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 A B S T R A C T

Horizontal scans from nacelle-mounted lidars provide time series measurements of wind turbine wakes 
across diverse atmospheric conditions, enabling analysis of coherent turbulent structures that influence wake 
meandering through proper orthogonal decomposition (POD). While low-order modes capture the most 
energetic turbulent structures, our analysis reveals that they do not necessarily dominate wake meandering 
dynamics. We evaluate more than 16,000 combinatorial reconstructions of the flow field for each inflow case, 
demonstrating that mode relevance depends on mode symmetry, turbulent kinetic energy content, and inflow 
characteristics. Cases with low turbulence intensity and large integral timescales show stronger correlations 
between POD modes and wake meandering, whereas higher turbulence conditions (turbulence intensity > 7%) 
are less effectively described by reduced-order models. However, the qualitative similarity of POD modes across 
varied atmospheric conditions suggests the potential existence of a semi-universal basis for representing wind 
turbine wakes, with implications for improving engineering wake models.
1. Introduction

Wake meandering, characterized by large-scale, quasiperiodic, low-
frequency oscillations of the entire wind turbine wake, plays a crucial 
role in wind turbine loads, controller set point uncertainty, and power 
quality. Meandering significantly impacts power production [1] and 
fatigue loading [2] of downstream turbines in wind farms. Despite 
its importance, accurately representing wake meandering in numerical 
models remains challenging at any level of fidelity, making any addi-
tional characterization of the phenomenon valuable for improving wind 
farm performance and reliability.

Two prevailing hypotheses attempt to explain the origin of wake 
meandering. The externally driven hypothesis considers the wake’s 
momentum deficit as a passive tracer advected by large-scale atmo-
spheric turbulence [1]. This hypothesis suggests that turbulent struc-
tures larger than the rotor diameter contribute most significantly to 
wake meandering. This notion is further supported by España et al. [3], 
who demonstrated that large turbulence scales, particularly those in 
the atmospheric boundary layer, govern wake behavior. Baker and 
McGowan [4] and Zambrano et al. [5] also identified large-scale tur-
bulence as a dominant factor in wake motion, with the former propos-
ing a framework for turbulence-based wake modeling and the latter 
providing experimental data on wake turbulence dynamics.

In contrast, the internally driven hypothesis for wake meander-
ing proposes that dynamic interactions between turbulent structures 
within the wake, such as tip vortices and hub/root vortices, generate 
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pressure fluctuations substantial enough to displace the wake. Medici 
et al. [6] performed measurements on wake stability and internal 
vortical structures, while Okulov and colleagues [7] focused on the 
role of tip vortices in wake dynamics. Howard et al. [8] provided 
additional insight into the turbulence interactions within the wake 
that contribute to meandering. Foti et al. [9] explored the influence 
of shear instability on wake meandering, suggesting that such insta-
bilities could be driven by both internal and external mechanisms. 
The internal mechanism for wake meandering has also been linked 
to shear instabilities by Andersen et al. [10] and Li et al. [11], both 
of whom investigated the onset of wake meandering as a function of 
environmental and turbine-specific factors. An alternative internally 
driven view attributes wake meandering to shear-instability waves 
in the wake shear layer. Andersen and Sørensen (2013) simulated 
shear-layer instabilities that excite meandering-like motions [10]. Li 
et al. (2022) numerically and theoretically identified critical shear 
parameters triggering wake oscillations [11].

Our ability to measure wind turbine wakes in the field has improved 
significantly over the past decade. More than ten years ago, some of 
the first dynamic wake measurements were collected by modifying a 
prototype lidar originally designed for vertical conical scanning [12]. 
These early measurements, despite their limitations, were used to 
validate basic assumptions of the dynamic wake meandering (DWM) 
model [13]. Today, lidar technology allows us to observe wake dynam-
ics for wind turbines of any size, with the ability to scan spanwise and 
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vertically in any direction, reach downstream distances on the order of 
kilometers, and capture wake meandering, the downstream trajectory 
of wake centers, expansion, and large-scale turbulent structures [14].

Nacelle-mounted lidars have emerged as a powerful tool for real-
time characterization of inflow and wakes of utility-scale wind tur-
bines [15]. Doppler lidars offer unique capabilities for wind energy 
research, including real-time measurements for turbine and farm con-
trol [16], high-resolution data assimilation [17] for numerical sim-
ulations, and detailed three-dimensional wake characterization [18]. 
Nacelle-mounted lidars specifically provide better characterization of 
the wind resource over the rotor span and remain aligned with the 
turbine’s frame of references, which supports a wide range of advanced 
scientific and operational technologies, such as wake research and 
feed-forward controls [15].

Several recent studies leverage modern lidar technology to charac-
terize turbulence in the wake. Depending on the instrument deployed, 
lidars typically measure in vertical planes at fixed downstream dis-
tances [19] or in horizontal planes perpendicular to the rotor at hub 
height [20]. These recent lidar-based studies have primarily looked at 
the temporal evolution of turbulence by identifying the wake within 
each scan and tracking its centerline position over time. The center-
line is then used to quantify wake meandering for the sake of wake 
characterization [21] or model validation [22].

To investigate under what conditions we can expect the externally 
driven hypothesis to be the dominant mechanism driving wake me-
andering, we employ proper orthogonal decomposition (POD). This 
method is well-suited for identifying coherent turbulence structures 
in flow fields [23] and has been applied to wind energy for more 
than 15 years [24]. POD seeks the variance-maximizing structures 
that describe the turbulence in the flow, making it an ideal tool for 
quantifying potential meandering-inducing structures in the wake. If 
these structures are shown to contribute significantly to wake meander-
ing, the reduced-order model (ROM) should reproduce the meandering 
behavior seen in the measurement data to a high level of fidelity [25]. 
Conversely, a ROM developed without these structures should fail to 
accurately reproduce wake meandering.

Through the use of POD, we estimate the meandering length scales 
and frequencies in our dataset and relate them to DWM modeling 
assumptions. The body of past experimental and numerical work typi-
cally characterizes the meandering frequency (𝑓𝑚) in the context of a 
Strouhal number, 𝑆𝑡 = 𝑓𝑚𝐷∕𝑈hub, defined in terms of the wind turbine 
rotor diameter (𝐷) and hub-height inflow velocity (𝑈hub). Meandering 
frequencies are typically reported in the range of 0.1 ≤ 𝑆𝑡 ≤ 0.35, 
both in a laboratory setting [26,27] and field observations [14]. If the 
internally driven hypothesis for wake meandering is correct, the modes 
that contribute most to meandering should have characteristic frequen-
cies higher than the inflow Strouhal number. Conversely, cases where 
the externally driven hypothesis is correct should favor structures with 
frequencies below the inflow Strouhal number.

DWM models typically consider only the inflow forcing, assuming 
the momentum deficit and wake center to advect as passive tracers 
carried by the background flow [28]. Typically, this effect is considered 
by applying a low-pass filter to the turbulent inflow such that only 
structures that exceed a certain minimum length scale influence wake 
motion. This cutoff length scale is often set to twice the observed 
instantaneous wake diameter, or simply as twice the rotor diameter 
(2𝐷) in most implementations [29]. By combining advanced remote 
sensing measurements with statistical and applied mathematics analysis 
methods, we seek to develop an understanding of wake meander-
ing across a wide range of atmospheric conditions. Ultimately, wake 
meandering can have large impacts on wind farm performance, so 
improved understanding of the underlying physics will contribute to 
the optimization of wind energy production and turbine longevity.
2 
2. Methods

2.1. Wake meandering

Wake meandering is quantified in this work through the dynamics 
of the transverse coordinate of the wake center (𝜇), which we estimate 
by fitting a Gaussian profile to the momentum deficit derived from the 
lidar scans. The velocity deficit is defined as 

𝑢̃(𝑥, 𝑦, 𝑡) = 1 −
𝑢(𝑥, 𝑦, 𝑡)
𝑈hub(𝑡)

(1)

where 𝑈hub is the inflow hub-height velocity. In Eq.  (1), 𝑢 represents the 
streamwise velocity measurement, estimated as the line-of-sight veloc-
ity observed by the lidar divided by the cosine of the beam angle [30], 
assuming perfect alignment between the nacelle and the bulk wind 
direction. Because our data are collected in approximately horizontal 
planes at hub height, we only consider lateral movements of the wake 
center along the 𝑦-direction at a fixed height above the ground, 𝑧 = 𝑧ℎ𝑢𝑏. 
The wake center is detected through a least-squares fit of a Gaussian 
function to the observed 𝑢̃ by the lidar at each downstream location 
and for each time: 

𝑢̃(𝑥, 𝑦, 𝑡) = 𝐶0 exp
1
2

[

𝑦 − 𝜇(𝑥, 𝑡)
𝜎𝑤(𝑥, 𝑡)

]2
+ 𝐶1 (2)

In Eq.  (2), the peak momentum deficit is denoted as 𝐶0, the standard 
deviation corresponding to wake width is 𝜎𝑤, and the lateral wake 
center is 𝜇. An offset term, 𝐶1, is included in the function, although 
it is typically a relatively small value, −1 ≲ 𝐶1 ≲ 1 m∕s.

