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ABSTRACT

Burnup credit is an ongoing technical concern for many countries that operate commercial
nuclear power reactors. In a multinational cooperative effort to resolve burnup credit issues, a
Burnup Credit Working Group has been formed under the auspices of the Nuclear Energy Agency
of the Organization for Economic Cooperation and Development. This working group has
established a set of well-defined calculational benchmarks designed to study significant aspects of
burnup credit computational methods. These benchmarks are intended to provide a means for the
intercomparison of computer codes, methods, and data applied in spent fuel analysis. The
benchmarks have been divided into multiple phases, each phase focusing on a particular feature
of burnup credit analysis. This report summarizes the results and findings of the Phase I-B
benchmark, which was proposed to provide a comparison of the ability of different code systems
and data libraries to perform depletion analysis for the prediction of spent fuel isotopic
concentrations. Results included here represent 21 different sets of calculations submitted by 16
different organizations worldwide and are based on a limited set of nuclides determined to have
the most important effect on the neutron multiplication factor of light-water-reactor spent fuel.

A comparison of all sets of results demonstrates that most methods are in agreement to within
10% in the ability to estimate the spent fuel concentrations of most actinides. All methods are
within 11% agreement about the average for all fission products studied. Furthermore, most
dgviations are less than 10%, and many are less than 5%. The exceptions are *Sm, *'Sm, and
Gd.
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1. INTRODUCTION

In most countries, criticality analysis of light-water-reactor (LWR) fuel stored in racks and
casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. This
assumption has led to the design of widely spaced and/or highly poisoned storage and transport
arrays. If credit is assumed for fuel burnup, initial enrichment limitations can be raised in existing
systems, and more compact and economical arrays can be designed. Such reliance on the reduced
reactivity of spent fuel for criticality control is referred to as “burnup credit.” However, before
such an approach can be approved by licensing agencies, it is necessary to demonstrate that the
available criticality safety calculational tools are appropriate for application to spent or partially
burned fuel systems. Toward this end, a suite of calculational benchmarks related to burnup credit
criticality analysis has been conceived and proposed by the Nuclear Energy Agency (NEA) of the
Organization for Economic Cooperation and Development (OECD) and analyzed by numerous
participants.

The goal of any criticality safety analysis based on burnup credit will be to demonstrate that
an adequate margin of subcriticality is provided while taking credit for the reduced reactivity of
spent fuel. In practice, determination of subcriticality using a burnup credit approach requires a
two-step process: (1) determination of spent fuel composition using depletion analysis, and
(2) calculation of the multiplication factor for the spent fuel system based on the predicted spent
fuel composition. A series of benchmark problems have been established to analyze various
aspects of burnup credit for light-water-reactor (LWR) fuel designs. This report summarizes the
results of Burnup Credit Criticality Benchmark Phase I-B, which provides a comparison of the
ability of various code systems and data libraries to predict spent fuel isotopic concentrations via
depletion analysis. Analyses performed under Phase I-A of this program examined the effect of
basic parameters (burnup, initial enrichment, cooling time, and the presence of fission products)
on the ability to calculate k, for an infinite array of pressurized-water-reactor (PWR) spent fuel
pins. Subsequent benchmark studies (Phase I) will engage criticality-related aspects of spent fuel
analysis in more complicated configurations.

Chemical assay measurements of isotopic concentrations in spent fuel samples serve as a
quantitative measure of the ability of any given code system to computationally predict spent fuel
composition. Many such measurements have been performed in the United States at the Materials
Characterization Center (MCC) of the Pacific Northwest Laboratories (PNL) under the U.S.
Department of Energy (DOE) Office of Civilian Radioactive Waste Management program. In a
specific set of measurements performed at MCC, spent fuel samples obtained from three different
locations (and burnups) of a single fuel rod have yielded nuclide inventories for a large number
of both actinides and fission products." These fuel samples have been selected as a basis for Phase
I-B benchmark calculations. However, because the purpose of the benchmark calculations is to
determine the degree of consistency between different code systems and nuclear data, the problem
specification has been simplified somewhat to provide an approximate representation of the fuel
configuration during depletion. This simplification will allow a more straightforward and
consistent comparison between the codes used by the various participants in this study. The
specifications for the benchmark problem are described in the following section. References 1
through 3 provide detailed descriptions of the actual configuration of the test sample during its in-
core exposure.




2. BENCHMARK SPECIFICATION

The purpose of this calculational benchmark problem is to compare nuclide concentrations
computed by all participants for depletion in a simple pin-cell model. The fuel pin-cell description
is given in Table 1. The fuel sample assay at MCC was from a Combustion Engineering 14 X
14 assembly design. For the purposes of this benchmark, actual pin dimensions were used but
the fuel pin pitch was modified such that the fuel-to-moderator ratio matched that of the actual
two-dimenSional (2-D) assembly. The fuel sample was burned for four complete cycles; the
length of the burn time and subsequent down time for each reactor cycle are given in Table 2.
This benchmark consists of three cases, corresponding to fuel samples taken from three different
axial locations in the reference fuel pin, each with a different total burnup. The specific power
for each cycle and the final (cumulative) burnup are given in Table 3 for each of the three cases.
Table 4 lists the initial isotopic concentrations to be used for the fuel material for all three cases.
Table 5 provides the isotopic composition of the moderator for cycle 1. Note that boron’
concentrations given in Table 5 are for cycle 1 and should be modified by the cycle-specific
relative boron concentrations given in Table 2 for subsequent cycles. Finally, Table 6 provides
a list of those isotopes for which concentrations are desired at specified burnups and cooling times.
The goal of this study is to compare the isotopic concentrations calculated by the study participants
using various codes and data libraries.

Table 1. Physical data for benchmark problem pin-cell calculation

Parameter Data
Type fuel pellet Uo,
Fuel density 10.045 g/cm®
Rod pitch 1.5586 cm
Rod OD 1.118 em
Rod ID 0.986 cm
Fuel diameter 0.9563 cm
Active fuel length 347.2 cm
Effective fuel temperature 841 K
Clad temperature 620K
Clad material Zircaloy-2 (97.91 wt % Zr,

Water temperature
‘Water density

1.59 wt % Sn, 0.5 wt % Fe)
558 K
0.7569 g/cm®




Table 2. Operating history data for benchmark problem pin-cell calculation

Boron Boron
Operating Burntime Downtime concentration concentration
cycle (days) (days) (ppm) (% of cycle 1)

1 306.0 71.0 331.0 100.0

2 381.7 83.1 469.7 141.9

3 7 466.0 85.0 504.1 152.3

4 461.1 1870.0 492.5 148.8

Table 3. Specific power for the three benchmark cases

Specific Power

(kW/kgU)
Case A Case B Case C
Operating (final burnup = (final burnup = (final burnup =
cycle 27.35 GWd/MTU) 37.12 GWd/MTU) 44.34 GWd/MTU)

1 17.24 24.72 31.12
2 19.43 26.76 32.51
3 17.04 22.84 26.20
4 14.57 18.87 22.12

Table 4. Initial fuel composition and number densities

Number density

Nuclide (atoms/b-cm)
By 6.15165 x10°

By 6.89220 x 10
B8y 3.16265 x 10°
By 2.17104 x 102
2c 9.13357 x 10°
UN 1.04072 x 10°®

0 4.48178 X 107




Table 5. Cycle 1 coolant number densities

Nuclide

Number density
(atoms/b-cm)

7 5.06153 x 102
150 2.53076 x 10?
log 2.75612 x 108
i 1.11890 x 10°
Table 6. Benchmark nuclides
Actinides Fission products

el U Mo

235U 99Tc

236U lDlRu

238U 103Rh

238Pu 109 Ag

239Pu 133CS

Hopy “ISm

241Pll 149Sm

242Pu ISOSm

241 Am ISISm

243 Am ISZSm

237NP 143Nd

145Nd

153Eu

ISSG d




3. PARTICIPANTS AND ANALYSIS METHODS

Results included in this report were provided by 16 participating organizations, with a total
of 21 sets of calculations. Table 7 summarizes the participants and method(s) used in their
analyses. This summary is followed by a more detailed description of each analysis set, as
provided by each participant with their results. The organization label given in Table 7 represents
the abbreviation used to identify each set of calculations throughout the remainder of this report.




