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1. Introduction

The Charger Advanced Power and Propulsion Laboratory (CAPP), a laboratory within the
Propulsion Research Center (PRC) at the University of Alabama in Huntsville (UAH) is working
with Los Alamos National Laboratory (LANL). to develop models and inform on promising
paths for high gain magneto-inertial fusion (MIF) conditions.  This report provides a framework
for identifying promising conditions for achieving ignition in plasma-jet-driven magneto-inertial
fusion (PJMIF)[1]. As proposed, for the first part of the contract, UAH proposes to develop a
gain over unity set of stagnation conditions to provide a state of plasma conditions to achieve to
set long terms goals for the PJMIF program.  Specifically, UAH will model PJMIF stagnation
conditions to include radiation, heat transfer, two temperature energy equations, fusion reactivity
and  nonlocal  fusion  product  deposition,  but  no  hydrodynamics  for  these  purposes.  These
calculations will use a stationary plasma model to reduce simulation complexity—focusing on a
DT target at 10 keV.  Subsequent work will include a DD plasma layer acting as an afterburner.
UAH will  assume  an  initial  magnetic  field  without  any  consideration  of  the  topology,  just
assume a field strength, most likely scaled with consideration of the local hall parameter. This
effort will inform the team on the tradeoff between mass, peak target field, etc and the achievable
gain.  

PJMIF is an innovative approach to controlled fusion that bridges the gap between magnetic
confinement fusion and inertial confinement fusion. This method utilizes an array of supersonic
plasma jets to symmetrically compress a magnetized fuel target, achieving conditions necessary
for fusion ignition. The plasma jets, typically generated by pulsed plasma accelerators, provide a

1 of 21



scalable  and  cost-effective  means  of  compression  while  mitigating  many  of  the  technical
challenges faced by traditional approaches. PJMIF is significant because it offers a path toward
high energy gain fusion, leveraging the benefits of magnetization to reduce thermal losses while
utilizing  kinetic  compression  to  reach  the  necessary  temperatures  and  pressures  for  fusion
reactions. If successful, this approach could enable more compact, lower-cost fusion reactors,
revolutionizing both terrestrial energy production and space propulsion applications. As global
energy demands continue to rise, PJMIF stands as a promising candidate for achieving practical
fusion power, bringing humanity closer to a future of abundant, clean energy. 

Before  proceeding,  this  report  highlights  key  concerns  about  the  direction  of  the  fusion
community,  which shape the framework presented.  In December 2022, the National  Ignition
Facility (NIF) achieved a historic breakthrough in inertial confinement fusion by demonstrating
fusion ignition—producing more energy from the reaction than was delivered to the fuel by the
laser system[2]. This milestone validated decades of research, confirming that self-sustaining
fusion burn is possible in the laboratory. NIF’s achievement represents a critical  step toward
practical  fusion  energy,  reinforcing  the  viability  of  inertial  confinement  approaches  while
inspiring advancements in alternative fusion methods, including magneto-inertial fusion concepts
like plasma-jet-driven compression.  While the recent success of the National Ignition Facility
(NIF) marks a major milestone in fusion research, traditional inertial confinement fusion (ICF)
approaches face significant challenges related to size, cost, and complexity. Facilities like NIF
require massive laser arrays, each demanding extreme precision and maintenance, making them
prohibitively expensive and impractical for commercial power production. The intricate target
fabrication and delivery systems add further engineering challenges, while the sheer scale of
these facilities limits their scalability. These concerns have driven interest in alternative methods,
such  as  plasma-jet-driven  magneto-inertial  fusion  (PJMIF),  which  aims  to  achieve  fusion
conditions with a more compact, cost-effective, and potentially scalable approach.  Magneto-
inertial fusion has traditionally been pursued as a lower-cost, lower-volume alternativeMA[3].
However, modern embodiments such as MagLIF require pulsed currents exceeding 50 MA of
total  current[4] necessitating  complex  pulsed  power  systems  with  pulse  compression  and
challenging path to high pulse repetition.  Alternative: Currently, PJMIF requires hundreds of
pulsed plasma accelerators  arranged spherically.  This  design process  begins  with anticipated
stagnation conditions and confinement  time,  working backward to  define liner  requirements.
Then knowing the mass achievable per plasma accelerator and standoff, determining the final
system.  It’s  a  system of  the order  of  100   MJ.   This will  be quite  large,  complicated,  and
expensive to build and maintain.  Additionally, if NIF is any indicator, PJMIF will struggle for
many years before maturing the technologies needed for the high precision needed for shock
heating and spherical compression.  While the CAPP laboratory is fully capable of modeling this
pathway, this report proposes an alternative PJMIF parameter space aimed at simplifying and
reducing the overall reactor size.