2.2. Snapshot proper orthogonal decomposition

POD, also known as principal component analysis (PCA) or
Karhunen–Loève decomposition, has been widely used in fluid dynam-
ics for identifying coherent structures and reducing the dimensionality 
of complex flow fields [23]. However, its application to data in polar 
coordinates, as is more natural for scanning lidar observations, presents 
unique challenges that necessitate a careful reconsideration of the 
method’s foundational elements.

Snapshot POD begins with a sequence of lidar observations, 𝐗 =
[𝐱1, ..., 𝐱𝑚], where each snapshot is a realization in the state space 
𝐱𝑘 ∈ R𝑛 at time 𝑡𝑘. POD seeks an orthonormal basis that optimally 
represents the data in terms of captured variance. When dealing with 
data in polar coordinates, the standard Euclidean inner product implicit 
in this formulation becomes inappropriate to adequately represent the 
distribution of turbulent kinetic energy (TKE) in the domain. The vary-
ing cell sizes in a polar grid lead to an inherent bias, overemphasizing 
contributions from larger radii. To address this, we modify the standard 
POD algorithm to incorporate a physically appropriate inner product 
for polar coordinates. Considering two snapshots 𝐱𝑙(𝑟, 𝜃) and 𝐱𝑝(𝑟, 𝜃), 
each of which represents the streamwise velocity (system state) vector 
in polar coordinates, we define a weighted inner product as 

⟨𝐱𝑙 , 𝐱𝑝⟩𝑊 = ∫

2𝜋

0 ∫

𝑅

0
𝐱𝑙(𝑟, 𝜃) ⋅ 𝐱𝑝(𝑟, 𝜃) 𝑟 𝑑𝑟 𝑑𝜃 (3)

For discrete data on a polar grid with spacing 𝛥𝑟 and 𝛥𝜃 in the radial 
and azimuthal directions, respectively, Eq.  (3) becomes 

⟨𝐱𝑙 , 𝐱𝑝⟩𝑊 =
𝑁𝑟
∑

𝑖=1

𝑁𝜃
∑

𝑗=1
𝐱𝑙(𝑟𝑖, 𝜃𝑗 ) ⋅ 𝐱𝑝(𝑟𝑖, 𝜃𝑗 ) 𝑟𝑖 𝛥𝑟 𝛥𝜃 (4)

By recasting the observations 𝐗 as the vector [𝐱𝑙(𝑟1, 𝜃1),… ,
𝐱𝑙(𝑟1, 𝜃𝑁𝜃

),… , 𝐱𝑙(𝑟𝑁𝑟
, 𝜃1),… , 𝐱𝑙(𝑟𝑁𝑟

, 𝜃𝑁𝜃
)] for 𝑙 ∈ [0, 𝑁𝑚], the inner 

product in Eq.  (4) can be conveniently represented by a diagonal weight 
matrix 𝐖: 
𝐖 = diag(𝑟1,… , 𝑟1, 𝑟2,… , 𝑟2, 𝑟3,… , 𝑟𝑁𝑟

,… , 𝑟𝑁𝑟
)𝛥𝑟𝛥𝜃 (5)

where each radial coordinate, 𝑟 , is repeated 𝑁  times.
𝑖 𝜃
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The new inner product is incorporated into the POD algorithm by 
modifying the correlation matrix to account for the weights described 
by Eq.  (5) as 

𝐂 = 1
𝑚
𝐗⊺𝐖𝐗 (6)

The POD modes are then obtained by solving the eigenvalue problem 
in the standard fashion: 

𝐂𝐯𝑖 = 𝜆𝑖𝐯𝑖 (7)

where 𝜆𝑖 are the eigenvalues and 𝐯𝑖 are the corresponding eigenvectors. 
The POD modes 𝝓𝑖 are then reconstructed as 

𝝓𝑖 =
1

√

𝜆𝑖
𝐗𝐯𝑖 (8)

This formulation ensures that the POD modes accurately reflect the 
true spatial scales and TKE of the flow structures in polar coordinates, 
without bias toward structures at larger radii. A set of projection 
coefficients, 𝑎𝑖, describe the amplitude of each mode in time and are 
sought by projecting the observational data 𝐗 onto the collection of 
POD modes Φ and integrating over the domain, 𝛺, as 

𝐀 = ∫𝛺
𝐗⊺Φ 𝑑𝛺 (9)

Mode projection coefficients are described by the column space of 
𝐀 = [𝑎0, 𝑎1,… , 𝑎𝑁 ].

This adaptation of the standard snapshot POD algorithm main-
tains the core principles of POD while adapting it to the geometric 
constraints of polar coordinate systems, aligning with the theoretical 
perspective that the choice of inner product in modal decompositions 
should reflect the physics of the problem at hand [31]. By incorporating 
an inner product motivated by the polar description of the state vector, 
we extend the applicability of POD to the natural coordinate system 
of scanning Doppler lidars and open the method to a wider class of 
atmospheric science and wind energy problems.

2.3. Reconstruction

The approach to velocity field reconstruction used in this work 
relies on the nature of the POD to organize input system dynamics into 
coherent structures. We develop a combinatorial approach to reduced 
order modeling to identify the turbulent structures (POD modes, 𝜙𝑖) 
that contribute most to wake meandering. Each combination of modes 
was determined by selecting 𝑘 of the first 𝑁𝑚 = 14 modes, where 
𝑘 ∈ [3, ..., 14]. The maximum number of modes, 𝑁𝑚, corresponds to 
a threshold of 90% of the TKE represented in the observational basis 
for each observed case. Flow fields reconstructed with each unique 
combination of modes are then used to estimate wake meandering 
identically as for the lidar scans, as described in Section 2.1.

In each of the ROMs, the zeroth mode, 𝜙0, representing the mo-
mentum deficit of the wake, is also included. The total number of 
combinations for each dataset was 𝐾 =

∑14
𝑘=3

(𝑁𝑚
𝑘

)

= 16,278. Fig. 
1 shows the number of combinations tested for each value of 𝑘. For 
each ROM, velocity fields are reconstructed from the truncated basis, 
summing over selected mode indices rather than a sequential set up to 
a maximum. For each combination, 𝐼 , the reconstructed velocity field is

𝑢̂(𝒙, 𝑡) =
∑

𝑖∈𝐼
𝑎𝑖(𝑡)𝛷(𝑖)(𝒙) (10)

where the index 𝑖 may take only the values included in a particular 
combination of modes and the hat notation indicates a low-dimensional 
representation of the velocity field. In Eq.  (10), the velocity field and 
modal basis have been denoted as scalars, as only the streamwise 
component of velocity is considered.
3 
Fig. 1. The number of mode combinations used to reconstruct the flow field for a 
given maximum number of modes considered (𝑘).

3. Data

This study uses nacelle-mounted scanning lidar data and atmo-
spheric inflow measurements from two recent DOE-funded field cam-
paigns: the American WAKE ExperimeNt (AWAKEN) [32] and Rotor 
Aerodynamics, Aeroelastics, and Wake (RAAW) [33] projects.