Table 7. Summary of participation organizations and codes used

Organization label Organization Code(s) used Comments
1. AEA Atomic Energy Authority, United LWRWIMS
Kingdom
2a. AECL-ORIGEN Atomic Energy of Canada, Ltd., Canada 'WIMS-AECL, ORIGEN-S  Coupled WIMS-AECL/
ORIGEN-S calculation similar
to SAS2H
2b. AECL-WIMS Atomic Energy of Canada, Ltd., Canada WIMS-AECL, ORIGEN-S
3. Belgonucleaire Belgonucleaire, Belgium LWRWIMS
4.BNFL British Nuclear Fuels, Ltd., United FISPIN
Kingdom
5. CEA Commissariat a I’Energie Atomique, Apollo
France
6.CSN Consejo de Seguridad Nuclear, Spain CASMO-3G
72. ECN-New Lib Energicondmoek Centrum Nederland, = ORIGEN-S New ECN JEF2.2/EAF-3
The Netherlands library
7b. ECN-Old Lib Energieonderzoek Centrum Nederland, = ORIGEN-S Original ORIGEN-S library
The Netherlands
8. GRS Gessellschaft fir Anlagen-und HAMMER/'ORIGEN
Reaktorsicherheit, Germany (OREST)
9. JAERI Japan Atomic Energy Research UNITBURN
Institute, Japan
10. NUPEC/INS Institute for Nuclear Safety, NUPEC, ORIGEN2
Japan
1la. ORNL-27g Oak Ridge National Laboratory, USA SAS2H/ORIGEN-S SCALE 27-group ENDF/B-IV/
(SCALE 4.2) -V burnup library
11b. ORNL-44g Oak Ridge National Laboratory, USA SAS2H/CRIGEN-S SCALE 44-group ENDF/B-V
(SCALE 4.2) library
1lc. ORNL-Assm Oak Ridge National Laboratory, USA SAS2H/ORIGEN-S Based on experimental data
(SCALE 4.2) rather than benchmark
specification
12. PNC PNC Tokai Works, Japan SAS2H/ORIGEN-S
(SCALE-4)
13. PSI Paul Scherrer Institute, Switzerland ETOBOX/BOXER
(ELCOS)
14. Rise Rise National Laboratory, Denmark CCCMO
15. Tohoku Tohoku University, Japan SWAT
16a. Toshiba-Leakage  Toshiba Corporation, Japan TGBLA Leakage control
16b. Toshiba-Poison Toshiba Corporation, Japan TGBLA Poison control




AEA:

Date: 2 Feb 1993

Institute: Atomic Energy Authority, United Kingdom

Participants: N. T. Gulliford

Computer code: LWRWIMS (69 groups)

Data library: WIMS1986 _

Notes: Decay of **’Eu to **Gd added 19th Feb 1993 (not standard in WIMS1986 library).

AECL-ORIGEN:

Date: 22 June 1993

Institute: Atomic Energy of Canada, Ltd., Canada

Participants: I. C. Gauld, J. V. Donnelly

Computer code: WIMS-AECL, ORIGEN-S

Data library: ENDF/B-5 fission product yields (SCALE 4.1). Library updated with WIMS and
SCALE cross sections using modified SAS2 sequence of SCALE 4 (WIMS-AECL lattice cell code
in place of XSDRNPM).

Notes:

1. The unspecified Zircaloy density was assumed to be 6.5 g/em®. The gap was assumed to be oxygen
at a density of 0.0014 g/cm®. *

2. The WIMS-AECL calculation (collision probability mode) was performed as a k_ calculation
without any buckling corrections to the spectrum. Cross sections from WIMS-AECL are passed into
ORIGEN-S, and the fuel flux is used to collapse additional multigroup data from the SCALE 27-
group library. .

3. Calculations with buckling (critical spectrum) gave better agreement with the measured data
provided. However, since you indicated that this is a numerical benchmark, and not a comparison
with the measured data, no buckling was used in the calculations presented.

4. The ORIGEN-S results are also sensitive to the addition of light elements due to the calculation
of the Q value (recoverable MeV/fission) calculated by ORIGEN-S. When additional light elements
were added to the ORIGEN case, in concentrations that might be expected in a real full-assembly
model, the numbers improved due to the small increase in Q and a corresponding decrease in the flux.
However, no adjustments in the light-element concentrations were made to better reflect what might
be expected in a full assembly.

AECL-WIMS:

Date: 22 June 1993

Institute: Atomic Energy of Canada, Ltd., Canada
Participants: I. C. Gauld, J. V. Donnelly
Computer code: WIMS-AECL, ORIGEN-S




Data library: Lattice cell code; 89-group ENDE/B-V cross-section library. Additional muitigroup
cross sections for ORIGEN-S updating were obtained from SCALE 27-group burnup library
(SCALE 4.1).

Notes: see Notes description in “AECL-ORIGEN” above.

Belgonucleaire:

Date: 19 Feb 1993

Institute: Belgonucleaire, Belgium

Participants: Th. Maldague, S. Tastenoy

Computer code: LWRWIMS, AEA Winfrith, UK

Data library: LWRWIMS version 1986, 69 energy groups

Notes: This library doesn’t contain Cm isotopes, giving an underestimation of 2*Pu and 2**Pu.

BNFL:

Date: 21 October 1994

Institute: British Nuclear Fuels, Ltd., United Kingdom

Participants: P. R. Thormne, P. E. Broome, R. L. Bowden

Computer code: FISPING.3

Data library: Burnup-independent libraries: UKFPTR6, HEDEC1, PWRBIN4; burnup-dependent
libraries: PWRBUG3 A, PWRBUG4

Notes: The inventory calculations carried out in support of this benchmark exercise were performed
using FISPIN with standard burnup-dependent library data. At BNFL Risley, we have a library set
for each major commercial reactor type, the data of which have been derived from reactor
calculations for a specific reactor using fuel of various enrichments. For PWR fuel inventory
calculations, we use a set of libraries which are based upon the Bugey reactor at fuel enrichments of
2,3, and 4 w/o #*U/U. Currently, an installed macro is run at the start of each FISPIN calculation
in order to decide upon the appropriate bumnup-dependent data for that case. If necessary, this macro
will interpolate linearly between two bounding libraries in order to obtain the flux-weighted cross
sections and neutron spectra for the FISPIN calculation.

The fuel considered in the Phase I-B calculations has an initial fuel enrichment of approximately 3.1
w/o 2°U/U. Hence, the FISPIN calculations were performed using burnup-dependent data
interpolated between the 3 and 4 w/o enriched libraries.

The use of standard burnup-dependent library data means that no reactor lattice calculation is
performed for the inventory prediction. Hence, the physical data presented in the benchmark
specification do not form part of the calculation. The irradiation histories specified for the three cases
do, however, form part of the input to the FISPIN calculation.




CEA:

Date: 19 Feb 1993

Institute: Commissariat a 'Energie Atomique, France

Participants: MM. Santamarina, Maubert, Poullot, Albarede

Computer code: APOLLO

Data library: CEA-86 (99 multigroup library based on JEF -1 European file + internal CEA
evaluations-)

CSN:

Date: 22 Dec 1993

Institute: Consejo de Seguridad Nuclear, Spain

Participants: Jose M. Conde, Manuel Recio, Ana I. Alvarez

Computer code: CASMO-3G, Version 4.7

Data library: E4LTIB7 (70 energy groups, mostly from ENDF/B-IV with some data from ENDF/B-V
and JEF-2, processed with NJOY).

ECN-New Lib:

Date: 9 Sept 1993

Institute: Energieonderzoek Centrum Nederland, The Netherlands

Participants: J. L. Kloosterman

Computer code: ORIGEN-S

Data library: New ECN library with about 275 nuclides updated based on the JEF2.2 file and cross
sections of about 285 nuclides updated based on the EAF-3 library compiled at ECN.

ECN-Old Lib:

Date: 9 Sept 1993

Institute: Energieonderzoek Centrum Nederland, The Netherlands
Participants: J. L. Kloosterman

Computer code: ORIGEN-S

Data library: Original ORIGEN-S library

GRS:

Date: 2 Feb 1993

Institute: Gessellschaft fiir Anlagen- und Reaktorsicherheit, Germany

Participants: Bernhard Gmal, Walter Heinicke

Computer code: OREST, a HAMMER-ORIGEN coupling burnup code system, developed by U.
Hesse, GRS. The code is available via the NEA Data Bank

Data library: Updated ORIGEN libraries. (See Notes below.)




