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We present a comprehensive aerodynamic sensitivity analysis of airfoil parametrization

informed by separable shape tensors. This parametrization approach uniquely benefts the

design process by isolating various well-studied shape characteristics, such as airfoil thickness,

and providing a well-regulated low-dimensional parameter domain for aerodynamic designs.

Exploring the aerodynamic sensitivities of this novel parametrization can provide valuable

insights for more robust designs and future manufacturing eforts. We construct a data-

driven parameter space of airfoils using principal geodesic analysis of separable shape tensors

informed by a curated database containing almost twenty thousand suitable engineering airfoils.

Analyzing the shape reconstruction error and the maximum mean discrepancy between joint

distributions of aerodynamic quantities, we study the dimensionality of the learned parameter

space. This simple numerical experiment demonstrates a dramatic dimension reduction that

retains design efectiveness and promotes regularity of the shape representations. Finally,

we generate new airfoils and use the HAM2D RANS solver to predict lift, drag, and moment

coefcients. We compute multiple sensitivity metrics to quantify and assert the consistency of

parameter infuence on the aerodynamic quantities. We also explore low-dimensional polynomial

ridge approximations to motivate physical intuitions and ofer explanations of the approximated

sensitivities.
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x� , � = �th shape landmark and set of all shape landmarks 

� = number of shape landmarks 

� = ambient shape dimension 

� = number of airfoil shapes in a given data set 

G(·, ·) = Grassmann manifold/Grassmannian 

� = projection of airfoil shape to Grassmannian 

[ �̃ ] = equivalence class of shapes defned by the representative element �̃ 

� = shape center of mass 

� = symmetric, positive-defnite matrix defning polar standardization of airfoil shapes 

�� , t = �th normal coordinate and set of all normal coordinates 

� = dimension of full shape parametrization 

� = dimension of reduced shape parametrization 

� ( ·) = upper (�) or lower (ℓ) airfoil surface defned by CST 

�� 1 = class function with class paramters �1, �2
� 2 

� ( ·) = shape function for the upper (�) or lower (ℓ) airfoil surface 

��, ( ·) = CST coefcients for the upper (�) or lower (ℓ) airfoil surface 

� = polynomial degree for CST shape functions 

� , �t = given function and its output for some input t 

�� , ��� = frst-order and total Sobol’ index for the �th input parameter 

� = active subspace matrix 

� = probability density function over input space 

�� , � = �th eigenvalue and set of all eigenvalues of � 

� = matrix defning the reduced-dimensional subspace 

�� = activity score for the �th input parameter 

�̃  = reduced dimensional polynomial approximation of � 

�� = lift coefcient 

�� = drag coefcient 

�� = pitching moment coefcient 

� = angle of attack 

�/�, �/� = chord-normalized horizontal and vertical coordinates 
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I. Introduction 

The design and analysis of airfoils are critical to the overall construction of larger and more complex three-dimensional 

aerodynamic structures, such as wind turbine blades [1, 2], wings and propellers for various aircraft [3–5], and turbine 

fan blades [6, 7]. These structures are often expected to meet various aerodynamic, structural, acoustic, and economic 

criteria, making their design a complex, multidisciplinary optimization problem [8–10]. A wide variety of airfoils have 

been designed that exhibit diferent properties, either to fnd a desired balance among these criteria or to perform a 

specifc task while operating within a larger system, e.g., structural airfoils near the root of a wind turbine blade versus 

high-lift airfoils near the tip. The development of new airfoil designs remains an active area of research, especially with 

recent progress in machine learning methods [11, 12] 

Among the frst steps in the airfoil design process is the selection of the design space and the method to represent 

the airfoil shapes. Common approaches to airfoil parametrization can be categorized into deformative and constructive 

methods [13]. Deformative methods, such as Hicks-Henne bump functions [14], Bézier curves [15], and radial basis 

function domain elements [16], apply deformations to a baseline airfoil shape. In contrast, constructive methods, such 

as B-splines [17], parametric sections (PARSEC) [18], and, more popular recently, the class-shape transformation 

(CST) [19, 20], represent the airfoil entirely through a set of parameters, enabling the creation of shapes from scratch. 

However, all these representations lack orthogonality in the design space, an important property that ensures that the 

parameters defning a shape are independent. Interdependent parameters can result in poor mapping between design 

variables and shape geometry and cause ill-conditioned optimization problems. 

Derivation of a set of orthogonal modes to represent airfoil shapes has been an active area of research in recent 

years. Toal et al. [21] frst proposed using the proper orthogonal decomposition (POD) of an ensemble of airfoils 

represented by discrete coordinates. The authors applied POD to a small ensemble of airfoils and demonstrated that it 

can reduce the number of parameters and simultaneously flter out poorly performing geometries. Poole et al. [22] 

applied a POD to a more extensive library of airfoil shapes, including various airfoil families, and derived more generic 

design variables. Masters et al. [13] compared deformative methods and constructive methods, including the singular 

value decomposition (SVD) technique, by evaluating their ability to reconstruct shapes from a diverse dataset of over 

2,000 airfoils and found that the SVD method provides the best reconstruction and allows to reduce the number of 

parameters. Recently, Li et al. [23] suggested using more intuitive and practical modes of camber and thickness instead 

of modes of shape coordinates and showed that it simplifes the design space bounds. A comprehensive review of 

modal parameterizations is provided by Li et al. [24]. Another SVD parametrization method, which requires no training 

dataset of airfoils, was proposed by Kedward et al. [25]. First, Kedward et al. [26] proposed the bounding of parametric 

derivative by imposing linear constraints on the discrete diference matrix for mesh point control or B-splines to achieve 

smoothness constraints. Then, Kedward et al. [25] further developed this idea by replacing linear constraints on discrete 

diference operator with discrete diference operator modes. The authors demonstrated that their method can be easily 
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applied to nonstandard shapes. 

All these approaches demonstrate diferent characteristics in terms of their ability to represent various airfoil features, 

their overall expressiveness of new shapes, the number of parameters needed, and the regularity of the parameter 

space [13]. This last concern is becoming increasingly relevant as machine learning and other data-driven tools are 

being leveraged for airfoil design [27–30]. In these cases, a well-regularized design space of shapes can accelerate the 

training of the surrogate models and improve their ability to generalize to new designs. 

