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Introduction

• Portable X-ray systems enable on-site 3D imaging for non-invasive inspection of suspicious 

packages and explosives.

• Existing reconstruction algorithms (e.g., FDK or Feldkamp, Davis and Kress) require hundreds of 

projections over 360 degrees.

• Sparse-view scan reduces scanning time and setup effort, making it ideal for field use in time-

critical scenarios.

• Existing reconstruction algorithms introduce severe artifacts when applied to sparse-view data.

• We developed a total variation (TV)-based optimization algorithm for yielding 3D images from 

sparse-view data collected with our portable X-ray imaging system.
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• Angular ranges of 360o

• Sparse-view scans: 45 and 12 views

• Non-uniformly distributed views

• Non-circular trajectories

• Cone-beam illumination at each view

Cone-beam-CT Sparse-view Scan
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Intersection-length (ℋ𝑗𝑖) 

Observation: Image reconstruction is equivalent to inverting the linear equation set.

g = ℋf
Image model – discrete X-ray transform

g: discrete model data

f: discrete image

ℋ: system matrix, each element ℋ𝑗𝑖 denotes the 

intersection-length of ray j and voxel i 

Matrix ℋ encodes the system geometry and can accommodate arbitrary angular sampling schemes, 

including full 4π and partial 4π configurations, with either uniform or non-uniform angular distributions.

Image Model and Reconstruction
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Optimization-based TV Reconstruction

Image reconstruction is formulated as a constrained optimization program:

f ∗ = argmin
f

 ∇f 1 , 

 

                                            𝑠. 𝑡.  (ℋf − g ℳ )
2 

≤ ε, and f𝑖 ≥ 0

➢ Objective function

o convex total-variation fidelity, in which 𝛻f 1 denotes ℓ1-norm of the gradient magnitude image.

➢ Constraints:

o data-ℓ2 constraint, and non-negative parameter, 𝜀, is used to control the inconsistency between 

measured data (i.e., g ℳ ) and modeled data (i.e., ℋf).
o non-negativity constraint is on image 
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Rationale for TV Minimization

• Sparse view configuration leads to underdetermined imaging 

model.

• Both phantom and least-squares (LSQ) image solve g = ℋf 
exactly.

• Phantom is sparse in the gradient magnitude image (GMI), 

while LSQ image is not sparse in the GMI.

• Total variation (TV) measure is the sum of GMI pixel values.

• TV of LSQ image is greater than TV of phantom.

• Minimization of the TV rules out the LSQ image (and 

hopefully all other images that solve g = ℋf).
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Scanned Object and Scanning Configurations

Front 

view

A: Timer

B: Battery pack

C: D2 lamp in Ta cup

D: Inline fuse

E: Capacitor bank

Photo of scanned object

Side 

view

B

A

C

D
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Scanning configuration:

Source-to-rotation-axis distance: 130 cm 

Source-to-detector distance: 152.5 cm

Detector size: 1152×1600 bins of size 0.254 mm

Full data set Data set 1 Data set2

Number of views 90 45 12

Angular coverage 360° 360° 360°

Angular interval 4° 8° 30°

X-ray source 

of 270 keV

X-ray detector

Object 

scanned

Rotation direction
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Transverse Slices and Maximum Intensity Projection (MIP) Images
(45 views over 360o with an angular interval of 8o)
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Coronal Slices and MIP Images
(45 views over 360o with an angular interval of 8o)
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Sagittal Slices and MIP Images
(45 views over 360o with an angular interval of 8o)
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TV method Existing FDK method

Rendered CT Images
(45 views over 360o with an angular interval of 8o)
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Transverse Slices and MIP Images
(12 views over 360o with an angular interval of 30o)
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Coronal Slices and MIP Images
(12 views over 360o with an angular interval of 30o)
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Sagittal Slices and MIP Images
(12 views over 360o with an angular interval of 30o)
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TV method Existing FDK method

Rendered CT Images
(12 view over 360o with an angular interval of 30o)
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Conclusions

• Projection data were collected using a portable X-ray imaging system, with a 
hand-made phantom of practical relevance

• Developed and tailored a TV algorithm to reconstruct 3D CT images from sparse-
view data collected with a portable X-ray imaging system

• Demonstrated that the TV algorithm can yield images with significantly reduced 
artifacts compared to those obtained with existing algorithms

• Enabled faster data acquisition and supported the use of portable CT imaging in 
field operations, security screening, law enforcement, and emergency response 
scenarios
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Thank You!

Funding provided by NNSA’s Office of Defense Nuclear 

Non-proliferation Research & Development.
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