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Horizontal scans from nacelle-mounted lidars provide time series measurements of wind turbine wakes
across diverse atmospheric conditions, enabling analysis of coherent turbulent structures that influence wake
meandering through proper orthogonal decomposition (POD). While low-order modes capture the most
energetic turbulent structures, our analysis reveals that they do not necessarily dominate wake meandering
dynamics. We evaluate more than 16,000 combinatorial reconstructions of the flow field for each inflow case,
demonstrating that mode relevance depends on mode symmetry, turbulent kinetic energy content, and inflow
characteristics. Cases with low turbulence intensity and large integral timescales show stronger correlations
between POD modes and wake meandering, whereas higher turbulence conditions (turbulence intensity > 7%)
are less effectively described by reduced-order models. However, the qualitative similarity of POD modes across
varied atmospheric conditions suggests the potential existence of a semi-universal basis for representing wind

turbine wakes, with implications for improving engineering wake models.

1. Introduction

Wake meandering, characterized by large-scale, quasiperiodic, low-
frequency oscillations of the entire wind turbine wake, plays a crucial
role in wind turbine loads, controller set point uncertainty, and power
quality. Meandering significantly impacts power production [1] and
fatigue loading [2] of downstream turbines in wind farms. Despite
its importance, accurately representing wake meandering in numerical
models remains challenging at any level of fidelity, making any addi-
tional characterization of the phenomenon valuable for improving wind
farm performance and reliability.

Two prevailing hypotheses attempt to explain the origin of wake
meandering. The externally driven hypothesis considers the wake’s
momentum deficit as a passive tracer advected by large-scale atmo-
spheric turbulence [1]. This hypothesis suggests that turbulent struc-
tures larger than the rotor diameter contribute most significantly to
wake meandering. This notion is further supported by Espana et al. [3],
who demonstrated that large turbulence scales, particularly those in
the atmospheric boundary layer, govern wake behavior. Baker and
McGowan [4] and Zambrano et al. [5] also identified large-scale tur-
bulence as a dominant factor in wake motion, with the former propos-
ing a framework for turbulence-based wake modeling and the latter
providing experimental data on wake turbulence dynamics.

In contrast, the internally driven hypothesis for wake meander-
ing proposes that dynamic interactions between turbulent structures
within the wake, such as tip vortices and hub/root vortices, generate
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pressure fluctuations substantial enough to displace the wake. Medici
et al. [6] performed measurements on wake stability and internal
vortical structures, while Okulov and colleagues [7] focused on the
role of tip vortices in wake dynamics. Howard et al. [8] provided
additional insight into the turbulence interactions within the wake
that contribute to meandering. Foti et al. [9] explored the influence
of shear instability on wake meandering, suggesting that such insta-
bilities could be driven by both internal and external mechanisms.
The internal mechanism for wake meandering has also been linked
to shear instabilities by Andersen et al. [10] and Li et al. [11], both
of whom investigated the onset of wake meandering as a function of
environmental and turbine-specific factors. An alternative internally
driven view attributes wake meandering to shear-instability waves
in the wake shear layer. Andersen and Sgrensen (2013) simulated
shear-layer instabilities that excite meandering-like motions [10]. Li
et al. (2022) numerically and theoretically identified critical shear
parameters triggering wake oscillations [11].

Our ability to measure wind turbine wakes in the field has improved
significantly over the past decade. More than ten years ago, some of
the first dynamic wake measurements were collected by modifying a
prototype lidar originally designed for vertical conical scanning [12].
These early measurements, despite their limitations, were used to
validate basic assumptions of the dynamic wake meandering (DWM)
model [13]. Today, lidar technology allows us to observe wake dynam-
ics for wind turbines of any size, with the ability to scan spanwise and
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vertically in any direction, reach downstream distances on the order of
kilometers, and capture wake meandering, the downstream trajectory
of wake centers, expansion, and large-scale turbulent structures [14].

Nacelle-mounted lidars have emerged as a powerful tool for real-
time characterization of inflow and wakes of utility-scale wind tur-
bines [15]. Doppler lidars offer unique capabilities for wind energy
research, including real-time measurements for turbine and farm con-
trol [16], high-resolution data assimilation [17] for numerical sim-
ulations, and detailed three-dimensional wake characterization [18].
Nacelle-mounted lidars specifically provide better characterization of
the wind resource over the rotor span and remain aligned with the
turbine’s frame of references, which supports a wide range of advanced
scientific and operational technologies, such as wake research and
feed-forward controls [15].

Several recent studies leverage modern lidar technology to charac-
terize turbulence in the wake. Depending on the instrument deployed,
lidars typically measure in vertical planes at fixed downstream dis-
tances [19] or in horizontal planes perpendicular to the rotor at hub
height [20]. These recent lidar-based studies have primarily looked at
the temporal evolution of turbulence by identifying the wake within
each scan and tracking its centerline position over time. The center-
line is then used to quantify wake meandering for the sake of wake
characterization [21] or model validation [22].

To investigate under what conditions we can expect the externally
driven hypothesis to be the dominant mechanism driving wake me-
andering, we employ proper orthogonal decomposition (POD). This
method is well-suited for identifying coherent turbulence structures
in flow fields [23] and has been applied to wind energy for more
than 15 years [24]. POD seeks the variance-maximizing structures
that describe the turbulence in the flow, making it an ideal tool for
quantifying potential meandering-inducing structures in the wake. If
these structures are shown to contribute significantly to wake meander-
ing, the reduced-order model (ROM) should reproduce the meandering
behavior seen in the measurement data to a high level of fidelity [25].
Conversely, a ROM developed without these structures should fail to
accurately reproduce wake meandering.

Through the use of POD, we estimate the meandering length scales
and frequencies in our dataset and relate them to DWM modeling
assumptions. The body of past experimental and numerical work typi-
cally characterizes the meandering frequency (f,,) in the context of a
Strouhal number, St = f,,D/Upp, defined in terms of the wind turbine
rotor diameter (D) and hub-height inflow velocity (Uy,,). Meandering
frequencies are typically reported in the range of 0.1 < St < 0.35,
both in a laboratory setting [26,27] and field observations [14]. If the
internally driven hypothesis for wake meandering is correct, the modes
that contribute most to meandering should have characteristic frequen-
cies higher than the inflow Strouhal number. Conversely, cases where
the externally driven hypothesis is correct should favor structures with
frequencies below the inflow Strouhal number.

