based catalysts that yield different hydrocarbon distributions (i.e., with
regard to the abundance of shorter or longer C-chains in the product
stream). Depending on the material the reactions follow these main
pathways:

nCO+(2n+1)H, — C,Hyy4, +nH,0

nCO+(2n)H, — C,H,, +nH,0

Further, the created water can react with the CO by the water gas
shift reaction:

nCO +nH,0 « nH, +nCO,

The latter reaction creates more H, at the expense of CO, but on
Co catalysts it is not of significant importance thus the gas mixture of
1:2 CO:H, is commonly employed". The Co-based FT reaction typically
generates long-chain hydrocarbons and waxes and operates at a
temperature of 470-510 K and pressures of a few tens of bars'.

The chemical state of the Co catalyst has previously been inves-
tigated through post-reaction analysis of single crystal surfaces to be in
a metallic state’™*. However, bulk-sensitive measurements under high
temperatures and pressures during operando of the FT reaction of Co
nanoparticles have shown the existence of small amounts of oxides>™°.
Furthermore, it has also been proposed that a partially oxidized Co
catalyst can be responsible for a high activity". Although no operando
measurements during the FT reaction has detected any major pre-
sence of a Co carbide bulk phase it has been demonstrated that CoC,
nano prisms shows a high selectivity to olefin formation'. Recent in-
situ surface sensitive measurements of the FT reaction on Fe show a
growing carbide phase starting immediately after the reaction is
initiated"” and on Ni at low temperatures dissolution of carbon into the
bulk as a dilute carbide phase has been observed“. An open key
question is if the state of the Co catalyst in the surface region remains
fully in a metallic state or if surface oxide and near surface carbide can
be present during the reaction conditions. Addressing this question
necessitates detection using surface sensitive techniques performed
while the reaction is turning over.

The reaction mechanism of the FT reaction consists of a sequence
of elementary reaction steps®. The first step after CO adsorption is the
dissociation of CO generating carbon monomeric species. Afterwards
such C can both attach to other carbon atoms as well as adsorbed
hydrogen and thus grow the hydrocarbon chain. The final step is the
termination of the growth through the attachment to hydrogen atoms
that results in enough weakening of the bond between the carbons and
the surface, ultimately leading to desorption. The CO activation has
resulted in two major hypotheses based on theoretical calculations:
there is either a direct dissociation, often denoted carbide
mechanism'®”, or hydrogen-assisted dissociation via the generation of
a CH,O species™"”. It has been proposed that the hydrogenation of
adsorbed C?° and the termination step are partly rate limiting® as well
as hydrogenation of atomic O and OH?**, Here it would be essential to
probe the adsorbates on the surface, to determine intermediates that
accumulate as the reaction proceeds, as a pointer towards specific
rate-limiting steps.

All chemical sensitive studies over the FT reaction of Co under
operando conditions have been conducted with methods mostly
probing the bulk, such as X-ray absorption spectroscopy (XAS) and
X-ray powder diffraction (XRD)>'°. There have been efforts to detect
adsorbed species with Infrared Spectroscopy but their observation
exclusively showed adsorbed CO* or hydrocarbons that were likely
not on the Co surface”. Scanning tunneling microscopy (STM) have
probed Co single crystal surfaces under FT at atmospheric conditions

where the morphology of steps and terraces could be followed but
without directsensitivity towards the reaction intermediates and
adsorbates™*. However, the observed smoothness of the surface in the
STM studies indirectly infers that no large rearrangement of substrate
atoms has occurred related to oxide or carbide formation. In one STM
study conducted at 4 bar and 492K on the Co(0001) surface stripes
were observed during the FT reaction interpreted as the appearance of
long chain hydrocarbon molecules®®. A number of surface science
studies of model molecules under vacuum have been conducted on Co
single crystal surfaces**** but it is unclear if the model molecules are
relevant for reactions occurring at many orders of magnitude higher
pressures and temperatures.

X-ray photoelectron spectroscopy (XPS) is a unique surface
sensitive method to investigate the chemical state of catalytic sur-
faces and adsorbed intermediates through core-level shifts. The high
inelastic scattering cross-section of photoelectrons in the gas phase
makes vacuum conditions necessary. Post analysis with XPS has been
conducted of Co single crystal surfaces that have been in a reactor
with atmospheric pressure** or 4 bar?, at temperatures where the
reaction is turning-over, followed by evacuating the reactor to
vacuum and then transferring the sample to the spectrometer
chamber, where the measurement was conducted. Although adsor-
bed CO, adsorbed carbidic carbon and hydrocarbon species were
observed it is unclear if species may decompose or desorb when the
system is evacuated and the temperature reduced. Near-ambient XPS
(NAPXPS) studies of Co foil have been restricted to 0.1 mbar® — far
from the conditions of atmospheric pressure where the FT reaction
occurs. These studies have detected significant oxidation of the Co
foil at low temperatures, while atmospheric pressure single crystal
studies showed the production of methane and other short-chain
alkanes and alkenes***°.

