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Abstract

Microkinetic models for catalytic systems require estimation of many thermody-

namic and kinetic parameters that can be calculated for isolated species and transition

states using ab initio methods. However, the presence of nearby co-adsorbates on the

surface can dramatically alter these thermodynamic and kinetic parameters causing

them to be dependent on species coverage fractions. As there are combinatorially

many co-adsorbed configurations on the surface, computing the coverage dependence

of these parameters is far less straightforward.

We present a framework for generating and applying machine learning models to

predict coverage-dependent parameters for microkinetic models. Our toolkit enables

automatic calculation and evaluation of co-adsorbed configurations allowing us to sam-

ple 2,000 co-adsorbed adsorbates and transition states (TSs) for a diverse set of 9 reac-

tions on Cu(111), a challenging surface, with four possible co-adsorbates. This dataset

was then used to train subgraph isomorphic decision trees (SIDTs) to predict the sta-

bility and association energy of configurations. We were able to achieve mean absolute

errors (MAEs) of 0.106 eV on adsorbates, 0.172 eV on TSs, and due to natural error

cancellation in SIDTs for relative properties, 0.130 eV on reaction energies and 0.180

eV on activation barriers. We describe how to use these models to predict coverage-

dependent corrections for adsorbates and TSs, and demonstrate on H∗, HO∗ and O∗

comparing the generated SIDT model with an iteratively refined version.

Introduction

Heterogeneous catalysis plays an incredibly important role in energy technologies and chem-

ical manufacturing. Catalytic systems involve many elementary reactions and are sensitive

to temperature, pressure, and the nature of the catalyst. In order to predict the behavior of

these systems at a range of conditions, usually one would build and simulate a microkinetic

model (MKM) or a kinetic Monte Carlo (KMC) model.
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Under low-coverage conditions it is often adequate to treat adsorbates and reactions as

if they are isolated on the surface, assuming an otherwise empty surface. However, in many

systems and under many conditions the surface has many adsorbates packed closely together.

In these co-adsorbed systems the lateral interactions between co-adsorbed species can very

significantly alter the thermochemistry and kinetics.1–9 However, brute force computation

of the minimum association energy of an adsorbate and co-adsorbates at a given coverage

requires one to compute the average binding energy of every conceivable configuration at

that coverage. Even just computing the minimum association energy of an adsorbate in the

presence of a single type of co-adsorbate is computationally very expensive. Consideration

of several co-adsorbates is even less computationally feasible, therefore, the effects are often

either ignored or approximated crudely. Furthermore, due to the additional challenges most

researchers do not attempt to compute the coverage dependence of transition state properties,

and instead use Brønsted-Evans-Polanyi (BEP) relations.10,11

To tackle these challenges a variety of approaches have been developed. In one approach,

the dimensions of the periodic system are adjusted to achieve the desired coverage with

the smallest system possible and reduce the computational cost.12 Additionally, researchers

have built models for predicting the energies of co-adsorbed configurations like the cluster

expansion (CE) model13 that decomposes the overall energy into contributions from groups

of N specific adsorbates to a given N .

However, these approaches have a number of weaknesses. Size reduced periodic cells

inherently assume that the minimum energy coverage pattern is periodic in the size of the

unit cell. In many cases lowest energy configurations cannot be captured with reduced size

unit cells.14 In fact, such reduced size cell configurations may not even be minima on the

potential energy surface of a larger cell. Consider a 1 × 1 cell with one O∗. The overall

barrier for the reaction sequence 2 O∗ → O∗
2 → O2 + ∗ can be comparable to predicted

lateral interactions between two O∗.12,15 Given the highest barrier in this reaction sequence

is usually not much higher in energy than O2 + ∗, it is very believable that at high coverage
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2 O∗ → O∗
2 or O2 + ∗ could occur barrierlessly spontaneously, with the 2 O∗ state not

being stable. However, in the 1 × 1 periodic cell the distance between O∗’s is fixed making

the stable configuration with O’s bonded pairwise with each other unachievable, causing an

optimization to find a configuration that is unstable on any realistically sized slab.

CE parameters are particular to the adsorbates and interaction terms they were computed

for.16 Thus these models are primarily only useful for set interactions of adsorbates and co-

adsorbates they have been explicitly fit to, and cannot be used to predict fit interactions

with new adsorbates or co-adsorbates. Additionally, due to the combinatorial increase in

possible clusters as cluster size increases it is rare to fit them out to more than clusters of

N = 3. Therefore, in practice this method is likely less predictive at higher coverages.

Machine learning techniques, in principle, do not have the limitations of cluster expansion

methods. They can learn from diverse datasets and predict on interactions not included in

the training data. However, machine-learning techniques based on popular deep neural

networks (DNNs) require large amounts of training data that can be computationally very

expensive to obtain. Additionally, DNNs are not interpretable, making them difficult to

analyze and improve.