‘Notes: Libraries of HAMMER: The original THERMOS and HAMLET libraries are used, but
shortened for only the available OREST-isotopes. The THERMOS library was checked against other
data. Greater differences of about 10% could be found for only 6 nuclides (O, Ni, **Xe, 2°Pu, 2'Py,
and *Pu). Only these nuclides had been updated, and better results for 2*Pu could be calculated,
compared with a number of experiments.

Libraries of ORIGEN:
LIB1 (light-element and structural-materials reaction and decay data);
LIB2 (actinides and daughters reaction and decay data);
LIB3 (fission products reaction and decay data);
LIB4 (light-element and structural-materials photon data);
LIBS (actinides and daughters photon data); and
LIB6 (fission products photon data)

are fully updated. Buildup of'the 6 card image datasets is unchanged. The libraries are generated by
the GRS code @LIBGEN from only one GRS overall dataset LIBMAST with all information.
During updating of these libraries, most constraints had been directed to the following points:

» The libraries are “closed” because all isotopes of buildup and decay reactions are present.

Especially for actinides, all decay chains are present.

 All decay energy entries are updated.

» The library for fission products is enlarged for short-living isotopes. Together with updated decay
energies the post-irradiation fuel decay power is also described in the short range of seconds after
shutdown.

* All cross sections are preweighted in LWR neutron spectra. Unknown resonance data are filled
with the 1/v model.

+ All photon libraries are updated by detailed gamma line libraries. Bremsstrahlung is included for
all beta emitters.

JAERI:

Date: 3 Aug 1993

Institute: Japan Atomic Energy Research Institute, Japan

Participants: M. Takano, F. Masukawa, and T. Kaneko

Computer code: UNITBURN

Data library: Cross sections: MGCL (based on ENDF/B-IV, with Am from JENDL-2); Decay
constants: JDDL (based on ENSDF); Fission yield and decay constants for fission products: FPGS.

NUPEC/INS:

Date: 27 Sept 1993

Institute: Institute for Nuclear Safety, NUPEC, Japan

Participants: Susumu Mitake

Computer code: ORIGEN2

Data library: One group neutron cross-section library based on JENDL-3 !

10



Reference:
1. F. Masukawa, T. Nakagawa, and S. Tijima, “Spectrum-Averaged One-Group Cross Sections of
Actinides Based on JENDL-3,” J. Nucl. Sci. Technol. 27 (6), 572-576 (June 1990).

ORNL-Assm:

Date: 13 Oct 1993

Institute: Oak Ridge National Laboratory, USA

Participants: O. W. Hermann

Computer code: SAS2H/ORIGEN-S sequence of SCALE-4.2 code system using SAS2H assembly
model. Input based on experimental data instead of OECD problem specs.

Data library: 27-group burnup library (ENDF/B-IV actinides and ENDF/B-V fission products);
ENDEF/B-V fission yields, ENDF/B-VI decay data.

Notes: These results were obtained from calculations performed in an effort to validate the SCALE
SAS2 sequence against experimental measurements. Calculations were made using a2 model which
more closely resembled the physical configuration of the fuel samples during irradiation than that
assumed in the benchmark calculation.

ORNL-27g:

Date: 6 June 1993

Institute: Oak Ridge National Laboratory, USA

Participants: Stephen M. Bowman

Computer code: SAS2H/ORIGEN-S sequence of SCALE-4.2 code system using infinite pin-cell
model. Input based on OECD Part I-B problem specs.

Data library: 27-group burnup library (ENDF/B-IV actinides and ENDF/B-V fission products);
ENDEF/B-V fission yields, ENDF/B-VI decay data.

ORNL-44g:

Date: 6 June 1993

Institute: Oak Ridge National Laboratory, USA

Participants: Stephen M. Bowman )

Computer code: SAS2H/ORIGEN-S sequence of SCALE-4.2 code system using infinite pin-cell
model. Input based on OECD Part I-B problem specs.

Data library: 44-group ENDF/B-V cross sections with ENDF/B-VI **Eu and **Eu; ENDF/B-V
fission yields, ENDF/B-VI decay data.

PNC:
Date: 16 April 1993

Institute: PNC Tokai Works, Japan
Participants: Ichiro Nojiri

11




Computer code: SAS2ZH/ORIGEN-S sequence of SCALE-4.
Data library: SCALE4 27GROUPNDF4 (ENDF/B-IV, ENDF/B-V); ENDF/B-IV fission product
data base; ORNL master photon data base.

PSI:

Date: 7 Jan 1994*

Institute: P4ul Scherrer Institute, Switzerland

Participants: Peter Grimm and Jean-Marie Paratte

Computer code: ETOBOX and BOXER codes of the ELCOS LWR neutronics package (developed
at PSI).

Data library: The BOXLIB cross-section library for BOXER used in the present calculations contains
cross sections for 34 actinide nuclides (from #2Th through ***Cm), 55 fission products considered
explicitly, and two pseudo-fission products. The 55 fission products were chosen based on their
contribution to the total fission product neutron absorption in LWR configurations; in addition, six
gadolinium isotopes are included for burnable poison calculations. For some fission products that
contribute little to the absorption, the resonance cross sections are given for infinite dilution only.

The source of cross-section data for all nuclides is JEF-1, except for **Gd, whose cross sections are
taken from JENDL-2. The fission product yields are taken from JEF-2 for thermal fission and
summed over the isobaric chains. The decay data for the fission products originate from the
compilation in ref. 1. For the actinides, half-lives from ref. 2 are used.

References:

1. M. E. Meek and B. F. Rider, Compilation of Fission Product Yields, NEDO-12154, 74NEDS6,
1974.

2. W. Seelmann-Eggebert et al, Karlsruhe Chart of the Nuclides, 5th  Edition,
Kermnforschungszentrum Karlsruhe, 1981.

*Revised results dated November 15, 1995, are provided in Appendix B.

Risg:

Date: 23 Dec 1993

Institute: Risg National Laboratory, Denmark

Participants: Frank Hgjerup

Computer code: CCCMO

Data library: Neutron cross sections: UKNDL (mostly); Fission yields and decay data: NEDO-12154-
1 (Meek and Rider); Actinides: own compilation from various sources.
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Tohokus

Date: 7 Mar 1994

Institute: Tohoku University, Japan

Participants: Kenya Suyama, Tomohiko Iwasaki, Naohiro Hirakawa

Computer code: SWAT :

Data library: SWAT Library (ref. 1) - based on JENDL-3, with fission products from ORIGEN-2 (82)

Reference:
1. K. Suyama, T. Iwasaki, and N. Hirakawa, "Analysis of Post-Irradiation Experiments in PWR
Using New Nuclear Data Libraries," J. Nucl. Sci. Technol. 31(6), 596608 (1994).

Toshiba-Leakage:

Date: 22 Feb 1993
Institute: Toshiba Corporation, Japan
Participants: Munenari Yamamoto
Computer code: TGBLA,' with leakage control option turned on.
Data library: Energy-group structure: GAM-type 68 groups for fast and epithermal range,
THERMOS-type 30 groups for thermal range
Data source: 2°U, 28U, Z°Py, 2°Pu - ENDF/B-V
24lpy 242py - ENDF/B-IV
All other actinides - JENDL-3
Fission products - mostly ENDF/B-IV
Fission product chain: 45 explicit fission products plus 1 lumped pseudo-fission-product
model.® Note: **Mo is not treated as an explicit fission product in this fission-product model, while
it has been taken into account as one of the major contributors to the pseudo-fission-product
poisoning as described in ref. 5.
Fission product yield data: based on Rider and Meek compilation.®

Notes: The fact is that neutron balance condition (k.g) is always just critical throughout the irradiation
of fuel in an operating reactor. An ordinary pin-cell calculation, however, evaluates a so-called k.,
of which neutron balance differs from the actual one in an operating reactor. The flux spectrum,
therefore, is somewhat different between the two. This gap in flux spectrum more or less exerts
influence on fuel burnup property. In the TGBLA code, several approximate treatments are available
as an option to simulate the actual situation in a burnup calculation. In the present benchmark
calculations, we made, in parallel, two sets of burnup calculations different in the option (i.e.,
“leakage” and “poison” control option). In the case of leakage control, D,B? pseudo-absorption cross
sections are adjusted by scaling B? (buckling) so as k¢ being unity, resulting in that three broad-group
fluxes somewhat differ from those of an ordinary pin-cell calculation with zero leakage. In the case
of poison control, on the other hand, 1/v, [v, = gth broad-group average velocity] is used in place of
D

g
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References:

1. M. Yamamoto, H. Mizuta, K. Makino, R. T. Chiang, and S. P. Congdon, “Validation of the
TGBLA BWR Bundle Design Methods,” Trans. Am. Nucl. Soc. 43, 698 (1982).