Here, we used an ambient-pressure XPS (APXPS) instrument
called POLARIS operating at pressures up to 1 bar for CO/H, mixtures
and as high temperatures as 506 K. The POLARIS instrument is based
on the virtual pressure cell, where we create a -~ 30 micron thick local
high-pressure cushion and utilize grazing incidence of the incoming
hard X-rays to provide surface sensitivity, despite high kinetic energy
of the photoelectrons™. The combined effect of X-ray penetration
depth and electron inelastic mean free path yields an effective inelastic
mean free path comparable with laboratory XPS systems of about
1.4 nm at the C Is core-level and 1.3 nm at the Co 2p core-level”. The
virtual pressure cell is established by introducing a high-velocity gas jet
onto the catalyst and building up a dynamic pressure, such that the gas
in contact with the catalyst typically interacts roughly for times on the
millisecond scale. This in turn brings the FT reaction over Co into a
early steady state, far away from the chemical equilibrium, with low
concentrations of products in the effluent gas stream. We have used
flat Co(0001) and stepped Co(1014) single crystal substrates that have
been shown previously to turn-over the FT reaction towards mainly
methane but also minor fractions of C,. hydrocarbon species at close
to 1bar and 500 K*. Since the FT reaction is known to be structure
sensitive®* ™ (i.e. a Co stepped crystal, Co(10115) gives much higher
turn-over than the terrace surface®) we have thus directly compared
the Co(0001) with the Co(1014) surface to elucidate the influence of
steps on the reaction. In particular, the size-dependent effects that
show high activity for certain size nanoparticles have in the 2010s been
shown to be linked to the relative abundance of B5 sites that appear at
the intersection of threefold and fourfold coordinated sites****.
These sites can be found on the Co(1014) stepped surface and thus
further the explanation why stepped surfaces are observed with higher
activities (See Supplementary Information S6 and Supplementary
fig. 9). As FT reactions have been demonstrated at the same conditions
as in the current study, we will denote the experiments as in-situ.
Furthermore, we show the facile appearance and disappearance of
C.H, adsorbates as seen in the last subheading in Results and
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Discussion as indicators of a state where the reaction should occur.
Our complementary in-situ surface X-ray diffraction experiments yield
atomic surface structure information under reaction conditions.

Results

Chemical and Structural State of Co Single Crystals and Adsor-
bates at 1 bar

First, we address the chemical state of Co: whether it is metallic, oxidic
or carbidic in the near-surface region. This information would not
necessary be observable in bulk-sensitive measurements, as this active
phase exists only close to the surface (i.e. the first few monolayers).
Figure 1a-c shows the in-situ Co 2p3,, C 1s, and O Is signal of the

Co(0001) catalyst at a pressure of 1bar with a reaction mixture of 1:2
CO:H, and a temperature of 406K and 506K (the higher corre-
sponding to the typical FT high yield conditions) measured in the
POLARIS instrument at a photon energy of 4600 eV (for samples, gases
and experimental setup turn to Methods). In this work we apply the
following procedure to justify the application of a peak in the spectra:
The peak needs to be clearly visible in at least one instance of our
measurements to be appended to the peak model. These individual
observations we compile into a global fit model which we use for all
spectra. We apply this global fit model to each series of spectra such
that the defining peak shapes are common to all spectra as descri-
bed below.
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Fig. 1| 1bar in-situ XPS and SXRD data under Fischer-Tropsch reaction con-
ditions. Surface state of Co(0001) sample at indicated temperatures in an atmo-
sphere of CO:H, 1:2 at 1 bar studied by hard X-ray photoelectron spectroscopy

(HAXPES) utilizing 4600 eV photons at 0.3° incidence. a shows Co 2p;, core-level

spectra b displays the C I s region and c depicts the O I sregion. Subplots d, e, f show

the same conditions as a, b, ¢ but for a Co(1014) surface. The columns of XPS data

have constant scaling of the vertical axis. Subplot g shows a representative figure of