The rest of the report is organized as follows. Section 2 presents the theoretical models used
in this report, specifically preliminary planning, power balance for stationary plasma states, and
analytical states.   Results  are presented in section 3,  followed by discussion and concluding
remarks in section 4.  
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2. Theoretical Models 

This section draws upon numerous analytical models of magneto-inertial fusion (MIF). An
excellent  reference  for  the  inertial  physics  is  the textbook by Atzeni  and Meyer-ter-Vehn[5]
Among the earliest MIF studies, Lindemuth and Kirkpatrick investigated the impact of magnetic
fields on inertial targets, systematically varying density and implosion velocity[6]. Their work
was generalized by Kirkpatrick to power balance diagrams as a function of aerial density and
fuel temperature  [7].  Drake et al demonstrated that targets with an initial density of 1024 m-3,
magnetic field of ~10 T, and initial temperature of 100 eV could reach ignition and gain over
unity with ~100 kJ of initial energy.  Similar conclusions about the merits of magnetic fields and
preheat were identified by Ribe and Barnes[8] with magnetized impact fusion, Turchi[9] with the
Linus  concept,  and Siemon et  al  [10] with  magnetized  target  fusion.   Deposition  of  fusion
products into magnetized targets in the context of MIF was performed by Basko et al[11]. A
critical parameter is the ratio of the target radius to the born-on Larmor radius of the charged
fusion products.  Other transport properties are documented in the NRL Plasma Formulary[12],
with  updates  on  many parameters  provided by  Davies  et  al[13].   For  plasma liner  specific
studies, semi-analytic 1D treatments of Mag LIF[14] and Staged Z-pinch[15] were developed
and performed. The focus on those studies was the verification of the tools themselves without a
thorough exploration of the parameter space.  Most recently, Langendorf and Hsu developed a
semi-analytic  model  of  PJMIF[16],  highlighting the 1D result  that  gains of 3  to  30 may be
possible with initial plasma liner energies of 20-40 MJ.  

2.1. Preliminary Planning for Magneto-Inertial Fusion Experiment: Confinement

Gain over unity in ICF and MIF plasmas are informed by the condition that the confinement
time needs to exceed the fusion burn time necessary to recover the energy investment, namely
the inequality

τconf≥τ fus  (1)
The fusion burn time comes from a time integration of the fusion reactivity equation, In general,
the volumetric fusion power given by 

(dE
dt )fus

=
ni n j

(1+δ ij)
<σ v>ijV E fus , ij (2)

where δij is 1 if i=j (i.e. D-D, T-T reactions) and 0 otherwise and V  is the target volume.  The
number density of the fuel with 

n i=X i n (3)

where ∑
i=1

N species

X i=1 are the mole fractions.  Typically, the number of species is 2, and deuterium

and tritium are the species in proportions of 50% each by mole fraction.  For binary reactions
involving different species, we the have 

(dE
dt )fus

=n2 X 1(1−X 1)<σ v>V E fus (4)

For  thermal  DT  plasmas,  neglecting  the  magnetic  field  energy,  the  total  energy  is
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E th=n miV
R

γ−1
2 T .  The total energy released from fusion can exceed the thermal energy

by almost a factor of 500, so the number density can be approximated as a constant for the sake
of rapid order of magnitude analysis, setting up an inequality 

E th=n miV
R

γ−1
2 T≤Eb≈n2 X 1(1−X 1)<σ v>V E fusτ b (5)

This provides our definition of burn time. So for planning purposes, the time to recover the
thermal energy must satisfy 

τ b≥( 2 ma R̄

(γ−1)
1

X 1(1−X 1))( T
<σ v> E fus

)1
n

(6)

For  practical  purposes,  burn  time  is  inversely  proportional  to  number  density,  and  the
temperature, reactivity, and fusion energy per reaction set the scale.