Recent work has introduced a novel airfoil parametrization technique based on separable shape tensors that learns a 

matrix manifold representation of the airfoil shapes from a given dataset [31]. This approach shares some similarities 

with the other data-driven methods discussed above. However, in the above approaches, POD or SVD modes of shape 

landmarks are calculated extrinsically over the ambient space rather than defning the parameterization intrinsically over 

the space of relevant airfoil shapes. This can impact the regularity of the design space resulting in large regions of the 

parameter space mapping to invalid shapes and forcing designers to signifcantly reduce their parameter ranges or apply 

posthoc fxes to ensure valid shapes. Further, this intrinsic representation separates afne variations in the airfoil shapes 

(e.g., those corresponding to translation, scaling, stretching, or rotation of the shape) from higher-order variations defned 

over the Grassmann manifold (or Grassmannian), which capture the smaller scale, non-linear changes in the airfoil 

shapes. This separability confers several advantages to the defnition of the airfoil design space. First, it enhances the 

interpretability of the airfoil representation by isolating fundamental aerodynamic variations in shape, such as the airfoil 

thickness, from other more complex non-linear variations. The afne variations are usually constrained or carefully 

chosen for 3D blade defnition—e.g., the thickness of airfoils near the root has to satisfy structural requirements—while 

the higher-order variations on their own can considerably improve aerodynamics. The second major advantage of 

this separability is its regularizing efect on individual shapes across the design space. Separating the two classes of 

shape variations makes the resulting parameter spaces relatively controlled and more stable to perturbations, even for 

drastically diferent shapes. This is intuitively achieved through an improved notion of distance between shapes [32]. 

In practice, the separable shape tensor approach has been shown to efectively support the development of machine 

learning models and the optimization of airfoil characteristics. Specifcally, the separable shape tensor representation has 

been used to perform drag minimization of the RAE2822 transonic airfoil in viscous fow cases [33]. Follow-on research 

integrated this parametrization with surrogate-based optimization to demonstrate dimensionality reduction capabilities 

and the ability to optimize airfoils with fxed afne deformations (i.e., fxed airfoil thickness) using the base test case of 

the RAE2822 airfoil. Invertible neural network models have been trained to using separable shape tensors to enable 

efcient design workfows for design of airfoil cross-sections with larger blade optimization workfow [34]. Despite 

this emerging research that has examined the use of these Grassmann-based shape parametrizations for predictive 

modeling and design, no work has performed a formal sensitivity analysis to help understand how these parametrizations 

afect variation in critical aerodynamic quantities of interest. Such analysis can more broadly enable the future use 
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of the separable shape tensor framework for aerodynamic design and optimization by identifying critical parameters 

driving changes in the outputs to accelerate convergence, informing the choice of optimization algorithm by uncovering 

critical properties of the objective function, and quantifying trade-ofs in diferent properties to guide constraints or 

multi-objective solutions. 

This study aims to fll the gap between the separable shape tensors parametrization and its efects on aerodynamic 

quantities by performing a variety of sensitivity analyses and motivating physically intuitive explanations of the 

results. In doing so, we believe this work can help to guide and motivate the use of these tools for more targeted 

aerodynamic design and optimization problems. Sensitivity analysis is a systematic approach to quantify the impact of 

given input parameters on specifc target quantities of interest for some physical process [35]. This can include local 

sensitivities that highlight the behavior of the physical processes in the neighborhood of a point in the parameter space 

or global sensitivities that capture the relative importance of each parameter—or the interactions between multiple 

parameters—over a full distribution of values. Insights from sensitivity analysis can inform component-wise dimension 

reduction by discovering insensitive parameters that can be fxed at a nominal value [36–38]. Alternatively, the results 

from sensitivity analysis can inform other practical considerations, such as where design trade-ofs can be made between 

multiple objectives [39, 40] or how tight manufacturing tolerances need to be set with respect to diferent aspects of an 

aerodynamic structure [41, 42]. 

Quantifying and understanding parametric sensitivities in aerodynamic applications is critical to robust design 

processes and safety analyses of a wide array of complex engineering applications [43]. Previous works have performed 

sensitivity analysis to understand the implications of various airfoil designs on aerodynamics [44–48]. Additionally, Liu 

and Lee [46] examined the sensitivities of diferent airfoil shape parameters with regard to aeroacoustic sound levels. 

Similarly, [49] used adjoint-based sensitivity analysis to explore the impacts of diferent active control techniques to 

reduce drag forces on an airfoil. Other related works have used sensitivity analysis tools to understand the importance 

of diferent turbulence model parameters to the pressure distribution over a wing [50] and the impact of atmospheric 

conditions on fatigue loads in wind turbines [51, 52]. However, sensitivity analysis results and their interpretations 

depend on the parametrization and the design space used to characterize the system under consideration. To our 

knowledge, no previous study has explored the aerodynamic sensitivities of the Grassmann-based separable shape tensors 

representation for airfoils, except an initial presentation outlined in Grey and Constantine [53], which concentrated on 

shape sensitivities rather than parameter sensitivities. 

The remainder of the paper is structured as follows. Section II provides a brief background of the key techniques 

leveraged in this work, including separable shape tensors representation, CFD modeling of airfoils, and sensitivity 

analysis methods. Section III details the methodology used to perform this sensitivity analysis. Section IV presents and 

discusses the results of the sensitivity analysis. Section V concludes the paper with a summary of the key takeaways and 

future research directions. 
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II. Background 

A. Separable Shape Tensors for Airfoil Design 

In this work, we explore the aerodynamic implications of a separable shape tensors framework [31, 54]. This novel 

approach learns a data-driven space of shapes as elements of the Grassmann manifold (or Grassmannian), G(�, �). In 

the case of shapes defned by planar curves (such as airfoils), we have � = 2, and the Grassmann manifold is a space of 

all 2-dimensional subspaces of R�, where � is the number of landmarks used to discretely represent the shape. The 

Grassmannian representations of the airfoils are constructed through a landmark standardization process, such that 

linear features (e.g., anisotropic scale variations, rotations, and refections) are ignored. Diferences between shapes on 

Grassmann manifold are isolated to higher order deformations, and perturbations that can be parameterized through a 

basis representation learned via principal geodesic analysis (PGA) [55, 56]. Thus, this separable shape tensors approach 

provides a framework for studying sensitivities to more nuanced shape variations independent of larger, linear shape 

deformations that typically arise in related sensitivity analysis [53, 57]. The remainder of this section provides a brief 

mathematical overview of the separable shape tensors parametrization. More details on the development and supporting 

algorithms for implementing this parametrization can be found in [31]. Figure 1 provides a schematic overview of the 

separable shape tensors approach for the airfoil design. 