2. “Development and Validation of TGBLA Lattice Physics Methods,” Proc. Top. Mtg. on Reactor
Physics and Shielding, Chicago (1984).

3. “Recent Developments in TGBLA Lattice Physics Code,” Proc. Inter. Top. Mtg. on Advances in
Reactor Physics, Mathematics, and Computation, Paris (1987).

4. “New Physics Models Recently Incorporated in TGBLA,” Proc. Inter. Top. Mtg. on Advances in
Mathematics, Computations, and Reactor Physics, Pittsburgh (1991).

5. S. Lijima et al., J. Nucl Sci. Technol. (1982).

6. B. F. Rider et al., NEDO-12154-2 (GE) (1977).

Toshiba-Poison:

Date: 22 Feb 1993

Institute: Toshiba Corporation, Japan

Participants: Munenari Yamamoto

Computer code: TGBLA with poison control option turned on.

Data library: see Data library description in “Toshiba-Leakage” above.
Notes: see Notes description in “Toshiba-Leakage” above.
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4. RESULTS AND DISCUSSION

The calculated isotopic concentrations for all three benchmark cases are listed in Tables 8
through 14. Tables 8 through 10 list the results for actinides for cases A, B, and C, respectively;
similarly, Tables 11 through 13 list the results for fission-product concentrations for these cases.
Concentrations in Tables 8 through 13 are in units of mg per g UO2 Table 14 provides the results
for nuclides *’Np, **Am, **Am, *Tc, and Cs for all cases in units of mCi per g UO, (the
isotopic abundances of these nuclides were specified in terms of activity in the measurements
reported in ref. 1).

All tables provide the measured concentration for each nuclide where available. In
addition, the tables include the ORNL-Assm concentrations, which were calculated based on the
actual fuel configuration, rather than the somewhat simplified benchmark specifications. For each
isotope, the average and standard deviation of the calculated concentrations are included. The
standard deviation characterizes the level of agreement between the benchmark calculations for
each isotope. Although it is possible to compare the average for all calculations with the measured
concentration for each nuclide that has been chemically assayed, such a comparison may be
misleading. Even though such differences may result from inadequacies in cross-section data, the
differences may also result from differencés between the benchmark depletion model and the
actual configuration of the sample pin during reactor operation. Measurements were made for a
specific fuel pellet located within a specific pin in an assembly; depletion codes and methods are
generally tailored toward assembly-averaged behaviors. ORNL-Assm calculations, shown in the
second row of each table, may illustrate differences between benchmark and actual conditions.
Unlike the benchmark calculations, ORNL-Assm calculations were based on actual pin-lattice
conditions for cross-section processing calculatlons however, like the benchmark calculations,
depletion calclations were performed using a pin-cell model created based on assembly-wide
properties.

Figures 1 through 33 (shown at the end of this section) illustrate the relative agreement
between results for each isotope studied in each sample. Results are plotted in column chart
format, showing the percentage difference between each participant’s calculated concentration and
the average of all calculated concentrations for each of the three burnup cases. The measured
concentrations are shown in the first set of columns (for cases A, B, and C, respectively) for all
nuclides for which they are available. The second set represents the results of the ORNL-Assm
calculations. The results for each of the benchmark calculations are shown in the remaining sets
of columns for each participant.

Table 15 provides a summary of the standard deviation of the calculated isotopic
concentration for each isotope considered in this benchmark. The standard deviation is expressed
in terms of its percentage of the average calculated value for each isotope and illustrates the degree
of consistency between the results provided by the various participants. A small standard
deviation for a given isotope and bumup indicates consistency between the various codes and data
applied in these analyses; conversely, a large deviation indicates poor agreement in the calculation
of the inventory of a given nuclide. The point at which agreement is considered to change from
“good” to “poor” is difficult to define; however, for the purposes of this study it is assumed that
agreement within a 10% standard deviation is “good” and that isotopic concentration calculations
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Table 15. Standard deviation of isotopic calculations by isotope and burnup

No. of
calculations Case A Case B Case C Average
By 21 5.19 ‘ 7.08 . 8.99 7.09
By 21 2.98 6.01 8.12 5.70
By . 21 2.91 2.72 2.60 2.74
By 21 0.12 0.17 0.21 0.16
By 21 15.68 14.80 13.86 - 14.78
Z9py 21 5.16 . 6.08 7.12 6.12
#py 21 3.95 4.27 5.27 4.49
#py 21 6.45 5.97 6.86 6.43
%2py 21 8.69 8.28 8.39 - 8.45
HAm 14 4.22 4.35 5.29 4.62
Am 14 11.31 10.41 10.40 10.71
ZTNp 14 8.61 8.86 9.42 8.96
%Mo 14 1.17 1.30 1.85 1.44
#Te 14 5.17 3.57 4.21 4.32
pn 16 1.03 1.05 1.76 1.28
1%Rh 18 4.57 5.15 5.40 5.04
WAg 17 _11.03 10.61 10.21 10.62
3Cs 18 4.87 4.90 5.60 5.12
135Cs 4 2.49 2.98 3.63 3.03
Nd 18 2.76 3.93 4.51 3.73
“Nd 18 1.02 1.25 1.46 1.25
Sm 16 6.03 7.95 9.12 7.70
“Sm 17 14.14 15.01 15.61 14.92
108m 18 5.30 7.07 8.50 6.96
¥lSm 15 22.41 21.72 22.31 22.15
128m 18 7.20 9.01 9.68 8.63
18Ey 18 7.90 8.19 8.52 8.21
%5Gd 16 33.45 33.28 32.97 33.23
BINp* 20 10.62 9.93 10.14 10.23
M Am* 20 7.58 8.84 9.55 8.66
25 Amy* 14 10.04 10.78 11.91 10.91
HTc* 18 2.52 5.81 6.49 4.94
135Cs* 8 13.11 13.36 13.73 13.40

‘Concentrations for these isotopes were calculated in units of mCi/g UO,.
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with a standard deviation of more than 10% indicate poor agreement between participants’ results.
Based on this criterion, calculational approaches and/or data are inadequate for the following eight
isotopes: Z*Pu, 2*Am, ®Ag, **Sm, *'Sm, *Gd, ®"Np, and **Cs. (Of these isotopes, the latter
two are found to be in good agreement for calculations performed to calculate concentrations in
terms of mg/g UO, fuel, but in poor agreement for activities calculated in units of mCi/g UO,
fuel.) Possible reasons for the poor agreement in the calculated concentrations of these eight
isotopes are discussed in the following paragraphs.

Z*Pu: As can be seen in Fig. 5, the results for most participants are reasonable, with the largest
outliers being the results of the AEA, AECL-WIMS, and Belgonucleaire calculations. All three
of these analyses were based on the LWRWIMS data library. As was noted by Belgonucleaire,
this library does not contain curium isotopes. Since a significant portion of **Pu production is
due to the o-decay of #’Cm, this results in an underprediction of Z*Pu, as is observed for the three
sets of results mentioned above. Excluding these three results from the average, new averages
closer to the measured concentration are obtained, with significantly improved standard deviations.
The revised averaged concentrations and standard deviations are listed in Table 16. Thus with the
exception of the LWRWIMS-based calculations, the agreement for **Pu is considered to be good.