DWM models typically consider only the inflow forcing, assuming
the momentum deficit and wake center to advect as passive tracers
carried by the background flow [28]. Typically, this effect is considered
by applying a low-pass filter to the turbulent inflow such that only
structures that exceed a certain minimum length scale influence wake
motion. This cutoff length scale is often set to twice the observed
instantaneous wake diameter, or simply as twice the rotor diameter
(2D) in most implementations [29]. By combining advanced remote
sensing measurements with statistical and applied mathematics analysis
methods, we seek to develop an understanding of wake meander-
ing across a wide range of atmospheric conditions. Ultimately, wake
meandering can have large impacts on wind farm performance, so
improved understanding of the underlying physics will contribute to
the optimization of wind energy production and turbine longevity.
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2. Methods
2.1. Wake meandering

Wake meandering is quantified in this work through the dynamics
of the transverse coordinate of the wake center (), which we estimate
by fitting a Gaussian profile to the momentum deficit derived from the
lidar scans. The velocity deficit is defined as

u(x, y, 1)

i(x,y,0)=1- m (@)

where Uy, is the inflow hub-height velocity. In Eq. (1), u represents the
streamwise velocity measurement, estimated as the line-of-sight veloc-
ity observed by the lidar divided by the cosine of the beam angle [30],
assuming perfect alignment between the nacelle and the bulk wind
direction. Because our data are collected in approximately horizontal
planes at hub height, we only consider lateral movements of the wake
center along the y-direction at a fixed height above the ground, z = z,,,.
The wake center is detected through a least-squares fit of a Gaussian
function to the observed & by the lidar at each downstream location
and for each time:
2

i(x, y,t) = Cyexp % [yawl(l—;’xl)t) +C; 2
In Eq. (2), the peak momentum deficit is denoted as C,, the standard
deviation corresponding to wake width is ¢,, and the lateral wake
center is u. An offset term, Cy, is included in the function, although
it is typically a relatively small value, -1 < C; <1 m/s.

2.2. Snapshot proper orthogonal decomposition

POD, also known as principal component analysis (PCA) or
Karhunen-Loéve decomposition, has been widely used in fluid dynam-
ics for identifying coherent structures and reducing the dimensionality
of complex flow fields [23]. However, its application to data in polar
coordinates, as is more natural for scanning lidar observations, presents
unique challenges that necessitate a careful reconsideration of the
method’s foundational elements.

Snapshot POD begins with a sequence of lidar observations, X =
[x;, .., X,,], where each snapshot is a realization in the state space
x, € R” at time t,. POD seeks an orthonormal basis that optimally
represents the data in terms of captured variance. When dealing with
data in polar coordinates, the standard Euclidean inner product implicit
in this formulation becomes inappropriate to adequately represent the
distribution of turbulent kinetic energy (TKE) in the domain. The vary-
ing cell sizes in a polar grid lead to an inherent bias, overemphasizing
contributions from larger radii. To address this, we modify the standard
POD algorithm to incorporate a physically appropriate inner product
for polar coordinates. Considering two snapshots x,(r,0) and x,(r, ),
each of which represents the streamwise velocity (system state) vector
in polar coordinates, we define a weighted inner product as

2z R
(X1, Xp)w =/ / x,(r,0) - X,(r,0) rdrdo 3)
0 0

For discrete data on a polar grid with spacing Ar and 40 in the radial
and azimuthal directions, respectively, Eq. (3) becomes
N, Ny
XX = 0 X X1, 0;) - X, (r;, 0,) r; Ar 40 4
i=1 j=1
By recasting the observations X as the vector [x;(r,0)),...,
X(r), 05,5 Xy, 01), o Xy Oy,)] for | € [0,N,], the inner
product in Eq. (4) can be conveniently represented by a diagonal weight

matrix W:
W =diag(ry,....rj,ry, ..., 12,13, ...,rNr,..‘,rNr)ArAH (5)

where each radial coordinate, r;, is repeated N, times.
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The new inner product is incorporated into the POD algorithm by
modifying the correlation matrix to account for the weights described
by Eq. (5) as

c=Llxwx 6)
m

The POD modes are then obtained by solving the eigenvalue problem
in the standard fashion:

Cv; = A4v; (@]

where 4; are the eigenvalues and v, are the corresponding eigenvectors.
The POD modes ¢; are then reconstructed as

$, = —=Xv, ®

Vai
This formulation ensures that the POD modes accurately reflect the
true spatial scales and TKE of the flow structures in polar coordinates,
without bias toward structures at larger radii. A set of projection
coefficients, a;, describe the amplitude of each mode in time and are
sought by projecting the observational data X onto the collection of
POD modes ¢ and integrating over the domain, £, as

A=/XT<I> dQ ()]
Q

Mode projection coefficients are described by the column space of
A =Jay,ay,...,ay].

This adaptation of the standard snapshot POD algorithm main-
tains the core principles of POD while adapting it to the geometric
constraints of polar coordinate systems, aligning with the theoretical
perspective that the choice of inner product in modal decompositions
should reflect the physics of the problem at hand [31]. By incorporating
an inner product motivated by the polar description of the state vector,
we extend the applicability of POD to the natural coordinate system
of scanning Doppler lidars and open the method to a wider class of
atmospheric science and wind energy problems.

2.3. Reconstruction

The approach to velocity field reconstruction used in this work
relies on the nature of the POD to organize input system dynamics into
coherent structures. We develop a combinatorial approach to reduced
order modeling to identify the turbulent structures (POD modes, ¢;)
that contribute most to wake meandering. Each combination of modes
was determined by selecting k of the first N,, = 14 modes, where
k € [3, ..., 14]. The maximum number of modes, N,,, corresponds to
a threshold of 90% of the TKE represented in the observational basis
for each observed case. Flow fields reconstructed with each unique
combination of modes are then used to estimate wake meandering
identically as for the lidar scans, as described in Section 2.1.

In each of the ROMs, the zeroth mode, ¢, representing the mo-
mentum deficit of the wake, is also included. The total number of
combinations for each dataset was K = Y+, (A]i'") = 16,278. Fig.
1 shows the number of combinations tested for each value of k. For
each ROM, velocity fields are reconstructed from the truncated basis,
summing over selected mode indices rather than a sequential set up to
a maximum. For each combination, I, the reconstructed velocity field is

a(x, 1) =Y a, (@ (x) (10)
iel

where the index i may take only the values included in a particular

combination of modes and the hat notation indicates a low-dimensional

representation of the velocity field. In Eq. (10), the velocity field and

modal basis have been denoted as scalars, as only the streamwise

component of velocity is considered.
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Fig. 1. The number of mode combinations used to reconstruct the flow field for a
given maximum number of modes considered (k).

3. Data

This study uses nacelle-mounted scanning lidar data and atmo-
spheric inflow measurements from two recent DOE-funded field cam-
paigns: the American WAKE ExperimeNt (AWAKEN) [32] and Rotor
Aerodynamics, Aeroelastics, and Wake (RAAW) [33] projects.