Following the developments in [31], we defne an airfoil shape by a discrete, ordered sequence of landmarks 

(x� ) ⊂ R2, over � = 1, . . . , �, which form a full-rank � × 2 matrix � = 
� 
x1 . . . x� 

�⊤ ∈ R�×2—i.e., points and 

lines are not considered valid shapes. With the separable shape tensors approach, this discrete shape � is mapped 

to an element of the Grassmannian through the canonical projection, � : R�×2 → G(�, 2), onto an equivalence 

class of landmark-afne standardizations which is invariant to general linear transformations. In other words, this 

projection maps a given airfoil shape � to the underlying equivalence class of shapes [�e] such that the standardized 

representative �e has orthonormal columns. Numerically, standardization is achieved using the polar decomposition 

1e� − �( �) = �� where �( �) = 1�,� �, with 1�,� an �-by-� matrix of ones, computes the center-of-mass to remove 
� 

shape translations—i.e., we take the polar decomposition of (� − 1 1�,�) �. The polar decomposition of the centered 
� 

shape, � − �( �) ∈ R�×2, is easiest to interpret using the singular value decomposition (SVD). Specifcally, given the thin 

SVD ( � − �(�))⊤ = ���⊤ such that � ∈ R2×2 is orthogonal, � ∈ R2×2 is diagonal, and � ∈ R�×2 has orthonormal 

columns, we construct the 2-by-2 matrix � = ���⊤ paired with a representative Grassmannian element �e = ��⊤ . The 

result is equivalent to the polar standardization, [31] i.e., � − �( �) = ���⊤ = ��⊤���⊤ = ��. Thus, our original e 

shape is separated into the symmetric positive defnite matrix � = ���⊤ representing scale variations (up to rotations 

and refections) as a right action on the representative Grassmannian element, �e = ��⊤. To maintain a separation 

of scale variations and nonlinear undulations, we independently study learned deformations of shape over nonlinear 

perturbations [�e] (t)— equivalence classes modulo the right action of general linear deformations—parametrized by a 
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vector t ∈ R� and linear scale deformations �(ℓ) parametrized by a vector ℓ ∈ R3. Thus, either separate parameter 

set can be fxed or varied to deform (centered) shapes, i.e., � (t, ℓ) = � (t)�(ℓ) with representative �e(t) taken from e 

[�e] (t) ∈ G(�, 2). We elaborate on a data-driven procedure for determining � and ℓ in later sections. 

This approach is data-driven and relies on a provided dataset of physical shapes {�� } to learn a manifold-valued 

domain. Moreover, separable shape tensors necessitate a fxed reparametrization of shapes via smoothing or interpolation 

of landmarks to produce a consistent � total landmarks per shape. The reparametrization of data is often hand-picked 

to promote refnements around important leading-edge and trailing-edge features of airfoils. Separable shape tensors 

representations ofer the advantage of separately averaging out the efects of ℓ, representing a dominating infuence of 

variations in scale, while utilizing a learned subspace of t’s to explore the remaining nonlinear variations in the shape 

representation as � (t) = � (t)�—e.g., we can study shapes with � as some notion of average scale. To obtain this e 

parametrization, we use principal geodesic analysis (PGA) [55, 56], which extends the classical principal component 

analysis (PCA) [58] to Riemannian manifolds, such as the Grassmannian. PGA is a data-driven approach that determines 

principal components as important directions in a tangent space defned at an intrinsic mean (e.g., the Karcher mean) over 

the manifold-valued data. The resulting space of so-called normal coordinates (PGA space) is akin to a latent parameter 

space, denoted t = (�1, �2, . . . , ��)⊤ ∈ R�, of a nonlinear AI-based generative model of airfoil shapes. Note that the 

maximum dimension of this space is bounded above as � ≤ 2(� − 2) [59]. Variations in these latent parameters account 

for fundamental diferences in shapes that cannot be achieved through simple linear transformations (e.g., stretching, 

scaling, shearing, rotation). Thus, characterizing sensitivities of aerodynamic performance with respect to these 

parameters can provide important, nuanced insights into how small changes in airfoil shape can impact performance. 

However, we are not precluded from the possibility of generating non-physical self-intersecting shapes. Consequently, 

we incorporate a simple hard constraint to check for piecewise linear intersections over the generated shape landmarks 

and reject samples which result in intersections—these are often a small proportion of randomly generated sets. 

B. The Class-Shape Transformation 

Another airfoil parametrization referenced in this work is the class-shape transformation (CST) [19, 20]. The CST 

parametrization is a popular method for airfoil representation that encodes the upper and lower surfaces of the airfoil 

shape by the coefcients of a truncated Bernstein polynomial series. Given a normalized chordal coordinate � ∈ [0, 1], 

the CST representation of the airfoil upper (�) and lower (ℓ) surfaces is given by �� and �ℓ respectively such that 

� ( ·) (�) = ��
� 

2
1 (�)� ( ·) (�) + ���( ) , (1)· 

where �
�
� 

2
1 (�) = �� 1 (1 − �)� 2 is the class function with �1 and �2 defning the airfoil class. This work uses �1 = 0.5 

and �2 = 1, which correspond to blunt-nosed airfoils. The shape function is given by the Bernstein polynomial 
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Fig. 1 Diagram representation of separable shape tensors for airfoil design. 
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expansion of the respective surfaces, 

� � �∑ � 
� ( ·) (�) = ��, ( ·) �� (1 − �) �−� , (2)

� 
�=0 

with free parameters, ��, � for the upper and ��, ℓ for the lower surface, that can be adjusted to defne diferent airfoil 

shapes. Finally, the upper/lower trailing edge thickness of the airfoil is represented by ��( ·) ; again, with one per surface. 