#8Am: Calculations for both the concentration and activity of 2*Am show a standard deviation
on the order of 11%. For calculations of **Am concentrations (Fig. 11), CEA and the three
ORNL calculations appear to be outliers; however, based on activity calculations for the same
isotope (Fig. 31), AECL-ORIGEN, AECL-WIMS, GRS, and NUPEC/INS are high relative to
the remaining cases. Figure 34 shows the relative computed concentrations for the three burnup
cases with reported activities converted to concentrations for results in which no concentrations
were available. This compilation provides a broader range of results for comparing trends. It is
not clear why there is such a large discrepancy between results nor, with the lack of a measured
concentration or activity for this isotope, is it known which group of results (if either) is closer
to reality. There appears to be a group of results that are 5 to 15% above the average (ORNL-
Assm, AECL-ORIGEN, AECL-WIMS, CEA, GRS, ORNL-27g, ORNL-44g, and PNC). These
results are all based on ORIGEN/ORIGEN-S, WIMS, or a combination of the two. The remaining
sets of results are roughly 5 to 15% below the average. None of these calculations were ORIGEN-
based; however, both AEA and Belgonucleaire calculations were WIMS-based. Thus the cause
of the discrepancy might be found by investigating the difference between the AECL-WIMS
calculation, which is high, and the AEA and/or Belgonucleaire calculation, both of which are low.

Unfortunately, additional data requested to try to resolve differences were not provided by
all participants, and definite conclusions cannot be drawn. However, data provided by responding
participants indicate that disagreement may result from variations in capture cross sections used
by the various participants. Thermal capture cross sections provided by each responding
participant are listed in Table 17.
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Table 16. Revised averages and standard
deviations for Z*Pu results

Average Standard

concentration deviation
(mg/g UO,) (%)
Case A 0.09504 8.52
Case B 0.1835 7.46
Case C 0.2572 6.58

Table 17. Comparison of **Am thermal capture cross sections

Thermal cross Thermal cross
Participant section (barns) Participant section (barns)
AEA 68 BNFL 40
NUPEC/INS 51 ORNL-27g 52
ORNL-44¢ 40 PSI 74

1®Ag: Figure 17 shows that there is relatively good agreement betwéen computed results, with the
exception of 2 to 3 sets; BNFL and CSN results are the most significant outliers. Average
concentrations computed without these sets of results have a significantly lower deviation, as
shown in Table 18. These results suggest that '®Ag results are in good agreement with one
another, with the exception of two inconsistent sets of results. Unfortunately, ‘measured
concentrations for this isotope are not available for comparison.

Note that BNFL depletion calculations were based on a standard assembly design and were
interpolated from tabulated values for specific burnups and enrichments. Thus these calculations
were not a true representation of the benchmark calculations. Although BNFL results are for the
most part consistent with other participants’ results, they tend to overpredict plutonium
concentrations for most plutonium isotopes (especially *°Pu), indicating a possible difference in
the operating spectrum computed in the BNFL model. An error in plutonium production would
result in an error in the prediction of fission-product concentrations; however, an overprediction
in *’Pu should result in an overprediction in '®Ag, rather than the underprediction observed.
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Table 18. Revised averages and standard
deviations for '®Ag results

Average Standard

concentration deviation
(mg/g UO) (%)
Case A 0.05892 7.05
Case B 0.08570 6.98
Case C 0.1053 7.61

1Sm: There is clearly broad disagreement between participants’ results for this nuclide, as
illustrated in Fig. 23. BNFL appears to be an outlier; however, it is at the same time in closest
agreement with the measured concentrations. In addition, there appears to be a problem in the
measurement of this nuclide concentration; the measured concentration for the 44.34-GWd/MTU
case is significantly and unexpectedly higher than that of the other two lower burnup cases. From
data provided by a limited set of participants, discrepancies are noted between direct fission yields
used, although cumulative fission yields and cross sections are relatively consistent. These data
are listed in Table 19. However, trends noted for specific participants are inconsistent with these
data. For example, AEA data include a larger thermal capture cross section and smaller direct
fission yields than those of other participants; these data should result in an underprediction of *°Sm
concentrations. However, the results shown in Fig. 23 show that AEA tends to overpredict 1**Sm
relative to many of the other participants. In addition, with the exceptlon of BNFL, cumulative yields
of mass 149 are consistent among participants. Thus inconsistencies in *Sm predictions are more
likely to result from inconsistent cross-section data for parent isotopes (i.e., 1*Pm, **Nd, and **Pr).

1518m: As with **Sm, considerable disagreement is observed in concentrations predicted for this
isotope, as shown in Fig. 25; however, in this case there is no experimental measurement with which
one can compare the calculated results. Of'the 15 sets of results available, AEA, Belgonucleaire, and
perhaps BNFL results appear to be outliers; however, even with the exclusion of these results there
is a greater than 10% standard deviation in the remaining results. The error in **!Sm is not a direct
result of error in *’Sm concentrations (*Sm +n > **Sm +n > **!Sm) since no such large variation
is seen in the intermediate *°Sm concentrations.

Available fission yield and cross-section data are listed in Table 20. As with **Sm,
discrepancies are noted between direct fission yields used, although cumulative fission yields are for
the most part consistent. Thermal capture cross sections reported by AEA and PSI are roughly
three to four times the values reported by others. Again, however, some trends noted for specific
participants are inconsistent with these data. It is likely that some of the discrepancies between
participants result from inconsistencies in '*'Sm data; it is equally likely that discrepancies result
from inconsistent cross-section data for parent isotopes.
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Table 19. Cross-section and fission yield data for **Sm

AEA CEA BNFL PSI Tohoku  ORNL-27 ORNL-44
Thermal capture ~ 6.15E+04 - 4.50E+04 4.16E+04 - 4.35E+04 4.70E+04
cross section (b)
Direct Fissi
Yields
=y 447B-12 2.31E-09 1.04E-09 4.50E-12 6.53E-11 1.11E-10 1.11E-10
=y - 3.03B-15 1.83F-11 - 3.04E-16 4.18E-12  1.39E-13  1.39E-13
Bpy 3.73E-10  3.50E-08 - 3.75E-10  191E-10 2.68E-09  2.63E-09
Hpy 3.39E-12 1.98B-09 S5.30E-09 3.37E-12  3.48E-11 - -
Comlafive. Fissi
yields
=5y 1.05B-02  1.07E-02 2.42E-03 1.05B-02 1.09E-02 1.03E-02 1.03E-02
ot 1 1.66E-02 1.62E-02 1.04E-03 1.68E-02 1.57E-02 1.61E-02 - 1.61E-02
Py 1.25B-02 1.23B-02 3.81E-03 1.25E-02 1.27E-02 1.24E-02 1.24E-02
#py 1.46B-02  1.47E-02  5.63E-03  1.45E-02 1.46E-02 1.45E-02 1.45E-02

Table 20. Cross-section and fission yield data for *!Sm

AEA CEA BNFL PSI Tohoku  ORNL-27 ORNL-44
Thermal capture  1.25E+04 - 4.38E+03 1.53E+04 - 4.03E+03 3.93E+03
cross section (b)
Direct Fissi
Yields .
By 7.18B-09  3.42E-07 1.65E-07 - 3.80E-08  7.20E-08  7.20E-08
=iy 1.99B-11  1.02E-08  1.67E-09 - 3.22E-06 5.13E-10  5.13E-10
9Py 2.91E-07 4.20B-06 1.59E-07 - 2.47E-07 1.12E-06 1.12E-06
Apy 7.54E-09 4.87E-07 1.12E-06 - - - -
Cumulative Fissi
yields
=y 4.16E-03  4.16E-03  3.12E-03 4.17E-03  4.22E-03 4.08E-03  4.08E-03
my 8.09E-03 8.05B-03 3.31E-03 8.10E-03 8.50E-03 8.01E-03  8.01E-03
B9py 7.62E-03  7.55B-03 6.37E-03 7.63E-03  7.83E-03 7.77E-03  7.77E-03
#ipy 8.55E-03 9.11E-03  7.33E-03  8.40E-03  9.08E-03 9.12E-03  9.12E-03

¥Gd: By far the largest disagreement for nuclide concentrations is seen for **Gd. Relative to
the average computed concentration, BNFL, CSN, and Risg are 40 to 50% high, AEA, CEA,
ORNL-44g, and PSI are 40 to 60% low, and the remainder range from 5% lower to 15% higher
than the average. Because mass spectroscopy results for mass chain 155 contain both ¥*Gd and
*Eu, it is not possible to experimentally determine the mass of '*Gd in spent fuel directly, unless
time is allowed for most *Eu to decay (with a 4.7-year half-life, such a wait is not practical).
However, it is possible to calculate the concentrations of both **Gd and ***Eu and compare the
sum of the concentrations of the two nuclides. Such an approach was used at ORNL in other
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burnup credit evaluations; these comparisons demonstrated that calculations based on the SCALE
27-group burnup library resulted in an almost 100% overprediction of the sum of **Gd and **Eu
concentrations relative to assay measurements. Further investigation determined that the source
of this discrepancy was an inadequate representation of Eu cross sections, specifically,
resonance data. A more recent evaluation, available in the ENDF/B-VI distribution and included
in the SCALE 44-group library, has been demonstrated® to provide improved agreement with
measured data, although the new library resulted in a roughly 25% underprediction of the
combined fhasses. Thus the best estimate of the measured concentration of *>Gd is about 25%
below the average shown in Fig. 28.