In ICF and MIF, the confinement time is required to exceed the burn time.  Confinement
time from analytical arguments has historically been a point of contention and should be a focus
of future experimental and modeling studies(see e.g. Thio et al  [17] vs. Parks  [18]).  For this
model  it  is  assumed  that  the  confinement  time  is  the  liner  thickness  lL divided  by  the
expansion rate vexp , L , and it is assumed that the expansion rate is based on a fraction of the
incoming liner speed, due to the rapid radiative cooling by the high Z materials, leading to liner
temperatures of 2-4 eV.  Further,  we require  dynamic pressure to exceed the stagnation and
magnetic field pressure of the target, leading to an implosion speed of 

V L=√ 4 n k T T+0.5 BT
2 / μ0

ρ L
(7)

where ρL is the mass density of the liner. Assuming a liner expansion rate of V L /M L leads to
the required thickness of the liner, 

lL≥
V L 2 ma R̄

M L (γ−1) X 1(1−X 1)
T T

<σ v> nT E fus
(8)

The magnetic field is not arbitrary, and can be guided by the ratio of the target radius to the
Larmor radius of the born-on alpha particles.  Using results from Ref. [11], 

rα , Lar , 0≤
rT

3
(9)

where r T is the target radius.  This inequality leads to 

BT≥
√2 mα E fus ,α 0

2 q rα , Lar , 0

; (10)

With these parameters defined by the independent variable of n and r T , everything, including
the total mass, energy, and kinetic energy of the liner, can be estimated providing a promising
and  much  narrower  selection  for  initial  parameters  in  an  otherwise  overwhelmingly  large
multidimensional parameter space.
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2.2. Power balance of an igniting sphere

For the burning target, the first law of thermodynamics gives 
dE
dt
=W dep−W m−W r−W e  (11)

where Wdep,  Wm,  Wr,  and We are  the powers of  fusion product  deposition,  mechanical  work
(pdV), radiation, and thermal conduction.  We treat each of these terms below.

2.2.1. Fusion power deposition

In general, the volumetric fusion power given by 

dE
dt
≡W fus=

ni n j

(1+δij)
<σ v>E fusV (12)

where δij is 1 if i=j (i.e. D-D, T-T reactions) and 0 otherwise.  In general, the deposition power is
given by 

W dep=W fus f dep=
ni n j

(1+δij )
<σ v>V∑

m

E fus , m f m (13)

For example, the power density for equimolar DT has already been given as (if 
n
2
=nD=nT ,

also noting δij = 0), 
dEDT

dt
≡W fus=

1
4

n2 <σ v>DT E DT  (14)

A fraction of this power f dep is deposited within the hotspot.  We can write this as 

W dep=W fus f dep=W α( f α+4 f n)  (15)

for DT specifically.  For temperatures below 25 to 30 keV, charged particle fusion products slow
down mostly due to small angle electron scattering collisions.  The velocity decreases according
to 

dvα

dt
=
−vα

2 tαe
(16)

where tαe  is a characteristic time for energy deposition given by 

tαe≈
42 T e

3/2

ρlnΛα e

[ps ] (17)

where Te is in units of keV and lnΛα e  is the Coulomb logarithm for collisions between alphas
and electrons.  The range of a 3.5 MeV alpha particle in a homogeneous plasma is obtained as 

lα=2 vα0 tαe≈0.107
T e

3 /2

ρ lnΛαe

[cm ] (18)

where vα0=1.29×109 cm /s is the 'born on' velocity of the alpha particles.  More conveniently
(for me anyway), the approximate formula for lα  is 
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lα=1.07
T e

3/2

ρ lnΛαe

m  (19)

where ρ is the mass density of the fuel in kg/m3, T e is the temperature in keV, and lnΛα e is
the Coulomb logarithm (impact parameter).  This value I will explain in class, but is typically
about 10.0 regardless of the physics regime. The fraction of the energy deposition by the alpha is 

f α={ 3
2
τα−

4
5
τα

2 τα≤1/2

1− 1
4 τα

+ 1

160 τα
3

τα≥1/2
 (20)

where  τα=Rh/ lα is  the  ratio  of  the  burning  sphere  to  'range  of  α  particle'  (it  means  the
distance, roughly, over which it travels before losing its energy to collisions).  

A magnetic field will enhance the deposition.  The most important figure of merit is the ratio of
the radius Rh with the Larmor radius of an alpha, which is 

r L α=
m vα 0

2 q B
 (21)

where vα0  is the 'born on' or starting velocity of the alpha particle.  This is calculated with 

Eα=
1
2

m α vα0
2

 (22)

thus vα0=1.2986×107 m /s . 