The subgraph isomorphic decision tree (SIDT) machine learning method provides an al-

ternative that is free of the above weaknesses.17–19 SIDTs are made up of nodes associated

with molecular substructures represented as molecular subgraphs. They are evaluated by

descending a target graph structure down the tree to the nodes with subgraphs it matches

until it reaches the most specific matching node and making a prediction based on either the

nodes matched or the final node. SIDTs can be applied to datasets too small for DNNs, they

are straightforward to extend and retrain, and the substructures in the tree are inherently

visualizable making SIDTs easy to analyze and interpret, and thus modify the generation

process and tree itself to achieve desired outcomes. Additionally, SIDTs have a property

that enables unique inherent error cancellation on many important chemical problems in-

volving differences of physical quantities (e.g., barrier heights, reactions energies), in contrast

4



to DNNs that do not have this advantage. In kinetics, rate coefficients are not dependent

on the absolute energy of any given configuration, only on the energy differences between

reactants and the transition state and reactants and products, which are used to compute

the forward and reverse rate coefficients for a given reaction. When the SIDT predicts the

association energy of a reactant configuration and that of a transition state or product con-

figuration, most of the matched subgraphs associated with interactions between adsorbates

are unchanged, because only interactions close to the reaction center are different in these

structures. As a result, predictions on unchanged interactions will cancel exactly in the

SIDT and our error is only associated with the subgraphs that are modified by the reaction,

i.e., bond breaking and forming. This property makes SIDTs significantly more accurate on

the relative properties that actually matter for kinetics than one would expect from a given

level of absolute accuracy.

In this work we perform an initial exploration applying SIDT techniques combined with

automated quantum chemistry to estimate coverage dependence across a wide chemical

space. We present a framework for automatically computing co-adsorbed configurations

and using machine learning to predict the coverage dependent energetics of adsorbates and

transition states and thus the coverage dependence of rate coefficients and thermochemistry.

We automatically generate a training dataset of co-adsorbed adsorbates and transition states

on a 3× 3× 4 Cu(111) slab, a challenging surface. The size of the slab is chosen to minimize

interaction between periodic images of the species. We use the dataset to train a sequence

of SIDTs to predict whether a configuration is stable or not and to predict the association

energy of the configuration for both co-adsorbed adsorbates and transition states. We show

the effectiveness of the SIDT predictors and demonstrate the error-cancellation property

discussed above on single co-adsorbate coverage dependence of adsorbates and TSs consid-

ered in the training set. We also show how to go from association energy predictions to

coverage-dependent rate coefficients and reaction energies.
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Methods

Dataset Generation

We started our co-adsorbed calculations from a set of calculations for isolated reactions, i.e.,

in the absence of co-adsorbates. We took the lowest energy configurations for 12 adsorbates

and 9 transition states on Cu(111) calculated by Johnson et al.20 using our software, Pynta.

This set, listed in Table 1, includes transition states for a range of different reaction classes,

adsorbates consisting of H, C, O, and N atoms and one bidentate adsorbate. In this work we

selected four adsorbates to be co-adsorbates for purposes of sampling: H, N, and O atoms,

and HO.

Table 1: Reactions on Cu(111) considered in this work for lateral interactions.

Reaction
H∗ + O∗ ←−→ HO∗ + ∗

OCH∗ + ∗ ←−→ OC∗ + H∗

H∗ + ∗ ←−→ H∗ + ∗
OC∗ + O∗ ←−→ CO2 + 2∗
HO∗ + H∗ ←−→ H2O + 2∗

HOCH2
∗ + ∗ ←−→ CH3O

∗ + ∗
OCHO∗ + ∗ ←−→ CO2 + H∗ + ∗

H∗ + OCH2O
∗∗ ←−→ HOCH2O

∗ + 2∗
N∗ + CH3O

∗ ←−→ CH2O + NH∗ + ∗

All of our calculations were done using the same software, methods and parameters as

in Johnson et al. We used the BEEF-vdW functional21 with PBE-KJPAW pseudopotentials

and an energy cutoff of 40 Ry as implemented in Quantum Espresso22,23 for a 3 × 3 × 4

Cu(111) slab with a 3×3×1 k-point grid. All geometry optimizations targeting minima were

done in two stages: first using the MDMin method implemented in the Atomic Simulation

Environment (ASE) until fmax ≤ 0.5 eV/A and then using ASE’s BFGSLineSearch algorithm

until fmax ≤ 0.02 eV/A.24 Saddle point optimizations and intrinsic reaction coordinate

(IRC) calculations were done using Sella until fmax ≤ 0.02 eV/A and fmax ≤ 0.1 eV/A

respectively.25–27 Vibrational calculations were run using ASE’s vibrations module.24
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Unless otherwise specified, all placements for optimization on the surface were done by

starting from the isolated configuration for the adsorbate or transition state and then placing

co-adsorbates on the selected sites using Pynta’s placement algorithm.20 3D configurations

were converted to 2D graphs automatically using a set of algorithms contained within Pynta.

These 2D representations are key to employing SIDT. For adsorbates, this process is rela-

tively straightforward. ASE’s analysis tool was used to identify covalent bonds within the

adsorbates; possible surface bonds are identified by searching for the closest site within 2.5 Å

of the relevant adsorbate atom, and only considering sites on which the associated adsorbate

is stable under isolated conditions. We then completed the 2D description (the graph of

the system) by incrementing bond multiplicities to satisfy the octet rule, with surface bonds

having the lowest priority.

For TSs we considered a number of additional factors. Reaction bonds, i.e., bonds that

break or form in the reaction, were identified based on the original reaction template asso-

ciated with the TS. Since atoms that are part of the reaction center may be close to the

surface without being properly associated with a site, we included both reactant and product

sites in the set of valid sites to determine the 2D structure. Since the reaction bonds in the

2D representation do not have a well-defined order, we cannot always satisfy the octet rule

when we increment bonds. As a result, we can end up with extra bonds to the surface that

are artifacts of the process. To handle this we removed surface bonds if they were a single

bond and the associated atom already had two reaction bonds. This covers all reactions

considered in this work and likely most common cases as well.