Resonance integral information would help to confirm the implication above that
differences result from inadequate resonance data. However, insufficient data were provided by
participants to investigate differences between results. Nevertheless, the significant differences
between ORNL-27g and ORNL-44g results are believed to be a consequence of the differences
between resonance data. Resonance integrals are 1825 and 23,200 for the 27-group and 44-group
libraries, respectively.

ZNp: Although the #’Np concentrations given in Tables 8 through 10 and Fig. 12 are in slightly
better statistical agreement (+9 %) than the activities given in Table 14 and Fig. 29 (+10), this
appears to be purely a function of the distribution of participants who submitted results in each
format. Results submitted in terms of both concentration and activity are consistent. The reason
for the disagreement among participants’ results is likely to be due to cross-section data. Thermal
capture cross sections are given in Table 21 for several participants. Note that the results of the
top four upper outliers in Fig. 29 (ORNL-Assm, ECN-Old Lib, JAERI, and ORNL-27g) were
calculated based on ENDF/B-IV actinide data. The remaining calculations, which are in better
agreement with one another and with measured data, were based on ENDF/B-V, JEF-2, and
JENDL-3 (exception: PNC results were ENDEF/B-IV-based). Note that the predicted
concentrations improve significantly in going from the ENDF-IV actinides in the SCALE 27-
group library (ORNL-27g) to the ENDF/B-V actinides in the SCALE 44-group library (ORNL-
44g). Only the cross-section libraries changed between these two sets of calculations. Although
cross-section data for all participants were not available, data provided by responding participants
support the assertion that differences are due to variations in capture cross sections used by the
various participants. Thermal capture cross sections provided by each responding participant are
listed below.

3Cs: As was similarly observed for 2’Np, the '*Cs concentrations given in Tables 11 through
13 and Fig. 19 are in better statistical agreement (43 %) than the activities given in Table 14 and
Fig. 33 (+13). However, in this case the statistical variations between the results of the two sets
of data are significantly different. In this case, the difference can be traced to conversion factors
relating activities to concentrations. Although the conversion factors were not explicitly supplied,
they can be inferred from the ratio of the reported activity to the reported concentration for a
specific sample and for a given participant’s results. Five participants supplied both
concentrations and activities for *Cs: Toshiba-Leakage, Toshiba-Poison, PSI, Risg, and Tohoku.
The conversion factors for both sets of Toshiba results are significantly different than those
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Table 21. Comparison of Z’Np thermal-capture cross sections

Thermal cross Thermal cross
Participant section (barns) Participant A section (barns)
AEA 159 BNFL 132
NUPEC/INS 38 ORNL-27g 77

ORNIL-44¢g &9 PSI 39

determined from PSI, Risg, and Tohoku results. Since the last three sets of results are more
consistent with one another, it is likely that the problem lies in conversion factors used by
Toshiba. However, there is a lack of consistency even among the remaining three participants.
Because the results for calculated isotopic concentrations have a small standard deviation and are
in relatively close agreement with measured concentrations, it may be argued that the only
weakness in the ability to calculate °Cs inventory lies in decay-rate data. However, because *Cs
concentration results were supplied by only seven participants, it is not possible to generalize this
statement for all of the various codes and data sources used in this benchmark.

Figures 35 through 55 provide a summary of the agreement between each participant’s
calculations and the average of all participants’ results for each isotope included in the benchmark
study. Rather than attempt to show the relative agreement for each of the three cases studied,
these plots show the average agreement for all three cases. “Agreement” is used in the sense given
in the earlier figures [i.e., (C/A-1)*100%], where C is a participant’s calculated concentration for
a given isotope, and A is the average of all participants’ calculations for the same isotope. It must
be emphasized that these figures do not show the agreement with the “correct” solution since this
is not known in this benchmark; rather, the figures illustrate the consistency of each participant’s
codes and data relative to the other participants’ results.
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Fig. 1. Relative U-234 concentrations.
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Fig. 6. Relative Pu-239 concentrations.
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Fig. 7. Relative Pu-240 concentrations.
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Fig. 8. Relative Pu-241 concentrations.
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Fig. 9. Relative Pu-242 concentrations.
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Fig. 10. Relative Am-241 concentrations.
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Fig. 11. Relative Am-243 concentrations.
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Fig. 12. Relative Np-237 concentrations.
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Fig. 13. Relative Mo0-95 concentrations.
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Fig. 14. Relative Tc-99 concentrations.
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Fig. 15. Relative Ru-101 concentrations.
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Fig. 17. Relative Ag-109 concentrations.
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Fig. 18. Relative Cs-133 concentrations.
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Fig. 19. Relative Cs-135 concentrations.
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Fig. 20. Relative Nd-143 concentrations.
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Fig. 21. Relative Nd-145 concentrations.
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Fig. 23. Relative Sm-149 concentrations.
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Fig. 24. Relative Sm-150 concentrations.
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Fig. 25. Relative Sm-151 concentrations.
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Fig. 27. Relative Eu-153 concentrations.
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Fig. 29. Relaﬁve Np-237 activities.
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Fig. 30. Relative Am-241 activities.
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Fig. 31. Relative Am-243 activities.



25.00%

uosIog-eqmysoy, -
E E E oSexesT-BqMso],
S '
U T T
=23 mjoyog,
OO
33| | o
YRS
<da O ISd
QO 0 9
288
O OO0 ONd
N O
SyINYO
817" INMO
SNI/OFdNN
ave
S0
qr1 PIO-NDA
QI MON-NDHF
NSO
VD
TING
aIres[dnuosiag
SIWIM-1DTV
NEOTO-10dV
vav
wssy-"INIO
| e
X R R R R R X R
o o o o o o o o
o o o o o o o =]
8 n o I o l-t.) o w

%00TX(I-2AV/12V)
3A3eI9AY 0] dANR[OY AJAPOY
61

Fig. 32. Relative Tc-99 activities.
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Fig. 33. Relative Cs-135 activities.
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5. CONCLUDING REMARKS

Based on the standard deviation of the compiled results for each isotope, as given in Table
15, one can conclude that most methods are within 10% agreement in their estimate of isotopic
concentrations for actinides. The two exceptions are !Pu and **Am. The deviation in 2*Pu was
determined to be the result of incomplete/inadequate data used by certain participants; by
excluding these results, a deviation of less than 10% is also noted. The deviation in **Am results,
on the order of 11%, appears to be the result of poor data as well; however, the nature and source
of the deficiency are not clear and will require further study.

It is also observed that with only three significant exceptions, all methods are within 11%
agreement about the average for all fission products studied. Furthermore, most deviations are
less than 10% and many less than 5%. The exceptions are **Sm, **'Sm, and *Gd. For each of
these nuclides, variation in the ability to predict nuclide concentrations is believed to result from
inconsistencies in cross-section and fission yield data. In addition, there are a significant number
of production paths for most of these isotopes, and all are sensitive to the fraction of Z*Pu fission.
The most significant cause for the extremely large differences in *>Gd concentrations is felt to be
the result of inadequate cross-section data for **Eu in many cross-section libraries. Once this
deficiency is corrected, results are likely to be in significantly better agreement; however, it is
unclear if this is the only source of deficient data in the production of 1°Gd.