L (rec. latt. units)

the high energy surface X-ray diffraction HESXRD data at 67.4 keV of the Co(0001)
crystal (full set is shown in SI). The detector is protected by beam stops at the bulk
Bragg peak positions. h X-ray structure factor extracted from the 2D diffraction data
shown in g at reaction conditions at 496 K and 1 bar reaction mixture (1:2 CO:H,),
data from the hcp part of the surface used for the fit (orange circles with vertical lines
indicating an estimation 10% relative error), data from the fcc part (grey circles), fit
result (solid line). Source data are provided as a Source Data file.
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The Co 2p3/, spectrum is composed of a single peak at 778.0 eV
that shows a completely metallic state with no shoulder at 780.0 eV*°
that would indicate an oxide. A carbide modification of Co would be
expected at somewhat higher binding energy compared to the Co°
metal peak if the shift follows as seen in Ni 2p5, upon carbon dis-
solution into bulk Ni** and the formation of Fe carbides”. The peaks in
the C Is region at 285.7eV and in the O 1s region at 531.7 eV (blue)
correspond to adsorbed CO in top position®’. The C 1s feature at
284.1eV at 506 K is related to hydrocarbon species and exemplifies the
reaction intermediates. Other states are only observable at 406 K
which will be further discussed below. A carbide species would be seen
at around 283.0eV and oxides at around 529.3 eV* and none are
detected in the spectra.

The stepped Co(1014) surface is probed at the same conditions as
the Co(0001) and the results there of are presented in Fig. 1d-f for the
Co 2p3/», C1s, and O 1s core-levels. Co is metallic during the reaction
also on this facet. Adsorbates in the C 1s region, however, show a
striking difference. Peaks at 284.1eV and 284.7 eV are now observed at
406K and as well at 506 K. Also, there is intensity in the region of
283.5 eV for both temperatures. Overall, the total C coverage is higher
than for the flat surface. The O 1 s intensity again shows only significant
contributions of CO,p adsorbates at 506 K and additionally intensity
in the 533.0 eV region at 406 K. The origin of the 533.0 eV peak is still
an open question. Since we observe no changes in the C 1s spectrum,
which follow the variation of the 533.0 eV peak we can exclude an
origin in oxygenated carbon-containing species. Chemisorbed water,
either from contaminations in the purified gas or as a product of the
FTS reaction, are other hypotheses which agree with the binding
energy value of the peak. The known rapid desorption kinetics of water
from Co surfaces—which has been observed even at temperatures as
low as 170K**—decreases the likelihood of these hypotheses.

As XPS measurements are sensitive to the chemical state we have
completed this data set with structure-sensitive high energy surface
X-ray diffractometry (HESXRD) on a Co(0001) single crystal at
200 mbar and 456 K with 1:2 CO:H, under flow conditions (further
conditions are shown in Supplementary Information S1). In Fig. 1g we
display a maximum intensity per pixel from an angular scan rotating
the sample around the surface normal in the range of the Co(0001)
(1,0) crystal truncation rod (full experimental details are given in
Methods). Our key observation is the appearance of a single surface
rod at (1,0) reciprocal lattice units that indicates an unreconstructed
hcp surface. A more detailed analysis shows that the behavior at partial
pressures of 200 mbar and 1 bar of CO:H, 1:2 mixtures the surfaces do
not reconstruct (see Supplementary Information S1), which is in line
with previous findings of operando STM observations*. No indication
for the formation of ordered carbide formation is found. In Fig. 1h we
present the X-ray structure factor extracted from the data in g. From
the fit we can deduce, that the surface is atomically smooth under all
gas mixtures studied with a slight inward relaxation of the topmost
layer of -0.04 A. The fit improves by including CO molecules on the
surface, but due to the small data set available, the occupancies and
position could not be further refined. The full data set gives also evi-
dence, that a few percent of the surface is fcc (111) terminated. Due to
the low number of fcc-terminated sites the contribution from fcc can
therefore be neglected for the XPS data analysis.

We can thereby conclude that on a Co(0001) single crystal at 1 bar
and around 500K during the operation of the FT reaction the Co
surface remains fully metallic and retains an ordered, flat surface which
exhibits considerable crystal truncation rod signal. Furthermore, there
are no signs of a surface carbide or surface oxide indicating that the C
1sand O 1s spectral intensities are related to chemisorbed species.

Detailed C 1s Spectral Interpretation
When inspecting the XPS spectra from the adsorbate at different
conditions we have curve-fitted the data into specific components.

Since many different conditions in terms of pressure and temperature
are measured an assigned spectroscopic component should at least
be clearly visible as a peak or strong shoulder in one spectrum.
The chemical assignment is based either on experimental spectra
obtained from model compounds in ultrahigh vacuum (UHV) on
Co(0001)”****** or on density functional theory (DFT) binding energy
calculations (Supplementary Information S4). The binding energy
scale potentially could differ by twotenths of an eV due to recoil effects
at high kinetic energies that depends on the bonding strength (for
discussion the reader is referred to Supplementary Information S2.d),
however, we estimate these effects to be negligible.