AWAKEN is a multi-institutional campaign that gathers data on
wind farm-atmosphere interactions, which contribute to uncertainty in
wind plant performance models. Atmospheric conditions were charac-
terized using data from a surface flux station [34] and a meteorological
tower [35] at site Al (see Fig. 2). The surface flux station, equipped
with a Gill R3-50 sonic anemometer mounted on a 4-m tripod, recorded
data continuously at 20 Hz. Data acquisition software, originally de-
veloped by Argonne National Laboratory for the ARM ECOR system
in 2003, was adapted for AWAKEN to work with the Gill Sonic R3
series anemometers [36]. Sensible heat flux and momentum flux were
processed into 30-minute-resolution data, assuming a constant relative
humidity of 50% due to the absence of real-time humidity measure-
ments. Hub-height wind speed and direction were recorded with a
Thies 3D ultrasonic anemometer. Turbulence intensity was calculated
as the standard deviation of wind speed divided by the mean wind
speed over a 10 min period. Wind directions were limited to 170° to
200°, corresponding to the peak of the wind rose in Fig. 2, which also
restricted times when the wake from a neighboring turbine was visible.

The RAAW project studies the response of a modern flexible rotor
to the turbulent atmospheric inflow [33]. Atmospheric inflow condi-
tions for the RAAW data cases are derived from a 183.5-m guyed
meteorological tower [37], instrumented with five cup anemometers,
three ultrasonic anemometers, three vanes, three barometric and tem-
perature sensors, and one humidity sensor. Ultrasonic anemometers
reported data at 20 Hz, and all other instruments reported data at
1 Hz. Near-surface measurements of momentum and heat flux were
provided by a surface met station [37], deployed 10 m southwest of
the meteorological tower. This station hosted an ultrasonic anemometer
2.5 m above ground and probes for atmospheric pressure, temperature,
and humidity 2 m above ground. As with the tall tower sensors, the
anemometer reported data at 20 Hz, and the other sensors reported
data at 1 Hz. Fig. 3 shows the experimental arrangement of the RAAW
project, including the met tower, surface met station, and turbine.
Additional details for measurements are provided in Table 1.

Both the RAAW and AWAKEN projects feature GE 2.8-MW turbines
with 127-m rotor diameters. The RAAW project used a prototype R&D
turbine in Lubbock, Texas, with a hub height of 120 m, while AWAKEN
used production-run GE 2.8-127 turbines with a hub height of 88.5 m.
Both projects employed Halo Photonics Streamline XR+ Doppler scan-
ning lidars positioned on the aft sections of the nacelles (for the
AWAKEN [38] and RAAW [39] projects). These were configured for
various measurement strategies, including plan-position indicator (PPI)
scans to measure fluctuating wake flow fields.
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Fig. 2. Wind rose showing selected wind direction sector in blue (left) and high-level schematic (right) of the AWAKEN project.

Table 1
Description of lidar, met tower, and surface met station datasets for AWAKEN and RAAW experiments.
AWAKEN RAAW
Number of cases 54 11
Lidar

Lidar type Halo streamline XR+
Scan duration 10 s
Azimuth limits —15°-15°

Azimuthal resolution 1.5°

Range limits 105-2265
Range gate length 30.0 m
Number of scans 160-175
Upsampled scans 1650-1700
Upsampled resolution 1s

Halo streamline XR
18 s

—15°-15°

2

105-2265

12.0 m

45-50

680-725

1s

Met tower (Hub height)

Wind speed Windsensor P2546D Thies clima first class anemometer
Sampling frequency 1 Hz 20 Hz
Wind direction Thies FC vane MetOne wind vane
Sampling frequency 1 Hz 20 Hz
Surface met station
Resolution 30 min 10 min

Derived quantities

Sensible heat flux (W/m?)
Momentum flux (kg/m s*)
Friction velocity (m/s)
Monin-Obukhov length (m)

Kinematic heat flux (m/s K)
Kinematic momentum flux (m?/s?)
Friction velocity (m/s)
Monin-Obukhov length (m)

Wake PPIs were designed using the LiSBOA tool [40], sweeping
approximately 1.2° of azimuth per second, covering a sector of ap-
proximately 30° centered downstream of the turbine. Lidar data were
quality controlled using the Field EXperiments Tool Arsenal (FIEXTA)
software [41], which implements dynamic filtering methods [42]. Data
were temporally upsampled using local advection velocities and the
time delays between successive beams at similar azimuth angles [43],
producing line-of-sight velocity ‘snapshots’ at a temporal resolution of
1s.

While the lidars are capable of making measurements up to 4 km
from the wind turbine, the measurement quality in the far range is
typically quite low, and wakes are often fully recovered far sooner.
Additionally, the data collected in the AWAKEN project include only
inflows from a southerly sector, and the downstream row of turbines is
often visible in the scan data. To preclude observations of wakes of

neighboring turbines from influencing wake center estimates, which
would complicate the modal analysis undertaken below, scans are
constrained to ranges where 2.5 < x/D < 10 and azimuth angles
—-15° <a < 15°

Scanning lidar provides line-of-sight wind speed, v, which is
transformed into the streamwise velocity based on

Ulos = Upor(, @, 1) cos({) cos(a — 0) + w(r, a, 1) sin({) an

where uy,,, is the horizontal wind speed, r is the range along the
laser beam, ¢ and «a are the elevation and azimuth angles, respectively
(measured from xjq,,, ! is time, and 6 is the wind direction (see Fig.
4). For all lidar measurements used in this analysis, the elevation angle
was fixed at ¢ = 0°, simplifying the relationship between vy, and ;.
Also, by assuming negligible yaw error of the turbine, that is § ~ 0 in
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Fig. 3. Wind rose showing excluded wind direction sector in orange (left) and high-level schematic (right) of the RAAW project.

Fig. 4. Schematic relating the reference frame of the nacelle-mounted scanning lidar
to the wind turbine and the inflow, u.

the lidar frame of reference, yields the compact expression:

u(r,o,t) ~ up(r,a, t) ~ —Ulos(r’ & t), (12)
cosa
where u is the instantaneous local streamwise velocity. This formulation
assumes perfect alignment of the turbine with the flow, 6 ~ 0, which
is reasonable in a spatially and temporally averaged sense, as the rotor
slowly reacts to bulk changes in wind direction [44]. However, through
Eq. (12) we enforce alignment in a local and instantaneous sense to the
turbulent field. This is equivalent to neglecting the instantaneous local
transversal velocity component [30]. This is a common approach when
dealing with turbulence analysis from a monostatic lidar [45] and is
expected to minimally affect the estimation the wake center.
Measurement cases combining lidar datasets and inflow measure-
ments were considered only after passing through the following quality
control filters. Each filter is followed by a metric indicating the portion
of the population of data that were disallowed and a description. Note

that more than one filter condition was applicable to many of the data
points.