τ α=
Rh

lα (1+
Rh

r Lα
)≡R̄(1+b)  (23)

The results are shown below for b = 0.1, 1, and 10 to show how the magnetic field can enhance
deposition for charged particles.  The benefits of the magnetic field can be seen to improve the
local deposition and require lower densities as the curve shifts to the upper left.  

6 of 21



Figure 1. Fractional fusion deposition as a function of
target radius to stopping length at fixed value of target
radius to born on alpha Larmor radius.  

2.2.2. Thermal conduction

Electrons  dominate thermal  conduction because they are highly  mobile.   There  are  three
thermal conductivities for electrons, k ∥

e , k
e , k∧

e , where the subscript refers to the direction of
the conduction with respect to a magnetic field.  For the perpendicular component,  

k ,e=
nT e τe k B

2

me

( f γ1
' x2+ f γ0

'

Δ )[ W
m⋅K ]  (24)

where temperature is in K, Z is the charge (1.0 for any combination of fully ionized H, D, and T).
The electron collision time τe is given by 

τe=
3√me

4√2π
(kBT e)

(3 /2)

neλ
(4 πε0)

2

q4
(25)

ne is  the  electron number  density  in  m-3,  and  me is  the  electron mass  in  kg.   x  is  the  Hall
parameter given by 

x=ωe τe=
q B
me

τe  (26)

where B is the magnetic induction field in Tesla.  The coefficient Δ is given by 

Δ=x4+ f δ1
x2+ f δ0

 (27)

Finally, the four 'f' coefficients are can be interpolated from tabular results in Braginskii[19]
by
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f γ0
'=11.92(0.10067+

0.58456

−0.35+Z 1.1)
f γ1

'=4.664(0.69683+ 0.30317
Z )

f δ0
'=3.7703(0.025489+

0.63343

−.35+Z3 /2)
f
δ1

'=14.79(0.50588+ 0.40765
−0.175+Z )

 (28)

Finally, the Coulomb logarithm λ is given by the piecewise function

λ=
29.9−log (√ne TeV(−3 /2)) TeV <10 eV

30.9−log (√neT eV
(−1)) T eV≥10 eV

(29)

These functions are curve fit to a table of data to account for the effect of variable charge state of
the heavy ion particles.  The curve fits were determined by me in my dissertation work.  

Similarly for ions, we have 

k ,i=
n T i τ i k B

2

ma MW i
(2 x i

2+2.645
Δi

)[ W
m⋅K ]  (30)

where Ti is the ion temperature in K. The ion collision time τi is given by 

τ i=
3√me

4√π
(k BT i)

(3/2)

niλ
(4πε0)

2

q4
(31)

ni is the ion number density in m-3, and me is the electron mass in kg.  xi is the ion Hall parameter
given by 

x i=ωi τi=
q B

ma MW i

τi  (32)

The coefficient Δi is given by 

Δi=x i
4+4.03 x i

2+2.33  (33)

Since heat transfer rates are dominated by the electrons, we will focus our calculations using
electron transport and neglect ions for now.  The thermal conduction power on average can be
modeled with 

W e=−k e∇ T e S  (34)

We can approximate the gradient as ∇T e≈T e /r T , and using the equation above accounting
for magnetic fields with temperature in eV and using the spherical geometry
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W e=−
9.6958×103T e ,eV

5/2

Z lnΛ
( f γ1

' x2+ f γ0
'

Δ )T e ,eV 4π Rh
2

Rh 4 /3π Rh
3 V

=−
2.91×104T e ,eV

7 /2

Z lnΛ Rh
2 ( f γ1

' x2+ f γ0

'

Δ )V
 (35)

2.2.3. Bremsstrahlung

Bremsstrahlung power per unit volume is[20] 

Pbr =
-V 16π
3√6 π

q6

me
2c3(4 πε0)

3

Z i
2neρ

√kBT e, K /meMW ima

∫
0

∞

4 π exp−hν
k BTe , K

d ν

=
-V 64π2

3√6 π
q6

mec
2h (4 πε0)

3 √kBT e, K

mec
2

Z i
3ρ2

(MW ima)
2

= V 4.856×10-37ni
2T e ,keV

1 /2 Z i
3

¿ (36)

where the temperature units are given by the subscript.  