TSs for diffusions and similar reactions, where one atom has two reaction bonds to

different sites, pose a further challenge for generating 2D representations, because we cannot

simply form the reaction bonds with the closest stable site. Instead, we seek a pair of sites

that capture the origin and destination of the diffusion process. To identify the right pair of

sites, we considered five criteria. First, we required that the normalized vector connecting

the two sites vsites and the normalized normal mode vector associated with the imaginary
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frequency vimagfreq are closely aligned

|⟨vsites|vimagfreq⟩| ≥ 0.95 (1)

Second, we required that the distance between the sites is less than 3 Å. Third, we required

that the distance between the binding atom of the adsorbate and any site, dsite be less than

2 Å. Fourth, we only considered sites where the reactants or products were stable in the

isolated calculations. Finally, we also defined a measure, h, of how closely the atom is

positioned to the halfway point between the sites

h =
||u1 + u2||
||u1||+ ||u2||

(2)

where ui is the vector from site i to the atom. When more than one pair of sites fulfilled the

previous criteria, we chose the pair that maximizes 1/(dsite × h).

The techniques discussed above are sufficient to generate the 2D representations of TSs,

including ones of diffusion reactions. However, for TSs we also need to validate that the

saddle point optimized in the presence of the co-adsorbates still connects the reactants and

products of the original reaction. We found that two criteria were sufficient to separate cor-

rect from incorrect TSs in a subset of our data consisting of 100 randomly selected TSs, which

were checked manually. We first required that the normalized normal mode corresponding to

the imaginary frequency in the co-adsorbed case, vcoad, aligns with the normalized isolated

mode visolated

|⟨visolated|vcoad⟩| ≥ 0.7 (3)

We additionally required that any co-adsorbate atoms be more than 1.1 times the covalent

bond cutoff threshold (as defined in ASE) away from any reaction center atoms.

One major challenge of sampling the co-adsorbed space is that many configurations one

might propose are not stable. Lateral interactions may prevent two adsorbates from being
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placed next to each other, surface restructuring may affect the stability of old sites or create

new ones, and reactions that normally have a barrier may occur spontaneously at higher

coverages. We simultaneously mitigated these challenges and provided a useful base set of

samples by first calculating every unique and valid placement pairing between every adsor-

bate and every selected co-adsorbate that put them within a maximum distance of 3 Å. We

analyzed the results comparing the initial 2D graph and the 2D graph after optimization to

determine which pairwise configurations are stable.

Finally, to generate a random, yet balanced set, we first chose either to sample an ad-

sorbate or a TS with equal probability. We then chose a single random co-adsorbate at 90%

probability and a random sample of mixed co-adsorbates at 10% probability. To determine

the sampled coverage fraction we drew a uniformly distributed sample from [0,1], which was

then rounded to an integer number of co-adsorbates to put on the slab. The co-adsorbates

were distributed randomly over the stable sites. Samples that involved sub-configurations

that matched a failed pairwise optimization were rejected. For all unique successful TS op-

timizations we ran an IRC to find the reactant and product configurations and optimized

and computed frequencies for both. This enabled explicit sampling of activation barriers

and reaction energies.

Drawing and running calculations for 2,000 samples gave us 477 unique and valid co-

adsorbed adsorbate configurations and 207 unique and valid co-adsorbed TS configurations.

Figure 1 shows the energy of these configurations as a function of the number of surface

bonds, while Figure 2 shows the distribution of the elements bonded to the surface across

the whole dataset, i.e., including the adsorbing atoms of the central adsorbate or TS and

of the co-adsorbates. In general, H atoms tend to have weaker inter-adsorbate interactions

owing to its smaller size, making co-adsorbed configurations with H more likely to be stable

and optimize successfully, causing H to have a large number of occurrences in the dataset.

The similar number of O occurences is unsurprising, given O and HO are co-adsorbates and

many of the adsorbate and TSs targeted involve bonds between O and the surface. Given
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Figure 1: Relative energies of the successful configurations in the dataset arranged by the
number of surface bonds.

Figure 2: Number of atoms bonded to the surface in dataset configurations by element.
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none of the co-adsorbates involve a bond between the surface and C, the significantly lower

number of occurrences is unsurprising. However, the low number of N occurences is much

more unexpected. N does not occur in many of the isolated adsorbate and TSs considered

(see Table 1), but it is a co-adsorbate, so one would expect it to exist in at least a quarter

of proposed sample configurations. This discrepancy occurs because N is particularly prone

toward causing surface restructuring on Cu.28 In general, this makes it more difficult to

converge geometries with N on the surface resulting in lower optimization success rates than

O and HO on this surface.

In Figure 3 we examine the distribution of the differences between the activation barrier in

co-adsorbed configurations and the corresponding isolated configuration for configurations in

the dataset. Differences can be quite large in both negative and positive directions and range

from approximately -0.8 to 1.0 eV. The center of the distribution for individual reactions

(Figure 3b) appears to differ significantly from zero in at least a few cases. The range for

individual reactions seems to always span at least about 0.5 eV, and HO∗ → H∗+ O∗ spans

approximately 1.5 eV.

