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We present a comprehensive aerodynamic sensitivity analysis of airfoil parametrization
informed by separable shape tensors. This parametrization approach uniquely benefits the
design process by isolating various well-studied shape characteristics, such as airfoil thickness,
and providing a well-regulated low-dimensional parameter domain for aerodynamic designs.
Exploring the aerodynamic sensitivities of this novel parametrization can provide valuable
insights for more robust designs and future manufacturing efforts. We construct a data-
driven parameter space of airfoils using principal geodesic analysis of separable shape tensors
informed by a curated database containing almost twenty thousand suitable engineering airfoils.
Analyzing the shape reconstruction error and the maximum mean discrepancy between joint
distributions of aerodynamic quantities, we study the dimensionality of the learned parameter
space. This simple numerical experiment demonstrates a dramatic dimension reduction that
retains design effectiveness and promotes regularity of the shape representations. Finally,
we generate new airfoils and use the HAM2D RANS solver to predict lift, drag, and moment
coefficients. We compute multiple sensitivity metrics to quantify and assert the consistency of
parameter influence on the aerodynamic quantities. We also explore low-dimensional polynomial
ridge approximations to motivate physical intuitions and offer explanations of the approximated

sensitivities.
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X;, X = i shape landmark and set of all shape landmarks

n = number of shape landmarks

q = ambient shape dimension

N = number of airfoil shapes in a given data set

G(-,-) = Grassmann manifold/Grassmannian

n = projection of airfoil shape to Grassmannian

[X] = equivalence class of shapes defined by the representative element X
B = shape center of mass

P = symmetric, positive-definite matrix defining polar standardization of airfoil shapes
ti, t = ™ normal coordinate and set of all normal coordinates

m = dimension of full shape parametrization

r = dimension of reduced shape parametrization

40 = upper (u) or lower (£) airfoil surface defined by CST

1//%% = class function with class paramters N1, N2

D) = shape function for the upper () or lower (£) airfoil surface

ai, () = CST coefficients for the upper («) or lower (¢) airfoil surface

P = polynomial degree for CST shape functions

o fe = given function and its output for some input t

Si, ST, = first-order and total Sobol’ index for the i input parameter

C = active subspace matrix

= probability density function over input space

i, A = i eigenvalue and set of all eigenvalues of C

w = matrix defining the reduced-dimensional subspace
a; = activity score for the /™ input parameter

f = reduced dimensional polynomial approximation of f
C; = lift coefficient

Ca = drag coefficient

Cn = pitching moment coefficient

a = angle of attack

x/c,y/c = chord-normalized horizontal and vertical coordinates
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I. Introduction

The design and analysis of airfoils are critical to the overall construction of larger and more complex three-dimensional
aerodynamic structures, such as wind turbine blades [1} 2], wings and propellers for various aircraft [3H35]], and turbine
fan blades [6, [7]. These structures are often expected to meet various aerodynamic, structural, acoustic, and economic
criteria, making their design a complex, multidisciplinary optimization problem [8H10]. A wide variety of airfoils have
been designed that exhibit different properties, either to find a desired balance among these criteria or to perform a
specific task while operating within a larger system, e.g., structural airfoils near the root of a wind turbine blade versus
high-lift airfoils near the tip. The development of new airfoil designs remains an active area of research, especially with
recent progress in machine learning methods [[11}[12]

Among the first steps in the airfoil design process is the selection of the design space and the method to represent
the airfoil shapes. Common approaches to airfoil parametrization can be categorized into deformative and constructive
methods [13]. Deformative methods, such as Hicks-Henne bump functions [[14]], Bézier curves [[L5]], and radial basis
function domain elements [16]], apply deformations to a baseline airfoil shape. In contrast, constructive methods, such
as B-splines [[17], parametric sections (PARSEC) [18]], and, more popular recently, the class-shape transformation
(CST) [19,20], represent the airfoil entirely through a set of parameters, enabling the creation of shapes from scratch.
However, all these representations lack orthogonality in the design space, an important property that ensures that the
parameters defining a shape are independent. Interdependent parameters can result in poor mapping between design
variables and shape geometry and cause ill-conditioned optimization problems.

Derivation of a set of orthogonal modes to represent airfoil shapes has been an active area of research in recent
years. Toal et al. [21] first proposed using the proper orthogonal decomposition (POD) of an ensemble of airfoils
represented by discrete coordinates. The authors applied POD to a small ensemble of airfoils and demonstrated that it
can reduce the number of parameters and simultaneously filter out poorly performing geometries. Poole et al. [22]
applied a POD to a more extensive library of airfoil shapes, including various airfoil families, and derived more generic
design variables. Masters et al. [13] compared deformative methods and constructive methods, including the singular
value decomposition (SVD) technique, by evaluating their ability to reconstruct shapes from a diverse dataset of over
2,000 airfoils and found that the SVD method provides the best reconstruction and allows to reduce the number of
parameters. Recently, Li et al. [23] suggested using more intuitive and practical modes of camber and thickness instead
of modes of shape coordinates and showed that it simplifies the design space bounds. A comprehensive review of
modal parameterizations is provided by Li et al. [24]. Another SVD parametrization method, which requires no training
dataset of airfoils, was proposed by Kedward et al. [25]. First, Kedward et al. [26] proposed the bounding of parametric
derivative by imposing linear constraints on the discrete difference matrix for mesh point control or B-splines to achieve
smoothness constraints. Then, Kedward et al. [25]] further developed this idea by replacing linear constraints on discrete

difference operator with discrete difference operator modes. The authors demonstrated that their method can be easily
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applied to nonstandard shapes.

All these approaches demonstrate different characteristics in terms of their ability to represent various airfoil features,
their overall expressiveness of new shapes, the number of parameters needed, and the regularity of the parameter
space [13]]. This last concern is becoming increasingly relevant as machine learning and other data-driven tools are
being leveraged for airfoil design [27H30]. In these cases, a well-regularized design space of shapes can accelerate the
training of the surrogate models and improve their ability to generalize to new designs.