AWAKEN is a multi-institutional campaign that gathers data on 
wind farm-atmosphere interactions, which contribute to uncertainty in 
wind plant performance models. Atmospheric conditions were charac-
terized using data from a surface flux station [34] and a meteorological 
tower [35] at site A1 (see Fig.  2). The surface flux station, equipped 
with a Gill R3-50 sonic anemometer mounted on a 4-m tripod, recorded 
data continuously at 20 Hz. Data acquisition software, originally de-
veloped by Argonne National Laboratory for the ARM ECOR system 
in 2003, was adapted for AWAKEN to work with the Gill Sonic R3 
series anemometers [36]. Sensible heat flux and momentum flux were 
processed into 30-minute-resolution data, assuming a constant relative 
humidity of 50% due to the absence of real-time humidity measure-
ments. Hub-height wind speed and direction were recorded with a 
Thies 3D ultrasonic anemometer. Turbulence intensity was calculated 
as the standard deviation of wind speed divided by the mean wind 
speed over a 10 min period. Wind directions were limited to 170◦ to 
200◦, corresponding to the peak of the wind rose in Fig.  2, which also 
restricted times when the wake from a neighboring turbine was visible.

The RAAW project studies the response of a modern flexible rotor 
to the turbulent atmospheric inflow [33]. Atmospheric inflow condi-
tions for the RAAW data cases are derived from a 183.5-m guyed 
meteorological tower [37], instrumented with five cup anemometers, 
three ultrasonic anemometers, three vanes, three barometric and tem-
perature sensors, and one humidity sensor. Ultrasonic anemometers 
reported data at 20 Hz, and all other instruments reported data at 
1 Hz. Near-surface measurements of momentum and heat flux were 
provided by a surface met station [37], deployed 10 m southwest of 
the meteorological tower. This station hosted an ultrasonic anemometer 
2.5 m above ground and probes for atmospheric pressure, temperature, 
and humidity 2 m above ground. As with the tall tower sensors, the 
anemometer reported data at 20 Hz, and the other sensors reported 
data at 1 Hz. Fig.  3 shows the experimental arrangement of the RAAW 
project, including the met tower, surface met station, and turbine. 
Additional details for measurements are provided in Table  1.

Both the RAAW and AWAKEN projects feature GE 2.8-MW turbines 
with 127-m rotor diameters. The RAAW project used a prototype R&D 
turbine in Lubbock, Texas, with a hub height of 120 m, while AWAKEN 
used production-run GE 2.8–127 turbines with a hub height of 88.5 m. 
Both projects employed Halo Photonics Streamline XR+ Doppler scan-
ning lidars positioned on the aft sections of the nacelles (for the 
AWAKEN [38] and RAAW [39] projects). These were configured for 
various measurement strategies, including plan-position indicator (PPI) 
scans to measure fluctuating wake flow fields.
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Fig. 2. Wind rose showing selected wind direction sector in blue (left) and high-level schematic (right) of the AWAKEN project.
Table 1
Description of lidar, met tower, and surface met station datasets for AWAKEN and RAAW experiments.
 AWAKEN RAAW  
 Number of cases 54 11  
 Lidar

 Lidar type Halo streamline XR+ Halo streamline XR  
 Scan duration 10 s 18 s  
 Azimuth limits −15◦–15◦ −15◦–15◦  
 Azimuthal resolution 1.5◦ 2◦  
 Range limits 105–2265 105–2265  
 Range gate length 30.0 m 12.0 m  
 Number of scans 160–175 45–50  
 Upsampled scans 1650–1700 680–725  
 Upsampled resolution 1 s 1 s  
 Met tower (Hub height)
 Wind speed Windsensor P2546D Thies clima first class anemometer 
 Sampling frequency 1 Hz 20 Hz  
 Wind direction Thies FC vane MetOne wind vane  
 Sampling frequency 1 Hz 20 Hz  
 Surface met station
 Resolution 30 min 10 min  
 Derived quantities Sensible heat flux (W/m2) Kinematic heat flux (m/s K)  
 Momentum flux (kg/m s2) Kinematic momentum flux (m2/s2) 
 Friction velocity (m/s) Friction velocity (m/s)  
 Monin–Obukhov length (m) Monin–Obukhov length (m)  
Wake PPIs were designed using the LiSBOA tool [40], sweeping 
approximately 1.2◦ of azimuth per second, covering a sector of ap-
proximately 30◦ centered downstream of the turbine. Lidar data were 
quality controlled using the Field EXperiments Tool Arsenal (FIEXTA) 
software [41], which implements dynamic filtering methods [42]. Data 
were temporally upsampled using local advection velocities and the 
time delays between successive beams at similar azimuth angles [43], 
producing line-of-sight velocity ‘snapshots’ at a temporal resolution of 
1 s.

While the lidars are capable of making measurements up to 4 km 
from the wind turbine, the measurement quality in the far range is 
typically quite low, and wakes are often fully recovered far sooner. 
Additionally, the data collected in the AWAKEN project include only 
inflows from a southerly sector, and the downstream row of turbines is 
often visible in the scan data. To preclude observations of wakes of 
4 
neighboring turbines from influencing wake center estimates, which 
would complicate the modal analysis undertaken below, scans are 
constrained to ranges where 2.5 ≤ 𝑥∕𝐷 ≤ 10 and azimuth angles 
−15◦ ≤ 𝛼 ≤ 15◦.

Scanning lidar provides line-of-sight wind speed, 𝑣𝑙𝑜𝑠, which is 
transformed into the streamwise velocity based on 

𝑣los = 𝑢hor(𝑟, 𝛼, 𝑡) cos(𝜁 ) cos(𝛼 − 𝜃) +𝑤(𝑟, 𝛼, 𝑡) sin(𝜁 ) (11)

where 𝑢hor is the horizontal wind speed, 𝑟 is the range along the 
laser beam, 𝜁 and 𝛼 are the elevation and azimuth angles, respectively 
(measured from 𝑥lidar, 𝑡 is time, and 𝜃 is the wind direction (see Fig. 
4). For all lidar measurements used in this analysis, the elevation angle 
was fixed at 𝜁 = 0◦, simplifying the relationship between 𝑣los and 𝑢hor. 
Also, by assuming negligible yaw error of the turbine, that is 𝜃 ∼ 0 in 
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Fig. 3. Wind rose showing excluded wind direction sector in orange (left) and high-level schematic (right) of the RAAW project.
Fig. 4. Schematic relating the reference frame of the nacelle-mounted scanning lidar 
to the wind turbine and the inflow, 𝑢.

the lidar frame of reference, yields the compact expression: 

𝑢(𝑟, 𝛼, 𝑡) ∼ 𝑢h(𝑟, 𝛼, 𝑡) ∼
𝑣los(𝑟, 𝛼, 𝑡)

cos 𝛼
, (12)

where 𝑢 is the instantaneous local streamwise velocity. This formulation 
assumes perfect alignment of the turbine with the flow, 𝜃 ∼ 0, which 
is reasonable in a spatially and temporally averaged sense, as the rotor 
slowly reacts to bulk changes in wind direction [44]. However, through 
Eq.  (12) we enforce alignment in a local and instantaneous sense to the 
turbulent field. This is equivalent to neglecting the instantaneous local 
transversal velocity component [30]. This is a common approach when 
dealing with turbulence analysis from a monostatic lidar [45] and is 
expected to minimally affect the estimation the wake center.

Measurement cases combining lidar datasets and inflow measure-
ments were considered only after passing through the following quality 
control filters. Each filter is followed by a metric indicating the portion 
of the population of data that were disallowed and a description. Note 
5 
that more than one filter condition was applicable to many of the data 
points.

Sensor Quality—6% Measurement cases combining lidar datasets and 
inflow measurements were considered only after filtering out 
stuck, broken, or defective sensors. This ensures that all required 
measurements are reliable and eliminates cases where data are 
missing or sensors fail to report reasonable observations.

Wind Direction Sector—34% Cases were filtered to include only
wind directions within the appropriate sector. This is crucial 
because we rely on the characteristics of the inflow to contextu-
alize wind turbine wake meandering. For the AWAKEN project, 
this step also ensures that only the wake dynamics from the 
single turbine of interest are present in the lidar scans.

Yaw Travel Limitation—51% Only cases with a total yaw travel be-
low 20◦ were considered. In both the RAAW and AWAKEN 
projects, the wind turbine operates at a nominal control point, 
allowing the rotor to yaw and optimally align with the incoming 
wind. Yaw activity is evident in lidar scans as abrupt changes 
or sweeping movements of the wakes within the scanned sec-
tors. Very few lidar scan periods are completely free from yaw 
activity, hence the 20◦ travel limitation.