Sensor Quality—6% Measurement cases combining lidar datasets and
inflow measurements were considered only after filtering out
stuck, broken, or defective sensors. This ensures that all required
measurements are reliable and eliminates cases where data are
missing or sensors fail to report reasonable observations.

Wind Direction Sector—34% Cases were filtered to include only
wind directions within the appropriate sector. This is crucial
because we rely on the characteristics of the inflow to contextu-
alize wind turbine wake meandering. For the AWAKEN project,
this step also ensures that only the wake dynamics from the
single turbine of interest are present in the lidar scans.

Yaw Travel Limitation—51% Only cases with a total yaw travel be-
low 20° were considered. In both the RAAW and AWAKEN
projects, the wind turbine operates at a nominal control point,
allowing the rotor to yaw and optimally align with the incoming
wind. Yaw activity is evident in lidar scans as abrupt changes
or sweeping movements of the wakes within the scanned sec-
tors. Very few lidar scan periods are completely free from yaw
activity, hence the 20° travel limitation.

Power Production Threshold—18% Cases were filtered to include
only those where active power is greater than 150 kW and
that power generation is within one standard deviation of the
nominal power curve. This criterion ensures that the turbine
is operating nominally and that a wake will be evident in the
lidar data. The selection allows for describing wake meandering
under a wide range of atmospheric conditions and inflow wind
speeds.

Variability Filtering—10% As a final quality control step, cases were
excluded where the total variation exceeded the 90th percentile.
Following the method outlined by Hamilton [46], total variation
is defined as the determinant of the covariance matrix relating
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Fig. 5. Power curve from turbine HO5 at the King Plains Wind Plant. All available cases
are shown with gray points, cases selected for analysis in the current work are colored
by the total yaw travel of the turbine during the measurement period. The nominal
power curve (black dashed line) was calculated from an open-source model [47].

inflow wind speed, wind direction, turbulence intensity, turbine
power production, and nacelle position signals from the SCADA
record. This step ensures that only statistically stationary condi-
tions are considered, eliminating cases with drastically changing
atmospheric conditions or significant turbine control actions
during the lidar scan period.

A total of 65 cases were retained after applying each of the quality
control filters enumerated above, including 54 cases from the AWAKEN
project and 11 cases from the RAAW project. Fig. 5 shows the distri-
bution of the full range of cases with wake PPI scans. Cases that did
not pass all of the quality control measures listed above are shown in
gray. The final cases selected for analysis are highlighted in the figure
according to the total yaw travel observed during the respective wake
scanning period.

4. Results

The integral timescale of atmospheric turbulence provides a mea-
sure of the temporal correlation of velocity fluctuations in the atmo-
spheric boundary layer. The autocorrelation coefficient p(z) is then
defined as

(W't + 1)

= (13)

p(7)

where u/(¢) represents the turbulent velocity fluctuations, 7 is the time
lag, (-) denotes the ensemble average, and ¢ is the variance of the
velocity fluctuations. The integral timescale T is calculated by integrat-
ing the autocorrelation function up to the point where it decays to a
specified threshold:

T = /TC p(1),dt (14)
0

Here, 7, represents the correlation decay limit, typically chosen as
the point where p(r) = 0.05, rather than the first zero-crossing point
to account for sampling errors [48]. This integration captures the
temporal coherence of turbulent fluctuations, providing insight into the
characteristic timescales of atmospheric turbulence. In practice, this
calculation was performed using 20-Hz wind speed measurements from
a sonic anemometer positioned at hub height for the turbines in each
project, with computations based on 30 min averaging periods.

Fig. 6 shows the distribution of inflow wind speed, U, integral
timescale, 7', and inflow Strouhal number, S7;, for each of the 65 cases
from the combined RAAW and AWAKEN experiments. The integral
timescales, T, are taken as the characteristic period of the fluctuation
in the velocity field and are used to define the characteristic frequency
of turbulent fluctuations in the discussion of meandering frequencies.
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Average scans for selected cases are shown in Fig. 7 and highlight
differences in the peak momentum deficit and recovery rate of wakes
in different atmospheric conditions. While all datasets include some
yaw activity, the average wake is centered around « = 0. Each of the
time-averaged velocity fields in Fig. 7 highlights characteristics of the
wind turbine wake as well as the influence of the atmospheric forcing
conditions and effects of the wind turbine operations and controls.
The data quality control preferentially selects the most statistically
stationary cases from the full population of data. As a consequence,
there is a bias toward stable atmospheric conditions in which the
yaw travel was minimized during the lidar collection periods of both
experiments.

Yaw activity is not directly evident in the time-averaged wakes.
However, Fig. 8 shows a time-azimuth cross section of a single dataset
at a range of approximately x/D = 8 (1 km), in which the wake is
highlighted as a low wind speed region that persists in time across
the figure. Meander in the azimuthal direction seen in the figure com-
bines the effects of several factors. While the wake center does travel
horizontally, there are also translations of the wake center introduced
by the yaw activity of the rotor. Horizontal wake center locations,
u, are estimated as the center location of the Gaussian function fit
to the velocity deficit, as in Eq. (2). Yaw activity becomes especially
evident in the time histories of detected wake centers, presented in
Fig. 9. Yaw activity, illustrated by the dashed black line and related
vertical axis on the right, are evident in the detected centers as sudden
shifts in the wake center time histories. Because changes in the nacelle
position impact the apparent wake centers uniformly at all ranges, a
simple correction can be applied to the wake centers as Ay = rsina,
where r indicates the distance from the lidar (range), and « indicates
the nacelle orientation with respect to the position at the beginning
of each dataset. Correcting for changes in nacelle position throughout
each dataset is important to correctly characterize the distributions of
wake centers and their dynamics in the turbine frame of reference. It
should be noted that turbines take yaw-correcting actions only after
an integrator of error between the measured wind direction and the
nacelle position exceeds a threshold. This means that in most cases
there remains some influence of yaw misalignment on the detected
wake centers, even after correcting for yaw activity. Without a time
history, it is not possible to accurately account for the yaw error.
However, this sort of misalignment is part of the nominal operation
of a turbine under normal control conditions and is a possible trigger
for wake meandering.

An example of the momentum deficit measured by the lidar is
shown in Fig. 10 in blue, along with local fits of the Gaussian function
in black and detected wake centers as red points. Each of the subfigures
indicate a good level of agreement between the momentum deficit and
fit function, building confidence in the Gaussian model of the wake.
Alternative methods of detecting the wake centers have been explored
in the literature,[14] including a momentum-centroid approach and
local minimum velocity methods, but are not explored in the current
work for brevity.