Recent work has introduced a novel airfoil parametrization technique based on separable shape tensors that learns a
matrix manifold representation of the airfoil shapes from a given dataset [31]]. This approach shares some similarities
with the other data-driven methods discussed above. However, in the above approaches, POD or SVD modes of shape
landmarks are calculated extrinsically over the ambient space rather than defining the parameterization intrinsically over
the space of relevant airfoil shapes. This can impact the regularity of the design space resulting in large regions of the
parameter space mapping to invalid shapes and forcing designers to significantly reduce their parameter ranges or apply
posthoc fixes to ensure valid shapes. Further, this intrinsic representation separates affine variations in the airfoil shapes
(e.g., those corresponding to translation, scaling, stretching, or rotation of the shape) from higher-order variations defined
over the Grassmann manifold (or Grassmannian), which capture the smaller scale, non-linear changes in the airfoil
shapes. This separability confers several advantages to the definition of the airfoil design space. First, it enhances the
interpretability of the airfoil representation by isolating fundamental aerodynamic variations in shape, such as the airfoil
thickness, from other more complex non-linear variations. The affine variations are usually constrained or carefully
chosen for 3D blade definition—e.g., the thickness of airfoils near the root has to satisfy structural requirements—while
the higher-order variations on their own can considerably improve aerodynamics. The second major advantage of
this separability is its regularizing effect on individual shapes across the design space. Separating the two classes of
shape variations makes the resulting parameter spaces relatively controlled and more stable to perturbations, even for
drastically different shapes. This is intuitively achieved through an improved notion of distance between shapes [32].

In practice, the separable shape tensor approach has been shown to effectively support the development of machine
learning models and the optimization of airfoil characteristics. Specifically, the separable shape tensor representation has
been used to perform drag minimization of the RAE2822 transonic airfoil in viscous flow cases [33]]. Follow-on research
integrated this parametrization with surrogate-based optimization to demonstrate dimensionality reduction capabilities
and the ability to optimize airfoils with fixed affine deformations (i.e., fixed airfoil thickness) using the base test case of
the RAE2822 airfoil. Invertible neural network models have been trained to using separable shape tensors to enable
efficient design workflows for design of airfoil cross-sections with larger blade optimization workflow [34]. Despite
this emerging research that has examined the use of these Grassmann-based shape parametrizations for predictive
modeling and design, no work has performed a formal sensitivity analysis to help understand how these parametrizations

affect variation in critical aerodynamic quantities of interest. Such analysis can more broadly enable the future use
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of the separable shape tensor framework for acrodynamic design and optimization by identifying critical parameters
driving changes in the outputs to accelerate convergence, informing the choice of optimization algorithm by uncovering
critical properties of the objective function, and quantifying trade-offs in different properties to guide constraints or
multi-objective solutions.

This study aims to fill the gap between the separable shape tensors parametrization and its effects on aerodynamic
quantities by performing a variety of sensitivity analyses and motivating physically intuitive explanations of the
results. In doing so, we believe this work can help to guide and motivate the use of these tools for more targeted
aerodynamic design and optimization problems. Sensitivity analysis is a systematic approach to quantify the impact of
given input parameters on specific target quantities of interest for some physical process [35]. This can include local
sensitivities that highlight the behavior of the physical processes in the neighborhood of a point in the parameter space
or global sensitivities that capture the relative importance of each parameter—or the interactions between multiple
parameters—over a full distribution of values. Insights from sensitivity analysis can inform component-wise dimension
reduction by discovering insensitive parameters that can be fixed at a nominal value [36438]. Alternatively, the results
from sensitivity analysis can inform other practical considerations, such as where design trade-offs can be made between
multiple objectives [39,40] or how tight manufacturing tolerances need to be set with respect to different aspects of an
aerodynamic structure [41}142].

Quantifying and understanding parametric sensitivities in aerodynamic applications is critical to robust design
processes and safety analyses of a wide array of complex engineering applications [43]]. Previous works have performed
sensitivity analysis to understand the implications of various airfoil designs on aerodynamics [44-H48]. Additionally, Liu
and Lee [46] examined the sensitivities of different airfoil shape parameters with regard to aeroacoustic sound levels.
Similarly, [49] used adjoint-based sensitivity analysis to explore the impacts of different active control techniques to
reduce drag forces on an airfoil. Other related works have used sensitivity analysis tools to understand the importance
of different turbulence model parameters to the pressure distribution over a wing [50] and the impact of atmospheric
conditions on fatigue loads in wind turbines [51} 152]. However, sensitivity analysis results and their interpretations
depend on the parametrization and the design space used to characterize the system under consideration. To our
knowledge, no previous study has explored the aerodynamic sensitivities of the Grassmann-based separable shape tensors
representation for airfoils, except an initial presentation outlined in Grey and Constantine [53]], which concentrated on
shape sensitivities rather than parameter sensitivities.

The remainder of the paper is structured as follows. Section[[I] provides a brief background of the key techniques
leveraged in this work, including separable shape tensors representation, CFD modeling of airfoils, and sensitivity
analysis methods. Section [[T] details the methodology used to perform this sensitivity analysis. Section[[V]presents and
discusses the results of the sensitivity analysis. Section[V]concludes the paper with a summary of the key takeaways and

future research directions.

5

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript.
The published version of the article is available from the relevant publisher.



II. Background

A. Separable Shape Tensors for Airfoil Design

In this work, we explore the aerodynamic implications of a separable shape tensors framework [31}54]. This novel
approach learns a data-driven space of shapes as elements of the Grassmann manifold (or Grassmannian), G(n, g). In
the case of shapes defined by planar curves (such as airfoils), we have g = 2, and the Grassmann manifold is a space of
all 2-dimensional subspaces of R", where n is the number of landmarks used to discretely represent the shape. The
Grassmannian representations of the airfoils are constructed through a landmark standardization process, such that
linear features (e.g., anisotropic scale variations, rotations, and reflections) are ignored. Differences between shapes on
Grassmann manifold are isolated to higher order deformations, and perturbations that can be parameterized through a
basis representation learned via principal geodesic analysis (PGA) [55}156]. Thus, this separable shape tensors approach
provides a framework for studying sensitivities to more nuanced shape variations independent of larger, linear shape
deformations that typically arise in related sensitivity analysis [S3,I57]. The remainder of this section provides a brief
mathematical overview of the separable shape tensors parametrization. More details on the development and supporting
algorithms for implementing this parametrization can be found in [31]]. FigureT|provides a schematic overview of the
separable shape tensors approach for the airfoil design.