Power Production Threshold—18% Cases were filtered to include 
only those where active power is greater than 150 kW and 
that power generation is within one standard deviation of the 
nominal power curve. This criterion ensures that the turbine 
is operating nominally and that a wake will be evident in the 
lidar data. The selection allows for describing wake meandering 
under a wide range of atmospheric conditions and inflow wind 
speeds.

Variability Filtering—10% As a final quality control step, cases were 
excluded where the total variation exceeded the 90th percentile. 
Following the method outlined by Hamilton [46], total variation 
is defined as the determinant of the covariance matrix relating 
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Fig. 5. Power curve from turbine H05 at the King Plains Wind Plant. All available cases 
are shown with gray points, cases selected for analysis in the current work are colored 
by the total yaw travel of the turbine during the measurement period. The nominal 
power curve (black dashed line) was calculated from an open-source model [47].

inflow wind speed, wind direction, turbulence intensity, turbine 
power production, and nacelle position signals from the SCADA 
record. This step ensures that only statistically stationary condi-
tions are considered, eliminating cases with drastically changing 
atmospheric conditions or significant turbine control actions 
during the lidar scan period.

A total of 65 cases were retained after applying each of the quality 
control filters enumerated above, including 54 cases from the AWAKEN 
project and 11 cases from the RAAW project. Fig.  5 shows the distri-
bution of the full range of cases with wake PPI scans. Cases that did 
not pass all of the quality control measures listed above are shown in 
gray. The final cases selected for analysis are highlighted in the figure 
according to the total yaw travel observed during the respective wake 
scanning period.

4. Results

The integral timescale of atmospheric turbulence provides a mea-
sure of the temporal correlation of velocity fluctuations in the atmo-
spheric boundary layer. The autocorrelation coefficient 𝜌(𝜏) is then 
defined as 

𝜌(𝜏) =
⟨𝑢′(𝑡)𝑢′(𝑡 + 𝜏)⟩

𝜎2
(13)

where 𝑢′(𝑡) represents the turbulent velocity fluctuations, 𝜏 is the time 
lag, ⟨⋅⟩ denotes the ensemble average, and 𝜎2 is the variance of the 
velocity fluctuations. The integral timescale 𝑇  is calculated by integrat-
ing the autocorrelation function up to the point where it decays to a 
specified threshold: 

𝑇 = ∫

𝜏𝑐

0
𝜌(𝜏), 𝑑𝜏 (14)

Here, 𝜏𝑐 represents the correlation decay limit, typically chosen as 
the point where 𝜌(𝜏) = 0.05, rather than the first zero-crossing point 
to account for sampling errors [48]. This integration captures the 
temporal coherence of turbulent fluctuations, providing insight into the 
characteristic timescales of atmospheric turbulence. In practice, this 
calculation was performed using 20-Hz wind speed measurements from 
a sonic anemometer positioned at hub height for the turbines in each 
project, with computations based on 30 min averaging periods.

Fig.  6 shows the distribution of inflow wind speed, 𝑈∞, integral 
timescale, 𝑇 , and inflow Strouhal number, 𝑆𝑡in for each of the 65 cases 
from the combined RAAW and AWAKEN experiments. The integral 
timescales, 𝑇 , are taken as the characteristic period of the fluctuation 
in the velocity field and are used to define the characteristic frequency 
of turbulent fluctuations in the discussion of meandering frequencies.
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Average scans for selected cases are shown in Fig.  7 and highlight 
differences in the peak momentum deficit and recovery rate of wakes 
in different atmospheric conditions. While all datasets include some 
yaw activity, the average wake is centered around 𝛼 = 0. Each of the 
time-averaged velocity fields in Fig.  7 highlights characteristics of the 
wind turbine wake as well as the influence of the atmospheric forcing 
conditions and effects of the wind turbine operations and controls. 
The data quality control preferentially selects the most statistically 
stationary cases from the full population of data. As a consequence, 
there is a bias toward stable atmospheric conditions in which the 
yaw travel was minimized during the lidar collection periods of both 
experiments.

Yaw activity is not directly evident in the time-averaged wakes. 
However, Fig.  8 shows a time-azimuth cross section of a single dataset 
at a range of approximately 𝑥∕𝐷 = 8 (1 km), in which the wake is 
highlighted as a low wind speed region that persists in time across 
the figure. Meander in the azimuthal direction seen in the figure com-
bines the effects of several factors. While the wake center does travel 
horizontally, there are also translations of the wake center introduced 
by the yaw activity of the rotor. Horizontal wake center locations, 
𝜇, are estimated as the center location of the Gaussian function fit 
to the velocity deficit, as in Eq.  (2). Yaw activity becomes especially 
evident in the time histories of detected wake centers, presented in 
Fig.  9. Yaw activity, illustrated by the dashed black line and related 
vertical axis on the right, are evident in the detected centers as sudden 
shifts in the wake center time histories. Because changes in the nacelle 
position impact the apparent wake centers uniformly at all ranges, a 
simple correction can be applied to the wake centers as 𝛥𝜇 = 𝑟 sin 𝛼, 
where 𝑟 indicates the distance from the lidar (range), and 𝛼 indicates 
the nacelle orientation with respect to the position at the beginning 
of each dataset. Correcting for changes in nacelle position throughout 
each dataset is important to correctly characterize the distributions of 
wake centers and their dynamics in the turbine frame of reference. It 
should be noted that turbines take yaw-correcting actions only after 
an integrator of error between the measured wind direction and the 
nacelle position exceeds a threshold. This means that in most cases 
there remains some influence of yaw misalignment on the detected 
wake centers, even after correcting for yaw activity. Without a time 
history, it is not possible to accurately account for the yaw error. 
However, this sort of misalignment is part of the nominal operation 
of a turbine under normal control conditions and is a possible trigger 
for wake meandering.

An example of the momentum deficit measured by the lidar is 
shown in Fig.  10 in blue, along with local fits of the Gaussian function 
in black and detected wake centers as red points. Each of the subfigures 
indicate a good level of agreement between the momentum deficit and 
fit function, building confidence in the Gaussian model of the wake. 
Alternative methods of detecting the wake centers have been explored 
in the literature,[14] including a momentum-centroid approach and 
local minimum velocity methods, but are not explored in the current 
work for brevity.

An alternative view of the detected wake centers is provided in 
Fig.  11, where 𝜇∕𝐷 is noted on the lidar scans as points colored by 
their respective 𝑅2 values. In both examples, it is evident that the 𝜇∕𝐷
follows the bulk momentum deficit in the wake quite closely. A bias 
of 𝜇∕𝐷 toward positive values of 𝑦∕𝐷 in the near wake 𝑥∕𝐷 ≲ 3
is also visible in the scan taken at 2023-09-04 10:42:15 UTC (left). 
This bias, which persists throughout many of the scans, arises from the 
asymmetric double-Gaussian profile of the momentum deficit very near 
the turbine, described in analytical models in [49,50]. Positive bias of 
𝜇∕𝐷 in the near wake is not easily corrected, and leads to impacts later 
in the analysis, including power spectral densities an representation 
with the ROMs.

Wake meandering combines the downstream advection of 𝜇 by 
the mean flow and turbulent structures in the wake. Trajectories of 
𝜇 throughout the measurement domain are shown in Fig.  12 (left) 
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Fig. 6. Distributions of the average inflow wind speed, 𝑈∞, integral timescale, 𝑇 , and Strouhal Number, 𝑆𝑡in, at hub height for the subset of conditions corresponding to the 65 
selected cases.
Fig. 7. Average wake velocity fields for 2023-08-11 10:30 (top left), 2023-09-04 10:30 (top right), 2023-09-19 06:30 (bottom left), 2023-10-25 06:30 (bottom right) showing a 
range of background velocities, momentum deficits, and wake recovery rates.
for several times in the dataset. The meander is also evident in the 
trajectories as a local tendency back toward positive values of 𝑦. The 
amplitudes of these meandering structures also tend to increase as they 
advect downstream. Kernel density estimates of wake center locations 
are shown in Fig.  12 (right), highlighting the tendency of the 𝜇 to 
spread out at greater streamwise distances.