An alternative view of the detected wake centers is provided in
Fig. 11, where u/D is noted on the lidar scans as points colored by
their respective R* values. In both examples, it is evident that the u/D
follows the bulk momentum deficit in the wake quite closely. A bias
of u/D toward positive values of y/D in the near wake x/D < 3
is also visible in the scan taken at 2023-09-04 10:42:15 UTC (left).
This bias, which persists throughout many of the scans, arises from the
asymmetric double-Gaussian profile of the momentum deficit very near
the turbine, described in analytical models in [49,50]. Positive bias of
u/D in the near wake is not easily corrected, and leads to impacts later
in the analysis, including power spectral densities an representation
with the ROMs.

Wake meandering combines the downstream advection of u by
the mean flow and turbulent structures in the wake. Trajectories of
u throughout the measurement domain are shown in Fig. 12 (left)
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Fig. 7. Average wake velocity fields for 2023-08-11 10:30 (top left), 2023-09-04 10:30 (top right), 2023-09-19 06:30 (bottom left), 2023-10-25 06:30 (bottom right) showing a

range of background velocities, momentum deficits, and wake recovery rates.

for several times in the dataset. The meander is also evident in the
trajectories as a local tendency back toward positive values of y. The
amplitudes of these meandering structures also tend to increase as they
advect downstream. Kernel density estimates of wake center locations
are shown in Fig. 12 (right), highlighting the tendency of the u to
spread out at greater streamwise distances.

In addition to statistical descriptions of the wake center, we are
also interested in dynamics of wake meandering, specifically relating
the characteristic frequencies of wake meandering, quantified through
power spectral densities (PSD, Eq. (15)) to inflow conditions and the
POD modes, ¢;. PSDs are calculated using Welch’s method as

K 2

N
1 1 —i2rfn
Suu(f)=zgﬁ lelk(")e 2nfn/N
= =

(15)

where K is the number of segments, L = 512 samples is the number
of points in the fast Fourier transform, N = 1024 is the length of
each segment, and p;(n) is the kth segment of the time series. A
uniform window function is applied to each segment in the calculation
of the PSDs. The reduced frequency, f, = fD/U,, is normalized by
considering the average inflow velocity recorded by the met towers,
U,,, and the turbine’s rotor diameter, D.

Fig. 13 (left) shows S,, as a function of the reduced frequency
at several downstream distances in the wake. The pink vertical line
indicates the inflow Strouhal number, St;,, which acts as the cutoff
frequency for wake meandering in the remainder of the results. Fig. 13

(right) shows the premultiplied spectra fS5 . S,,» which highlights the
deviation of the meandering spectra from the classical turbulence decay
law. The meandering frequency is defined as the reduced frequency at

which the maximum value of the premultiplied spectrum occurs:

f = argmax £ .S, (f)

The normalized amplitude of wake meandering is assessed considering
the PSD of u at f,, A, = +/S,,(f,). Fig. 14 compares the meandering
amplitudes and frequencies for each of the 65 cases considered in this
study, colored by the inflow velocity. As a general observation, the
range of meandering frequencies shown in the combined AWAKEN and
RAAW datasets is 0.1 < f,, < 0.7, which is slightly larger than the range
reported in past studies.

The snapshot POD introduced in Section 2.2 requires state space
observations with consistent dimensions and coordinates, making it
impractical to correct for yaw before decomposition. Remapping wake
observations from lidar scans onto a corrected reference frame down-
stream of the turbine would introduce inconsistencies in the azimuthal
coordinates or create empty radial slices, both of which would compli-
cate the eigenvalue decomposition central to the POD analysis.

Each of the 65 cases has azimuth coordinates that vary slightly due
to the continuous scan operation of the lidar, which assigns nominal
azimuth angles after a set time delta. Operational delays, data transmis-
sion, and status checks cause small variations in the number of scans
per dataset. This analysis focuses on the low-rank POD modes that
account for most of the TKE in the lidar scans. Although the energy

(16)
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Fig. 9. Detected wake centers directly from lidar observations (blue) and after
correcting for yaw activity of the turbine (orange). The dashed black line indicates
nacelle position changes from the beginning of the time series and corresponds with
the axis labels on the right.

distribution across POD modes varies between datasets, researchers
order the modes by descending energy, with the eigenvalue 4; of each
mode representing the energy distribution.

We use only the first 14 POD modes, which capture the most
coherent structures in the lidar scans, to reconstruct flow fields for
meandering analysis. The eigenvalues 4; quantify the TKE captured in
each reduced-order model (ROM), directly measuring reconstruction
error. Missing energy in a ROM remains bounded by the smallest
mode eigenvalue included in the reconstruction. Fig. 15 illustrates the
distribution of TKE described by the POD modes across all cases. This
analysis excludes the energy of the zeroth mode ¢,, which represents
the mean flow field, ensuring the normalized sum represents only the
TKE. The black dashed line in the figure identifies the threshold at
which the POD modes capture 90% of the TKE. In some cases, as few as
four modes meet this threshold, while other cases require more modes.

In all but two outlier cases, the POD meets the 90% TKE threshold with
a maximum of 14 modes.

We apply the POD independently to each lidar dataset, producing
a unique basis of modes for each case. Fig. 16 shows the POD modes
associated with the case beginning at 2023-09-04 10:30 UTC. Although
the mode bases differ quantitatively for each case, their structure and
order remain qualitatively similar. Colorbars are included with each
mode for completeness, although the units and quantitative values only
become meaningful when they combine the modes with their respective
coefficients to form a ROM.

The zeroth mode, ¢, represents the mean flow, capturing the
characteristic momentum deficit in the wind turbine wake (see Table
2). It should be noted here that the basis of observations comprises
the instantaneous velocity, rather than just the fluctuations. Thus, the
zeroth mode is a true POD mode with a time-varying coefficient and
represents dynamics of the momentum deficit. Modes ¢, through ¢,
describe coherent wake structures ranked by their contributions to the
lidar scans. The first mode, ¢,, accounts for 20% to 80% of the TKE
and primarily describes lateral shifts in the wake, crucial for wake
meandering. Mode ¢, represents a full oscillation in the streamwise (x)
direction and a half oscillation in the transverse (y) direction, reflecting
large streamwise wake variations. Mode ¢; introduces an additional
half-period in x, describing 1.5 periods in the lidar scan domain.

