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SUMMARY 15 

Developing active and durable air electrodes for efficient oxygen reactions is challenging for protonic 16 
ceramic cells (PCCs), especially at temperatures below 550 oC, due to the sluggish oxygen reaction kinetics 17 
and insufficient structural stability in high humidity conditions. Here, we report a rational-designed conformal 18 
coating with a high-entropy PrNi0.2Mn0.2Co0.2Fe0.2Cu0.2O3-δ (PNMCFC) perovskite structure on the surface 19 
of a state-of-the-art PrBaCo2O5+δ (PBC) air electrode. The formed hybrid air electrode (PNMCFC-PBC) 20 
shows faster surface oxygen kinetics and a more stable phase structure in high-humidity air than the bare 21 
PBC electrode, as demonstrated by the electrical conductivity relaxations and surface composition 22 
analyses. Further density functional theory (DFT) calculations suggest that the conformal coating can 23 
mitigate Ba segregation at the interface and improve oxygen-related reactions, enhancing overall stability 24 
and electrocatalytic performance. The cells with the developed hybrid electrodes show encouraging 25 
electrochemical performance at 550 °C: a polarization resistance of 0.72 Ω cm2, a peak power density of 26 
1.30 W cm-2, an electrolysis current density of -1.36 A cm-2 at 1.3 V, and reasonable operating stabilities 27 
(~200 h at 550 °C). Our progress in this study offers valuable guidance for the design of next-generation 28 
PCC air electrodes. 29 

KEYWORDS 30 

Protonic ceramic cells; High-entropy materials; Air electrodes; Activity; Conformal coating. 31 

 32 

INTRODUCTION 33 

Energy conversion and storage technologies continuously innovate to establish a sustainable system 34 
with a cheaper and more efficient energy supply.1-4 Among all types of technologies, reversible protonic 35 
ceramic cells (PCCs) are one of the most efficient devices with excellent fuel flexibility, versatile 36 
functionality, and emission-free power generation.5-9 However, their inclusion in competitive 37 
commercialization requires further maturation on the operating temperature, cost, and lifetime.10-12 38 
Reduction in operating temperatures often causes a dramatic increase in electrochemical resistance of cell 39 
components, especially of air electrodes, due to the sluggish activation of oxygen exchange kinetics at low 40 
temperatures.13-15 More commercially viable attention has been drawn to electrodes with superior durability 41 
against high-concentration steam and high activity for the oxygen reduction and evolution reactions (ORR 42 
and OER) under realistic operating conditions of PCCs. 43 

Managing the impact of humidity on the phase structure and catalytic activity became a key technical 44 
direction for improving the durability and electrochemical performance of electrodes in PCCs.16-18 Many 45 
state-of-the-art electrodes, such as La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF),19 Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF),20 46 
PrBaCo2O5+δ (PBC),21 and PrBa0.5Sr0.5Co2O5+δ (PBSC),22 have demonstrated excellent mixed conductivity 47 



and fast ORR/OER kinetics whereas displayed dramatic performance degradations under the operating 48 
conditions of PCCs (500-600 oC and high steam concentration). A steam-containing environment is 49 
commonly encountered during the operation of PCCs, while steam-mediated phase segregations have 50 
been recently reported near the surface of most Sr(Ba)-based perovskite oxides or electrode-electrolyte 51 
interface.23,24 One modification strategy is essential for structural improvement against negative water-52 
mediated segregation. Sr (Ba)-free electrodes have been investigated as the first candidate for enhanced 53 
stability in PCC, such as La(Ni, Fe)O3-δ, nano-fiber Pr2NiO4, and Ca3Co4O9-δ.25,26 The high- or medium-54 
entropy concept has been introduced to develop new electrode materials and architectures with good 55 
resistance to steam.27,28 Although the chemical system of those compounds becomes more and more 56 
complicated,29 the durability of the high-entropy air electrode has been largely improved under realistic cell 57 
conditions with high concentrations of steam.22,30 A more facile and economical method for surface 58 
modification is wet-chemical solution infiltration, which has been extensively utilized in electrocatalysis, 59 
photocatalysis, membrane reactors, and fuel cells.31-33  60 