Given this defnition, a �th-order CST parametrization requires � = 2( � + 2) parameters to defne both the upper 

and lower surfaces of an airfoil. This includes 2(� + 1) free parameters in Bernstein polynomials and 2 parameters 

that account for the trailing edge thickness. Ceze et al. [60] studied the performance of this method to reconstruct 

airfoil shapes and determined that roughly � = 20 total terms were necessary to accurately defne airfoil shapes. These 

insights have supported the use of CST parametrization in various airfoil design studies [61, 62]. It is natural to perhaps 

employ this parametrization as a global representation of shape. However, in [31], it is noted that the global CST 

parameter sweeps over ��, ( ·) ’s spanning a diverse set of airfoils can create undesirable shapes. Regardless, locally, this 

representation ofers a very useful engineering parametrization. In this work, we use 8th-order CST parametrization to 

pre-process otherwise noisy data and get a consistent number of landmarks for all airfoil shapes. 

C. CFD Simulations of 2-D Airfoil 

To obtain aerodynamic responses for our generated airfoil shapes, we leverage CFD simulations using an in-house, 

fnite-volume, Reynolds-averaged Navier-Stokes (RANS) fow solver, HAM2D [63]. HAM2D is distinguished by its ability 

to identify line structures on unstructured meshes and apply line-based schemes for spatial reconstruction and implicit 

inversion, similar to a structured mesh-based fow solver. In this work, we employ a ffth-order Weighted Essentially 

Non-Oscillatory (WENO) scheme [64] for spatial reconstruction, with Roe’s fux diference scheme [65] for inviscid 

fux, and second-order central diferencing for viscous fux. A preconditioned Generalized Minimal Residuals (GMRES) 

method [66] is applied for implicit integration. The Spalart-Allmaras one-equation turbulence model [67] is used for the 

turbulence closure, and the Medida-Baeder two-equations transition model [68] is applied to account for the efects of 

laminar-turbulent transition. The two-dimensional airfoil grid is generated with 400 points on the airfoil surface, the 

dimensionless wall-normal spacing of 1, and an outer boundary located at 300 chord lengths away from the wall. The 

CFD simulations are performed at a freestream Mach number of 0.1, Reynolds number of 9×106, and two angles of 

attack, 4◦ and 12◦. For laminar-turbulent simulations, the freestream turbulence intensity is set to 0.1%. To manage 

CFD cases involving thousands of airfoils, all stages of CFD simulations, including mesh generation, fow solver setup, 

CFD runs, and post-processing of results, are automated using Python and bash scripts. Details of the mesh generation, 

grid sensitivity study, and validations of the simulation results for airfoils at Reynolds numbers ranging from 3 million 

to 15 million are available in Jung, et al. [69]. 

9 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



D. Sensitivity Metrics 

Sensitivity analysis seeks to quantify the impact that uncertainty or changes in certain parameters (i.e., model 

inputs) have on other parameters (i.e., model outputs). That is, we may consider a given relationship �t = � (t), where 

t ∈ R� is a collection of model inputs whose uncertainty is represented by the probability density function �, and 

�t ∈ R is the model output. Diferent sensitivity analysis methods can quantify these impacts in a local sense (i.e., in 

the neighborhood of a particular point, t0) [70] or in a global sense (i.e., over all valid values of t) [35]. In this work, 

we consider several global sensitivity metrics to provide a robust characterization of the relationship between shape 

parameters and the aerodynamic quantities of interest. 

The frst method we consider is a variance-based metric of sensitivity known as Sobol’ indices [71]. First-order 

Sobol’ indices capture the ratio of the total response variance attributed to a particular parameter and are defned as 

Var [E [ �t | ��]] 
�� = , � = 1, . . . , �. (3)

Var [ �t] 

These indices capture the individual impact of each parameter independent of their interactions with other parameters, 

while higher-order Sobol’ indices capture sensitivities to interactions between parameters. The collection of all the frst-

and higher-order sensitivities for a particular parameter accounts for its total contribution to the variation in the output. 

This is referred to as the total Sobol’ indices and is expressed as 

Var [E [ �t | t∼� ]] 
��� = 1 − , � = 1, . . . , �, (4)

Var [ �t] 

where t∼� is the collection of all elements of t except for the �th. If ��� = 0 then the �� has no impact on �t. 

Another class of sensitivity metrics leverages subspace-based dimension reduction that seeks to represent most of 

the variation in the output of interest in terms of a reduced set of linear combinations of the original input parameters. 

First, we consider the activity score metric [72], which is based on the gradient-based dimension reduction framework 

called active subspaces [73]. Active subspaces are defned by the eigenspace of the mean outer product of gradients, 

∫ 
� = ∇ � (t)∇ � (t)⊤ �(t)�t = ���⊤ , (5) 

where � = diag (�1, �2, . . . , ��) is a diagonal matrix of eigenvalues of � sorted from largest to smallest and � � 
� = w1, w2, . . . , w� are the associated eigenvectors. The eigenvalue �� has been shown to correspond to the mean 

squared directional derivative of � along the direction w� . The �-dimensional active subspace of � is defned as the 

span of � eigenvectors associated with the largest eigenvalues. In practice, computing the active subspace requires the 

calculation or approximation of the gradient ∇ � , which may be difcult to obtain. For this work, we approximate the 

gradients at a collection of Monte Carlo samples by constructing a local linear model around each sample using its � 
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������ ������

nearest neighbors. Given an active subspace for � (t), the activity score for the �th parameter �� is defned as 

�∑ 
�� (�) = � � �

2 (6)�, � . 
�=1 

Next, we consider the sensitivity metric defned by the ridge directions obtained from a dimension reduction method 

known as polynomial ridge approximation [74]. Polynomial ridge approximation learns a low-dimensional subspace 

representation by efciently solving a nonlinear least-squares problem, 

2 
min � (t) − e� (�⊤t) , (7)

[� ]∈G(�,� ) 2 e� ∈P� 

where e� is a �-degree polynomial approximation of � defned over a low-dimensional subspace of the input space— 

coincidentally also an element of the Grassmannian but unrelated to notions of shape. The joint optimization is 

simplifed and solved using a variable projection technique. By setting � = 1, we consider a one-dimensional reduction 

of � and can view the weights in �, now just a column vector, as a rough measure for the relative amount of variation in 

� that is driven by the corresponding parameter [75]. The degree to which this sensitivity can be trusted is quantifed by 

the error in the low-dimensional approximation. This can be qualitatively evaluated by examining the shadow plots that 

show the relationship between � and the learned one-dimensional parameter [76]. 