Figures 2a and 2b shows the C s spectra from the reaction of
CO and H, with a mix ratio of 1:2 at a pressure of 500 mbar and
200 mbar, respectively, at temperatures in the range of 406K to
523 K over Co(0001). The corresponding O 1s spectra are shown in
the Supplementary Information S2.a. We assign the 283.2eV
(green) feature to chemisorbed C or CH on the surface based on
XPS spectra obtained from either decomposition of ethylene on
Co(0001) as observed at 283.2 eV** or at 282.8 eV* and seen in
exposure of CO and H, at 4 bar followed by evacuation at 283.3 eV2.
The DFT calculation (Supplementary Information S4) gives a
binding energy of 283.1 eV for adsorbed C, (energy scale corrected
against experimental value of adsorbed CO in on-top position),
whereas adsorbed CH has a somewhat lower value of 283.0 eV. With
only such a small difference in C Is binding energy between
adsorbed C and CH and since there is a variation of the experi-
mental value between 282.8 - 283.3 eV it is not possible to distin-
guish the two adsorbates we thus denote this peak C/CH at
283.2 eV (green).

The component observed at 283.5eV (yellow) we assign to che-
misorbed CH, species based on DFT calculations (see Supplementary
Information S4). This binding energy has previously been reported as
related to the CH; group in ethylidyne? but spectra of the chemi-
sorbed ethylidyne molecule also include a peak corresponding C to the
group bonded to the surface at 282.9 eV. Since we observe the 283.5 eV
feature at several conditions without any low binding energy compo-
nent the 283.5 eV peak cannot be associated with ethylidyne. With a
similar argument, the 283.5 eV feature cannot be one of the carbons in
adsorbed ethylene, where the adsorption site generates two inequi-
valent C atoms, since then it should be accompanied by a second
carbon peak at 283.9 eV¥. Next component, located at 284.1eV (light
red) we assign to hydrocarbon fragments, such as -CH,- and -CH;
groups on the surface based on DFT calculations and previous post-
analysis experiments”. While some part of these hydrocarbon chains
are in contact or in the proximity of the surface through under-
saturated monomers, fully saturated parts are most likely pointing
away from the surface and would correspond to the 284.7 eV (light
blue) feature®. The energy difference between the initial and final
states in a photoionization event is much smaller when the hydro-
carbon group is directly bonded to the surface allowing for metallic
screening of the core-hole state resulting in a lower binding energy for
the parts of the hydrocarbon in direct contact with the surface (light
red peak) than for the parts pointing away from the surface (light
blue)®. Lastly, a clear peak originating from CO adsorbed in on-top
configuration, denoted COyop, is observed at 285.7 eV (dark blue). All
these species are exemplarily depicted in the Supplementary Infor-
mation in section S7. We find no indication of CO at other adsorption
sites, such as the bridge or hollow sites, as commonly reported in UHV
studies at liquid nitrogen temperatures® or in AP-XPS studies at
~1000x lower pressures*, yet we observe only COyp in our experi-
ments. The O 1s spectra contains mostly a feature associated with
adsorbed CO in on-top position (see also Supplementary Informa-
tion S2.a). No clear indication of any significant amount adsorbed O,
OH, CHO, COH or CH30 species are detected on these single-crystal
surfaces.
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Fig. 2 | Isobar C 1s spectra under reaction conditions. We show Co(0001) at
a 500 mbar and b 200 mbar. In ¢ we show 150 mbar on Co(1014). All mixtures are

1:2 CO:H,. Subplot d shows a comparison of 406 K data as function of pressure on
the Co(0001) crystal, and subplot e displays a direct comparison of stepped

288 286 284 282
Binding Energy (eV)
Co(1014) and flat Co(0001) crystals at 406 K. All y-axes have the same scaling. Data

has been normalized according to SI Section Séc. The color code is the same as in
Fig. 1 b/e. Source data are provided as a Source Data file.