Most solution infiltrations are to decorate abundant highly active catalysts on the surface of the 61 
substrates. However, the discrete nano-catalysts may play an unsatisfactory role in the structural stability 62 
against surface segregation since the steam penetrates the pores within the surface layer.34 The driving 63 
forces to element segregation may originate from the electrostatic interaction between A-site cations with 64 
negative charges and surface oxygen vacancies with positive charges, which is mainly associated with the 65 
surface adsorbates.24 A few studies demonstrated that dense La0.85Sr0.15MnO3-δ (LSM) conformally coated 66 
porous LSCF catalyst can effectively suppress Sr segregation for an enhanced stability of solid oxide fuel 67 
cells (SOFCs).1,35 The porous LSCF backbone functions as a channel for the fast transport of oxygen ions 68 
and electrons, while dense thin-film LSM coating diminishes the surface electrostatic force of LSCF for 69 
enhanced durability.35  However, the air electrodes in PCCs face higher concentrations of steam in the air 70 
(up to 30 vol%).6 Maintaining the structural stability of PCC air electrodes is much more difficult than the 71 
traditional cathode for oxygen-ion conducting solid oxide fuel cells (O-SOFCs). Thus, one pivotal strategy 72 
is to develop a desired coating that should possess a conformal coverage of the backbone, excellent 73 
activities for ORR and OER, and high structural tolerance to steam and even to carbon dioxide encountered 74 
in reversible PCC operation.  75 

Inspired by the aforementioned methods and requirements, we showcase a Ba(Sr)-free high-entropy 76 
conformal perovskite coating, PrNi0.2Mn0.2Co0.2Fe0.2Cu0.2O3-δ (PNMCFC), successfully covered onto the 77 
PBC backbone for enhanced electrocatalytic activity and durability of PCCs. The selection of B-site cations 78 
close to Co ions in the PNMCFC perovskite may lead to the fast oxygen exchange kinetics and versatile 79 
functionalities as a so-called “Cocktail” effect,36 as determined by electrical conductivity relaxations (ECR) 80 
results and low polarization resistances (Rp). According to the equation of ΔGmix = ΔHmix – TΔSmix, the 81 
structural stability of high-entropy PNMCFC (ΔSmix > 1.5R, R is gas constant) is largely enhanced compared 82 
to the PBC electrode.37 Additionally, density functional theory (DFT) calculations were applied to support 83 
the experimental findings by investigating the enhanced electronic interactions, efficient surface oxygen 84 
kinetics, and migration of Ba cations facilitated by the conformal coating on the PBC backbone using the 85 
high-entropy PNMCFC. When compared with the PBC electrode, the conformal PNMCFC-coated PBC 86 
electrode (hybrid electrode) performs lower area-specific resistance and higher electrochemical 87 
performances in fuel-cell mode (2.29 W cm-2 at 650 °C) and electrolysis mode (-3.12 A cm-2 at 1.3V and 88 
650 °C) modes. Our high-entropy conformal coating strategy could optimize the mixed ion-conducting air 89 
electrode materials to realize structural stability against high-concentration steam encountered in realistic 90 
PCC operation. Not limited to fuel-cell stability in ambient air, the cells with the hybrid electrode also exhibit 91 
excellent stabilities in electrolysis and reversible cycling under conditions of highly humidified air (30% H2O) 92 
and large current density (-1A cm-2). 93 

 94 
RESULTS AND DISCUSSION  95 



 96 
Figure 1. Morphology and crystal structure of the hybrid electrode.  97 
(A) Schematic of a PBC electrode backbone covered with a conformal high-entropy PNMCFC coating. 98 
(B and C) (B) SEM images of the PBC and (C) PNMCFC-coated PBC hybrid electrodes. 99 
(D) XRD patterns of the PBC and PNMCFC-coated PBC hybrids. 100 
(E) STEM image of a whole PBC grain covered by a conformal PNMCFC coating. 101 
(F) A high resolution-TEM image of the PBC grains covered with a conformal PNMCFC coating. 102 
(G) Enlarged TEM images of PNMCFC coating and PBC backbone (top); the bottoms are the FFT patterns 103 
from the red and blue rectangles in (F).  104 
(H) EDS spectra from points 1 and 2, indicating that the outer surface is mainly PNMCFC (point 1) while 105 
the inside is PBC and PNMCFC hybrid grains (point 2). 106 
 107 
Structural characterization of high-entropy conformal perovskite coating 108 

Ba (Sr)-free high-entropy perovskite, PrNi0.2Mn0.2Co0.2Fe0.2Cu0.2O3-δ (PNMCFC), displayed an 109 
orthorhombic structure with the space group of Pnma and lattice parameters of a=5.4340 Å, b=7.6744 Å, 110 
and c=5.4506 Å (χ2=0.47, Figure S1 and Table S1). The actual atomic ratio of each element in as-111 
synthesized PNMCFC was examined by inductively coupled plasma-mass spectrometry (ICP-MS), which 112 
closely approaches the nominal chemical stoichiometric ratio (Table S2). When employed to cover the 113 
whole surface of a porous PBC electrode, differing from the modifications with nanoparticles, the conformal 114 
thin-film PNMCFC coating enables complete isolation of the PBC backbone from steam exposure during 115 
harsh PCC operational conditions, thereby probably enhancing system durability. The structural similarity 116 
of PNMCFC to PBC facilitates the conformal growth of a dense and well-connected coating during high-117 
temperature thermal calcination (Table S1). Figure 1A schematically exhibits the whole process of the thin- 118 