Figure 4 shows all of the successfully optimized and accepted co-adsorbed transition

states for the HO∗+H∗ → H2O + 2* reaction and the associated activation barriers relative

to that of the isolated reaction. Significant surface restructuring can be observed in several

configurations, e.g., first and last image in the second row. Notably, the geometry of the

atoms involved in the transition state varies significantly between co-adsorbed configurations.

While larger geometry shifts can occur for adsorbates as well, we found that it is more

common and pronounced more for transition states, making their energetics more challenging

to learn.

Machine Learning

Our goal is to predict the change in energetics of stable and TS surface configurations relative

to their isolated energetics due to the presence of co-adsorbates. We divided the prediction
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Figure 3: (a) Distribution of differences between the activation barrier of co-adsorbed config-
urations and the activation barrier of the corresponding isolated reaction, and (b) the same
data shown for each reaction separately.

Figure 4: Final successful transition state configurations for the HO∗+H∗ → H2O + 2*
reaction. Values are the difference in energy between the co-adsorbed activation barrier and
the isolated activation barrier. Images are periodic extensions of a 3x3 slab. White circles
are H, red circles are O, blue circles are N, and brown circles are Cu atoms.
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process into two primary steps: (i) decide whether a proposed surface configuration is stable

and if so (ii) predict the association energy of the configuration. For the former we use multi-

evaluation SIDT binary classifiers, and for the latter we use multi-evaluation SIDT regressors

as implemented in our software, PySIDT.19 Both of these SIDT algorithms decompose a

2D graph representation of the chemical configuration into a set of chemical substructures

contributing to the prediction. In the case of the classifier, each substructure is predicted to

either be locally stable or unstable, and in this application if any prediction is unstable the

configuration is classified as unstable. In the case of the regressor, an energetic contribution is

predicted from each substructure and summing across all substructures gives the associated

energy.

For our 2D representation we represented the periodic slab in its entirety resolving each

site and adsorbate atom as nodes. Edges were included between all covalently bonded atoms,

each site and adsorbate atom bound to that site, and between neighboring sites as defined by

the ACAT software.29 We used RMG’s cheminformatics engine and molecular representation

software30 within PySIDT19 for all operations on this representation.

When selecting decompositions of the 2D graphs into subgraphs there are two primary

considerations: (i) we would like the set of decompositions to involve minimum redundancy in

chemical information and (ii) we would like the decompositions to locally include all chemical

information we need to make the prediction. The simplest decomposition one might think

of is to look locally at each individual atom and site in the configuration. However, we are

examining inter-adsorbate interactions so we would not necessarily expect every atom or site

to have a significant unique contribution to the energetics. Looking at surface bonds should

significantly reduce redundancy, however, since we study interactions between adsorbates

that may be far apart in the 2D representation, we need to consider at least pairs of surface

bonds. While pairs of surface bonds are sufficient to encode the interactions between co-

adsorbates we are interested in resolving, we have allowed co-adsorbates to be adsorbed at

sites that do not correspond to their lowest energy isolated configuration. (Note that most
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studies only consider the isolated lowest energy sites). Therefore, we also need to predict

the energetics of moving adsorbates between sites. For this reason our overall representation

included both surface bonds alone (to account for energetics of adsorbates binding to indi-

vidual sites) and pairs of surface bonds (to account for the lateral interactions). We did test

including triad-wise (i.e., three-body) interactions, however, it did not improve performance

in this work. It should be noted that SIDT does not need triad-wise decompositions to learn

triad-wise interactions since the pair-wise decompositions can be grown to resolve more than

two adsorbates in the learning processes.

To simplify and compartmentalize the training processes, we first train trees to predict

the single surface-bond interactions on isolated data from Johnson et al.,20 including not

just the lowest energy, but all valid isolated structures. We then train a second tree on the

co-adsorbed datasets generated in this work to add the contribution from the interactions

of pairs of surface-bonds. For the classifier we only train the second tree on configurations

the single-surface-bond tree predicts to be stable, and for the regressor we do delta learning,

subtracting the single-surface-bond-tree prediction from the dataset before training. This

architecture is shown in Figure 5.

Results

Stability Predictions for Co-Adsorbed Systems

Our dataset provided stability labels for 1720 unique and otherwise valid configurations.

The configurations included unstable configurations that were proposed but then failed to

preserve the original graph representation upon optimization, stable configurations that were

proposed and successfully optimized, and stable configurations that were found in failed

optimizations using DFT. Of these configurations, 91 were predicted to be unstable by the

single surface-bond classifier, 75 of which incorrectly predicted to be unstable and 16 of

which were correctly predicted to be unstable. The pair surface-bonds classifier was trained
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Figure 5: Diagram for computing the stability and energy of a given input surface configu-
ration.
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using a 8:1:1 train:validation:test split on the other 1629 configurations. Each iteration the

SIDT computed the accuracy on the validation set and at the end of the run it reverted

to the tree from the iteration with the best validation accuracy. The confusion matrix

for the test set of the pair-surface-bonds classifier is available in Table 2. This implies

an accuracy (fraction of classifications that are right) of 86% and a precision (fraction of

predicted Trues that are correct) of 84%. Given the inherent challenge of determining the

substructures that underlie all of the many different kinds of stability in these systems,

this is good performance from a machine-learning perspective. From a more practical and

problem oriented perspective, focusing on our ability to predict the association energies of

the lower energy configurations, we do not need extremely high levels of accuracy for the

stability classifier, because high association energy predictions and instability are inherently

correlated. A co-adsorbed configuration that is unstable and cannot be occupied and a co-

adsorbed configuration that is high in energy relative to other configurations at identical

coverage and thus has very low occupation are both unimportant from a thermodynamic

and kinetic perspective.