2.2.4. Mechanical Work

The mechanical work is sometimes called the compressional or pdV work.  On a per unit
volume basis, this term is 

W m= ph
dV
dt

 (37)

For a sphere, 

dV

dt
= 4

3
π 3 Rh

2 d Rh

dt
=4 π Rh

2 u  (38)

where u is the implosion velocity.  Thus 

W m=4π r T
2 uρT R T T  (39)

where R is the gas constant for the plasma.  For isobaric ignition, the pressures match across the
hotspot boundary and u = 0.   

2.3. Hot spot evolution and burn propagation

Energy conservation in the burning region is 

M
d e
dt
=(W cp f−W b−W e)V− pSuexp−e

dM
dt

(40)

where the surface area is given by 

S={4π r 2 spherical
2π r l cylindrical

(41)
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M mass of the hotspot,  e M is  the energy of the hotspot,  ρ c is the density of the cold fuel
surrounding the hotspot, p, pressure inside the burning hotspot, u velocity, where there are two
distinct velocities, ubw and uexp, where bw means burn wave and exp means expansion.  

The rate of mass accretion (mass increase in the hotpot), is evaluated assuming that is the rate at
which the surrounding cold material heats up to an energy e matching the hotpot value.  The
heating comes from two terms, the charged particles not deposited in the hotspot, and the thermal
conduction into the cold layer, 

e
d M
dt

=[W cp(1−f cp)+W e ]V (42)

Total energy E is 
E=eM (43)

where e is the specific internal energy, 

e=C vT=
R̄

MW (γ−1)
(T e+T i) (44)

The volume depends on the geometry of the target, 

V={43 π r3 spherical

π r2l cylindrical
(45)

The burn wave velocity can be obtained in terms of the time rate of change of mass of the
system, since 

r={(Mρ 3
4 π )

(1/ 3)

spherical

(Mρ 1
l π)

(1/ 2)

cylindrical
(46)

The burnwave velocity is 

dr
dt
≡ubw={ 1

4 πρ(Mρ 3
4 π)

(−2 /3 ) dM
dt

spherical

1
2πρ l (Mρ 1

lπ )
(−1 /2) dM

dt
cylindrical

(47)

The pressure is then approximated with ideal gas, unless the density gets to be too high.
P=n ik T i+ne kT e (48)

These equations give a pair for ordinary differential equations that need to be integrated in time,
along with a lot of models that are plugged into these equations for all the various terms.  The
model here uses blast wave theory to estimate the expansion speed, and is summarized in the
next section. 
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3. Results

3.1. Scope of Work

The modeling was performed to guide the multidimensional modeling to follow in the midterm
and final report using SPFMax[21], [22].  The first set of results come from section 2.1 in which
the burn time and various constraints in which target density and radii are independently varied,
and the burn time, magnetic field, plasma liner velocity, liner thickness, total mass, and total
kinetic energy.  These results provide guidance on initial and stagnation conditions which may
lead to ignition and gain over unity.  Further insights can be gained by plotting contours of net
heating and cooling using the  fusion power balance equations  of  section 2.2.   These results
inform on target radius, density, and magnetic field, used to perform a point design computation
of the hot spot evolution as a way to verify the usefulness of guiding models from the previous
sections.  

3.2. Effects of Burn Time and Local α Deposition Constraints on the Liner

The burn time, neglecting transport effects, is independent of scale and inversely proportional to
density as shown in the figure below plotted from 1025 to 1028 m-3.  Across this space, the time
varies from ~10 μs down to 20 ns.  This result is useful for estimating both the burn time of the
target  and of  the afterburner.   Analytical  modeling tends  to  focus  on the  target,  which puts
constraints on the liner thickness as shown later.  Results tend to require thicker liners requiring
higher energy drivers.  However, if the afterburner can ignite via heat transfer and fusion product
transfer from the target, the target’s role can shift from high yield to spark ignition, which may
reduce the liner kinetic energy by an order of magnitude.  

Figure 2. Deuterium tritium burn time vs number density.

The corresponding minimum magnetic field required for local deposition and β are plotted.  The
magnetic field is only a function of the target radius, if set by the born on radius of the alpha
particles.  The ratio of thermal to magnetic field pressure ranges from fully magnetized (low β)
to negligible.  Typical target radii of 10 mm and densities of 1026 to 1027 m-3 tend to place β
between 10 and 100.
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(a) (b)

Figure 3.  (a) Minimum magnetic field needed to promote localized burn and (b) corresponding
β  at fixed value of target number density.