Following the developments in [31], we define an airfoil shape by a discrete, ordered sequence of landmarks
(x;) € R% overi = 1,...,n, which form a full-rank n X 2 matrix X = (x; ... xn)T € R"™?—j.e., points and
lines are not considered valid shapes. With the separable shape tensors approach, this discrete shape X is mapped
to an element of the Grassmannian through the canonical projection, 7 : R"™*2 G(n,2), onto an equivalence
class of landmark-affine standardizations which is invariant to general linear transformations. In other words, this
projection maps a given airfoil shape X to the underlying equivalence class of shapes [f ] such that the standardized
representative X has orthonormal columns. Numerically, standardization is achieved using the polar decomposition
X-B(X)= XP where B(X) = %ln,nX , with 1,, ,, an n-by-n matrix of ones, computes the center-of-mass to remove
shape translations—i.e., we take the polar decomposition of (I — %ln,n)X . The polar decomposition of the centered
shape, X — B(X) € R™?, is easiest to interpret using the singular value decomposition (SVD). Specifically, given the thin
SVD (X — B(X))T = UZVT such that U € R?>*? is orthogonal, £ € R>*? is diagonal, and V € R"*? has orthonormal
columns, we construct the 2-by-2 matrix P = ULU" paired with a representative Grassmannian element X =VU". The
result is equivalent to the polar standardization, [31]] i.e., X — B(X) = VEUT = VU'UXU" = XP. Thus, our original
shape is separated into the symmetric positive definite matrix P = UXU" representing scale variations (up to rotations
and reflections) as a right action on the representative Grassmannian element, X = VU™. To maintain a separation
of scale variations and nonlinear undulations, we independently study learned deformations of shape over nonlinear

perturbations [f 1(t)— equivalence classes modulo the right action of general linear deformations—parametrized by a
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vector t € R™ and linear scale deformations P(f) parametrized by a vector £ € R3. Thus, either separate parameter
set can be fixed or varied to deform (centered) shapes, i.e., X(t,£) = X (t)P(¢) with representative X (t) taken from
[f 1(t) € G(n,2). We elaborate on a data-driven procedure for determining ¢ and £ in later sections.

This approach is data-driven and relies on a provided dataset of physical shapes {X;} to learn a manifold-valued
domain. Moreover, separable shape tensors necessitate a fixed reparametrization of shapes via smoothing or interpolation
of landmarks to produce a consistent n total landmarks per shape. The reparametrization of data is often hand-picked
to promote refinements around important leading-edge and trailing-edge features of airfoils. Separable shape tensors
representations offer the advantage of separately averaging out the effects of £, representing a dominating influence of
variations in scale, while utilizing a learned subspace of t’s to explore the remaining nonlinear variations in the shape
representation as X (t) = X(t)P—e. g., we can study shapes with P as some notion of average scale. To obtain this
parametrization, we use principal geodesic analysis (PGA) [55,156], which extends the classical principal component
analysis (PCA) [58] to Riemannian manifolds, such as the Grassmannian. PGA is a data-driven approach that determines
principal components as important directions in a tangent space defined at an intrinsic mean (e.g., the Karcher mean) over
the manifold-valued data. The resulting space of so-called normal coordinates (PGA space) is akin to a latent parameter
space, denoted t = (¢1,13,...,t,)" € R™, of a nonlinear Al-based generative model of airfoil shapes. Note that the
maximum dimension of this space is bounded above as m < 2(n —2) [59]. Variations in these latent parameters account
for fundamental differences in shapes that cannot be achieved through simple linear transformations (e.g., stretching,
scaling, shearing, rotation). Thus, characterizing sensitivities of aerodynamic performance with respect to these
parameters can provide important, nuanced insights into how small changes in airfoil shape can impact performance.
However, we are not precluded from the possibility of generating non-physical self-intersecting shapes. Consequently,
we incorporate a simple hard constraint to check for piecewise linear intersections over the generated shape landmarks

and reject samples which result in intersections—these are often a small proportion of randomly generated sets.

B. The Class-Shape Transformation

Another airfoil parametrization referenced in this work is the class-shape transformation (CST) [19}20]. The CST
parametrization is a popular method for airfoil representation that encodes the upper and lower surfaces of the airfoil
shape by the coefficients of a truncated Bernstein polynomial series. Given a normalized chordal coordinate ¢ € [0, 1],

the CST representation of the airfoil upper (1) and lower (£) surfaces is given by ¢, and ¢ respectively such that

£0)(©) = U (@) (€) + clr, )]

where Y (¢) = ¢V (1 — ¢)N? is the class function with Ny and N, defining the airfoil class. This work uses Ny = 0.5

and N, = 1, which correspond to blunt-nosed airfoils. The shape function is given by the Bernstein polynomial
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expansion of the respective surfaces,

£ i

4

p
(€)= ) ai () (p) 1=y, )
=0

with free parameters, a;_, for the upper and a;, , for the lower surface, that can be adjusted to define different airfoil
shapes. Finally, the upper/lower trailing edge thickness of the airfoil is represented by {7, ,; again, with one per surface.

Given this definition, a p®-order CST parametrization requires m = 2(p + 2) parameters to define both the upper
and lower surfaces of an airfoil. This includes 2(p + 1) free parameters in Bernstein polynomials and 2 parameters
that account for the trailing edge thickness. Ceze et al. [60] studied the performance of this method to reconstruct
airfoil shapes and determined that roughly m = 20 total terms were necessary to accurately define airfoil shapes. These
insights have supported the use of CST parametrization in various airfoil design studies [[61}162]. It is natural to perhaps
employ this parametrization as a global representation of shape. However, in [31]], it is noted that the global CST
parameter sweeps over a; (.)’s spanning a diverse set of airfoils can create undesirable shapes. Regardless, locally, this
representation offers a very useful engineering parametrization. In this work, we use 8"-order CST parametrization to

pre-process otherwise noisy data and get a consistent number of landmarks for all airfoil shapes.