III. Methodology 

This study workfow involves two steps: (i) building a data-driven parameterization of airfoils based on principal 

geodesic analysis (PGA) of separable shape tensors and (ii) performing sensitivity analyses of aerodynamic quantities 

over this parameter space. To build the data-driven parameter space, we curate a database of almost twenty thousand 

trusted airfoil shapes from a variety of sources. We then represent these airfoils by separable shape tensors and apply 

PGA to get the parametrization. This can be done in a matter of minutes and without high-performance computing. 

Once the parametrization has been learned, we sample this parameter space and use CFD simulation software to obtain 

corresponding aerodynamic properties. Finally, we apply the various sensitivity metrics to the collection of aerodynamic 

outputs to highlight various shape features that impact performance. In this section, we provide the technical details for 

this approach before exploring the sensitivity analysis results in the next section. 

A. The Curated Database 

Our goal is to develop a curated set of airfoils with various characteristics that will inform the data-driven parameter 

space. We begin by gathering airfoils from the extensive BigFoil database [77], which is a large database that consolidates 

airfoil data from the University of Illinois Urbana-Champaign (UIUC) airfoil database [78], the JavaFoil database [79], 
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the NACA-TR-824 database [80], and other sources. The diverse origins of these airfoils mean that, while they cover a 

wide range of interesting features worth studying, airfoil landmark data can often be sparse, noisy, or incomplete. To 

ensure a reasonable design space of airfoils, we performed a pre-processing to clean the data and identify undesirable 

shape characteristics unsuitable for this analysis. Specifcally, we removed airfoils with too few landmarks to adequately 

describe the shape (i.e., 25 or fewer landmarks) and those whose landmark data appeared to be noisy upon visual 

inspection. We also removed airfoils with shape characteristics outside of this work interest—e.g., airfoils with a sharp 

leading edge or an extreme camber line as well as those exceeding a threshold of 0.025 for the trailing edge thickness. 

Further, we note that the BigFoil dataset contains a disproportionate number of variations of NACA airfoils. Specifcally, 

it contains parametric sweeps of NACA airfoils with incrementally increasing thickness and camber. To avoid a bias 

towards these shapes in our design space, we thinned out the collection of these airfoils by selecting every fourth step 

in the parameter sweeps. The fnal step involves regularizing the airfoils by ftting the shapes with an 8th-order CST 

parametrization and then removing airfoils with high reconstruction errors (i.e., greater than 10−2 root mean squared 

error of the given landmarks). This data pre-processing resulted in 2, 343 airfoils being removed to produce a set of 

6, 164 airfoils with 1, 001 landmarks resampled from 8th-order CST representation with x coordinates following cosine 

distribution along the chord. 

To augment this data set, we also generated additional airfoils using CST parametrization. We identifed 13 baseline 

airfoils from the NREL 5MW [81] and IEA 15MW reference wind turbines [82] and used least-squares fts of CST 

parametrizations with fxed order � = 8 to reparametrize and sample shape landmarks. We then sampled 1, 000 unique 

airfoils by uniformly perturbing all 18 CST coefcients (9 coefcients for upper and lower surfaces polynomials) by up 

to ±20% around the baseline for each airfoil, resulting in 13, 000 additional airfoil shapes with 1,001 shape landmarks 

whose x-coordinates follows a cosine distribution along the chord. 

The fnal curated database of airfoils combines the set of 6,164 airfoils from BigFoil and 13,000 airfoils defned 

by random perturbations to CST coefcients of baseline airfoils. Thus, we have a total of � = 19, 164 airfoils, each 

with 1,001 landmarks, to defne data-driven design space using PGA of separable shape tensors. This curated database 

of airfoils was made available online [83]. Figure 2 provides a statistical overview of the fnal curated database and 

highlights the range of characteristics of airfoils used to inform the data-driven parameter space. 

B. Construction of the PGA space 

With the curated airfoil dataset, we follow the separable shape tensors framework [31] described in Section II.A, 

which decomposes each airfoil shape, �� for � = 1, . . . , � , into a representative Grassmannian element, �e� , and fxed 

linear transformation defned by an SPD matrix, �� . Our focus in this work was to explore the nuanced aerodynamic 

sensitivities of nonlinear (undulating) variations in shapes which are not confated with linear variations. To remove 

variance in linear transformation and obtain a consistent right-inverse from the Grassmann manifold to the physical space, 
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Fig. 2 Statistical characterization of the curated database, including the chordal distribution of airfoil shape, 
camber, and thickness (top row) and the distribution of various other shape characteristics (bottom two rows). 

we compute a mean transform � as the Karcher mean of all matrices {�� } over the SPD manifold [84]—constituting an 

average of scale variations. In this sense, we average-out the efects of parameter variations over ambiguous ℓ ∈ R3 and 

only study nonlinear undulating variations in the shapes with fxed linear scales. Then we apply PGA [56] to the set of 

representative Grassmannian elements, {�e� }, to obtain data-driven (normal) coordinates � for shape parametrization. We 

obtain the set of latent variables {t� } ⊂ R� with PGA to capture fundamental nonlinear shape deformations over the set 

of airfoils. Figure. 1 schematically summarizes this procedure, which details and supporting algorithms provided in [31]. 

Figure 3 visualizes the amount and direction of perturbation to the Karcher mean shape by each normal coordinate, 

t ∈ R�. We only depict the frst 18 PGA modes because the curated airfoil data has been smoothed with an 18-term 

least-squares CST ft—i.e., order � = 8 for upper and lower surface Bernstein polynomial expansions. Smoothing 

restricts the ambient dimensionality of the shapes to � = 18 as a mechanism for removing noise from the data, and the 

frst 18 PGA modes completely describe shape variations in the curated dataset—i.e., the PGA eigenvalues drop to 

machine precision beyond the frst 18 modes. In other words, the data-driven PGA routine perfectly captures the chosen 

ambient (� = 18)-dimensional fts up to machine precision. 
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Fig. 3 Visualization of shape variations (black line) about the Karcher mean (colored line) for perturbations to 
each PGA parameter. The line color indicates the inner product of shape unit normal and the mode perturbation. 