In addition to statistical descriptions of the wake center, we are 
also interested in dynamics of wake meandering, specifically relating 
the characteristic frequencies of wake meandering, quantified through 
power spectral densities (PSD, Eq.  (15)) to inflow conditions and the 
POD modes, 𝜙𝑖. PSDs are calculated using Welch’s method as 

𝑆𝜇𝜇(𝑓 ) =
1
𝐿

𝐾
∑

𝑘=1

1
𝑁

|

|

|

|

|

|

𝑁
∑

𝑛=1
𝜇𝑘(𝑛)𝑒−𝑖2𝜋𝑓𝑛∕𝑁

|

|

|

|

|

|

2

(15)

where 𝐾 is the number of segments, 𝐿 = 512 samples is the number 
of points in the fast Fourier transform, 𝑁 = 1024 is the length of 
each segment, and 𝜇𝑘(𝑛) is the 𝑘th segment of the time series. A 
uniform window function is applied to each segment in the calculation 
of the PSDs. The reduced frequency, 𝑓𝑠 = 𝑓𝐷∕𝑈∞, is normalized by 
considering the average inflow velocity recorded by the met towers, 
𝑈∞, and the turbine’s rotor diameter, 𝐷.

Fig.  13 (left) shows 𝑆𝜇𝜇 as a function of the reduced frequency 
at several downstream distances in the wake. The pink vertical line 
indicates the inflow Strouhal number, 𝑆𝑡𝑖𝑛, which acts as the cutoff 
frequency for wake meandering in the remainder of the results. Fig.  13 
7 
(right) shows the premultiplied spectra 𝑓 5∕3
𝑠 ⋅𝑆𝜇𝜇 , which highlights the 

deviation of the meandering spectra from the classical turbulence decay 
law. The meandering frequency is defined as the reduced frequency at 
which the maximum value of the premultiplied spectrum occurs: 
𝑓𝑚 = argmax 𝑓 5∕3

𝑠 ⋅ 𝑆𝜇𝜇(𝑓𝑠) (16)

The normalized amplitude of wake meandering is assessed considering 
the PSD of 𝜇 at 𝑓𝑚, 𝐴𝑚 =

√

𝑆𝜇𝜇(𝑓𝑚). Fig.  14 compares the meandering 
amplitudes and frequencies for each of the 65 cases considered in this 
study, colored by the inflow velocity. As a general observation, the 
range of meandering frequencies shown in the combined AWAKEN and 
RAAW datasets is 0.1 ≤ 𝑓𝑚 ≤ 0.7, which is slightly larger than the range 
reported in past studies.

The snapshot POD introduced in Section 2.2 requires state space 
observations with consistent dimensions and coordinates, making it 
impractical to correct for yaw before decomposition. Remapping wake 
observations from lidar scans onto a corrected reference frame down-
stream of the turbine would introduce inconsistencies in the azimuthal 
coordinates or create empty radial slices, both of which would compli-
cate the eigenvalue decomposition central to the POD analysis.

Each of the 65 cases has azimuth coordinates that vary slightly due 
to the continuous scan operation of the lidar, which assigns nominal 
azimuth angles after a set time delta. Operational delays, data transmis-
sion, and status checks cause small variations in the number of scans 
per dataset. This analysis focuses on the low-rank POD modes that 
account for most of the TKE in the lidar scans. Although the energy 
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Fig. 8. Wake velocity at a fixed downstream distance of 𝑥∕𝐷 = 8 for observations at 2023-08-11 10:30 UTC (top left), 2023-09-04 10:30 UTC (top right), 2023-09-19 06:30 UTC 
(bottom left), 2023-10-25 06:30 UTC (bottom right).
Fig. 9. Detected wake centers directly from lidar observations (blue) and after 
correcting for yaw activity of the turbine (orange). The dashed black line indicates 
nacelle position changes from the beginning of the time series and corresponds with 
the axis labels on the right.

distribution across POD modes varies between datasets, researchers 
order the modes by descending energy, with the eigenvalue 𝜆𝑖 of each 
mode representing the energy distribution.

We use only the first 14 POD modes, which capture the most 
coherent structures in the lidar scans, to reconstruct flow fields for 
meandering analysis. The eigenvalues 𝜆𝑖 quantify the TKE captured in 
each reduced-order model (ROM), directly measuring reconstruction 
error. Missing energy in a ROM remains bounded by the smallest 
mode eigenvalue included in the reconstruction. Fig.  15 illustrates the 
distribution of TKE described by the POD modes across all cases. This 
analysis excludes the energy of the zeroth mode 𝜙0, which represents 
the mean flow field, ensuring the normalized sum represents only the 
TKE. The black dashed line in the figure identifies the threshold at 
which the POD modes capture 90% of the TKE. In some cases, as few as 
four modes meet this threshold, while other cases require more modes. 
8 
In all but two outlier cases, the POD meets the 90% TKE threshold with 
a maximum of 14 modes.

We apply the POD independently to each lidar dataset, producing 
a unique basis of modes for each case. Fig.  16 shows the POD modes 
associated with the case beginning at 2023-09-04 10:30 UTC. Although 
the mode bases differ quantitatively for each case, their structure and 
order remain qualitatively similar. Colorbars are included with each 
mode for completeness, although the units and quantitative values only 
become meaningful when they combine the modes with their respective 
coefficients to form a ROM.

The zeroth mode, 𝜙0, represents the mean flow, capturing the 
characteristic momentum deficit in the wind turbine wake (see Table 
2). It should be noted here that the basis of observations comprises 
the instantaneous velocity, rather than just the fluctuations. Thus, the 
zeroth mode is a true POD mode with a time-varying coefficient and 
represents dynamics of the momentum deficit. Modes 𝜙1 through 𝜙14
describe coherent wake structures ranked by their contributions to the 
lidar scans. The first mode, 𝜙1, accounts for 20% to 80% of the TKE 
and primarily describes lateral shifts in the wake, crucial for wake 
meandering. Mode 𝜙2 represents a full oscillation in the streamwise (𝑥) 
direction and a half oscillation in the transverse (𝑦) direction, reflecting 
large streamwise wake variations. Mode 𝜙3 introduces an additional 
half-period in 𝑥, describing 1.5 periods in the lidar scan domain.

Higher-order modes become increasingly complex and difficult to 
assign a concise description. Mode 𝜙4 exhibits significant azimuthal 
asymmetry, complicating direct interpretation. In contrast, 𝜙5 is sym-
metric, describing a full oscillation in 𝑥 and possibly reflecting vertical 
wake meandering. Mode 𝜙9 describes two full periods in 𝑥, further illus-
trating the complexity of higher-order structures. Azimuthal symmetry 
is defined here as a cosine distance, 𝑑, between the upper (𝑦+) and 
lower (𝑦−) halves of the PPI scan sector across the time-averaged wake 
center, nominally at 𝑦∕𝐷 = 0, and is posed mathematically as 

𝜅(𝜙𝑖) =
𝜙𝑖,𝑦+ ⋅ 𝜙𝑖,𝑦− (17)
‖𝜙𝑖,𝑦+‖‖𝜙𝑖,𝑦−‖
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Fig. 10. Detected wake centers showing Gaussian fit against momentum deficit. Blue lines indicate momentum deficit estimated from lidar scans, dashed line shows the fit Gaussian 
profile, point marker is the detected wake center 𝜇∕𝐷.
Fig. 11. Example lidar scans showing 𝑢 overlaid with the fitted wake centers. Detected wake centers are colored by their respective coefficient of determination.
Fig. 12. Wake center trajectories for selected times (left) and kernel density estimates of wake centers by distance downstream of the lidar (right).
Fig. 13. Power spectral densities (left) and premultiplied spectra (right) of detected wake centers from the lidar data at selected downstream distances.
By nature of the cosine distance, modes that are perfectly symmetric 
show behavior where 𝜙𝑖,𝑦+ = 𝜙𝑖,𝑦−, which leads to a cosine distance of 
𝜅(𝜙 ) = 1. Similarly, antisymmetric modes are those for which 𝜙 =
𝑖 𝑖,𝑦+