C. CFD Simulations of 2-D Airfoil

To obtain aerodynamic responses for our generated airfoil shapes, we leverage CFD simulations using an in-house,
finite-volume, Reynolds-averaged Navier-Stokes (RANS) flow solver, HAM2D [63]. HAM2D is distinguished by its ability
to identify line structures on unstructured meshes and apply line-based schemes for spatial reconstruction and implicit
inversion, similar to a structured mesh-based flow solver. In this work, we employ a fifth-order Weighted Essentially
Non-Oscillatory (WENO) scheme [64] for spatial reconstruction, with Roe’s flux difference scheme [[65] for inviscid
flux, and second-order central differencing for viscous flux. A preconditioned Generalized Minimal Residuals (GMRES)
method [60] is applied for implicit integration. The Spalart-Allmaras one-equation turbulence model [67] is used for the
turbulence closure, and the Medida-Baeder two-equations transition model [68] is applied to account for the effects of
laminar-turbulent transition. The two-dimensional airfoil grid is generated with 400 points on the airfoil surface, the
dimensionless wall-normal spacing of 1, and an outer boundary located at 300 chord lengths away from the wall. The
CFD simulations are performed at a freestream Mach number of 0.1, Reynolds number of 9x10°, and two angles of
attack, 4° and 12°. For laminar-turbulent simulations, the freestream turbulence intensity is set to 0.1%. To manage
CFD cases involving thousands of airfoils, all stages of CFD simulations, including mesh generation, flow solver setup,
CFD runs, and post-processing of results, are automated using Python and bash scripts. Details of the mesh generation,
grid sensitivity study, and validations of the simulation results for airfoils at Reynolds numbers ranging from 3 million

to 15 million are available in Jung, et al. [69].
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D. Sensitivity Metrics

Sensitivity analysis seeks to quantify the impact that uncertainty or changes in certain parameters (i.e., model
inputs) have on other parameters (i.e., model outputs). That is, we may consider a given relationship f; = f(t), where
t € R™ is a collection of model inputs whose uncertainty is represented by the probability density function p, and
Jt € Ris the model output. Different sensitivity analysis methods can quantify these impacts in a local sense (i.e., in
the neighborhood of a particular point, ty) [[70] or in a global sense (i.e., over all valid values of t) [35]]. In this work,
we consider several global sensitivity metrics to provide a robust characterization of the relationship between shape
parameters and the aerodynamic quantities of interest.

The first method we consider is a variance-based metric of sensitivity known as Sobol’ indices [71]]. First-order

Sobol’ indices capture the ratio of the total response variance attributed to a particular parameter and are defined as

Var [E [ fi|#]]

S T Nar L]

i=1,....m. 3)

These indices capture the individual impact of each parameter independent of their interactions with other parameters,
while higher-order Sobol’ indices capture sensitivities to interactions between parameters. The collection of all the first-
and higher-order sensitivities for a particular parameter accounts for its total contribution to the variation in the output.

This is referred to as the total Sobol’ indices and is expressed as

N (1 VAT

l Var[A] =1,...,m, )

where t.; is the collection of all elements of t except for the i, If S7, = 0 then the #; has no impact on f;.

Another class of sensitivity metrics leverages subspace-based dimension reduction that seeks to represent most of
the variation in the output of interest in terms of a reduced set of linear combinations of the original input parameters.
First, we consider the activity score metric [[/2]], which is based on the gradient-based dimension reduction framework

called active subspaces [73]]. Active subspaces are defined by the eigenspace of the mean outer product of gradients,

C= [ VrOTFOTpat= WAW'. )
where A = diag (4, 4,...,4,) is a diagonal matrix of eigenvalues of C sorted from largest to smallest and
W= [wl, Wo, ..., wm] are the associated eigenvectors. The eigenvalue A; has been shown to correspond to the mean

squared directional derivative of f along the direction w;. The r-dimensional active subspace of f is defined as the
span of r eigenvectors associated with the largest eigenvalues. In practice, computing the active subspace requires the
calculation or approximation of the gradient V f, which may be difficult to obtain. For this work, we approximate the

gradients at a collection of Monte Carlo samples by constructing a local linear model around each sample using its &
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nearest neighbors. Given an active subspace for f(t), the activity score for the /™ parameter ¢; is defined as
r
ai(r) = Z Ajw?’j. (6)
j=1

Next, we consider the sensitivity metric defined by the ridge directions obtained from a dimension reduction method
known as polynomial ridge approximation [74]]. Polynomial ridge approximation learns a low-dimensional subspace
representation by efficiently solving a nonlinear least-squares problem,

o -FwTo ™

min
[W]eG(m.r)

fePa
where fis a d-degree polynomial approximation of f defined over a low-dimensional subspace of the input space—
coincidentally also an element of the Grassmannian but unrelated to notions of shape. The joint optimization is
simplified and solved using a variable projection technique. By setting » = 1, we consider a one-dimensional reduction
of f and can view the weights in W, now just a column vector, as a rough measure for the relative amount of variation in
f that is driven by the corresponding parameter [[75]. The degree to which this sensitivity can be trusted is quantified by
the error in the low-dimensional approximation. This can be qualitatively evaluated by examining the shadow plots that

show the relationship between f and the learned one-dimensional parameter [76].

II1. Methodology

This study workflow involves two steps: (i) building a data-driven parameterization of airfoils based on principal
geodesic analysis (PGA) of separable shape tensors and (ii) performing sensitivity analyses of aerodynamic quantities
over this parameter space. To build the data-driven parameter space, we curate a database of almost twenty thousand
trusted airfoil shapes from a variety of sources. We then represent these airfoils by separable shape tensors and apply
PGA to get the parametrization. This can be done in a matter of minutes and without high-performance computing.
Once the parametrization has been learned, we sample this parameter space and use CFD simulation software to obtain
corresponding aerodynamic properties. Finally, we apply the various sensitivity metrics to the collection of aerodynamic
outputs to highlight various shape features that impact performance. In this section, we provide the technical details for

this approach before exploring the sensitivity analysis results in the next section.