Higher-order modes become increasingly complex and difficult to
assign a concise description. Mode ¢, exhibits significant azimuthal
asymmetry, complicating direct interpretation. In contrast, ¢5 is sym-
metric, describing a full oscillation in x and possibly reflecting vertical
wake meandering. Mode ¢, describes two full periods in x, further illus-
trating the complexity of higher-order structures. Azimuthal symmetry
is defined here as a cosine distance, d, between the upper (y+) and
lower (y—) halves of the PPI scan sector across the time-averaged wake
center, nominally at y/D =0, and is posed mathematically as

¢i,y+ : ¢i,y—

) = g M,

a7
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Fig. 10. Detected wake centers showing Gaussian fit against momentum deficit. Blue lines indicate momentum deficit estimated from lidar scans, dashed line shows the fit Gaussian
profile, point marker is the detected wake center y/D.
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Fig. 12. Wake center trajectories for selected times (left) and kernel density estimates of wake centers by distance downstream of the lidar (right).
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Fig. 13. Power spectral densities (left) and premultiplied spectra (right) of detected wake centers from the lidar data at selected downstream distances.

By nature of the cosine distance, modes that are perfectly symmetric -¢;,_, leading to x(¢;) = —1. Modes characterized as asymmetric in
show behavior where ¢, ,, = ¢, ,_, which leads to a cosine distance of the current study are those for which |x(¢;)| < 0.3. The cosine distance
k(¢;) = 1. Similarly, antisymmetric modes are those for which ¢, ,, = for each mode shown in Fig. 16 is shown in Table 2.
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Table 2
Description of POD mode structure, periodicity, and associated eigenvalue.
Mode, i Structure k(;) Description
0 symmetric 1.00 Mean momentum deficit of the wake
1 antisymmetric —-0.94 Full period in y, half-period in x
2 antisymmetric -0.78 Contains a full period each in x and y
3 antisymmetric -0.81 Represents 1.5 periods in x and one period in y
4 asymmetric -0.30 Significant azimuthal and radial asymmetry
5 symmetric 0.65 Describes 1 full period in x
6 symmetric 0.39 1.5 periods in x
7 asymmetric -0.18 Highlights shear layer at negative y
8 symmetric 0.48 May represent 1.5 periods each in x and y
9 symmetric 0.48 Describes 2 full periods in x
10 asymmetric -0.21 Phase-offset, but similar to phi,
11 symmetric 0.40 Highlights shear layer at positive y
12 asymmetric 0.02 Shows 2.5 periods in x, 2 periods in y
13 symmetric 0.34 Phase-offset, but similar to phi,
14 asymmetric -0.13 Higher order, but similar to phi,
® 12 scans and ROMs:
(] KY 2
~ X
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° o 10 [0S0
’ iy Here, coherence C,;(f,x) measures the similarity of wake center dy-
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Following Eq. (10), we reconstruct the flow field using 16,278
unique subsets, including 3-14 POD modes in addition to ¢, represent-
ing the momentum deficit of the wake. Fig. 17 shows the combinations,
ranging from ROMs with only three turbulent modes and ¢, on the
right, to those incorporating more modes on the right. Each recon-
structed wake profile was fitted to a Gaussian function (Eq. (2)) to
estimate the lateral wake center, fi.

When reconstructing velocity fields using POD modes, we aim to
match the PSD of wake center locations from the reconstructed field,
S, to the original field, S,,,. We consider mode combinations that re-

AR
produce wake meandering (i.e., S, , ~ S,,) representative of wake me-

HH
andering in the low-order velocity field. Coherence, defined in Eq. (18),

quantifies the similarity between wake center trajectories in the lidar

10

frequency range for several cases. Good agreement between S,, and
S, is observed, particularly for x/D > 4. Highlighted regions in Fig.
18 show where f, > St,,, corresponding to reduced frequencies above
the inflow Strouhal number, that are not typically associated with wake
meandering.

Focusing on specific frequency ranges of C,; provides a more accu-
rate evaluation of each ROM’s ability to reproduce wake meandering.
High-frequency spectra are irrelevant for this analysis, as they do not
reflect the physics of wake meandering. We evaluate the trends for
ROM:s in Fig. 18 by calculating the average coherence, Em;, over the
respective frequency ranges.

A more complete assessment of ROM quality appears in Fig. 19,
which shows the average coherence over the reduced frequency, Cpuji.
The top subfigure displays EW for the full frequency range, with an
average coherence of approximately 0.3 for most cases. The bottom
subfigure, restricted to f, < St,,, reveals more consistent results across
blocks of ROMs. Referring to the mode distribution in each ROM shown
in the combination tree (Fig. 17), a clear correlation emerges between
Eﬂ ; and the inclusion of specific modes.

Fig. 19 also reveals the dependence of E# 5 on the downstream
distance from the lidar, as indicated by the vertical axes. By averaging
along the range coordinate, we aggregate this information into a single
scalar metric for each ROM, ¢ = (_y 47> where the angle brackets denote
averaging along the streamwise coordinate. This allows us to describe
the ROM distribution with a quantitative fit quality metric. Fig. 20 (left)
shows ¢ arranged by ROM index across the 16,278 mode combinations.
The data in Fig. 20 reflect the same information as Fig. 19, averaged
over the vertical axis (streamwise coordinate). On the right side of Fig.
20, the distribution of ROM quality is shown according to the number
of modes used in each ROM. Although including more modes generally
improves the representation of wake meandering, several exceptions
to this trend exist. The distributions in Fig. 20 (right) show that some
ROMs with only four modes outperform others with 10 or more modes.

To investigate the sensitivity of wake center coherence to POD

modes, we use an Analysis of Variance (ANOVA) approach [51]. We



N. Hamilton et al.

Renewable Energy 254 (2025) 123555

200

y [m]

5 H Il) \HHHH\ 1’|| I;HI]’ H‘ \h IIIII ]“ \”\‘ N ||\|I‘| "' IN \f H ‘ ‘ | li‘ 1 |‘ H H ' Il |
% ‘l "H Iw ‘I ' ‘ l" ’I & | [‘I IIN ]YI ‘I“\ ‘III‘NII “I ||I|‘| N » ” ‘I‘I Iq IIW}‘ “\”IHHIW ~| WIMI ,\I
E || [ J| J I ll H JJIJ‘ |||IJI|

Fig. 17. Combination tree indicating which modes are contained in any given ROM. Modes are indicated by the colored regions, and their absence is shown in white.

develop a statistical model to decompose the average coherence into
contributions from individual modes and their interactions. The model
takes the following linear decomposition form, where ¢ is the average
coherence, a quality metric for each ROM:

e—e+2ﬂ,q,+2n,q,q,+§ (19)

i<j
Here, € represents the mean coherence of all 16,278 ROMs per case, f;
are the main effects of individual modes, and ;; capture the interaction
effects between modes. The binary variables g; indicate the presence

11

(1) or absence (0) of each mode, with the constraint that at least three
modes must be included. The term ¢ represents the residual error,
describing noise not accounted for in the model in Eq. (19).