 119 
Figure 2. Electrochemical performance and durability of the hybrid electrodes.  120 
(A) Arrhenius plots of the polarization resistance of bare PBC, PNMCFC and hybrid (PNMCFC-PBC) 121 
electrodes. 122 
(B) EIS of bare PBC and hybrid electrodes as a function of p(O2) at 550 °C. 123 
(C) Dependence of each Rp of bare PBC and hybrid electrodes as a function of p(O2) at 550 °C. 124 
(D) EIS of bare PBC (top) and hybrid electrodes (bottom) at different testing times in wet air (3% H2O) and 125 
550 °C. 126 
(E) Time dependence of Rp of bare PBC and hybrid electrodes in wet air (3% and 30% H2O) at 550 °C. 127 
(F) DRT analysis of bare PBC (top) and hybrid electrodes (bottom) at different testing times according to 128 
the EIS data in (d). 129 

 130 



film formation of a high-entropy catalyst coating onto a PBC backbone. Many nanoparticles (NPs) were 131 
covered on the surface of the PBC electrode, which was likely associated with the BaCoO3-δ phase (Figure 132 
1B). While the hybrid (PNMCFC-PBC) electrode maintained a relatively smooth surface with a larger 133 
average grain size of 550 nm (Figure 1C and S2). According to the X-ray diffraction (XRD) patterns (Figure 134 
1D and Figure S3), the PNMCFC phase was successfully observed on the hybrid electrode. Briefly, 3 μL 135 
of 0.1 M PNMCFC nitrate organic solution was infiltrated into the PBC backbone (loading of ~0.3 mg cm-2), 136 
followed by thermal calcination at 950 °C for 5 h to form the PNMCFC coating PBC hybrid electrode. Figure 137 
1E demonstrated that the PBC surface was coated by a conformal and continuous PNMCFC thin film with 138 
a projected thickness of 4-15 nm. The high-temperature calcination and structural similarity led to the 139 
coherent coating, which can be commonly observed (Figure S4). As obtained by high-resolution 140 
transmission electron microscopy (HR-TEM), the space distances of 3.83 and 2.29 Å were assigned to the 141 
(110) plane of PNMCFC and (112) plane of PBC, respectively (Figure 1F and 1G, top). The two different 142 
phases of surface coating and bulk grain were well distinguished via the fast Fourier transform (FFT) on 143 
the red and blue rectangles in Figure 1F. The marked diffraction spots corresponded to the (111) plane of 144 
PNMCFC and the (002) plane of PBC, which was consistent with the XRD refinement (Figure 1G, bottom). 145 
The X-ray energy dispersive spectrum (EDS) spectra (Figure 1H) indicated that the surface coating is 146 
mainly PNMCFC (point 1), while the bulk substrate is composed of PNMCFC and PBC hybrid phases (point 147 
2). The slight cation thermal diffusion also occurred between PNMCFC and PBC after thermal calcination 148 
at 950 °C for 5 h, as checked by the peak belonging to Ba at point 1. The discrepancy in the elemental 149 
composition with the line scanning from bulk to surface further supported the formation of the unique 150 
architecture of PNMCFC thin-film coated PBC (Figure S5). 151 
 152 

Electrochemical performance and durability  153 

Shown in Figure 2A are the Arrhenius plots of the polarization resistance (Rp) of the BZCYYb-154 
supported symmetrical cells with the bare PBC, PNMCFC and hybrid electrodes, combined with the 155 
comparison of the typical commercial LSCF electrode as reported.16 The hybrid electrode achieved a lower 156 
Rp ( 0.72 Ω cm2 at 550 °C) and activated energy (Ea, 1.13 eV) than the PBC (1.16 Ω cm2 at 550 °C, 1.25 157 
eV) and PNMCFC electrode (2.04 Ω cm2 at 550 °C, 1.33 eV), much better than the LSCF electrode recently 158 
reported (Figure S6).16 The Rp of the hybrid electrodes showed no apparent decrease when the 159 
concentration of infiltration solution increased from 0.1 to 0.2 M, leading to the solution concentration fixed 160 
at 0.1 M (Figure S7). The influence of the PNMCFC coating on PBC electrode surface reaction kinetics 161 
was further investigated via the electrochemical resistances measured under different oxygen partial 162 
pressures (p(O2)) (Figure 2B). The specific rate-limiting step for surface oxygen exchange kinetics can be 163 
fitted by Rp dependence on p(O2), which is expressed as the equation of Rp = k(p(O2)) -n (n is reaction order, 164 
k is constant).38 Clearly, note that the n value of the hybrid electrode is largely changed from the original 165 
0.84 of the PBC electrode to 0.40 (Figure 2C). n=0.84 of the PBC electrode may be related to the gas 166 
diffusion on the electrode surface.39,40 When n=0.375, the first charge transfer reaction of (Oads + e- + 167 
VO
••