A. The Curated Database
Our goal is to develop a curated set of airfoils with various characteristics that will inform the data-driven parameter
space. We begin by gathering airfoils from the extensive BigFoil database [[77]], which is a large database that consolidates

airfoil data from the University of Illinois Urbana-Champaign (UIUC) airfoil database [78], the JavaFoil database [79],

11

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript.
The published version of the article is available from the relevant publisher.



the NACA-TR-824 database [80]], and other sources. The diverse origins of these airfoils mean that, while they cover a
wide range of interesting features worth studying, airfoil landmark data can often be sparse, noisy, or incomplete. To
ensure a reasonable design space of airfoils, we performed a pre-processing to clean the data and identify undesirable
shape characteristics unsuitable for this analysis. Specifically, we removed airfoils with too few landmarks to adequately
describe the shape (i.e., 25 or fewer landmarks) and those whose landmark data appeared to be noisy upon visual
inspection. We also removed airfoils with shape characteristics outside of this work interest—e.g., airfoils with a sharp
leading edge or an extreme camber line as well as those exceeding a threshold of 0.025 for the trailing edge thickness.
Further, we note that the BigFoil dataset contains a disproportionate number of variations of NACA airfoils. Specifically,
it contains parametric sweeps of NACA airfoils with incrementally increasing thickness and camber. To avoid a bias
towards these shapes in our design space, we thinned out the collection of these airfoils by selecting every fourth step
in the parameter sweeps. The final step involves regularizing the airfoils by fitting the shapes with an 8"-order CST
parametrization and then removing airfoils with high reconstruction errors (i.e., greater than 102 root mean squared
error of the given landmarks). This data pre-processing resulted in 2, 343 airfoils being removed to produce a set of
6, 164 airfoils with 1,001 landmarks resampled from 8"-order CST representation with x coordinates following cosine
distribution along the chord.

To augment this data set, we also generated additional airfoils using CST parametrization. We identified 13 baseline
airfoils from the NREL SMW [81] and IEA 15MW reference wind turbines [82] and used least-squares fits of CST
parametrizations with fixed order p = 8 to reparametrize and sample shape landmarks. We then sampled 1, 000 unique
airfoils by uniformly perturbing all 18 CST coefficients (9 coefficients for upper and lower surfaces polynomials) by up
to £20% around the baseline for each airfoil, resulting in 13, 000 additional airfoil shapes with 1,001 shape landmarks
whose x-coordinates follows a cosine distribution along the chord.

The final curated database of airfoils combines the set of 6,164 airfoils from BigFoil and 13,000 airfoils defined
by random perturbations to CST coefficients of baseline airfoils. Thus, we have a total of N = 19, 164 airfoils, each
with 1,001 landmarks, to define data-driven design space using PGA of separable shape tensors. This curated database
of airfoils was made available online [83]. Figure [2]provides a statistical overview of the final curated database and

highlights the range of characteristics of airfoils used to inform the data-driven parameter space.

B. Construction of the PGA space

With the curated airfoil dataset, we follow the separable shape tensors framework [31] described in Section
which decomposes each airfoil shape, X; fori = 1,..., N, into a representative Grassmannian element, X, i, and fixed
linear transformation defined by an SPD matrix, P;. Our focus in this work was to explore the nuanced aerodynamic
sensitivities of nonlinear (undulating) variations in shapes which are not conflated with linear variations. To remove

variance in linear transformation and obtain a consistent right-inverse from the Grassmann manifold to the physical space,
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Fig. 2 Statistical characterization of the curated database, including the chordal distribution of airfoil shape,
camber, and thickness (top row) and the distribution of various other shape characteristics (bottom two rows).

we compute a mean transform P as the Karcher mean of all matrices {P;} over the SPD manifold [84]—constituting an
average of scale variations. In this sense, we average-out the effects of parameter variations over ambiguous £ € R® and
only study nonlinear undulating variations in the shapes with fixed linear scales. Then we apply PGA [56] to the set of
representative Grassmannian elements, {X;}, to obtain data-driven (normal) coordinates ¢ for shape parametrization. We
obtain the set of latent variables {t;} ¢ R™ with PGA to capture fundamental nonlinear shape deformations over the set
of airfoils. Figure.[I]schematically summarizes this procedure, which details and supporting algorithms provided in [31]).
Figure [3] visualizes the amount and direction of perturbation to the Karcher mean shape by each normal coordinate,
t € R™. We only depict the first 18 PGA modes because the curated airfoil data has been smoothed with an 18-term
least-squares CST fit—i.e., order p = 8 for upper and lower surface Bernstein polynomial expansions. Smoothing
restricts the ambient dimensionality of the shapes to m = 18 as a mechanism for removing noise from the data, and the
first 18 PGA modes completely describe shape variations in the curated dataset—i.e., the PGA eigenvalues drop to
machine precision beyond the first 18 modes. In other words, the data-driven PGA routine perfectly captures the chosen

ambient (m = 18)-dimensional fits up to machine precision.
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C. Selecting Dimensionality

With a curated database of m = 18 dimensional shapes, we explore how much of the full dimensionality is required
to produce reasonable coverage of output aerodynamic quantities of interest. Also note that the ordered PGA modes
exhibit more oscillatory characteristics with increasing mode number, as shown in Fig.[3] This creates a trade-off
between the shape’s physical expressivity versus regularization against non-physical airfoil features (e.g., divots or
kinks). Thus, one critical question that arises during the construction of the design space is: how many PGA modes are
necessary to explore a relevant space of airfoil shapes while providing sufficient regularization against non-physical
shapes? That is, what is the idealized effective dimension for our PGA parametrization? To address this question, we
analyze the reconstruction of airfoil shapes and their aerodynamic properties for variable parametrization dimensions.