We impose statistical constraints, assuming that both the main
effects §; and interaction terms y;; follow a normal distribution with
zero mean, and that the residual error ¢ follows a normal distribution.
The goal is to estimate the coefficients §; and y;; that minimize the
residual error and provide insight into how modes and their combi-
nations influence wake center coherence. This approach allows for a
comprehensive sensitivity analysis, capturing the complex, potentially
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modes contained in each ROM (right).
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Fig. 22. Distributions of ¢ consider ROMs that include each mode (blue) or exclude each mode (orange).

nonlinear interactions between POD modes in representing wake center
dynamics.

Fig. 21 (right) shows the main effects g, of each mode for the case
beginning at 2023-09-04 10:30 UTC, the same case used to illustrate the
POD modes above. One key finding illustrated by this figure is that the
importance of each mode does not decay monotonically with the mode
index. This indicates that although certain modes may represent more
TKE in the full basis, they do not necessarily have a greater impact

13

on wake meandering. Instead, the modes that exhibit asymmetrical
structure across the wake centerline also tend to have the largest values
of §;. The magnitude of the mode coefficients is small, < 0.1, due to
the bounded range of the average ROM coherence, 0.3 < £ < 0.55.

To illustrate the importance of each mode more completely, Fig.
22 splits the full distribution of ¢ (in white) into subsets of ROMs that
include (blue) or exclude (orange) each of the first 14 modes. Modes
with the strongest impact on ¢ (i.e., modes 1, 2, 3) show the greatest
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Fig. 25. Wake centers for a single stamp comparing observations from the lidar (black) and centers estimated with (green) and without (orange) ¢, (left) and ¢ (right).

separation between distributions of ROMs that include or exclude ¢;.
Moreover, ROMs that contain the modes that have the greatest positive
impact on ¢ always show distributions with means greater for ROMs
that that exclude ¢;. Conversely, distributions for modes with little
influence on ¢ (e.g., modes 9, 11, 13) are nearly identical for ROMs
that include or exclude the modes.

The case at 2023-09-04 10:30 UTC also exhibits relatively large
mode interaction effects between a few particular mode pairs, as shown
in Fig. 21 (right). In particular, ¢ shows a strong colinear dependence
on modes 2 and 3, modes 3 and 4, and modes 1 and 3, in descending
order. Fig. 23 compares the distribution of ¢ for ROMs containing both
modes in the pair (¢; + ¢;) against that for ROMs not containing both
modes —(¢; +¢;), including those that contain only one of the modes of
interest. Interestingly, the distribution of € for the pair ¢, + ¢; (right)
is roughly normal, while for mode pairs ¢, + ¢3 and ¢; + ¢, (left and
center), the distributions are strongly bimodal.

Verifying one of the key assumptions that underpins the ANOVA
described by Eq. (19), the residual &, shown in Fig. 24 (left), is roughly
normally distributed. The range of & is relatively small, with a standard
deviation of ¢, ~ 0.003, although the main effect f; of some less relevant
modes falls within the range of the residual. Fig. 24 (right) also shows
that the distributions of &, aggregated by the number of modes used to
compose a ROM, are approximately normally distributed. Distributions
of ANOVA residual error appear to be consistently centered around

14

& = 0, except for ROMs with 4 modes where there is a slight negative
bias, and ROMs with more than 11 modes for which there is a slight
positive bias. Recalling that the sample size of ROMs composed with
a given number of modes varies (Fig. 1), the distributions for ROMs
composed with fewer than 4 or more than 11 modes are not necessarily
statistically converged. Distributions of ROMs composed with between
6 and 10 modes contain at least 1000 samples, suggesting that they
represent distributions of ¢ more accurately.

To illustrate the range of ROM accuracy, Fig. 25 compares detected
wake centers from the lidar directly to the low-order descriptions
provided by selected modes. Specifically, Fig. 25 highlights the ROMs
with the maximum (solid colored lines) and minimum values (dashed
colored lines) of ¢, that is, the ROMs that have wake center dynamics
that show the maximum and minimum average correlation with the
lidar observations. The importance of the presence or absence of either
¢, or ¢5 (left and right, respectively) is highlighted by comparing the
colored traces indicating the wake centers predicted by the ROMs. In
the case of the first mode (with a large g coefficient), the trace for
€max|®; (solid green line) case is nearly identical to the wake centers
observed with the lidar. In the absence of the first mode, the best case
of €,.x/7¢; (solid orange line) shows meandering with a much smaller
amplitude than expected. Looking toward the fifth mode, the best and
worst cases are nearly indistinguishable considering ROMs with and
without ¢s, visually demonstrating the lack of dependence of € on ¢s.
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Fig. 27. Trends of y;; = f(¢;,¢;) considering all 65 cases in the overall study.

For both examples, the shaded region indicates the range of 4 given
either the presence (green) or absence of the respective mode.

Considering the full population of 65 cases considered in this study,
Fig. 26 shows the overall trends of § with mode index. The mean profile
in blue indicates that the first mode tends to contribute quite strongly to
the linear model of ¢, with a coefficient of g, = 0.4. In most cases, the
mode ¢, is qualitatively similar to that shown for 2023-09-04 10:30
UTC in Fig. 16, exhibiting a strongly antisymmetric character along
the average wake centerline and a half-period of streamwise variation.
Fig. 26 indicates that this mode can account for a huge amount of «,
ranging from a coefficient of 0.2 < g, < 0.75, as shown by the pink lines
indicating maximum and minimum values.

The range of ¢, is even larger, showing a maximum value of g, =
0.72, similar to that of g;, while the minimum value is g, —-0.02,
indicating that for some cases, the average correlation ¢ is weakly
anticorrelated with mode ¢,. Similar behavior is evident for modes
¢, through ¢g, where at least the modes work against the successful
representation of ¢ for several cases.

Fig. 26 (right) shows the distributions of g, through g, in greater
detail as violin plots with markers indicating values for individual
cases. Overall, the figure suggests a trend of decreasing range of # as
the mode increases. Modes 1, 2, and 4 show what appear to be outlier
values extending the range to higher positive values of . Mode 0 also
appears to have a bimodal distribution of p. Because there are only
65 cases in the current study, and those cases span a wide range of
atmospheric conditions, insights drawn from the relationship between
e and p; should be treated with an appropriate level of caution.

The description of multi-colinear dependence of ¢ on the modal
basis ¢; has a similar trend. Fig. 27 shows the mean (left) and standard
deviation (right) of Yij for the collection of 65 cases. Overall, ¢; has
the strongest colinear behavior with the other modes in the basis,
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with a maximum value of 7,, = 0.29 and decreasing monotonically
with j thereafter. The average colinear dependence of higher-order
modes is even lower, suggesting that the global behavior for £ may be
that a purely linear relationship is sufficient for description of wake
meandering. The standard deviation of o, ~shows similar trends as the
mean, where the largest values are located in the top left, for colinearity
between ¢, and ¢,, decreasing as both i and j increase.