The ultimate goal of depletion methods is to provide an acceptable estimate of spent fuel
isotopic contents in order to obtain a reasonable prediction of neutron multiplication in a spent fuel
configuration for criticality safety analysis. Thus the reactivity associated with uncertainties in
isotopic predictions can be used to assess the uncertainty in the calculation of neutron
multiplication. A study of the reactivity associated with variations in isotopic compositions was
undertaken by CSN and is summarized in Appendix A. This work presents the change in
reactivity associated with changes in the concentration of individual isotopes, as calculated with
the Jattice code CASMO-3. Combined nuclide worths reported in Appendix A are consistent with
results computed at ORNL.
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APPENDIX A

THE EFFECT ON REACTIVITY OF THE DIFFERENCES IN THE
COMPUTED ISOTOPIC COMPOSITION OF SPENT FUEL

José M. Conde, M. Recio, A. 1. Alvarez
Nuclear Engineering Division, Core Analysis Branch
Consejo de Seguridad Nuclear
Madrid, Spain
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A.1 INTRODUCTION

The NEA of the OECD proposed a suite of benchmarks designed to study different aspects
inherent to the use of burnup credit for the criticality safety analysis of the storage and transport
of spent fuel. This benchmark is conceived as a code intercomparison and has been divided in
several parts.

Part I of the benchmark focused on basic effects and was divided in two phases:

»  Phase A*! compared the multiplication factor calculated by different codes using the same
PWR fuel isotopic composition. The comparison included both fresh and spent fuel at
several burnup values.

e Phase B compared the isotopic composition calculated by different methods for a
predefined PWR fuel burnup history. Comparison has been performed at three different

burnup levels.

During the last meeting of the Criticality Calculations Group (Albuquerque, N.M.,
September 1995), the question was raised as to whether the Group should evaluate the impact on
reactivity of the isotopic composition differences obtained in Phase I-B. It was considered that the
assessment performed by a few participants could be enough to address this subject.

This work presents the change in reactivity associated with changes in the concentration
of individual isotopes, as calculated with the lattice code CASMO-3 [ref. A.2].

A.2 METHOD

The results of Phase I-B were reported in the body of this report. For the purpose of this
work, three sets of isotopic composition results have been used (cf. Tables 8 through 14):

1. CSN results calculated with CASMO-3;
2. concentration measurements;** and
3. average of the results submitted by the participants.

The calculation procedure for each of the three burnup values included in the benchmark
has been the following:

1.  determination of the multiplication factor using the CASMO-calculated concentrations.
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2. determination of the multiplication factor using both the experimental measurements and the
average concentration values. For each case, the nuclides not included in the benchmark (or
not measured) have been kept as the original CASMO-calculated value;

3. calculation of a new reactivity value by individually changing each isotope concentration,
using both the measured and the average values.

Altlough not of definite importance for the purpose of this work, the conditions assumed
for the reactivity calculation are coherent with the benchmark specification. The fuel rod data and

pitch have been maintained, but an infinite array of infinite-length fuel rods has been considered.
The temperature corresponds to storage conditions (300 K).

A.3 RESULTS

The reactivity obtained using the CASMO concentrations, the measured values, and the
average of the participants’ results are shown in Table A.1.

Table A.1. Reactivity values obtained with different concentration sets

Burnup CASMO Measured Average
(GWd/MTU) concentrations values values
27.35 1.00934 1.01842 1.01721
37.12 0.89869 0.92193 0.91776
44.34 0.82784 0.85320 0.85474

The differences found range from below 1% (lower-burnup case) up to 3% in the higher
burnup case. To put these results in proper perspective, it has to be taken into account that neither
the experimental uncertainty of the measured values nor the standard deviation of the average
values has been taken into account. However, it is felt that these values give a fair idea of the
maximum differences that can be obtained in a wide burnup range.

The origin of this reactivity difference can be tracked back to the individual isotopes by
means of calculations where only a specific isotope is modified at a time. The reactivity values
obtained for each burnup statepoint are shown in Tables A.2 through A.4. For each burnup point,
the difference in the concentration of every individual isotope relative to the CASMO-calculated
value is given, followed by the reactivity difference obtained by replacing the CASMO
concentration value with the experimental (or average) value. Finally, the ratio of the reactivity
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Table A.2. Effect of individual isotopes for Case A (27.35 GWd/MTU)

Experimental values Average values
Concentration Concentration
relative to Reactivity relative to Reactivity
. CASMO Ap change rate CASMO . Ap change rate

Nuclide .| ®©/c-1*100) | (pem) | (pem/%) | (A/C-1*100) | (pem) | (pem/%)

U-234 2.041 3 1.5 1.403 2 1.4

U-235 4.529 665 146.8 1.074 | 159 148.0

U-236 -2.907 17 5.9 -0.309 2 6.5

U-238 0.119 =20 -168.1 -0.475 82 -172.6
Pu-238 7.820 -17 2.2 -3.825 8 2.1
Pu-239 5.362 734 136.9 4.522 621 137.3
Pu-240 1.957 -101 -51.6 1.424 -74 -52.0
Pu-241 6.738 232 34.4 4.936 170 34.4
Pu-242 9.859 29 2.9 5.101 15 2.9
Am-241 6.919 -77 -11.1
Am-243 7.160 -5 -0.7
Np-237 -1.903 8 -4.2 6.589 -28 4.3
Rb-103 15.248 -156 -10.2
Ag-109 29.680 -39 -1.3
Cs-133 2.262 -13 5.7 1.239 -7 5.7
Cs-135 -4.560 3 -0.7 1.299 -1 -0.8
Nd-143 -0.519 8 | -154 1.136 17 -15.0
Nd-145 2.286 -7 -3.1 1.605 -5 3.1
Sm-147 -2.220 5 2.3
Sm-149 55.496 -539 9.7 10.134 -99 -9.8
Sm-150 . 1.254 -14 -1.9 1.192 -2 -1.7
Sm-151 17.842 -120 6.7
Sm-152 -1.483 7 4.7 6.375 -29 -4.6
Eu-153 0.752 -3 -4.0 -2.372 9 -3.8
Gd-155 -28.524 446 -15.7
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Table A.3. Effect of individual isotopes for Case B (37.12 GWd/MTU)

Experimental values Average values
Concentration Concentration
relative to Reactivity relative to Reactivity
) CASMO Ap change rate CASMO Ap change rate

Nuchde (E/C-1*100) | (pcm) (pem/ %) (A/C-1*¥100) (pcm) (pcm/ %)
U-234 7.362 -8 -1.1 4.525 -5 -1.1
U-235 10.944 1167 106.6 4.700 507 107.9
U-236 -3.605 21 5.8 -0.792 4 5.1
U-238 -0.395 58 -146.8 -0.670 98 -146.3
Pu-238 5.518 21 -3.8 -2.676 10 -3.8
Pu-239 7.554 1324 175.3 6.492 1133 174.5
Pu-240 2.848 -157 -55.1 0.551 -31 -56.3
Pu-241 8.614 467 54.2 6.581 358 54.4
Pu-242 6.962 -36 5.2 3.843 -20 5.2
Am-241 8.299 -106 -12.8
Am-243 2.617 -5 -1.9
Np-237 -10.078 56 -5.6 5.658 -32 5.7
Rh-103 17.200 -194 -11.3
Ag-109 28.683 -52 -1.8
Cs-133 1.774 -13 -1.3 1.307 -10 -1.7
Cs-135 0.832 -1 -1.2 4.563 -3 -0.7
Nd-143 0.196 -4 -20.4 2.043 -33 -16.2
Nd-145 3.225 -12 -3.7 2.023 -8 4.0
- Sm-147 -3.226 7 2.2
Sm-149 50.830 -492 9.7 11.011 -108 -9.8
Sm-150 0.148 -1 -6.8 1.183 -3 2.5
Sm-151 21.374 -142 -6.6
Sm-152 -6.052 30 -5.0 7.949 -41 -5.2
Eu-153 -5.382 28 -5.2 -1.129 6 -5.3
Gd-155 -25.324 619 -24.4
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Table A.4. Effect of individual isotopes for Case C (44.34 GWd/MTU)