9 
−𝜙𝑖,𝑦−, leading to 𝜅(𝜙𝑖) = −1. Modes characterized as asymmetric in 
the current study are those for which |𝜅(𝜙𝑖)| ≤ 0.3. The cosine distance 
for each mode shown in Fig.  16 is shown in Table  2.
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Table 2
Description of POD mode structure, periodicity, and associated eigenvalue.
 Mode, 𝑖 Structure 𝜅(𝜙𝑖) Description  
 0 symmetric 1.00 Mean momentum deficit of the wake  
 1 antisymmetric −0.94 Full period in 𝑦, half-period in 𝑥  
 2 antisymmetric −0.78 Contains a full period each in 𝑥 and 𝑦  
 3 antisymmetric −0.81 Represents 1.5 periods in 𝑥 and one period in 𝑦 
 4 asymmetric −0.30 Significant azimuthal and radial asymmetry  
 5 symmetric 0.65 Describes 1 full period in 𝑥  
 6 symmetric 0.39 1.5 periods in 𝑥  
 7 asymmetric −0.18 Highlights shear layer at negative 𝑦  
 8 symmetric 0.48 May represent 1.5 periods each in 𝑥 and 𝑦  
 9 symmetric 0.48 Describes 2 full periods in 𝑥  
 10 asymmetric −0.21 Phase-offset, but similar to 𝑝ℎ𝑖7  
 11 symmetric 0.40 Highlights shear layer at positive 𝑦  
 12 asymmetric 0.02 Shows 2.5 periods in 𝑥, 2 periods in 𝑦  
 13 symmetric 0.34 Phase-offset, but similar to 𝑝ℎ𝑖12  
 14 asymmetric −0.13 Higher order, but similar to 𝑝ℎ𝑖7  
Fig. 14. Relationship between meandering amplitude, frequency, and inflow velocity.

Fig. 15. The distribution of cumulative TKE described by the POD eigenvalues for the 
collection of 65 cases.

Following Eq.  (10), we reconstruct the flow field using 16,278 
unique subsets, including 3–14 POD modes in addition to 𝜙0 represent-
ing the momentum deficit of the wake. Fig.  17 shows the combinations, 
ranging from ROMs with only three turbulent modes and 𝜙0 on the 
right, to those incorporating more modes on the right. Each recon-
structed wake profile was fitted to a Gaussian function (Eq. (2)) to 
estimate the lateral wake center, 𝜇̂.

When reconstructing velocity fields using POD modes, we aim to 
match the PSD of wake center locations from the reconstructed field, 
𝑆𝜇̂𝜇̂ , to the original field, 𝑆𝜇𝜇 . We consider mode combinations that re-
produce wake meandering (i.e., 𝑆𝜇𝜇 ≈ 𝑆𝜇̂𝜇̂) representative of wake me-
andering in the low-order velocity field. Coherence, defined in Eq. (18), 
quantifies the similarity between wake center trajectories in the lidar 
10 
scans and ROMs: 

𝐶𝜇𝜇̂(𝑓, 𝑥) =
|𝑆𝜇𝜇̂(𝑓, 𝑥)|2

𝑆𝜇𝜇(𝑓, 𝑥)𝑆𝜇̂𝜇̂(𝑓, 𝑥)
(18)

Here, coherence 𝐶𝜇𝜇̂(𝑓, 𝑥) measures the similarity of wake center dy-
namics at frequency 𝑓 . A value of 𝐶𝜇𝜇̂(𝑓, 𝑥) = 1 indicates a perfect 
match between PSDs, while 𝐶𝜇𝜇̂(𝑓, 𝑥) = 0 indicates no match.

PSDs of wake centers tend to show better agreement at lower 
frequencies (𝑓𝑠 < 𝑆𝑡𝑖𝑛), which the POD modes in ROMs capture more 
accurately. Coherence decreases at higher frequencies, but because 
wake meandering is predominantly a low-frequency phenomenon, this 
reduction in coherence at higher 𝑓𝑠 is acceptable for the purposes of 
this study. Fig.  18 highlights the average coherence across the full 
frequency range for several cases. Good agreement between 𝑆𝜇𝜇 and 
𝑆𝜇̂𝜇̂ is observed, particularly for 𝑥∕𝐷 > 4. Highlighted regions in Fig. 
18 show where 𝑓𝑠 > 𝑆𝑡𝑖𝑛, corresponding to reduced frequencies above 
the inflow Strouhal number, that are not typically associated with wake 
meandering.

Focusing on specific frequency ranges of 𝐶𝜇𝜇̂ provides a more accu-
rate evaluation of each ROM’s ability to reproduce wake meandering. 
High-frequency spectra are irrelevant for this analysis, as they do not 
reflect the physics of wake meandering. We evaluate the trends for 
ROMs in Fig.  18 by calculating the average coherence, 𝐶𝜇𝜇̂ , over the 
respective frequency ranges.

A more complete assessment of ROM quality appears in Fig.  19, 
which shows the average coherence over the reduced frequency, 𝐶𝜇𝜇̂. 
The top subfigure displays 𝐶𝜇𝜇̂ for the full frequency range, with an 
average coherence of approximately 0.3 for most cases. The bottom 
subfigure, restricted to 𝑓𝑠 ≤ 𝑆𝑡𝑖𝑛, reveals more consistent results across 
blocks of ROMs. Referring to the mode distribution in each ROM shown 
in the combination tree (Fig.  17), a clear correlation emerges between 
𝐶𝜇𝜇̂ and the inclusion of specific modes.

Fig.  19 also reveals the dependence of 𝐶𝜇𝜇̂ on the downstream 
distance from the lidar, as indicated by the vertical axes. By averaging 
along the range coordinate, we aggregate this information into a single 
scalar metric for each ROM, 𝜀 = ⟨𝐶𝜇𝜇̂⟩, where the angle brackets denote 
averaging along the streamwise coordinate. This allows us to describe 
the ROM distribution with a quantitative fit quality metric. Fig.  20 (left) 
shows 𝜀 arranged by ROM index across the 16,278 mode combinations. 
The data in Fig.  20 reflect the same information as Fig.  19, averaged 
over the vertical axis (streamwise coordinate). On the right side of Fig. 
20, the distribution of ROM quality is shown according to the number 
of modes used in each ROM. Although including more modes generally 
improves the representation of wake meandering, several exceptions 
to this trend exist. The distributions in Fig.  20 (right) show that some 
ROMs with only four modes outperform others with 10 or more modes.

To investigate the sensitivity of wake center coherence to POD 
modes, we use an Analysis of Variance (ANOVA) approach [51]. We 



N. Hamilton et al. Renewable Energy 254 (2025) 123555 
Fig. 16. POD modes from the example case on 2023-09-04 10:30 UTC.
Fig. 17. Combination tree indicating which modes are contained in any given ROM. Modes are indicated by the colored regions, and their absence is shown in white.
develop a statistical model to decompose the average coherence into 
contributions from individual modes and their interactions. The model 
takes the following linear decomposition form, where 𝜀 is the average 
coherence, a quality metric for each ROM: 

𝜀 = 𝜀 +
𝑛
∑

𝑖=1
𝛽𝑖𝑞𝑖 +

𝑛
∑

𝑖<𝑗
𝛾𝑖𝑗𝑞𝑖𝑞𝑗 + 𝜉 (19)

Here, 𝜀 represents the mean coherence of all 16,278 ROMs per case, 𝛽𝑖
are the main effects of individual modes, and 𝛾𝑖𝑗 capture the interaction 
effects between modes. The binary variables 𝑞  indicate the presence 
𝑖

11 
(1) or absence (0) of each mode, with the constraint that at least three 
modes must be included. The term 𝜉 represents the residual error, 
describing noise not accounted for in the model in Eq.  (19).

We impose statistical constraints, assuming that both the main 
effects 𝛽𝑖 and interaction terms 𝛾𝑖𝑗 follow a normal distribution with 
zero mean, and that the residual error 𝜉 follows a normal distribution. 
The goal is to estimate the coefficients 𝛽𝑖 and 𝛾𝑖𝑗 that minimize the 
residual error and provide insight into how modes and their combi-
nations influence wake center coherence. This approach allows for a 
comprehensive sensitivity analysis, capturing the complex, potentially 
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Fig. 18. Spectra (left) and coherence (right) for the ROMs that compare best (green) and worst (orange) to the PSD of 𝜇 from the lidar scans.

Fig. 19. Frequency-averaged coherence between detected wake centers from lidar scans and ROMs considering the full measured frequency range (top) and only frequencies 
𝑓𝑠 ≤ 𝑆𝑡𝑖𝑛 Hz (bottom).