Next we present liner velocity, liner thickness, liner kinetic energy, and number of plasma guns
required. Each plot is repeated for liner mass densities of 10, 100, and 1000 kg/m3. Railguns are
recommended for the liner because they can handle significantly higher mass per shot.  It  is
assumed that  each railgun can  be  filled with 1 g of  material.  The  concerns  against  railguns
include impurities from the sidewalls and possibly slower final velocity. In the short term, the
value of the PJMIF concept lies not in its potential for cost-competitive electricity, but in its
ability to deliver high-yield shots for medical isotope generation, fusion relevant burn conditions
for  materials  and  technology  development  and  code  validation,  and  possibly  propulsion  for
cislunar space. These applications do not benefit from the added complexity of using hundreds of
coaxial plasma guns. 

The minimum liner velocity is plotted as a function of target radius at fixed values of target ion
density for three liner mass densities. Liner velocity remains nearly constant across target radii,
except at small radii where magnetic field pressure dominates to maintain local alpha deposition
constraints. The required liner velocity increases with higher ion target densities and decreases
with higher plasma liner densities. 
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(a) (b) (c)

Figure 4.  Minimum liner velocity for confinement at fixed values of ion target density for liner
mass densities (ρL) of (a) 10  (b) 100, and (c) 1000 kg/m3.

The minimum liner thickness is plotted as a function of target radius at fixed values of target ion
density for three liner mass densities. Liner thickness, like liner velocity, remains nearly constant
across  target  radii,  except  at  small  radii  and  low target  ion  densities  where  magnetic  field
pressure dominates to maintain local alpha deposition constraints. The required liner thickness
decreases with higher ion target densities and/or higher plasma liner densities. 

(a) (b) (c)

Figure 5.  Minimum liner thickness for confinement at fixed values of ion target density for liner
mass densities (ρL) of (a) 10  (b) 100, and (c) 1000 kg/m3.

The minimum liner kinetic energy is plotted as a function of target radius at fixed values of target
ion density for three liner mass densities. Liner kinetic energy increases with target radius except
when the magnetic field pressure becomes comparable to the target thermal pressure. For lower
densities there is a target radius which minimizes the required kinetic energy.  In all cases, the
liner kinetic energy decreases with increasing liner mass density. 

(a) (b) (c)

Figure 6.  Minimum liner kinetic energy for confinement at fixed values of ion target density for
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liner mass densities (ρL) of (a) 10  (b) 100, and (c) 1000 kg/m3.

The minimum number of railguns, assuming 1 g per gun, is plotted as a function of target radius
at fixed values of target ion density for three liner mass densities.  The number of guns decreases
with target density, because the shorter confinement time of higher density targets reduces the
need for thicker liners. At low target densities, the number of required guns minimizes as a
function of target radius.  Increased target density decreases the number of required guns.  The
liner mass density has a marginal effect on the number of guns required.

(a) (b) (c)

Figure  7.  Minimum number of railguns needed for confinement at fixed values of ion target
density for liner mass densities (ρL) of (a) 10  (b) 100, and (c) 1000 kg/m3. 

3.3. Fusion Power Balance as a Guide for Compressing along a Net Heating Path

To help narrow the parameter space for PJMIF, specifically how to reach the conditions listed
above,  we  can  use  power  balance  diagrams,  changing parameters  such as  target  radius  and
implosion velocity, to estimate conditions that might reach ignition by compressing through a net
heating  parameter  space.   Below  we  have  a  sequence  of  three  power  balance  plots  in  a
cylindrical geometry.  Each plot is a contour plot of net heating or cooling with the boundary
between each represented by a dashed line. The y axis represents the target temperature in kEv
and the x axis is the ion number density for a 50/50 deuterium tritium mixture. Reading left to
right, the target radius is 10, 5, and 1 cm.  The implosion velocity in each plot is 50, 50, and
5 km/s, respectively, where the velocity is deliberately 10% of the previous two plots anticipating
that as a target nears maximum compression the liner will decelerate rapidly.  The radius itself
enters  into  shape  of  the  heating  contours  through  transport  physics,  specifically  thermal
conduction and fusion deposition.  First of all the temperature gradient across the target boundary
is assumed to scale as the temperature divided by the radius, following Ref.  [7].  However the
total heat flux across a surface depends on the surface area, which itself is a function of radius so
these effects compete against each other. Finally the fusion deposition depends on the ratio of the
target radius to Larmor radius as discussed in section 2 as found in Ref. [11] and is not just
assumed that  the  products  are  deposited  locally.   What  is  apparent  from these  plots  is  that
cylindrical compression which may be easier in near term testing and target compression, given
the inherent cylindrical symmetry of magnetic fields, along with modest compression rates of
10’s of km/s, may reach breakeven if the parameters are chosen carefully. 