Spectral Trends with Temperature, Pressure and Crystal Surface
Orientation
Figure 2a shows the C 1 s spectra at a pressure of 500 mbar from 406 K to
523 K on Co(0001). The coverage of the adsorbates has been determined
through a specific normalization procedure (See Supplementary Infor-
mation S2.c). We observe the largest total coverage of carbon containing
species at the lowest temperature of 406 K corresponding to 1.5 ML with
the -CH,- peak (yellow) clearly dominating the spectrum, but also inten-
sity is observed in the region of non-screened hydrocarbon chains (light
blue). A “monolayer” is here defined relative to the surface atoms of the
Co substrate. What is clearly noted is that the total coverage decreases
with increasing temperature to below monolayer coverage for T > 480 K.
We observe at 406 K a large amount of the hydrocarbon species with C
atoms both bonded to the surface and with CH, and CH; groups away
from the surface as well as surface bound CH, groups. As we reach the
highest temperature of 523 K there is almost only CO on the surface and
some small amount of adsorbed C/CH. Chain growth requires a con-
siderable coverage of carbon species which are not fully saturated by
hydrogen, which on the (0001) surface occurs below 485 K. This process
can consequently occur at the lower temperature where there is a higher
coverage of CH, groups and various adsorbed hydrocarbon species.
Figure 2b shows the same trend of temperatures but with a total
pressure of 200 mbar on Co(0001). At the lowest temperature, we

have an almost similar total coverage of 1.3 ML. We notice the same
trend where the amount of species decreased with increasing tem-
perature. What is mainly different is that the amount of CH,-adsorbed
species is now much higher in comparison to hydrocarbon molecules.
The chain growth becomes less efficient with lower coverage. Again,
the CO coverage (~1/3 ML) is almost independent of temperature.
Figure 2c shows the trend with the stepped Co(1014) surface at
total pressure of 150 mbar. In general, we again observe an almost
constant CO coverage but an increase in the hydrocarbon content and
decrease of CH, adsorbed species indicating more efficient chain
growth at steps compared to terraces. The total coverage at the lowest
temperature of 425K is 1.7 ML and compares well with our previous
observations on the Co(0001) surface. The observation of coverages
above 1 ML signifies that at these conditions we expect an amount of C
on the surface able to cover more than all Co surface sites. The increase
of atoms on the surface is due to the appearance of hydrocarbon
chains linked to the surface but sticking out into the gas phase.
Figure 2d shows a comparison of spectra at different pressure on
the Co(0001) surface at the FT temperature of 406 K. We observe an
increase in the total coverage of adsorbed hydrocarbon species on the
surface going to 1bar, however, the relative distribution of different
molecular fragments is somewhat similar at this low temperature. We
can relate that the production of hydrocarbon at this temperature is
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limited by the desorption of products and only becomes more efficient
to a smaller degree with the increase in pressure since the surface is
blocking its active sites due to kinetic hindrance.

Figure 2e shows a comparison of the C 1s spectra at the tem-
perature of 506 K between the flat Co(0001) and the stepped Co(1014)
surfaces. At this temperature, the catalyst is expected to be active for
the FT reaction. There is a striking increase in the hydrocarbon content
with the presence of steps. It is interesting to note that also the pro-
duction of methane and minor hydrocarbon species increased by
almost an order of magnitude between flat and stepped Co surfaces in
arecent STM reactor study’. This increased reactivity was attributed to
the lowering of the energy barriers for a rate limiting CO dissociation,
and the increased hydrocarbon presence at all examined temperatures
on the stepped crystal is fully consistent with this hypothesis’.

Our data supports the view that CO dissociates most efficiently on
the steps through a direct dissociation route and not the hydrogen-
assisted mechanism. The direct route hypothesis is strengthened by
not observing any CHO species on the surface that would be visible at
285.0eV and 530.1eV (O 1s spectra see: Supplementary Informa-
tion S2.a). Although a weak component at the C Is position could
possibly be overlapping with adsorbed CO and hydrocarbon species,
but there is no appreciable intensity at the low binding energy in the O
1s spectra®’. Furthermore, ultrafast measurements using X-ray lasers
have demonstrated that the CHO species could only exist in an
extremely short lived transient regime with a life time of only a few
picoseconds and could never build up any appreciable coverage dur-
ing steady-state reaction conditions”’. We do not observe any sig-
nificant CH,O species with a calculated binding energy of 286.5 eV and
530.2 eV or CH;0 species at 286.5eV and 531.2 eV (O 1s spectra see:
$2.a) pointing to that non-dissociated CO does not significantly con-
tribute to the chain growth. Finally, as the coverage of adsorbed
hydrocarbon species with more than two attached hydrogens per
carbon is quite high the hydrogenation termination step leading to
desorption would also be rate limiting. We therefore predict that both
CO dissociation and the final hydrogenation leading to desorption is
rate limiting under the current conditions on the stepped surface. On
the flat surface the different hydrocarbon hydrogenation steps seem
to be limiting as well, indicating an overall less active surface.