Fig. 20. Frequency- and range-averaged coherence between detected wake centers from lidar scans and ROMs considering 𝑓𝑠 ≤ 𝑆𝑡𝑖𝑛 Hz (left). Distribution of 𝜀 by the number of 
modes contained in each ROM (right).

Renewable Energy 254 (2025) 123555 
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Fig. 21. Main effect 𝛽𝑖 of each mode and interaction effects 𝛾𝑖𝑗 between modes building the linear system that describes the dependence of average coherence on the presence or 
absence of each mode.
Fig. 22. Distributions of 𝜀 consider ROMs that include each mode (blue) or exclude each mode (orange).
nonlinear interactions between POD modes in representing wake center 
dynamics.

Fig.  21 (right) shows the main effects 𝛽𝑖 of each mode for the case 
beginning at 2023-09-04 10:30 UTC, the same case used to illustrate the 
POD modes above. One key finding illustrated by this figure is that the 
importance of each mode does not decay monotonically with the mode 
index. This indicates that although certain modes may represent more 
TKE in the full basis, they do not necessarily have a greater impact 
13 
on wake meandering. Instead, the modes that exhibit asymmetrical 
structure across the wake centerline also tend to have the largest values 
of 𝛽𝑖. The magnitude of the mode coefficients is small, 𝛽 ≲ 0.1, due to 
the bounded range of the average ROM coherence, 0.3 < 𝜀 < 0.55.

To illustrate the importance of each mode more completely, Fig. 
22 splits the full distribution of 𝜀 (in white) into subsets of ROMs that 
include (blue) or exclude (orange) each of the first 14 modes. Modes 
with the strongest impact on 𝜀 (i.e., modes 1, 2, 3) show the greatest 
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Fig. 23. Distributions of the average coherence for ROMs that include or exclude the indicated pairs of modes listed in descending order of importance. For each mode pair, from 
left to right, 𝛾2,3 = 0.209, 𝛾3,4 = 0.157, and 𝛾1,3 = 0.125.
Fig. 24. Normal distribution of the ANOVA residual error, 𝜉 (left), and residual error aggregated by the number of modes in each ROM (right).
Fig. 25. Wake centers for a single stamp comparing observations from the lidar (black) and centers estimated with (green) and without (orange) 𝜙1 (left) and 𝜙5 (right).
separation between distributions of ROMs that include or exclude 𝜙𝑖. 
Moreover, ROMs that contain the modes that have the greatest positive 
impact on 𝜀 always show distributions with means greater for ROMs 
that that exclude 𝜙𝑖. Conversely, distributions for modes with little 
influence on 𝜀 (e.g., modes 9, 11, 13) are nearly identical for ROMs 
that include or exclude the modes.

The case at 2023-09-04 10:30 UTC also exhibits relatively large 
mode interaction effects between a few particular mode pairs, as shown 
in Fig.  21 (right). In particular, 𝜀 shows a strong colinear dependence 
on modes 2 and 3, modes 3 and 4, and modes 1 and 3, in descending 
order. Fig.  23 compares the distribution of 𝜀 for ROMs containing both 
modes in the pair (𝜙𝑖 + 𝜙𝑗 ) against that for ROMs not containing both 
modes ¬(𝜙𝑖+𝜙𝑗 ), including those that contain only one of the modes of 
interest. Interestingly, the distribution of 𝜀 for the pair 𝜙1 + 𝜙3 (right) 
is roughly normal, while for mode pairs 𝜙2 + 𝜙3 and 𝜙3 + 𝜙4 (left and 
center), the distributions are strongly bimodal.

Verifying one of the key assumptions that underpins the ANOVA 
described by Eq.  (19), the residual 𝜉, shown in Fig.  24 (left), is roughly 
normally distributed. The range of 𝜉 is relatively small, with a standard 
deviation of 𝜎𝜉 ≈ 0.003, although the main effect 𝛽𝑖 of some less relevant 
modes falls within the range of the residual. Fig.  24 (right) also shows 
that the distributions of 𝜉, aggregated by the number of modes used to 
compose a ROM, are approximately normally distributed. Distributions 
of ANOVA residual error appear to be consistently centered around 
14 
𝜉 = 0, except for ROMs with 4 modes where there is a slight negative 
bias, and ROMs with more than 11 modes for which there is a slight 
positive bias. Recalling that the sample size of ROMs composed with 
a given number of modes varies (Fig.  1), the distributions for ROMs 
composed with fewer than 4 or more than 11 modes are not necessarily 
statistically converged. Distributions of ROMs composed with between 
6 and 10 modes contain at least 1000 samples, suggesting that they 
represent distributions of 𝜉 more accurately.

To illustrate the range of ROM accuracy, Fig.  25 compares detected 
wake centers from the lidar directly to the low-order descriptions 
provided by selected modes. Specifically, Fig.  25 highlights the ROMs 
with the maximum (solid colored lines) and minimum values (dashed 
colored lines) of 𝜀, that is, the ROMs that have wake center dynamics 
that show the maximum and minimum average correlation with the 
lidar observations. The importance of the presence or absence of either 
𝜙1 or 𝜙5 (left and right, respectively) is highlighted by comparing the 
colored traces indicating the wake centers predicted by the ROMs. In 
the case of the first mode (with a large 𝛽 coefficient), the trace for 
𝜀max|𝜙1 (solid green line) case is nearly identical to the wake centers 
observed with the lidar. In the absence of the first mode, the best case 
of 𝜀max|¬𝜙1 (solid orange line) shows meandering with a much smaller 
amplitude than expected. Looking toward the fifth mode, the best and 
worst cases are nearly indistinguishable considering ROMs with and 
without 𝜙 , visually demonstrating the lack of dependence of 𝜀 on 𝜙 . 
5 5
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Fig. 26. Trends of 𝛽 considering all 65 cases in the overall study.
Fig. 27. Trends of 𝛾 𝑖𝑗 = 𝑓 (𝜙𝑖 , 𝜙𝑗 ) considering all 65 cases in the overall study.
For both examples, the shaded region indicates the range of 𝜇̂ given 
either the presence (green) or absence of the respective mode.

Considering the full population of 65 cases considered in this study, 
Fig.  26 shows the overall trends of 𝛽 with mode index. The mean profile 
in blue indicates that the first mode tends to contribute quite strongly to 
the linear model of 𝜀, with a coefficient of 𝛽1 = 0.4. In most cases, the 
mode 𝜙1 is qualitatively similar to that shown for 2023-09-04 10:30 
UTC in Fig.  16, exhibiting a strongly antisymmetric character along 
the average wake centerline and a half-period of streamwise variation. 
Fig.  26 indicates that this mode can account for a huge amount of 𝜀, 
ranging from a coefficient of 0.2 ≤ 𝛽1 ≤ 0.75, as shown by the pink lines 
indicating maximum and minimum values.

The range of 𝜙2 is even larger, showing a maximum value of 𝛽2 =
0.72, similar to that of 𝛽1, while the minimum value is 𝛽2 = −0.02, 
indicating that for some cases, the average correlation 𝜀 is weakly 
anticorrelated with mode 𝜙2. Similar behavior is evident for modes 
𝜙2 through 𝜙8, where at least the modes work against the successful 
representation of 𝜀 for several cases.

Fig.  26 (right) shows the distributions of 𝛽0 through 𝛽4 in greater 
detail as violin plots with markers indicating values for individual 
cases. Overall, the figure suggests a trend of decreasing range of 𝛽 as 
the mode increases. Modes 1, 2, and 4 show what appear to be outlier 
values extending the range to higher positive values of 𝛽. Mode 0 also 
appears to have a bimodal distribution of 𝛽. Because there are only 
65 cases in the current study, and those cases span a wide range of 
atmospheric conditions, insights drawn from the relationship between 
𝜀 and 𝛽𝑖 should be treated with an appropriate level of caution.

The description of multi-colinear dependence of 𝜀 on the modal 
basis 𝜙𝑖 has a similar trend. Fig.  27 shows the mean (left) and standard 
deviation (right) of 𝛾𝑖𝑗 for the collection of 65 cases. Overall, 𝜙1 has 
the strongest colinear behavior with the other modes in the basis, 
15 
with a maximum value of 𝛾1,2 = 0.29 and decreasing monotonically 
with 𝑗 thereafter. The average colinear dependence of higher-order 
modes is even lower, suggesting that the global behavior for 𝜀 may be 
that a purely linear relationship is sufficient for description of wake 
meandering. The standard deviation of 𝜎𝛾𝑖𝑗  shows similar trends as the 
mean, where the largest values are located in the top left, for colinearity 
between 𝜙1 and 𝜙2, decreasing as both 𝑖 and 𝑗 increase.