14 of 21



(a) (b) (c)

Figure  8.   Fusion  power  balance  for  BT  =  50 T  and  (a)  r T=10 cm , v L=50 km / s   (b)
r T=5cm ,v L=50 km /s , and (c) r T=1cm ,v L=5 km /s .

The final thermal energy in the target is extremely sensitive to the target radius and stagnation
density, Fig. 9.  At fixed ion density, the thermal energy scales with r T

3 .  This scaling holds
true for both spherical and cylindrical targets, assuming the cylindrical target elongation is held
fixed.  So, for example, a 10 keV 1 cm target at 1026 m-3, would contain 2 MJ of thermal energy,
while a 0.5 cm target would only have 250 kJ.  To put that into perspective, a 10 kJ high voltage
capacitor may have a mass of 100 kg. This is the difference of 20 mT vs 2.5 mT.  Assuming a
10% efficiency of transferring stored energy to thermal energy, a reactor might need 2.5 MJ of
capacitors  instead of  20 MJ by lowering the  final  target  radius  by  a  factor  of  2.   Our  own
laboratory has roughly 2 MJ of high voltage capacitors, and so do several of our colleagues.  

Figure 9.  Thermal energy in a 10 keV DT target vs target radius and ion density.

3.4. Point Design Burn Calculation

Building on the guidance from the preceding sections, a point design calculation is performed for
at target with 0.5 cm initial radius, 50 T magnetic field, and 1026 m-3 ion density. The target
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reaches unity gain on the order of 1 μs. The next step is to explore the conditions under which a
secondary liner can fuel this burn and propagate, amplifying the gain.  

 
(a) (b)

Figure 10.  Scientific gain and neutron yield vs burn time for a 0.5 cm target with 50 T magnetic
field, 1×1026 m−3 target density, 10 keV temperature.

4. Conclusions

This report explores the feasibility of plasma-jet-driven magneto-inertial fusion (PJMIF) through
theoretical  modeling  and  parameter  space  exploration.  By  analyzing  key  constraints  on
confinement time, burn time, liner dynamics, and fusion power balance, we have identified a
path toward achieving ignition and gain with a relatively compact, efficient system.

The analysis highlights several guiding principles:
1. Increased  liner  density  substantially  reduces  the  kinetic  energy  required  for

compression, enabling fusion-relevant conditions at sub-megajoule energy scales.
2. Optimal target parameters, including an ion density of 1024 to 1025 m-3, an initial radius

of  ~10  cm,  and  a  compression  velocity  of  ~50000  m/s,  offer  achievable  ignition
conditions within the parameter space studied.

3. Of critical importance is constraining magnetic field so that the born on Larmor radius
is smaller than that of the target at peak compression. Field of 50-100 T for stagnation
conditions provide a practical goal.  Simultaneously, the plasma β at these conditions is
considerably above unity, which may avoid MHD instabilities.  

4. The coupling between liner pressure and target internal pressure (thermal plus magnetic
field)  is  critical  for  maintaining  compression  and  enabling  burn  propagation,  with
magnetic field effects playing a key role in energy deposition and confinement.

5. Soft  recommendations  include  the  use  of  railguns  for  plasma  liner  formation,  and
emphasis  on  short-term  fusion  applications,  such  as  medical  isotope  production  and
fusion  relevant  conditions  for  materials  and technology development  and maturation.
Insights  gained  from near  term success  can  feed  into  longer-term development  of  a
fusion power plant.

Through power balance analysis and a point design ignition calculations, we demonstrate that
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gain exceeding unity is  achievable with a  10 MJ system or  smaller.  Furthermore,  the study
indicates that the target design can be simplified by relaxing the requirement for direct gain
production, instead focusing on igniting a cold fuel layer. This approach has the potential to
significantly reduce the overall size and complexity of the reactor system, opening avenues for
experimental validation.
Future work will focus on refining the physics of cold fuel layer burn propagation and exploring
experimental methods for achieving the necessary initial conditions. This analysis will extend
into 3D simulations using SPFMax.  This includes investigating liner-driver coupling, the impact
of  railgun-produced  liners  on  compression  uniformity,  and  optimizing  parameter  spaces  for
ignition and energy gain.