Table 2: Test set confusion matrix for stability of interactions between co-
adsorbates.

Predict True Predict False
Value True 91 9
Value False 14 49

Association Energy Predictions for Co-Adsorbed Systems

For association energy prediction, as noted earlier, we only have 477(minima)+207(TS)= 684

valid configurations. For this smaller dataset we trained on the full dataset and computed

leave-one-out errors for every training point. We first trained the tree out to 152 nodes only

on configurations with two co-adsorbates and no TSs before training out to 475 nodes on

the full dataset.
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The resulting comparison plot is available in Figure 6a and the associated uncertainty

calibration plot is available in Figure 6b. For a more detailed view, Figures 6c and 6d show

the parity plot for the adsorbates and the TSs separately. The error analysis gives an overall

MAE of 0.126 eV, a MAE on adsorbates of 0.106 eV and a MAE on TSs of 0.172 eV. The

uncertainty calibration shows that the model is slightly underconfident at small confidence

intervals and slightly overconfident at large confidence intervals, but in general, the model

uncertainties appear to be a good representation of actual uncertainties. This is especially

encouraging given that it is challenging to predict accurate uncertainties for some of the

more unusual configurations in this dataset, especially for TSs.

Activation Barrier and Reaction Energy Correction Predictions for

Co-Adsorbed Systems

While lateral interactions are often discussed in terms of the energies of specific configura-

tions, this is not the most relevant quantity for kinetics, which, as discussed earlier, are only

sensitive to relative configuration energies: activation barriers and reaction energies rather

than the absolute energies. Our dataset offers a unique opportunity, allowing us to look di-

rectly at the relevant properties using the optimized endpoint configurations from the IRCs

for each unique TS. We present parity plots for activation barriers and reaction energies in

Figures 7a and 7b respectively.

We achieve an MAE of 0.180 eV for activation barriers and 0.130 eV for reaction energy.

Analysis of High Error Configurations

Figure 8 shows nine representative samples from the 20 configurations with the highest leave-

one-out association energy errors. It is worth noting that the the high error configurations

are dominated by transition states (a, b, c, e, f, g, h). In general, several different factors

are associated with poor prediction: surface restructuring (c, e, g, h, i), transition states

with co-adsorbates close to the reaction center (a,b,c,f), adsorbates optimizing to different
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(a) (b)

(c) (d)

Figure 6: SIDT performance on absolute energies. (a) Parity plot for leave-one-out errors
in association energy for all configurations. (b) Uncertainty calibration plot for leave-one-
out and estimated errors in association energy for all configurations. (c) Parity plot for
leave-one-out errors in association energy for adsorbate configurations. (d) Parity plot for
leave-one-out errors in association energy for TS configurations.
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(a) (b)

Figure 7: SIDT performance on relative energies. Parity plot for leave-one-out errors in
activation barrier corrections (a) and in reaction energy corrections (b).

Figure 8: Selected samples from the 20 configurations with the worst leave-one-out associ-
ation energy errors. Values are the difference in energy between the predicted and actual
association energy. Subfigures a, b, c, e, f, g, and h are transition states while d and i are
minima. Subfigure b has a hydrogen underneath the carbon atom.
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conformers and/or site configurations (d), and hydrogen bonding (f). Figure 8c, a transition

state for H∗ diffusion, is particularly interesting because the changes in the transition state

are less subtle than those for more complex reactions. Even without the involved surface

restructuring, H∗ is not stable at a hollow adjacent to O∗ on a hollow. As a result, while the

isolated diffusion reaction occurs between two adjacent hollows, this particular co-adsorbed

diffusion reaction instead has to hop over the unstable hollow causing it to be between two

non-adjacent hollows dramatically changing the barrier.

Most of these interactions are so specific or intricate that the generated dataset is un-

likely to have enough similar samples to learn them. The 2D representation used in this

work is not inherently aware of surface restructuring, conformers, or hydrogen bonding. In

principle, such additional dimensions can be integrated into the 2D representation, but these

interactions are likely to require significantly more data to learn properly. Note also that

most studies of coverage dependence would likely have rejected these kinds of samples.

Interpreting Overall Errors

It is important to understand that the overall errors shown in this section represent errors

across samples from the full space of co-adsorbed configurations. However, the accuracy

of a rate coefficient prediction is determined by our ability to predict the lowest energy

configurations of the relevant species at a given coverage. These lowest energy configurations

tend to involve better spaced co-adsorbates with weaker and less complex interactions that

are in general easier to predict than randomly sampled configurations. However, in order to

know the lowest energy configuration at a given coverage, one needs to know the energies of

all configurations of a given adsorbate/TS-co-adsorbate pair at that coverage. This makes it

challenging to gauge the true error in the activation barrier and reaction energy one would

experience.