For this analysis, we systematically selected 100 airfoils to span a wide range of the characteristics present in
the curated dataset. We included the baseline airfoils from the NREL SMW [81]] and IEA 15MW reference wind
turbines [82], the largest perturbations to the baseline CST parameters, airfoils that had high shape reconstruction error,
and airfoils that are far from the Karcher mean shape over the dataset (i.e., distance-based outlier shapes). This selection
ensures that we capture a large amount of variability in the airfoils chosen for this analysis and don’t unfairly bias the
subset of 100 hand-picked designs towards shapes that are inadvertently easier to represent or not representative of the
wind application.

Figure ] shows a steady decay in the selected shapes’ reconstruction errors (calculated as the maximum Euclidean
distance between corresponding landmarks of the initial and reconstructed shapes) without an obvious point where the

change in errors suddenly levels out. As such, we must consider the trade-off between the expressiveness of the PGA
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Fig.4 Letter-value plot of shape reconstruction errors over the set of 100 airfoils as a function of PGA dimension.

representations for various dimensions and the complications that arise from working in a higher dimensional parameter
space. We choose the r = 4, 8, and 16 dimensions as cases for further investigation.

Specific to this inquiry is the impact of dimension on the recovery of relevant aerodynamic quantities: lift coefficient,
Cp, drag coefficient, Cp, and moment coefficient, Cj;. CFD simulations were performed at low (@ = 4°) and high
(@ = 12°) angles of attack for each of the 100 hand-picked airfoils and their reconstructions with » = 4,8, and 16
parameters using the finite-volume RANS flow solver, HAM2D described in detail in Section|[[.C] Figure [5|shows the
distribution of absolute errors (normalized by the mean of the true values) in the recovered aerodynamic quantities.
In this figure, the higher angle of attack has a slightly larger error, the errors between the r = 4 and r = 8 cases are
relatively similar, and a much larger dimension (r = 16) is required to noticeably reduce the error for all aerodynamic
quantities. While we see that lower-dimension reconstructions produce larger errors, the focus is to identify a design
space that is sufficiently expressive to cover the complete range of aerodynamic quantities of interest. Towards this end,
we consider the distribution of the lift, drag, and moment coeflicients produced by the airfoil reconstructions across
different dimensions.

To identify this effective dimension, we examine the generated joint distributions of aerodynamic responses. Figure[6]
qualitatively highlights that the first four PGA dimensions appear sufficient for recovering the statistical moments of these
aerodynamic coefficients. Quantitatively, we employ maximum mean discrepancy [85] to test if the shapes generated
with different dimensionality significantly modify the joint distribution of the three aerodynamic quantities of interest.
That is, we compare each of the joint distributions of aerodynamic coefficients generated by the low-dimensional
(r = 4,8, 16) airfoil representations to the coefficients generated by the original airfoils, resulting in three different

approximations of the maximum mean discrepancy. In this numerical experiment, we found no statistically significant

15

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript.
The published version of the article is available from the relevant publisher.



Aerodynamic quantity = C, Aerodynamic quantity = Cy4 Aerodynamic quantity = Cp,

10°
107!
o -2
5 10 aoa
w . 4
1 -3
0 3 12
1074
1073
n=4 n=8 n=16 n=4 n=8 n=16 n=4 n=8 n=16
Number of parameters Number of parameters Number of parameters

Fig. 5 The distribution of error in the recovery of aerodynamic quantities for low (@ = 4°) and high (a = 12°)
angles of attack, with respect to dimensionality of shape parametrization.

difference between the joint distributions of the aerodynamic quantities obtained from shapes constructed by any of the
reduced PGA representations. We subsequently conclude that, despite the larger errors in the reconstruction of shapes
and aerodynamic quantities with reduced dimension shown in Fig. ] and Fig.[3] the joint distribution of aerodynamic
quantities is still well described by shapes with as few as four dimensions. Intuitively, this suggests that even with as
few as four parameters for shape representation, we can obtain sufficient coverage in the distribution of aerodynamic
responses that would drive subsequent optimization and design problems. Empirically, we conclude that these different
reduced-dimension designs span an equivalent range of aerodynamic quantities of interest.

An additional benefit of keeping only the first four PGA modes is that we reduce the oscillatory characteristics that
are depicted in higher modes in Fig.[3] This truncation of ordered terms in the normal coordinate basis expansion offers,
intuitively, a kind of explicit regularization in the shape representation to prevent undesirable high-order oscillations in
generated designs. Consequently, we select the r = 4 case for the analysis performed in the remainder of this paper.
This learned design space of four parameters informs a dramatic dimension reduction for generating new shapes over
the ordered normal coordinates restricted to t = (¢, 5,13,24)7 € R”. With this parameter space, we randomly generate

designs to study changes in aerodynamic responses using CFD simulations.

D. Sampling PGA Space

The final step in our sensitivity analysis is to generate new reduced-dimension airfoil shapes by sampling the
constructed PGA design space and obtaining aerodynamic quantities for the airfoils. Figure[7]visualizes the joint and
marginal distributions of normal coordinates for the original curated dataset of airfoils and the new samples of the design
space. Note that the original dataset results in a relatively irregular distribution of points in this space with several
outliers in each dimension. To better manage the design space for sensitivity analysis, the new samples are drawn with

uniform probability from an ellipsoid defined over the normal coordinates {71, t5, 13,4 }. This sampling distribution
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Fig. 6 The joint and marginal distributions for the output aerodynamic quantities C;, C4, and C,, for a variety
of dimensionalities.

allows for a balanced exploration of the parameter space while avoid extreme designs that could occur in the corners
of a bounding hypercube. The ellipsoid is centered over the middle 95% of the original dataset, with the diameter
along each axis defined to cover 99% of this dataset. This ensures that the sampling space covers most of the curated
airfoils without allowing outliers to impact our sensitivity analysis. It is also worth noting that global sensitivity analysis
depends heavily on the probability distribution underlying the design space since it weighs the relative importance of
different shapes. To avoid biasing our sensitivity analysis, we draw samples of PGA parameters with uniform probability
from this ellipsoid. Sampling constraints are utilized to detect the possibility of self-intersecting shapes. Specifically,
airfoils with simultaneously large negative ¢; and #, values resulted in self-intersecting shapes, where the intersection
occurred near the tail edge of the airfoil. Such shapes are always checked against a hard constraint in the sampling
procedure and removed from the sampled set to appropriately regularize the generative model.