Dynamics upon Changes in Reactant Composition
Figure 3 depicts the time dependence of the C I s spectra related to the
FT reaction of the Co(0001) surface by applying and removing CO while
keeping a constant H, flow on the sample at 200 mbar total pressure. We
performed experiments at 406 K (panel a with line extracts shown in b)
and at 506 K (panel ¢ with line extracts shown in d). At 406 K the sample
surface is covered with a tiny amount of species at 284.5eV initially.
Upon exposure with CO there immediately appears intensity in the CH,
and COyyp, regions (283.5 and 285.7 eV, respectively), indicating that
some CO is dissociated and hydrogenated. Over an interval of
approximately 30 min there is a continuous growth of the 284.5 eV state,
indicating the appearance of longer chain hydrocarbons due to chain
growth. Upon removal of the CO in the reaction mixture this component
remains for a certain time while CO, and CH, are reacted away within
the time resolution of this experiment. Continuing in this configuration,
the 284.5eV hydrocarbon peak intensity reduces, indicating facile
reaction and departure from the surface aided by the presence of H,,
which supports our claim that a reaction is ongoing. We are here
observing the rate limitation of the final hydrogenation step that
removes the hydrocarbon species on the surface. A competing reaction
to the hydrocarbon chain growth is the fast CH, hydrogenation into
methane, which also explains the swift vanishing of the CH, contribution
upon CO gas removal from the reaction mixture”.

At 506 K, we observe mainly low COy,p, surface coverage and only
to a negligible degree C,H, species as compared to the 406 K experi-
ment during reaction conditions, which is in line with the trends in the

static measurements shown in Fig. 2. After CO is removed from the
reaction mixture the intermediate hydrocarbons desorb or react away
and the corresponding peak diminishes to baseline intensity. The
dynamic response is much faster at the higher temperature. From
these temperatures we derive that the surface is highly dynamic (i.e.
turning over and in in-situ) and that changes in the conditions needs
time to establish a steady state. Moreover, we observe that the rate
limiting step changes from the formation of carbon chains at lower
temperatures to the dissociation of CO at higher temperatures.

Discussion

We have studied the two Co single crystal surfaces of (0001) and (1014)
using in-situ XPS at almost 1000 times higher pressures than tradi-
tional NAPXPS and can directly probe adsorbates on the surface during
the reaction. The C 1s and O 1s spectra shows only adsorbed species
even at pressures close to 1 bar and the Co 2p;, spectra have no sign of
an oxide or a carbide component. The surface X-ray diffraction results
on Co(0001) demonstrate that the surface stays atomically smooth
under reaction conditions. Thereby, there is no indication of any
chemical or structural changes of the Co substrate surface region as
the reaction proceeds. Our observations tip the scales in the discussion
regarding the nature of the CO dissociation towards the direct or often
denoted carbide mechanism since no sign of hydrogen-assisted dis-
sociation in terms of CHO-detected species in the C or O Is spectra.
Furthermore, the chain growth involves only hydrocarbon species,
since undissociated CO participation should show up as detected
CH,0 spectral components, which we did not observe. There are also
no ethylidene or adsorbed ethylene intermediates detected pointing
to simple chain growth of -CH,- species resulting in an increasing
amount of hydrocarbon species with groups both bonded directly to
the surface but also pointing away towards the gas phase. Several of
the current observations in terms of adsorbed CO and presence of
hydrocarbon species on the surface have also been seen in the pre-
vious NAP study conducted at 100-1000 times lower pressures®.
However, the higher pressure condition here also resulted in major
differences as evidenced by the fact that CO adsorbs in the top site
only, significantly smaller C/CH coverage, CiH, species observed
already at 406 K, no oxidation of the surface and no buildup of C at
higher temperatures. We notice that the CO dissociation is more facile
on the stepped Co single crystal surface. Due to the fast gas exchange
rate in the virtual cell (See Supplementary Material section S2.f)
accumulation of products in the gas phase and consequentially their
reabsorption to the surface are of little significance. On the whole, the
increased abundance of hydrocarbon species at 406 K on both sur-
faces, shows that a reaction is ongoing, yet the partly hydrogenated
intermediates are not leaving the surface as rapidly as they are being
produced. We thus argue that the final termination step in terms of
hydrogenation (that is exchanging the carbon bond with a local C-H
bond) is rate-limiting in this regime. At a temperature of 506 K the
coverage of hydrocarbons on the surface is lower which indicates that
the desorption of products is not limiting the reaction anymore. Since
we observe an almost constant CO coverage in all our temperatures
the availability of CO is also not a limit in this reaction. Thus, we infer
that at this elevated temperature, the CO dissociation limits the rate of
the reaction to a larger degree. It has been proposed that also the
removal of oxygen atoms is a rate-limiting step>*® but in the current
study no adsorbed oxygen was detected. We associate this lack of
oxygen compared to the previous studies as most likely due to higher
hydrogenation activity in in-situ studies at high pressures. Finally, our
observation of the Co-based Fischer-Tropsch reaction is highly
dynamic meaning that the involved species (despite a potentially long
residence time) show changing adsorbate compositions as a direct
consequence of changes in the reactant mixtures. The time for the
delay is strongly temperature dependent and can be on the tens of
minutes scale.