Later in this work we will construct approximate baselines for a few cases to help gauge

errors in predicting the lowest energy configurations.
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Error Cancellation

Noting the MAEs of 0.106 eV and 0.172 eV for adsorbate and TS energy predictions, the

low MAEs of the relative quantities suggest significant error cancellation. Assuming no

correlation and normally distributed errors, one would expect that

σ2
Ea ≈ σ2

TS + σ2
Ad (4)

and

σ2
∆Erxn

≈ 2σ2
Ad (5)

where σ denotes the standard deviation of the property, TS denotes the transition state

energy correction, Ad denotes the adsorbate energy correction, Ea denotes the activation

barrier energy correction and ∆Erxn denotes the reaction energy correction. The above

equations imply that the error in the relative properties should be significantly larger than

the error in the absolute properties. However, for our model σ2
Ea/(σ2

TS + σ2
Ad) = 0.561 and

σ2
∆Erxn

/(2σ2
Ad) = 0.694, implying that for the relative energies our model is significantly

more accurate that one would expect from the the accuracy of the absolute predictions.

This demonstrates the power of natural error cancellation inherent in the structure of the

SIDT predictor.

In order to explain how the error cancellation occurs, let us consider inference for the pair

surface-bonds SIDT regressor used above. As discussed earlier, inference occurs by finding all

pairs of surface bonds, tagging the surface bonds in each, descending each down the SIDT

summing the contribution from each node touched in the descent and then summing the

contribution from each pair of surface bonds. With this in mind let us consider computing

the difference in energy between a given reactant configuration and the corresponding TS or

product configuration. Only a handful of bonds are created or formed during a reaction, so

the two configurations are usually not very different. Especially at higher coverages many of

the interactions may be unchanged and thus their contributions to the two configurations are
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identical and cancel exactly, removing any contribution to the variance from that interaction.

In many other cases the interaction is only slightly changed resulting in an SIDT descend

that only differs deep into the tree. In these cases the contributions from the upper nodes,

before the descents diverge, cancel exactly and only the nodes farther down the tree, where

the energy contributions should be much smaller, contribute to the variance. This natural

error cancellation allows our SIDT predictor to be much more accurate on these relative

properties that are actually important for simulations than one would expect from a given

level of absolute accuracy.

Coverage-Dependent Corrections to Microkinetic Parameters

Simply considering the difference in energy between reactant, TS, and product configurations

is sufficient for KMC simulations. However, mean-field kinetics simulators31–33 do not resolve

the exact configurations of the co-adsorbates. For mean-field parameterizations we need to

predict energies as a function of average coverage. This is typically done for a given species or

TS by taking the lowest energy configuration at each coverage (corresponding to an integer

number of co-adsorbates).

To find the lowest energy configuration, we generate all unique stable 2D representations

at a given coverage, and then make energy predictions on them. We start with a list of all

stable isolated configurations of the target adsorbate or TS. For a given co-adsorbate we

iterate through all of the sites on the surface (here we always used a 3 × 3 slab). For each

configuration in our list, if the site is free and placing the co-adsorbate on the site results in a

configuration that our SIDT stability classifiers predict to be stable and is unique compared

to the configurations in our list, we add the new configuration to the list. Once we have

iterated through all sites, we have a list of all feasible configurations. We then use our

SIDTs to predict the association energy of each configuration and find the lowest energy

corresponding to each integer number of co-adsorbates. One can also integrate association

energy predictions into the feasibility search and include an energy-based criterion to reduce
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the number of feasible configurations generated, but we did not need to do so for the cases

discussed here.

For a given adsorbate or TS this algorithm gives us a minimum association energy at

a sequence of coverage values for the given co-adsorbate. To obtain corrections to isolated

energies and activation barriers we need to find the energy required to move the isolated

adsorbate or TS to a surface at a given co-adsorbate coverage. For an individual adsor-

bate co-adsorbed with a distinct co-adsorbate we can then calculate the coverage-dependent

corrections based on

∆Ead,Ncoad
= Ead,Ncoad

− ENcoad
(6)

where Ead,Ncoad
is the predicted lowest association energy of the the adsorbate or TS species

and Ncoad co-adsorbates, ENcoad
is the predicted lowest association energy of Ncoad co-

adsorbates on the surface and ∆Ead,Ncoad
is the energy correction for the adsorbate energy

with Ncoad co-adsorbates on the surface. Our initial instinct might be to also apply this

equation to adsorbates that are identical to the co-adsorbate and to TSs, however, these

cases require further considerations.

Applying Eq. 6 to a case where the adsorbate is the same as the co-adsorbate yields

ENcoad+1−ENcoad
on the right hand side. While the second term corresponds to the coverage

of interest, the former corresponds to a higher coverage. We do, however, know that ENcoad

is the energy to move Ncoad co-adsorbates from isolation to the coverage corresponding to

Ncoad so we can instead compute

∆Ecoad,Ncoad
= ĒNcoad

=
ENcoad

Ncoad

(7)

where ∆Ecoad,Ncoad
is the energy correction for the co-adsorbate with Ncoad co-adsorbates

on the surface and ĒNcoad
is the average (per co-adsorbate) association energy of Ncoad co-

adsorbates on the surface.