C. Selecting Dimensionality 

With a curated database of � = 18 dimensional shapes, we explore how much of the full dimensionality is required 

to produce reasonable coverage of output aerodynamic quantities of interest. Also note that the ordered PGA modes 

exhibit more oscillatory characteristics with increasing mode number, as shown in Fig. 3. This creates a trade-of 

between the shape’s physical expressivity versus regularization against non-physical airfoil features (e.g., divots or 

kinks). Thus, one critical question that arises during the construction of the design space is: how many PGA modes are 

necessary to explore a relevant space of airfoil shapes while providing sufcient regularization against non-physical 

shapes? That is, what is the idealized efective dimension for our PGA parametrization? To address this question, we 

analyze the reconstruction of airfoil shapes and their aerodynamic properties for variable parametrization dimensions. 

For this analysis, we systematically selected 100 airfoils to span a wide range of the characteristics present in 

the curated dataset. We included the baseline airfoils from the NREL 5MW [81] and IEA 15MW reference wind 

turbines [82], the largest perturbations to the baseline CST parameters, airfoils that had high shape reconstruction error, 

and airfoils that are far from the Karcher mean shape over the dataset (i.e., distance-based outlier shapes). This selection 

ensures that we capture a large amount of variability in the airfoils chosen for this analysis and don’t unfairly bias the 

subset of 100 hand-picked designs towards shapes that are inadvertently easier to represent or not representative of the 

wind application. 

Figure 4 shows a steady decay in the selected shapes’ reconstruction errors (calculated as the maximum Euclidean 

distance between corresponding landmarks of the initial and reconstructed shapes) without an obvious point where the 

change in errors suddenly levels out. As such, we must consider the trade-of between the expressiveness of the PGA 
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Fig. 4 Letter-value plot of shape reconstruction errors over the set of 100 airfoils as a function of PGA dimension. 

representations for various dimensions and the complications that arise from working in a higher dimensional parameter 

space. We choose the � = 4, 8, and 16 dimensions as cases for further investigation. 

Specifc to this inquiry is the impact of dimension on the recovery of relevant aerodynamic quantities: lift coefcient, 

�� , drag coefcient, �� , and moment coefcient, �� . CFD simulations were performed at low (� = 4◦) and high 

(� = 12◦) angles of attack for each of the 100 hand-picked airfoils and their reconstructions with � = 4, 8, and 16 

parameters using the fnite-volume RANS fow solver, HAM2D described in detail in Section II.C. Figure 5 shows the 

distribution of absolute errors (normalized by the mean of the true values) in the recovered aerodynamic quantities. 

In this fgure, the higher angle of attack has a slightly larger error, the errors between the � = 4 and � = 8 cases are 

relatively similar, and a much larger dimension (� = 16) is required to noticeably reduce the error for all aerodynamic 

quantities. While we see that lower-dimension reconstructions produce larger errors, the focus is to identify a design 

space that is sufciently expressive to cover the complete range of aerodynamic quantities of interest. Towards this end, 

we consider the distribution of the lift, drag, and moment coefcients produced by the airfoil reconstructions across 

diferent dimensions. 

To identify this efective dimension, we examine the generated joint distributions of aerodynamic responses. Figure 6 

qualitatively highlights that the frst four PGA dimensions appear sufcient for recovering the statistical moments of these 

aerodynamic coefcients. Quantitatively, we employ maximum mean discrepancy [85] to test if the shapes generated 

with diferent dimensionality signifcantly modify the joint distribution of the three aerodynamic quantities of interest. 

That is, we compare each of the joint distributions of aerodynamic coefcients generated by the low-dimensional 

(� = 4, 8, 16) airfoil representations to the coefcients generated by the original airfoils, resulting in three diferent 

approximations of the maximum mean discrepancy. In this numerical experiment, we found no statistically signifcant 
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Fig. 5 The distribution of error in the recovery of aerodynamic quantities for low (� = 4◦) and high (� = 12◦) 
angles of attack, with respect to dimensionality of shape parametrization. 

diference between the joint distributions of the aerodynamic quantities obtained from shapes constructed by any of the 

reduced PGA representations. We subsequently conclude that, despite the larger errors in the reconstruction of shapes 

and aerodynamic quantities with reduced dimension shown in Fig. 4 and Fig. 5, the joint distribution of aerodynamic 

quantities is still well described by shapes with as few as four dimensions. Intuitively, this suggests that even with as 

few as four parameters for shape representation, we can obtain sufcient coverage in the distribution of aerodynamic 

responses that would drive subsequent optimization and design problems. Empirically, we conclude that these diferent 

reduced-dimension designs span an equivalent range of aerodynamic quantities of interest. 

An additional beneft of keeping only the frst four PGA modes is that we reduce the oscillatory characteristics that 

are depicted in higher modes in Fig. 3. This truncation of ordered terms in the normal coordinate basis expansion ofers, 

intuitively, a kind of explicit regularization in the shape representation to prevent undesirable high-order oscillations in 

generated designs. Consequently, we select the � = 4 case for the analysis performed in the remainder of this paper. 

This learned design space of four parameters informs a dramatic dimension reduction for generating new shapes over 

the ordered normal coordinates restricted to t = (�1, �2, �3, �4)⊤ ∈ R� . With this parameter space, we randomly generate 

designs to study changes in aerodynamic responses using CFD simulations. 

D. Sampling PGA Space 

The fnal step in our sensitivity analysis is to generate new reduced-dimension airfoil shapes by sampling the 

constructed PGA design space and obtaining aerodynamic quantities for the airfoils. Figure 7 visualizes the joint and 

marginal distributions of normal coordinates for the original curated dataset of airfoils and the new samples of the design 

space. Note that the original dataset results in a relatively irregular distribution of points in this space with several 

outliers in each dimension. To better manage the design space for sensitivity analysis, the new samples are drawn with 

uniform probability from an ellipsoid defned over the normal coordinates {�1, �2, �3, �4}. This sampling distribution 
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Fig. 6 The joint and marginal distributions for the output aerodynamic quantities �� , �� , and �� for a variety 
of dimensionalities. 

allows for a balanced exploration of the parameter space while avoid extreme designs that could occur in the corners 

of a bounding hypercube. The ellipsoid is centered over the middle 95% of the original dataset, with the diameter 

along each axis defned to cover 99% of this dataset. This ensures that the sampling space covers most of the curated 

airfoils without allowing outliers to impact our sensitivity analysis. It is also worth noting that global sensitivity analysis 

depends heavily on the probability distribution underlying the design space since it weighs the relative importance of 

diferent shapes. To avoid biasing our sensitivity analysis, we draw samples of PGA parameters with uniform probability 

from this ellipsoid. Sampling constraints are utilized to detect the possibility of self-intersecting shapes. Specifcally, 

airfoils with simultaneously large negative �1 and �2 values resulted in self-intersecting shapes, where the intersection 

occurred near the tail edge of the airfoil. Such shapes are always checked against a hard constraint in the sampling 

procedure and removed from the sampled set to appropriately regularize the generative model. 