The Grassmannian elements obtained from this sampling process were mapped back to physical airfoil shapes using
the inverse SPD matrix fixed at the Karcher mean of the SPD manifold. This constitutes a notion of shapes generated
with some fixed average scale. This also ensured that the aerodynamic sensitivity analysis was not impacted by these
well-studied factors—e.g., thicker airfoils are known to increase drag—but could be focused on the nuanced shape
deformations arising from the separable shape tensors representations. Figure[7]also shows the distributions of the
airfoil shapes and the camber and thickness of the airfoils along the chord.

Finally, we ran CFD simulations for the resulting set of 8,996 airfoils using the HAM2D solver. From these simulations,
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Fig. 7 A visualization of the sampled airfoils

we obtain values for the lift, drag, and moment coefficients for each of these airfoils for low (@ = 4°) and high
(@ = 12°) angles of attack. This CFD data has been made publicly available on the Open Energy Data Initiative (OEDI)
webpage [86]. In the next section, we explore the results of the sensitivity analysis for these airfoil shapes and discuss

how the insights can help to improve airfoil design in the future.

IV. Results

We now explore the sensitivities of the computed aerodynamic quantities with respect to the PGA parameters used
to generate the shapes based on the separable shape tensors approach. Given the novelty of this shape representation
framework, it is critical to understand how these learned parameters can impact aerodynamic performance to inform
their use for airfoil design. We begin by computing the sensitivities of the various aerodynamic quantities with respect
to the normal coordinates using multiple approaches described in Section [[l.D] We look for consistency across these
metrics and examine their uncertainty. We perform a deeper exploration of the subspace-based sensitivity approach that
identifies combinations of parameters that capture most of the variation in the output quantities of interest. This allows

us to translate sensitivities with respect to shape parameters into physical variations in the airfoil shapes.
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A. Sensitivity indices

We begin by computing a variety of sensitivity metrics for each aerodynamic quantity (C;, Cy4, and C,,) for each
angle of attack (@ = 4°, 12°) with respect to the four normal coordinates {t1,,,13,24}. The sensitivity metrics we
compute here are the total Sobol” indices from Eq. (@), the first-order Sobol” indices from Eq. (3), the activity scores
from Eq. (6), and the magnitude of the subspace weights from the polynomial ridge approximation, i.e., the vector W,
for r = 1, from Eq. (7). The total and first-order Sobol’ indices are computed using the Sensitivity Analysis Library in
Python (SALib) [87] with a surrogate-based approach that fits a Gaussian process model to the data to estimate the
indices. The activity scores are computed using a local linear approximation method to obtain gradients at each point
to compute the active subspace [88]. The polynomial ridge approximation is performed using the Parameter Space
Dimension Reduction (PSDR) Toolbox [89].

Figure [§] shows these sensitivity metrics computed for each aerodynamic quantity with respect to the normal
coordinates. Despite each of the sensitivity metrics capturing different characteristics of the input-output relationship
(e.g., statistical, gradient, or subspace-based), we see a strong agreement across the methods in conveying the relative
importance of each of the PGA modes. In particular, the lift coefficient, C;, heavily depends on the first two modes, with
the latter two modes impacting this quantity very little. Conversely, the drag coefficient, Cg, is strongly influenced by
these latter modes, albeit differently depending on the angle of attack—i.e., at the low angle of attack, dependence is
stronger on the fourth mode, while at the high angle of attack it is stronger on the third. Finally, the moment coefficient
has a more equal dependency on all of the PGA modes, slightly favoring the first two, with a small variation in sensitivity
between the low and high angle of attack.

Next, we address the question of how well we can trust the sensitivity metrics presented in Figure[8] To do this, we
compute the same metrics using randomly sampled subsets of the full dataset to estimate the convergence. Figure[J]
shows the errors between the metrics over the subsets and the full dataset of 8,996 airfoils. We perform this convergence
study for subsets of size N = 50, 100, 300, 500, 1000, 3000, 5000, and 8000 and report the average error across 200
resamplings. This analysis shows that the Sobol’ metrics show weaker convergence than the ridge approximation
and activity scores. However, once we have more than N = 1,000 subsampled shapes (or roughly 11% of the full
dataset), the variation in the computed sensitivity metrics is typically less than 0.01. This amount of variation would
not drastically impact interpretations of the results since the differences between high and low sensitivity indices were

generally an order of magnitude larger.

B. Ridge Subspaces and Airfoil Sweeps
The results presented in the previous section provide insight into how to leverage the PGA space to improve airfoil
designs. However, the interpretations of the sensitivity metrics computed with respect to the normal coordinates are

somewhat disconnected from the physical variations that are driving these aerodynamic changes. To address this, we
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Fig. 8 Comparison of four sensitivity metrics for aerodynamic quantities C;, C,;, and C,,, with respect to the
normal coordinates {7, 15, 13, 14} for the low (o = 4°) and high (o = 12°) angles of attack.

explore the results from the polynomial ridge approximation more deeply.

Subspace-based dimension reduction defines low-dimensional projections of input parameters that capture exploitable
structure in the data. It can be done in an unsupervised manner using PCA [58]] or in a supervised manner using methods
such as active subspaces [[73] or sufficient dimension reduction [90]. For this work, we use the CFD results to inform a
data-driven polynomial ridge approximation approach to identifying exploitable low-dimensional structure [74]]. As
discussed in Section[[L.D] this approach finds the linear combination of input parameters that minimizes a polynomial
fit to the output quantities. This combination of parameters provides insight into how we can maximally vary each
aerodynamic quantity by changing the PGA values. This can be critical for informing aerodynamic design processes
where we may seek parameter variations that can reduce drag without impacting lift. Further, low-dimensional
structure can be exploited to identify ranges of target objective values [91]], to improve multi-objective optimization
via subspace-based Pareto tracing [4Q], or to inform constraints for targeted sampling and efficient design space
exploration [92]. Moreover, subspace-based dimension reduction can help to uncover local optima or other regions
within the domain that could prove problematic for optimization in high-dimensional problems.