The energy correction for any TS for a reaction that does not involve a co-adsorbate can
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be calculated correctly with Eq. 6. However, reactions involving co-adsorbates have nuances

similar to the co-adsorbate case. Let us consider the associative desorption of nitrogen gas

on a surface with a nitrogen coverage of θN = 6/9

2N∗ ↔ N2 + 2∗ (8)

first in the forward direction. An initial instinct might be to treat the TS as in Eq. 6 as

a distinct configuration from N∗. However, consider the crowded surface at θN = 6/9 we

are putting the TS on. In order to form this TS separately from the 6/9 N∗ on the surface

we need to put the reactants (two additional N∗) on the surface. A local θN = 8/9 may

not just be high energy, on many surfaces it may not be stable at all. Following this line

of thought one might conclude that such a reaction is very slow or impossible because of

the energy/instability of the reactants that need formed first. However, with the surface at

θN = 6/9, assuming that coverage is stable, and the TS is short-lived, one would expect this

reaction to occur naturally between the co-adsorbates with two N∗ participating and the

remaining four co-adsorbed nearby occurring effectively at θN = 4/9. Interestingly, though

since this is a consideration of the reactants and not the reaction itself, this effect does not

occur in the reverse direction where N2 must adsorb at θN = 6/9. We can account for this

reactant-co-adsorbate effect by computing the TS energy correction in a particular direction

from

∆ETS,Ncoad
= ETS,(Ncoad−Ncoad,reactant) − ENcoad

(9)

where Ncoad,reactant is the number of co-adsorbate participants in the reactants for the reaction

direction of interest, ETS,N is the association energy of the transition state with N nearby

co-adsorbates and ∆ETS,Ncoad
is the energy correction for the TS.

Given the very large configurational space, computing the exact DFT correction for a

single adsorbate or TS with respect to one co-adsorbate species would have required com-

putational expense on par with generating the entire dataset in this work, making it com-
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putationally too expensive to present parity plots. Instead, here we used a simple iterative

refinement procedure to analyze the accuracy of our predictions. In each iteration we re-

trained the SIDTs and predicted the lowest energy stable configurations at each coverage

level according to the above procedure. We then took the predicted lowest energy configu-

rations and attempted to calculate their energy using DFT and added them to the dataset

for training the next iteration of the SIDT. We ran two refinement iterations for each case

presented here.

(a) (b)

(c)

Figure 9: Average association energies for the lowest energy configurations for (a) O∗, (b) H∗,
and (c) HO∗ as a function of coverage of (a) O∗, (b) H∗, and (c) HO∗ based on an iterative
refinement process along with DFT calculations for the predicted lowest energy structures.
SIDT corresponds to the original model. Min(Refined SIDT, DFT) is the minimum of the
final SIDT after two refinement cycles and the associated DFT calculations.
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We show the average association energy, ENcoad
/Ncoad, for the lowest energy configurations

for H∗, O∗, and HO∗ in Figures 9a, 9b, and 9c respectively computed using the original SIDT

model and the minimum of the refined SIDT model and the DFT calculations that we will

refer to as the baseline. For all cases the SIDT agrees well with the baseline at lower

coverages where significantly more training data is available for the larger co-adsorbates.

For H∗, whose configurations have higher success rates at high coverages, this extends out to

higher coverages. For the larger co-adsorbates O∗ and HO∗ it should be noted that stability

is particularly difficult to predict on Cu(111) at high coverages. We suspect that some of

the higher coverages for these larger co-adsorbates may not be stable at all.

(a) (b)

Figure 10: SIDT predicted H∗ coverage dependence of the (a) enthalpy of reaction at 298 K
and (b) activation barrier for the HO∗+H∗ → H2O +2∗ reaction on Cu(111). The secondary
axes show the change in enthalpy of reaction at 298 K and activation barrier, as appropriate,
relative to the isolated value.

In Figures 10 and 11 we apply our model to estimate coverage-dependent properties of the

HO∗+ H∗ → H2O +2∗ reaction on Cu(111) using Equations 6–9 and the isolated properties

of the reaction from Johnson et al.20 In Figure 10a we examine the enthalpy of reaction

at 298 K. This reaction removes two adsorbates from the surface and the associated lateral

interactions, so naturally we expect that at higher coverages where lateral interactions are

more significant, the reactants will be higher in energy and thus the enthalpy of reaction will

decrease, which is in agreement with Figure 10a. The activation barrier is shown in Figure
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Figure 11: SIDT predicted lowest association energy TS configurations (generated initial
guess geometries) for HO∗+H∗ → H2O + 2*. Energies are the SIDT predicted mean field
activation barriers.

10b and the associated lowest energy TS configurations are shown in Figure 11. The barrier

also decreases with coverage as a result of the stronger lateral interactions in the reactants

at higher coverages. However, it is particularly interesting that the activation barrier is

predicted to decrease by slightly more than the enthalpy of formation. For this particular

reaction the product is in the gas phase, and thus does not contribute to the corrections,

and for the activation barrier and enthalpy of formation the correction associated with the

reactants is the same, so the only difference is the TS energy correction. Especially for larger

co-adsorbates one would expect the TS correction energy to be positive and increase with

coverage. However, here it appears to be slightly negative and relatively constant. The effect

size is well within the leave-one-out errors on TS configurations so in principle this could just

be a result of model error. However, if we revisit Figure 11, particularly the top fourth from

the left configuration we see a -0.23 eV barrier correction for a θH = 4/9 configuration (keep

in mind Eq. 9). This number is from the end points of the of the reaction path (rather than

the lowest energy TS and reactants) so it is not perfectly comparable, but it does strongly

suggest that the mean field activation barrier correction prediction at θH = 4/9 of -0.26 eV
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is not unreasonable. If one looks carefully at Figure 4 configurations (row, column): (1,2),

(1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,4), (2,5), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1),

(4,2), and (4,3) one can see that for the TSs with the O planted clearly in a hollow and the

non-reactive H tilted the Cu atom adjacent to the O and opposite the tilt of the H is slightly

displaced. If this displacement provides a slight stabilization effect for some of the adsorbed

hydrogens, it could overcome the competing lateral interactions which are very weak because

the co-adsorbate is a hydrogen and this TS is not very tightly bound to the surface since the

product is a gas phase species.