The Grassmannian elements obtained from this sampling process were mapped back to physical airfoil shapes using 

the inverse SPD matrix fxed at the Karcher mean of the SPD manifold. This constitutes a notion of shapes generated 

with some fxed average scale. This also ensured that the aerodynamic sensitivity analysis was not impacted by these 

well-studied factors—e.g., thicker airfoils are known to increase drag—but could be focused on the nuanced shape 

deformations arising from the separable shape tensors representations. Figure 7 also shows the distributions of the 

airfoil shapes and the camber and thickness of the airfoils along the chord. 

Finally, we ran CFD simulations for the resulting set of 8,996 airfoils using the HAM2D solver. From these simulations, 
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Fig. 7 A visualization of the sampled airfoils 

we obtain values for the lift, drag, and moment coefcients for each of these airfoils for low (� = 4◦) and high 

(� = 12◦) angles of attack. This CFD data has been made publicly available on the Open Energy Data Initiative (OEDI) 

webpage [86]. In the next section, we explore the results of the sensitivity analysis for these airfoil shapes and discuss 

how the insights can help to improve airfoil design in the future. 

IV. Results 

We now explore the sensitivities of the computed aerodynamic quantities with respect to the PGA parameters used 

to generate the shapes based on the separable shape tensors approach. Given the novelty of this shape representation 

framework, it is critical to understand how these learned parameters can impact aerodynamic performance to inform 

their use for airfoil design. We begin by computing the sensitivities of the various aerodynamic quantities with respect 

to the normal coordinates using multiple approaches described in Section II.D. We look for consistency across these 

metrics and examine their uncertainty. We perform a deeper exploration of the subspace-based sensitivity approach that 

identifes combinations of parameters that capture most of the variation in the output quantities of interest. This allows 

us to translate sensitivities with respect to shape parameters into physical variations in the airfoil shapes. 
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A. Sensitivity indices 

We begin by computing a variety of sensitivity metrics for each aerodynamic quantity (�� , �� , and ��) for each 

angle of attack (� = 4◦ , 12◦) with respect to the four normal coordinates {�1, �2, �3, �4}. The sensitivity metrics we 

compute here are the total Sobol’ indices from Eq. (4), the frst-order Sobol’ indices from Eq. (3), the activity scores 

from Eq. (6), and the magnitude of the subspace weights from the polynomial ridge approximation, i.e., the vector �, 

for � = 1, from Eq. (7). The total and frst-order Sobol’ indices are computed using the Sensitivity Analysis Library in 

Python (SALib) [87] with a surrogate-based approach that fts a Gaussian process model to the data to estimate the 

indices. The activity scores are computed using a local linear approximation method to obtain gradients at each point 

to compute the active subspace [88]. The polynomial ridge approximation is performed using the Parameter Space 

Dimension Reduction (PSDR) Toolbox [89]. 

Figure 8 shows these sensitivity metrics computed for each aerodynamic quantity with respect to the normal 

coordinates. Despite each of the sensitivity metrics capturing diferent characteristics of the input-output relationship 

(e.g., statistical, gradient, or subspace-based), we see a strong agreement across the methods in conveying the relative 

importance of each of the PGA modes. In particular, the lift coefcient, �� , heavily depends on the frst two modes, with 

the latter two modes impacting this quantity very little. Conversely, the drag coefcient, �� , is strongly infuenced by 

these latter modes, albeit diferently depending on the angle of attack—i.e., at the low angle of attack, dependence is 

stronger on the fourth mode, while at the high angle of attack it is stronger on the third. Finally, the moment coefcient 

has a more equal dependency on all of the PGA modes, slightly favoring the frst two, with a small variation in sensitivity 

between the low and high angle of attack. 

Next, we address the question of how well we can trust the sensitivity metrics presented in Figure 8. To do this, we 

compute the same metrics using randomly sampled subsets of the full dataset to estimate the convergence. Figure 9 

shows the errors between the metrics over the subsets and the full dataset of 8,996 airfoils. We perform this convergence 

study for subsets of size � = 50, 100, 300, 500, 1000, 3000, 5000, and 8000 and report the average error across 200 

resamplings. This analysis shows that the Sobol’ metrics show weaker convergence than the ridge approximation 

and activity scores. However, once we have more than � = 1, 000 subsampled shapes (or roughly 11% of the full 

dataset), the variation in the computed sensitivity metrics is typically less than 0.01. This amount of variation would 

not drastically impact interpretations of the results since the diferences between high and low sensitivity indices were 

generally an order of magnitude larger. 

B. Ridge Subspaces and Airfoil Sweeps 

The results presented in the previous section provide insight into how to leverage the PGA space to improve airfoil 

designs. However, the interpretations of the sensitivity metrics computed with respect to the normal coordinates are 

somewhat disconnected from the physical variations that are driving these aerodynamic changes. To address this, we 
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explore the results from the polynomial ridge approximation more deeply. 

Subspace-based dimension reduction defnes low-dimensional projections of input parameters that capture exploitable 

structure in the data. It can be done in an unsupervised manner using PCA [58] or in a supervised manner using methods 

such as active subspaces [73] or sufcient dimension reduction [90]. For this work, we use the CFD results to inform a 

data-driven polynomial ridge approximation approach to identifying exploitable low-dimensional structure [74]. As 

discussed in Section II.D, this approach fnds the linear combination of input parameters that minimizes a polynomial 

ft to the output quantities. This combination of parameters provides insight into how we can maximally vary each 

aerodynamic quantity by changing the PGA values. This can be critical for informing aerodynamic design processes 

where we may seek parameter variations that can reduce drag without impacting lift. Further, low-dimensional 

structure can be exploited to identify ranges of target objective values [91], to improve multi-objective optimization 

via subspace-based Pareto tracing [40], or to inform constraints for targeted sampling and efcient design space 

exploration [92]. Moreover, subspace-based dimension reduction can help to uncover local optima or other regions 

within the domain that could prove problematic for optimization in high-dimensional problems. 