While the average behavior of f suggests a monotonic decrease
in value mode index, the true relationship is likely more complex
and probably depends on the nature of the POD modes (symmetry,
sequencing, etc.) representing wake dynamics for each case. Fig. 28
compares the log of the mode eigenvalues, log;,(4;) to the main effect
coefficients g;, colored by the mode number. Because f; tends toward
zero for all cases while 4; show a wide range of values for each mode,
no direct relationship between the two is directly evident in the current
data. This disparity is thought to arise from the fact that the two vari-
ables describe related but different phenomena. POD modes describe
the variance-maximizing structures in the observational basis; that is,
they describe the TKE in the measurement domain of the nacelle-
mounted scanning lidars—the eigenvalues A, quantify the TKE each
mode represents in the overall budget. The main effect coefficients,
p;, describe the dependence of the streamwise-averaged and reduced
frequency-averaged correlation between wake centers estimated by a
Gaussian function fit to the observational data and estimates made by
a ROM as described by a subset of POD modes.

While the main effect coefficients do not appear to be correlated
with the POD eigenvalues, there is a stronger connection with the mode
symmetry, described in Eq. (17). Fig. 29 compares f; to the cosine
distance that quantifies mode symmetry, x(¢;). Because the momentum
deficit of the wake for each case is approximately symmetric along
y/D = 0, the associated cosine distance x(¢,) =~ 1 for all cases. The
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65 cases.
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Fig. 29. Comparison of the mode symmetry k(¢,) to main effect coefficients g; for all
65 cases.

first mode tends to contain the most important contribution to wake
meandering, and is also the most strongly antisymmetric, as indicated
by the large negative values of x(¢;) (green markers). Other modes,
which exhibit a wide range of x(¢;), are less important in the prediction
of wake meandering.

The data in Figs. 28 and 29 suggest that the relevance of POD modes
to wake meandering can be described based on their intrinsic charac-
teristics. Mode symmetry, and to a lesser extent the TKE captured by
each mode, allows us to estimate the significance of individual modes
for the physics of wake meandering, independent of inflow conditions.
However, this description remains phenomenological rather than causal
or predictive. Fig. 30 connects the aggregate mode effect coefficients,
Y.; B, to inflow characteristics collected from the meteorological towers
and surface stations in the AWAKEN and RAAW campaigns. Instead
of analyzing individual mode effects, this approach aggregates the
coefficients to provide a general measure of the predictive capability
of the POD-based ROMs for wake meandering.

The results in Fig. 30 indicate that the aggregate mode effect co-
efficients correlate strongly with the integral timescale and turbulence
intensity (TI) of the inflow (Fig. 30, left). The data show that the POD
basis is more predictive of wake meandering in cases with low TI and
large integral timescales. In contrast, for cases with moderate or high
inflow turbulence (TI > 7%), the ROM’s predictive accuracy diminishes.
The center panel of Fig. 30 examines the relationship between the
aggregate mode effect coefficient, the inflow Strouhal number, and
the friction velocity u, = (Wz + Wz)l/ 4. The analysis reveals an
anticorrelation between the ROMs’ effectiveness and both the Strouhal
number and friction velocity. This suggests that the predictive capabil-
ity of the modal basis decreases as these metrics increase. The right
panel of Fig. 30 explores the relationship between the aggregate mode
effect coefficient and surface-layer exchanges that quantify atmospheric
stability. While ), §; shows weaker correlations with the sensible heat
flux, ¢, = pch, and momentum flux, 7, = p(m2 + v’_w’z)l/ 2, the
data suggest that POD modes are more predictive of wake meandering
under near-neutral conditions when turbulent transport of momentum
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Table 3
Pearson correlation coefficient between the aggregate mode effect coefficients and key
atmospheric characteristics.

Variable Correlation strength
Integral timescale Ty 0.74
Turbulence intensity TI -0.70
Friction velocity u, —-0.68
Momentum flux 7, 0.62
Inflow Strouhal number Sty —-0.60
Sensible heat flux q 0.45

approaches zero. Pearson correlation coefficients between the aggre-
gate mode effect coefficients and the key inflow quantities are listed in
Table 3.

5. Conclusions

This study leverages remote sensing data from nacelle-mounted
scanning lidars to quantify wake meandering using snapshot POD and
spectral methods. We find that the statistics of wake meandering differ
across test cases, revealing significant insights into the spatiotemporal
and spectral characteristics of wake dynamics. Our analysis of POD
modes challenges conventional descriptions of wake meandering and
its expected relationships with atmospheric inflow.

While low-order modes capture the largest, most energetic turbu-
lent structures, these modes do not necessarily contribute the most
to accurately representing wake meandering. Some modes show no
correlation with meandering dynamics, and others distort or detract
from an accurate representation of wake behavior. This finding suggests
that certain modes are either irrelevant to wake meandering or are
only regionally relevant. Importantly, the relevance of modes appears
to depend on their symmetry and the amount of TKE they contain, as
well as their connection to inflow characteristics such as turbulence
intensity and integral timescales.

These results indicate that cases with low turbulence intensity
and large integral timescales yield stronger correlations between POD
modes and wake meandering, while cases with moderate or high inflow
turbulence (TI > 7%) are less effectively captured by the ROM. More-
over, wake meandering models based on aggregated modal coefficients
are anticorrelated with friction velocity and inflow Strouhal number,
suggesting that the predictive strength of the modal basis is not easily
deduced by characteristics of the inflow turbulence. These insights
highlight the complex and multifaceted relationship between wake
meandering and atmospheric dynamics, which current passive tracer
or coherent structure interaction models fail to fully describe.

Although the POD modes describing wake dynamics differ quanti-
tatively from case to case, they exhibit a qualitative similarity across
a wide range of atmospheric conditions. This suggests the existence
of a semi-universal basis of functions or structures that describe wind
turbine wakes. We hypothesize that a low-dimensional manifold may
exist, capable of efficiently and computationally representing wake
aerodynamics and meandering, with potential benefits for steady-state
and engineering models of wind turbine and wind plant wakes.

While this study provides a phenomenological description of wake
meandering and its relationship with turbulent structures, it does not
constitute a dynamic or predictive model. One key limitation is the
difficulty in separating azimuthal wake position changes from yaw-
induced turbine activity from the underlying wake dynamics. To ad-
dress this, future studies could apply classical POD or dynamic mode
decomposition to time series of estimated wake centers. Incorporating
additional inflow dynamics and turbine operating states into such
analyses could enable the development of a comprehensive dynamical
model for wake centerline trajectories, including wake meandering.

By bridging these gaps, future work has the potential to advance
predictive capabilities and improve the representation of wake dynam-
ics in wind energy research and engineering applications.
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