Discussion

The Cu(111) Models

The presented Cu(111) models are a good starting point for general approximate estimation

of adsorbate and reaction coverage dependence effects for initial mechanism construction,

such as in RMG.30,34,35Our models are sufficient for approximate estimation of adsorbates

and similar transition states composed of H, C, O and N atoms and co-adsorbed with H∗,

O∗ or HO∗ at low to medium coverages on Cu(111) based on our results shown in Figures

9a-9c. While we did sample with N∗ as a co-adsorbate, we had too few valid samples and did

not find the model able to make good predictions with N∗ as the co-adsorbate. We attribute

this to N∗’s tendency to cause restructuring on Cu, which makes it more likely samples will

not converge and can significantly change the interactions between adsorbates

Calculation of Co-Adsorbed Configurations

Our presented approach to calculate and analyze co-adsorbed configurations is a highly effec-

tive and efficient way to examine the co-adsorbed configurational space based on combining

direct DFT calculations with a low-data ML approach. It is however, worth discussing that

our approach relies on the assumption that configurations that fail to optimize to the target
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species (i.e., to the given minimum or saddle) are unstable and do not exist. Failure to

optimize a configuration to a target does not imply in general that the target does not exist.

If an initial guess is too far from the target, a configuration may optimize to a different

species. However, configurations that fail to optimize, but do in fact exist, are likely to be

high in energy. Since these configurations are high in energy and we are in general interested

in and/or sensitive to the lowest energy configurations, the distinction between these edge

case configurations being stable and unstable is unlikely to be very important.

Advantages of Using Subgraph Isomorphic Decision Trees

As discussed in the introduction and demonstrated here, our SIDT-based approach to cov-

erage dependence is significantly more flexible, automatic, and powerful than current state-

of-the-art cluster expansion techniques. In particular, SIDT is able to learn interactions CE

has to be explicitly told how to resolve. Furthermore, although we did not demonstrate it in

this manuscript, SIDT is able to run inference on arbitrary co-adsorbed configurations not

just those adsorbates and co-adsorbates a CE scheme is fit for.

Simultaneously, SIDT is easier to apply, more flexible, and easier to interpret than pos-

sible DNN based approaches. Crucially, SIDT can be applied to much smaller datasets than

is feasible for DNNs, and because of its interpretability it is much easier to analyze results

and thus to improve performance.

Conclusions

Coverage dependence of chemical reactions is a key, but often ignored aspect of microkinetic

model construction because of the computational expense and complexity that it requires

to determine the necessary parameters.14 Comparable challenges such as rate coefficient

pressure dependence36,37 in gas phase have readily available tools38–40 that are able to fully

automate high accuracy computations using ab inito methods. The framework and tools
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presented here open the door for decreasing the barrier to include coverage dependence rou-

tinely in future microkinetic models. Here we used our low-data machine-learning approach

called the subgraph isomorphic decision tree (SIDT) to construct a predictor based on a

fixed pre-generated dataset. For future applications it is easy to imagine using the workflow

within an active learning scheme that automatically identifies what configurations should

be calculated to improve the SIDT predictors. Our entire workflow is built to be automatic

using Pynta, running the necessary calculations and post-processing them.

However, higher-level generalizations, such as the ones built into software such as RMG30,34,35

allow for efficiently approximating kinetic parameters without any ab initio calculations for

instance for pressure-dependent reactions in the gas-phase.41,42 It is possible to imagine a

similar, generalized approach, for instance for Cu(111) using the model presented in this

work. However, in general it may be impractical to evaluate the SIDTs at every possible

2D configuration, as done in this work, to find the lowest energy configurations. Doing so is

unlikely to be strictly necessary, but the scheme by which configurations are sampled must

be considered carefully. Approximations across arbitrary or even a range of metals, however,

is much more challenging. Constructing such a scheme might be best done by training a

foundational SIDT model on one surface across a wide range of adsorbates, transition states,

and co-adsorbates and then (e.g., by applying delta learning) training correction SIDTs on

much smaller datasets to predict the difference between the foundational SIDT model and

particular surfaces.

We have presented a framework for generating machine learning models and applying

them to predict coverage dependent kinetic parameters for microkinetic models. Our toolkit

enables automatic ab initio computation of co-adsorbed configurations and automatic post-

processing including identification of the optimized configuration and TS validity evaluation

for TSs. We demonstrated the training of SIDT on the generated dataset to predict the

stability and association energy of co-adsorbed configurations. Lastly, we explained how to

use the SIDTs to compute mean-field coverage dependent energy corrections for adsorbates
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thermochemistry and reaction activation barriers.

On Cu(111), a challenging surface, we were able to achieve association energy MAEs of

0.106 eV on adsorbates and 0.172 eV on transition states and due to natural error cancellation

in SIDTs on relative properties MAEs of 0.130 eV on reaction energies and 0.180 eV on

activation barriers. We hope to extend these techniques to enable high accuracy and efficient

calculation of coverage dependent kinetic parameters.

Supporting Information

The supporting information contains the generated datasets and the PySIDT models as

described in the Supplementary Information document.
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(38) de Vijver, R. V.; Zádor, J. KinBot: Automated stationary point search on potential

energy surfaces. Computer Physics Communications 2020, 248, 106947.
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