Experimental values Average values
Concentration Reactivity | Concentration Reactivity
relative to change relative to change
. CASMO Ap rate CASMO Ap rate
Nuclide | (®B/C-1*100) | (pem) | (pem/%) | (A/C-1#100) | (pem) | (pem/%)
U-234 6.952 -5 -0.7 8.289 -7 -0.8
U-235 20.654 1575 76.3 9.100 704 77.4
U-236 -3.073 17 -5.5 -0.998 5 -5.0
U-238 -0.806 105 -130.3 -0.830 108 -130.1
Pu-238 7.822 38 | 49 -1.645 8 4.9
Pu-239 9.363 1827 195.1 8.007 1570 196.1
Pu-240 4.607 251 -54.5 0.247 -13 -52.6
Pu-241 11.390 759 66.6 8.027 536 66.8
Pu-242 7.913 =52 -6.6 2.569 -17 -6.6
Am-241 9.703 -124 -12.8
Am-243 -1.389 4 -2.9
Np-237 -1.866 12 -6.4 4.949 -31 -6.3
Rh-103 18.560 211 -11.4
Ag-109 29.435 -60 2.1
Cs-133 1.142 -8 -7.0 1.468 -11 -1.5
Cs-135 8.122 -5 -0.6 8.574 -5 -0.6
Nd-143 1.666 -26 -15.6 3.238 51 -15.8
Nd-145 ~3.766 -14 -3.7 2.357 -9 -3.8
Sm-147 \ -3.721 8 2.2
Sm-149 124.451 -1172 9.4 11.557 -111 -9.6
Sm-150 |  10.499 -30 2.9 1.347 4 3.0
Sm-151 23.004 -158 -6.9
Sm-152 -3.123 16 5.1 8.487 -44 5.2
Eu-153 5.488 -32 5.8 -0.428 2 -4.7
Gd-155 -23.052 685 -29.7
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difference per percent unit change in concentration is noted to give an idea of the nuclide's
importance with respect to reactivity. A negative result for this "reactivity change rate" means that
the nuclide has an overall absorption effect.

The tables include all nuclides considered in the benchmark but Mo, *Tc, and *'Ru,

which are not included in the CASMO nuclear data library. Also, experimental measurements for
some nuclides have not been performed.

To decide which of the isotopes are more relevant for the reactivity calculation, a numeric
limit has to be defined. If we arbitrarily decide that the isotopes having an impact on reactivity
smaller than 10 pcm/% can be neglected, then the list of the most relevant isotopes becomes the
following: #°U, #*U, #*Pu, %°Pu, #'Pu, #'Am, ®Rh, “*Nd, **Sm, and Gd. However, some
isotopes not meeting the criteria may also be important because of the high calculation uncertainty
they have. The best example of this group is *!Sm.

In order to assess the impact on reactivity of the isotopic compositions calculated by the
Benchmark participants, the average standard deviations of the participants' results reported for
each case in Table 15 of this report have been used, together with the sensitivities calculated
taking the average concentration values as a base (Tables A.2 through A.4). The final results are
included in Table A.5, while Table A.6 shows the individual results by isotope and burnup case.

Table A.5. Total impact on reactivity of the standard deviation of the isotope concentrations

Case Reference Ap Ap
reactivity (pcm) (%)
A 1.01721 2809 . 2.76
B 0.91776 3961 4.32
C 0.85474 4711 5.51
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Table A.6. Impact on reactivity of the standard deviation of each isotope concentration

Case A Case B Case C
Standard Standard Standard
. deviation Ap deviation Ap deviation Ap

Nuclide (%) (@cm) (%) (pem) (%) (pem)

U234 5.19 7.3 7.08 7.8 8.99 7.2

U235 ' 208 441.0 6.01 648.5 8.12 628.5

U236 201 18.9 2.72 13.9 2.60 13.0

U238 0.2 20.7 0.17 24.9 0.21 27.3
Pu238 15.63 32.9 14.80 56.2 13.86 67.9
Pu239 516 708.5 6.08 1061.1 7.12 1396.2
Pu-240 3.95 205.4 4.27 240.4 5.27 277.2
Pu241 6.45 221.9 5.97 324.8 6.86 458.3
Pu-242 8.69 25.2 8.28 43.1 8.39 55.4
Am-241 422 46.8 435 55.7 5.29 67.7
Am-243 1131 7.9 10.41 19.8 10.40 30.2
Np-237 2.61 37.0 8.86 50.5 9.42 59.4
Rh-103 457 46.6 5.15 58.2 5.40 61.6
Ag-109 11.03 143 10.61 19.1 10.21 21.4
Cs-133 4.87 27.8 4.90 37.8 5.60 42.0
Cs-135 2 49 2.0 2.98 2.1 3.63 2.2
Nd-143 2.76 41.4 3.93 63.7 4.51 71.3
Nd-145 1.02 3.2 1.25 5.0 1.46 5.6
Sm-147 6.03 13.9 7.95 17.5 9.12 20.1
Sm-149 14.14 138.6 15.01 147.1 15.61 149.9
Sm-150 5.30 9.0 7.07 17.7 8.50 25.5
Sm-151 22.41 150.2 21.72 143.4 22.31 153.9
Sm-152 7.20 33.1 9.01 46.9 9.68 50.3
Eu-153 7.90 30.0 8.19 43.4 8.52 40.1
Gd-155 33.45 525.2 33.28 812.0 32.97 979.2
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Recently, PSI has improved its depletion calculation method, more specifically the analytical
formula used for nuclides with high destruction rates (i.e., short-lived or strongly absorbing
nuclides). Relatively substantial changes have occurred in the densities of the following nuclides:
“Sm, *'Sm, ®Eu (up to 5%), Gd (up to 7%), Z*Pu (approximately 7%), and **Am

(approximately 10%). The previous method overpredicted the densities of these nuclides which
have short-lived precursors treated by the mentioned analytical method. The nuclide inventories
for the three cases, given as mass fractions in the fuel and as specific activities (for Np and Am
as well as for the radioactive fission products *Tc, **Cs, and !Sm), are listed in Table B-1.
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Table B.1. Revised (11/15/95) results for PSI Phase I-B benchmark

Case A Case B Case C
Nuclide Mass fract. | Activity Mass fract. | Activity Mass fract. | Activity
(mgl/g) (mCi/g) (mg/g) (mCi/g) (mg/9) (mCi/g)

U-234 1.5632E-1 1.3416E-1 1.2002E-1

U-235 8.4014E4-0 5.0361E+0 3.3162E+0

U-236 3.1722E+0 3.5878E+0 3.7349E4+-0

U-238 8.3737E+2 8.3013E+2 8.2438E+2

Pu-238 9.0634E-2 1.7515E-1 2.4646E-1

Pu-239 4.3591E+0 4.4464E+0 4.4228E+0

Pu-240 1.6866E+0 2.1952E+0 2.4720E+0

Pu-241 6.5963E-1 8.7337E-1 9.7663E-1

Pu-242 2.6492E-1 5.4157E-1 7.8502E-1

Am-241 2.3465E-1 |8.0609E-1 |3.0370E-1 [1.0433E+0 |3.3283E-1 |1.1433E+0
Am-243 3.6427E-2 | 7.2744E-3 | 1.0113E-1 |[2.0195E-2 | 1.7231E-1 |3.4411E-2
Np-237 2.8637E-1 |2.0195E-4 |[4.1286E-1 |2.9115E-4 |4.9598E-1 |3.4976E-4
Mo-95 5.6267E-1 7.2696E-1 8.3719E-1 .
Tc-99 5.8920E-1 | 1.0148E-2 | 7.6829E-1 | 1.3233E-2 |[8.8950E-1 | 1.5320E-2
Ru-101 5.7299E-1 7.7494E-1 9.2141E-1

Rh-103 3.5446E-1 4.5294E-1 5.1228E-1

Ag-109 5.1069E-2 7.9584E-2 1.0121E-1

Cs-133 8.3300E-1 1.0755E+0 1.2347E+0

Cs-135 3.7170E-1 [4.9281E4 |4.0527E-1 |5.3732E-4 |4.2340E-1 |5.6136E-<4
Sm-147 1.9293E-1 2.1980E-1 2.2996E-1

Sm-149 1.9280E-3 2.0882E-3 2.2217E-3

Sm-150 1.9945E-1 2.8482E-1, 3.4882E-1

Sm-151 7.5510E-3 [ 1.9246E-1 | 8.2499E-3 |2.1028E-1 |8.8636E-3 |2.2592E-1
Sm-152 8.3968E-2 1.0383E-1 1.1698E-1

Nd-143 6.1582E-1 7.1915E-1 7.6282E-1

Nd-145 5.0995E-1 6.5196E-1 7.4444E-1

Eu-153 8.1460E-2 1.2064E-1 1.4842E-1

Gd-155 2.3370E-3 3.8197E-3 5.2089E-3
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