Nature Communications | (2025)16:1005


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-56082-8

Time (min)
Intensity (arb. units)

Time (min)
Intensity (arb. units)

287 286 285

284
Binding Energy (eV)

283

Fig. 3 | Dynamic study of a CO addition and removal experiment. a 2D time-

resolved spectrum of the C 1 s region at 406 K (c for 506 K) total pressure under CO
flow is 200 mbar with a 1:2 CO:H, mixture. In the beginning and end the sample is
subjected to a H, flow alone. The lines on the right are extracted from a and b at
indicated times and resemble these reaction conditions from bottom to top: pure
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H,, first 6 minutes under CO:H, mixture, last 6 min under CO:H, mixture, only H,
after removal of CO from the mixture (red) and at the end of the experiment after at
least 15 min in Hy(light blue). b & d: Spectra recorded at indicated times. Decom-
position follows the Colo scheme of Fig. 1&2. Background: in hydrogen (cream), in
1:2 CO:H; (light blue). Source data are provided as a Source Data file.

Methods

Samples and gases

The experiments were performed on two hat-shaped cobalt crystals
(N4.7) with the flat (0001) and the stepped (1014 ) direction exposed
on the surface (R;<30 nm, miscut <0.1°) with a top surface of 7mm
diameter (Surface Preparation Laboratory, SPL). It is worth noting
that the stepped crystal exposes a high density of B5* sites that are
regarded as an active site for the Co-based Fischer-Tropsch
reaction®. The gases were obtained with a purity of 5N for all gases
except CO where the purity available could not exceed 4.7 N. For the
X-ray photoelectron spectroscopy (XPS) experiments the gases
were purified in the appropriate apparatus (SAES Getters/Entegris).

Under the measurements we recorded the temperature at the back
of the sample with a type N thermocouple. Sample front tempera-
ture has been calibrated under various gas loads for a comparable
specimen with a thermocouple spot-welded to the front. We expect
that our temperature measurements agree to be better
than AT <15K.

Polaris XPS experimental setup

The POLARIS setup is placed at beamline P22, DESY. The spectrometer
utilizes a virtual cell approach, where a gas stream is directed onto a
flat specimen and X-rays reach the interaction volume under grazing
incidence conditions of 0.3°*. In this way a radially symmetric local
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Table 1| Peak Model for the quantification of C 1s peaks

Name Center (eV) Gaussian FWHM (eV) Lorentzian FWHM (eV) Type

C 283.00..283.20 0.30..0.45 0.20..0.50 Pseudo-Voigt™
CH, 283.3..283.55 0.5..0.8 0.2..0.3 Pseudo-Voigt>®
CHgurf 283.80..284.10 0.20..1.00 0.00..0.50 Pseudo-Voigt
CH 284.00..284.70 0.75..0.90 0.00..0.50 Pseudo-Voigt
COtop 285.65..285.85 0.20..1.50 0.00..0.50 Pseudo-Voigt

Table 2 | Peak Model for the quantification of O 1s peaks

Name Center (eV) Gaussian FWHM (eV) Lorentzian FWHM (eV) Type

(@) 529.10..529.30 1.20..1.40 0.15 Pseudo-Voigt
OH 529.80..530.20 0.40..2.00 0.15 Pseudo-Voigt
COtop 531.60..532.20 1.70.1.90 0.15 Pseudo-Voigt
* 532.80..533.20 0.90..1.60 0.15 Pseudo-Voigt

Table 3 | Peak Model for the quantification of the Co 2p3/, peak
Name Center (eV) Lorentzian FWHM (eV) Asymmetry (a.u.) Type
Co Metal 777.5..778.3 0.0..1.0 0.18..0.40 Doniach- Sunjic®®

high-pressure cushion is formed (d~2mm), while the rest of the
chamber experiences much lower pressures (i.e. when the pressure in
the probed volume is ~1000 mbar the chamber pressure is 10 mbar).
The excited electrons are collected at distances of approximately
30 um by a line array of circular apertures, well matching the stretched-
out X-ray footprint due to the grazing incidence geometry.