In conclusion, PJMIF remains a promising pathway for achieving fusion ignition and gain
with significant potential for advancing both terrestrial and space propulsion applications. By
addressing the challenges outlined and pursuing the recommendations made in this report, we
move closer to realizing the vision of compact, cost-effective fusion energy.

5. Appendix A.  Blast wave theory for estimating expansion speed of a hotspot

In blast wave theory[23], the most general form of the equation for the shock radius is given by 

Rs( t)=(E t 2

α A )
1

ν+2−ω (49)

where Rs is the shock radius as a function of time t, E is the energy released, A is a constant
related to the density profile, α is a normalization constant, ν is the symmetry (1, 2, or 3 for
planar, cylindrical, or spherical symmetry), and ω is a free parameter.  We also need the time
derivative of the shock radius, 

Ṙ s(t)=
2 Rs( t)

(ν +2−ω) t
(50)

The equations describing the solution depending on ω, and setting ω=0  gives the case for an
explosion into a uniform atmosphere.  We will present the results for that case. The undisturbed
density is given as a function of the spatial coordinate r as 

ρ0(r )=Ar−ω (51)

and α is a normalization constant determined later.  

Now, we first have to get the nondimensional solution, and then we can calculate the physical
pressure, temperature, density, and velocity.  The dimensionless variables are 

ξ = r
Rs(t )

(52)

The density, velocity, and pressure are nondimensionalized against the shock values, 

D(ξ )= ρ (r , t)
ρ s

(53)
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V (ξ )= v(r , t)
v s

(54)

P (ξ )= p(r , t)
ps

(55)

Here the equations are presented in the order they need to be calculated, not the order presented
in Ref. [23].  

ω 1=
3ν−2+γ (2−ν )

γ +1
(56)

ω 2=
2(γ −1)+ν

γ (57)

ω 3=ν (2−γ ) (58)

β 0=
1

ν γ−ν +2
(59)

β 6=
2

ν +2−ω (60)

β 7=ω β 6 (61)

β 8=ν β 6 (62)

β 2=
γ−1

γ (ω 2−ω)
(63)

β 3=
ν −ω

γ (ω 2−ω) (64)

β 1=β 2+(γ +1)β 0−β 6 (65)

β 4=β 1

(ν−ω)(ν +2−ω)
ω 3−ω (66)
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β 5=
2ν−ω (γ +1)

ω 3−ω (67)

C0=2
ν π(ν−1)/2 Γ((ν+1)/2)

Γ(ν) (68)

C5=
2

γ−1
(69)

C6=
γ +1

2
(70)

C4=(ν +2−ω )β 0 C 6 (71)

C1=γ C5 (72)

C 2=
C 6
γ (73)

C3=
ν γ−ν +2
(ω 1−ω )C6

(74)

Now, the solution starts with setting up a vector F that varies from C2 to 1.  So, let 

dF=(1−C2)/100 (75)

then 
F=[C2 :d F :1] (76)

Now we can obtain the dimensionless solution.  The dimensionless radius is

ξ =F−β 6 [C1(F−C2)]
β 2 [C3(C4−F )]−β 1 (77)

Density is 

D=F β7 [C 1(F−C 2)]
β 3−ω β 2 [C3(C4−F )]β 4+ω β 1 [C5(C6−F ) ]−β 5 (78)

Velocity is 
V=ξ F (79)

and pressure is 

P=F
β 8 [C3(C4−F )]β 4+(ω−2 )β 1 [C 5(C 6−F )]1−β 5 (80)

The constant that appears in Eq. 49 can now be evaluated with 

α=
8 C0

(γ 2−1)(ν +2−ω )2
∫
0

1

ξ ν−1(D V 2+P)d ξ (81)
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To do this numerically, here is an example of 2 lines of code to achieve this in Matlab:
alfun = 8*C0 /((g^2-1)*(nu+2-omega)^2) .*xsi.^(nu-1) .*(D.*V.^2 + P);
alpha = trapz(xsi,alfun);

Now the shock radius and its time derivative can be evaluated, Eqs. 49 and 50.  Then, 

ρ s=
γ+1
γ−1

ρ 0 (82)

v s(t)=
2 Ṙ s(t)
γ +1

(83)

ps(t )=
2ρ 0 Ṙ s(t)

2

γ +1
(84)

Finally, the physical variables are 

ρ (r ,t )=ρ s D(ξ ) (85)

v (r ,t)=v s(t)V (ξ ) (86)
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