Applying this method to the generated data, we identify strong one-dimensional subspace approximations for the
lift, drag, and moment coefficients that exhibit highly accurate quadratic approximations for each separate response.
Specifically, we find that the coefficient of determination for each fit is R? > 0.91 for all quantities (see Table . This

identification of low-dimensional structure in aerodynamic shapes is consistent with related work [53}[57]. However, the
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Fig. 9 Convergence of sensitivity metrics with increasing number of data points for cases with angle of attack
a=4°.

resulting deformations are notably distinct and arguably novel due to differences in the underlying parametrizations,
which are no longer conflated with variations in the generalized scale of the shape, which is known to dominate
aerodynamic sensitivities.

Figure[T0] contains shadow plots (top rows) visualizing the goodness-of-fit for each polynomial ridge approximation
over the computed one-dimensional active subspace W't. The entries of W are given above each plot for each
aerodynamic quantity and angle of attack. These values provide insight into the relative influence and the direction of the
influence of each normal coordinate #; on the given output. Larger magnitudes imply that the given aerodynamic quantity
is more sensitive to changes in the parameter, and positive values imply a positive correlation with the aerodynamic
quantity.

By sampling the PGA space along these one-dimensional subspaces for each aerodynamic quantity and angle of
attack, we obtain the physical deformations to the Karcher mean airfoil along this subspace, shown in the bottom rows of
Figures [[0a]and [I0b] These deformations drive the changes in the aerodynamic performance of the airfoils the most. In
particular, the lift coefficient is increased by increasing the overall camber of the shape. However, the manner in which
this is achieved is different between the low and high angles of attack. Specifically, the higher angle of attack seeks to

increase the camber closer to the trailing edge of the airfoil, while the lower angle of attack does so closer to the middle
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Table 1 Values of coefficient of determination, R?, for polynomial ridge approximation of aerodynamic quantities
using different subspace dimension r and different polynomial degree d.

aoa = 4° aoa = 12°
G Cq Cn G Cy Cn
d=1 0992 0.898 0996 0972 0.866 0.992
r=1 d=2 0994 0914 0997 0972 0965 0.993
d=3 0994 0915 0997 0972 0967 0.994
) d=2 0999 0963 0999 0.997 0977 0.999
"= d=3 1.0 0.966 0.999 0.997 0.98 1.0
r=3 d=3 1.0 0.983 1.0 0.999  0.988 1.0

of the airfoil. The drag coefficient similarly increased by increasing camber, and this change is optimized by pushing the
max camber point forward for the low angle of attack designs and backward for the high angle of attack designs. Finally,
as noted in the previous section, the airfoil shape variations are nearly identical for the moment coefficient, regardless of
the angle of attack. This analysis demonstrates how these surrogates and sensitivities can be utilized to inform more

sophisticated and nuanced airfoil designs.

V. Conclusion

In this work, we provided the first in-depth sensitivity study of a novel airfoil parametrization with regard to critical
aerodynamic quantities. This airfoil parametrization, obtained using the separable shape tensors framework, provides
unique benefits to the design process: (i) it isolates various well-studied shape characteristics, e.g., airfoil thickness,
and (ii) provides a low-dimensional and well-regularized parameter domain that is well-suited for analysis using ML
and Al algorithms. The separable shape tensors approach is data-driven and relies on provided data to learn the shape
parametrization. Thus, we constructed a curated dataset of existing airfoil shapes to inform the data-driven parameter
space for airfoil parametrization. Both the curated dataset and corresponding parameter space were made available
online [83]]. In addition, we performed a dimensionality study and demonstrated how to identify the optimal trade-off
between the expressivity and regularity of the new parametrization.

For our sensitivity analysis study, we used the HAM2D CFD solver to compute aerodynamic properties for the
generated airfoil shapes at a low and high angle of attack. This data has been made available through the Open Energy
Data Initiative [86l]. We then computed multiple sensitivity metrics to quantify the impacts of the various shape
parameters on the lift, drag, and moment coefficients. These quantities are critical for the design and optimization
of airfoils and other aerodynamic shapes. Thus, this sensitivity analysis highlighted the key insights into the use of
separable shape tensors for shape design. We found that these quantities were primarily driven by two PGA parameters:
the leading PGA parameter and a second PGA parameter, the identity of which varied depending on the specific quantity

and angle of attack. The sensitivities were relatively consistent across all of the computed metrics. We then explored the
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Fig. 10 One-dimensional ridge approximations for aerodynamic responses (top rows) and airfoil shape sweeps

along the corresponding subspace (lower rows). The color corresponds to the value of the predicted aerodynamic
response.
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physical interpretation of these sensitivities by investigating the airfoil deformations obtained by sweeping across the
parameters identified using the subspace-based approach. We found one-dimensional subspaces in airfoil parameter
space that allow us to deform the airfoils in a manner that maximally varies the aerodynamic quantities. These showed
specific shape variations that drive changes in performance and where these variations should occur. Such insights can
inform manufacturing and airfoil designs for various applications by identifying shape variations that have either small
or large impacts on performance.

This work provides an initial investigation of how the separable shape tensors framework can help to inform airfoil
design processes. One key aspect of separable shape tensors not explored in this work is their natural extension to
three-dimensional wind and blade shape designs. Such blade shapes can often be represented using interpolations of a
series of airfoil shapes at various spanwise locations. By controlling large-scale shape variations (e.g., thickness and
rotation), separable shape tensors can represent a cohesive family of airfoils using limited PGA coefficients whose
interpolation avoids undesirable features, such as divots or kinks. Further, the blade shape can be manipulated using
parallel translation of the PGA parameters to apply consistent deformations to all of the component airfoils. Sections 2.5
and 3.2 of Grey et al. [31]] provide a detailed discussion of this extension to three dimensions. Future sensitivity analysis

work will seek to characterize design impacts for the 3D aerodynamic structures.
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