For the XPS experiment we used a double bounce mono-
chromator with Si(311) crystals tuning the photon energy to 4600 eV.
The electron analyzer was used with an 800 um curved slit and a pass
energy of 100 eV. The total energy resolution where the expected
photon energy bandwidth and the electron analyser resolution is fol-
ded together account for AE ¢, <300meV. The beamline optics use
a horizontally bent elliptical mirror and a vertical cylindrical focusing
mirror to achieve a beam footprint on the order of 15 x 15um?, which
was measured with a polished YAG crystal at regular intervals during
the experiment.

Due to the specific design of this experimental setup (i.e. an
outward-flowing gas jet), no contamination from the heater or cham-
ber can reach the sample surface when gas flow is applied. The pres-
sure in the virtual pressure cell was estimated from a calibration done
by a previously used method™ (See Supplementary Information S5).

All XPS spectra were acquired in an add-dimension mode indi-
cating that a list of short C Is, O 1s, Co 2ps, spectra are recorded
repeatedly and summed together for statistics. This method allows to
distribute slow surface changes under the reactions into all three
spectra in similar weights such that distortions between spectra are
expected to be negligible and developments can be traced quasi
simultaneously in several core-levels.

XPS data processing

All spectra are recorded with a binding energy calibration to the Fermi
edge of a clean metal. A correction for the adsorbate binding energies
due to the recoil effect has been neglected (see Supplementary
Information S2d). The spectra were first converted to counts per se-
cond and were plotted in each panel with offsets for visibility. For
comparison, we normalized the spectra as described in Supplementary
Information S2c. We observe 4 distinct peaks in O 1 s spectra. These are
observed at 532.5eV, 531.7 eV, 530.2 eV, and 529.1 eV. The first peak is
unassigned and the second peak assigned to COp,, Whereas the last
two are tentatively assigned to chemisorbed O and OH states, which,

however, are not observed in an appreciable quantity. In the C Is
spectra we notice 5 distinct features observed at 285.7 eV, 284.7 eV,
284.1eV, 283.5eV and 283.2 eV.

The quantification of the peaks is performed by applying a global
fit model that finds a maximum likelihood optimization using the
Levenberg-Marquardt algorithm of the peak positions and shapes for
all spectra of a set. The constraints of the fitting parameters are given
in Table 1 (for the C 1 sregion), Table 2 (for the O I sregion) and Table 3
(for the Co 2p region). The background estimation has been per-
formed by subtracting a Shirley function where the Shirley parameter
is a free variable in every spectrum®,

SXRD experimental setup

The surface X-ray diffraction (SXRD) experiment*’ was performed at
beamline P21.2 at DESY using a beam with ~3x10 um (VxH) FWHM, an
energy of 67.4keV and a glancing angle of 0.05%°, The detector
(VAREX XRD 4343CT, 150 um pixel size) was placed 1.4 m away from
the interaction zone. The sample temperature was controlled using a
BN-encapsulated graphite heater. The gases of 5 N purity for Ar, and H,
and 4.7 N purity CO (same purities as in the XPS experiment) were
delivered to an X-ray transparent Be dome and therein directed onto
the same Co(0001) single crystal as for the XPS experiment. The CO
gas was additionally purified from Ni(CO)4 using a copper carbonyl
trap. The experimental setup is in details described elsewhere*’. Scans
were taken over a range of 105°.

Sample cleaning

Prior to the reaction studies the Co(0001) and Co(1014 ) samples were
cleaned by established procedures of repeated sputtering (1 keV, -1 pA,
30 min) and annealing (523 K, 30 min) processes in ultra-high vacuum.
In the XPS experiments the single crystals were also chemically cleaned
by dosing of 0.16 liter per minute O, for 5's followed by annealing in 1
liter per minute H, at a sample distance of 30 um and 473 K. In between
each measurement the samples were kept in H, flows greater or equal
0.16lpm (p <50 mbar, negligible scattering in gas) to limit con-
tamination from the vacuum environment, while we evaluated the
surface cleanliness of C Is, O 1s, S I, Si 1s containing species. The
intensity sum of these was kept below 5at% of the Co 2p5, signal. The Si
1s peak is orders of magnitude more sensitive to hard X-rays (by about
a factor 100x) than both Si 2p core-levels combined.
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Data availability
Experimental data were generated at the PETRA IlI facility at the DESY
Research Centre of the Helmholtz Association. Source data are pro-
vided with this paper.
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