Applying this method to the generated data, we identify strong one-dimensional subspace approximations for the 

lift, drag, and moment coefcients that exhibit highly accurate quadratic approximations for each separate response. 

Specifcally, we fnd that the coefcient of determination for each ft is �2 > 0.91 for all quantities (see Table 1). This 

identifcation of low-dimensional structure in aerodynamic shapes is consistent with related work [53, 57]. However, the 
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Fig. 9 Convergence of sensitivity metrics with increasing number of data points for cases with angle of attack 
� = 4◦. 

resulting deformations are notably distinct and arguably novel due to diferences in the underlying parametrizations, 

which are no longer confated with variations in the generalized scale of the shape, which is known to dominate 

aerodynamic sensitivities. 

Figure 10 contains shadow plots (top rows) visualizing the goodness-of-ft for each polynomial ridge approximation 

over the computed one-dimensional active subspace �⊤t. The entries of � are given above each plot for each 

aerodynamic quantity and angle of attack. These values provide insight into the relative infuence and the direction of the 

infuence of each normal coordinate �� on the given output. Larger magnitudes imply that the given aerodynamic quantity 

is more sensitive to changes in the parameter, and positive values imply a positive correlation with the aerodynamic 

quantity. 

By sampling the PGA space along these one-dimensional subspaces for each aerodynamic quantity and angle of 

attack, we obtain the physical deformations to the Karcher mean airfoil along this subspace, shown in the bottom rows of 

Figures 10a and 10b. These deformations drive the changes in the aerodynamic performance of the airfoils the most. In 

particular, the lift coefcient is increased by increasing the overall camber of the shape. However, the manner in which 

this is achieved is diferent between the low and high angles of attack. Specifcally, the higher angle of attack seeks to 

increase the camber closer to the trailing edge of the airfoil, while the lower angle of attack does so closer to the middle 
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Table 1 Values of coefcient of determination, �2, for polynomial ridge approximation of aerodynamic quantities 
using diferent subspace dimension � and diferent polynomial degree �. 

aoa = 4� aoa = 12� 

�� �� �� �� �� �� 

� = 1 0.992 0.898 0.996 0.972 0.866 0.992 
� = 1 � = 2 0.994 0.914 0.997 0.972 0.965 0.993 

� = 3 0.994 0.915 0.997 0.972 0.967 0.994 

� = 2 0.999 0.963 0.999 0.997 0.977 0.999
� = 2 

� = 3 1.0 0.966 0.999 0.997 0.98 1.0 

� = 3 � = 3 1.0 0.983 1.0 0.999 0.988 1.0 

of the airfoil. The drag coefcient similarly increased by increasing camber, and this change is optimized by pushing the 

max camber point forward for the low angle of attack designs and backward for the high angle of attack designs. Finally, 

as noted in the previous section, the airfoil shape variations are nearly identical for the moment coefcient, regardless of 

the angle of attack. This analysis demonstrates how these surrogates and sensitivities can be utilized to inform more 

sophisticated and nuanced airfoil designs. 

V. Conclusion 

In this work, we provided the frst in-depth sensitivity study of a novel airfoil parametrization with regard to critical 

aerodynamic quantities. This airfoil parametrization, obtained using the separable shape tensors framework, provides 

unique benefts to the design process: (i) it isolates various well-studied shape characteristics, e.g., airfoil thickness, 

and (ii) provides a low-dimensional and well-regularized parameter domain that is well-suited for analysis using ML 

and AI algorithms. The separable shape tensors approach is data-driven and relies on provided data to learn the shape 

parametrization. Thus, we constructed a curated dataset of existing airfoil shapes to inform the data-driven parameter 

space for airfoil parametrization. Both the curated dataset and corresponding parameter space were made available 

online [83]. In addition, we performed a dimensionality study and demonstrated how to identify the optimal trade-of 

between the expressivity and regularity of the new parametrization. 

For our sensitivity analysis study, we used the HAM2D CFD solver to compute aerodynamic properties for the 

generated airfoil shapes at a low and high angle of attack. This data has been made available through the Open Energy 

Data Initiative [86]. We then computed multiple sensitivity metrics to quantify the impacts of the various shape 

parameters on the lift, drag, and moment coefcients. These quantities are critical for the design and optimization 

of airfoils and other aerodynamic shapes. Thus, this sensitivity analysis highlighted the key insights into the use of 

separable shape tensors for shape design. We found that these quantities were primarily driven by two PGA parameters: 

the leading PGA parameter and a second PGA parameter, the identity of which varied depending on the specifc quantity 

and angle of attack. The sensitivities were relatively consistent across all of the computed metrics. We then explored the 
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Fig. 10 One-dimensional ridge approximations for aerodynamic responses (top rows) and airfoil shape sweeps 
along the corresponding subspace (lower rows). The color corresponds to the value of the predicted aerodynamic 
response. 
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physical interpretation of these sensitivities by investigating the airfoil deformations obtained by sweeping across the 

parameters identifed using the subspace-based approach. We found one-dimensional subspaces in airfoil parameter 

space that allow us to deform the airfoils in a manner that maximally varies the aerodynamic quantities. These showed 

specifc shape variations that drive changes in performance and where these variations should occur. Such insights can 

inform manufacturing and airfoil designs for various applications by identifying shape variations that have either small 

or large impacts on performance. 

This work provides an initial investigation of how the separable shape tensors framework can help to inform airfoil 

design processes. One key aspect of separable shape tensors not explored in this work is their natural extension to 

three-dimensional wind and blade shape designs. Such blade shapes can often be represented using interpolations of a 

series of airfoil shapes at various spanwise locations. By controlling large-scale shape variations (e.g., thickness and 

rotation), separable shape tensors can represent a cohesive family of airfoils using limited PGA coefcients whose 

interpolation avoids undesirable features, such as divots or kinks. Further, the blade shape can be manipulated using 

parallel translation of the PGA parameters to apply consistent deformations to all of the component airfoils. Sections 2.5 

and 3.2 of Grey et al. [31] provide a detailed discussion of this extension to three dimensions. Future sensitivity analysis 

work will seek to characterize design impacts for the 3D aerodynamic structures. 
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