While the average behavior of 𝛽 suggests a monotonic decrease 
in value mode index, the true relationship is likely more complex 
and probably depends on the nature of the POD modes (symmetry, 
sequencing, etc.) representing wake dynamics for each case. Fig.  28 
compares the log of the mode eigenvalues, log10(𝜆𝑖) to the main effect 
coefficients 𝛽𝑖, colored by the mode number. Because 𝛽𝑖 tends toward 
zero for all cases while 𝜆𝑖 show a wide range of values for each mode, 
no direct relationship between the two is directly evident in the current 
data. This disparity is thought to arise from the fact that the two vari-
ables describe related but different phenomena. POD modes describe 
the variance-maximizing structures in the observational basis; that is, 
they describe the TKE in the measurement domain of the nacelle-
mounted scanning lidars—the eigenvalues 𝜆𝑖 quantify the TKE each 
mode represents in the overall budget. The main effect coefficients, 
𝛽𝑖, describe the dependence of the streamwise-averaged and reduced 
frequency-averaged correlation between wake centers estimated by a 
Gaussian function fit to the observational data and estimates made by 
a ROM as described by a subset of POD modes.

While the main effect coefficients do not appear to be correlated 
with the POD eigenvalues, there is a stronger connection with the mode 
symmetry, described in Eq.  (17). Fig.  29 compares 𝛽𝑖 to the cosine 
distance that quantifies mode symmetry, 𝜅(𝜙𝑖). Because the momentum 
deficit of the wake for each case is approximately symmetric along 
𝑦∕𝐷 = 0, the associated cosine distance 𝜅(𝜙 ) ≈ 1 for all cases. The 
0
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Fig. 28. Comparison of POD mode eigenvalues 𝜆𝑖 to main effect coefficients 𝛽𝑖 for all 
65 cases.

Fig. 29. Comparison of the mode symmetry 𝜅(𝜙𝑖) to main effect coefficients 𝛽𝑖 for all 
65 cases.

first mode tends to contain the most important contribution to wake 
meandering, and is also the most strongly antisymmetric, as indicated 
by the large negative values of 𝜅(𝜙1) (green markers). Other modes, 
which exhibit a wide range of 𝜅(𝜙𝑖), are less important in the prediction 
of wake meandering.

The data in Figs.  28 and 29 suggest that the relevance of POD modes 
to wake meandering can be described based on their intrinsic charac-
teristics. Mode symmetry, and to a lesser extent the TKE captured by 
each mode, allows us to estimate the significance of individual modes 
for the physics of wake meandering, independent of inflow conditions. 
However, this description remains phenomenological rather than causal 
or predictive. Fig.  30 connects the aggregate mode effect coefficients, 
∑

𝑖 𝛽𝑖, to inflow characteristics collected from the meteorological towers 
and surface stations in the AWAKEN and RAAW campaigns. Instead 
of analyzing individual mode effects, this approach aggregates the 
coefficients to provide a general measure of the predictive capability 
of the POD-based ROMs for wake meandering.

The results in Fig.  30 indicate that the aggregate mode effect co-
efficients correlate strongly with the integral timescale and turbulence 
intensity (TI) of the inflow (Fig.  30, left). The data show that the POD 
basis is more predictive of wake meandering in cases with low TI and 
large integral timescales. In contrast, for cases with moderate or high 
inflow turbulence (TI > 7%), the ROM’s predictive accuracy diminishes. 
The center panel of Fig.  30 examines the relationship between the 
aggregate mode effect coefficient, the inflow Strouhal number, and 
the friction velocity 𝑢∗ = (𝑢′𝑤′2 + 𝑣′𝑤′2)1∕4. The analysis reveals an 
anticorrelation between the ROMs’ effectiveness and both the Strouhal 
number and friction velocity. This suggests that the predictive capabil-
ity of the modal basis decreases as these metrics increase. The right 
panel of Fig.  30 explores the relationship between the aggregate mode 
effect coefficient and surface-layer exchanges that quantify atmospheric 
stability. While ∑𝑖 𝛽𝑖 shows weaker correlations with the sensible heat 
flux, 𝑞𝑠 = 𝜌𝐶𝑝𝑤′𝜃′, and momentum flux, 𝜏𝑠 = 𝜌(𝑢′𝑤′2 + 𝑣′𝑤′2)1∕2, the 
data suggest that POD modes are more predictive of wake meandering 
under near-neutral conditions when turbulent transport of momentum 
16 
Table 3
Pearson correlation coefficient between the aggregate mode effect coefficients and key 
atmospheric characteristics.
 Variable Correlation strength 
 Integral timescale 𝑇𝑖𝑛𝑡 0.74  
 Turbulence intensity TI −0.70  
 Friction velocity 𝑢∗ −0.68  
 Momentum flux 𝜏𝑠 0.62  
 Inflow Strouhal number 𝑆𝑡𝑖𝑛 −0.60  
 Sensible heat flux 𝑞𝑠 0.45  

approaches zero. Pearson correlation coefficients between the aggre-
gate mode effect coefficients and the key inflow quantities are listed in 
Table  3.

5. Conclusions

This study leverages remote sensing data from nacelle-mounted 
scanning lidars to quantify wake meandering using snapshot POD and 
spectral methods. We find that the statistics of wake meandering differ 
across test cases, revealing significant insights into the spatiotemporal 
and spectral characteristics of wake dynamics. Our analysis of POD 
modes challenges conventional descriptions of wake meandering and 
its expected relationships with atmospheric inflow.

While low-order modes capture the largest, most energetic turbu-
lent structures, these modes do not necessarily contribute the most 
to accurately representing wake meandering. Some modes show no 
correlation with meandering dynamics, and others distort or detract 
from an accurate representation of wake behavior. This finding suggests 
that certain modes are either irrelevant to wake meandering or are 
only regionally relevant. Importantly, the relevance of modes appears 
to depend on their symmetry and the amount of TKE they contain, as 
well as their connection to inflow characteristics such as turbulence 
intensity and integral timescales.

These results indicate that cases with low turbulence intensity 
and large integral timescales yield stronger correlations between POD 
modes and wake meandering, while cases with moderate or high inflow 
turbulence (TI > 7%) are less effectively captured by the ROM. More-
over, wake meandering models based on aggregated modal coefficients 
are anticorrelated with friction velocity and inflow Strouhal number, 
suggesting that the predictive strength of the modal basis is not easily 
deduced by characteristics of the inflow turbulence. These insights 
highlight the complex and multifaceted relationship between wake 
meandering and atmospheric dynamics, which current passive tracer 
or coherent structure interaction models fail to fully describe.

Although the POD modes describing wake dynamics differ quanti-
tatively from case to case, they exhibit a qualitative similarity across 
a wide range of atmospheric conditions. This suggests the existence 
of a semi-universal basis of functions or structures that describe wind 
turbine wakes. We hypothesize that a low-dimensional manifold may 
exist, capable of efficiently and computationally representing wake 
aerodynamics and meandering, with potential benefits for steady-state 
and engineering models of wind turbine and wind plant wakes.

While this study provides a phenomenological description of wake 
meandering and its relationship with turbulent structures, it does not 
constitute a dynamic or predictive model. One key limitation is the 
difficulty in separating azimuthal wake position changes from yaw-
induced turbine activity from the underlying wake dynamics. To ad-
dress this, future studies could apply classical POD or dynamic mode 
decomposition to time series of estimated wake centers. Incorporating 
additional inflow dynamics and turbine operating states into such 
analyses could enable the development of a comprehensive dynamical 
model for wake centerline trajectories, including wake meandering.

By bridging these gaps, future work has the potential to advance 
predictive capabilities and improve the representation of wake dynam-
ics in wind energy research and engineering applications.
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Fig. 30. Comparison of 𝛽𝑖 to 𝑇𝑖𝑛𝑡 colored by the turbulence intensity (TI) (left), to 𝑆𝑡𝑖𝑛 colored by the vertical velocity variance (center), and to the mean momentum flux colored 
by the sensible heat flux (right).
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