(s) ⟷ OO
•

(s) ) is a key rate-limiting step for hybrid electrodes.39,40 This result indicates that the ORR 168 
process of PNMCFC-PBC is mainly controlled by the surface oxygen vacancy concentration,41 differing 169 
from that of the PBC electrode (which is controlled by the mass transfer). To verify this, we analyzed O 1s 170 
X-ray photoelectron spectroscopy (XPS) spectra of PBC, PNMCFFC, and PNMCFC-PBC (Figure S8). It 171 
was found that the Oad/Olattice ratio of the PNMCFC-PBC was reduced to 2.08 compared to the PBC (its 172 
Oad/Olattice ratio is 2.43), suggesting the surface oxygen vacancy concentration of the hybrid sample 173 
decreased. The electrical conductivities of the PNMCFC and PNMCFC-PBC reached 1.5-4.8 S cm-1 and 174 
564-1175 S cm-1 at 400-750 °C, respectively, which were lower than those (620-1215 S cm-1 at 400-750 175 
°C) of the PBC (Figure S9). Thus, the surface vacancy concentration and electrical conductivities of the 176 
PNMCFC coating may lead to changes in hybrid electrode kinetics from surface gas diffusion (rate-limiting 177 
step of PBC) to the charge transfer reaction.  178 

Numerous highly active air electrodes are closely associated with Sr(Ba)CoO3-based perovskite 179 
oxides,23 while their stability under humidified air is poor due to phase segregation, especially in reversible  180 



 181 
Figure 3. Investigation on the enhanced durability of the hybrid electrode.  182 
(A) EIS of bare PBC and hybrid PNMCFC-PBC as a function of p(H2O) at 550 °C. 183 
(B) kchem of bare PBC and PNMCFC-PBC measured at 650 °C, and 600 °C before and after a treatment in 184 
wet air (10% H2O) for 100 h. 185 
(C) Surface Ba composition of PBC and hybrid catalyst at 600 °C measured under different conditions: pure 186 
O2 at 600 °C, and humidified gas mixture (10% H2O-90% O2) at 600 °C. 187 
(D) (Pr+Ba)/Co ratio of PBC and (Pr+Ba)/(Co+Ni+Fe+Mn+Cu) ratio of hybrid catalyst when measured under 188 
different conditions: pure O2 at 300 °C, pure O2 at 600 °C, and humidified gas mixture (10% H2O-90% O2) 189 
at 600 °C; the ratio of A-site and B-site cations was normalized by that obtained in O2 at 300 °C. 190 
(E) Cross-sectional TEM micrograph of a conformal PNMCFC-deposited PBC substrate; inset is EDS linear 191 
profile across the PNMCFC coating to PBC substrate along the red arrow. 192 
(F) EDS mapping of Ba and Mn element distributions. 193 
(G and H) (G) HR-TEM and (H) SAED images of PNMCFC coating (top) and PBC substrate (bottom). 194 
(I) Schematic illustration of Ba cation segregation from the bulk to the surface of PBC(001) following the 195 
conformal coating of PNMCFC. The segregation energy of the Ba cation is calculated to be 2.36 eV for the 196 
PNMCFC-coated PBC(001), compared to 0.48 eV for bare PBC(001). 197 
 198 
PCCs. As shown in Figures 2D and 2E, the PBC electrode demonstrated a dramatic Rp deterioration rate 199 
of 0.317 Ω cm2 per 100 h at 550 °C in wet air (3% H2O). The high-entropy PNMCFC coating efficiently 200 
enhances structural tolerance against steam, as indicated by an Rp deterioration rate of only 0.008 Ω cm2 201 
per 100 h for comparison. Even in the air with higher humidity (30% H2O), the Rp of the PNMCFC-PBC 202 
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hybrid electrode can remain relatively stable, which slightly increased from 0.553 to 0.607 Ω cm2. The 203 
surface electrode kinetics evolutions can be ascertained by the distribution of relaxation time (DRT) analysis 204 
on the EIS spectra at different times. Each DRT curve seems to have at least three processes for the 205 
electrode reactions, which correspond to low frequency (LF, ≤100 Hz, mass transfer near the interface), 206 
intermediate frequency (IF, 100-103 Hz, surface exchange processes), and high frequency (HF, ≥103 Hz, 207 
charge transfer), respectively.38 The lasting increases in Rp of the PBC electrode were concentrated in the 208 
intermediate frequency range of 102-10-1 Hz, while the extra low-frequency peaks at 10-1-10-2 Hz appeared 209 
on the DRT curves of the hybrid electrode, which included the main Rp variations (Figure 2F and Figure 210 
S10). Compared to the DRT curves of the PBC electrode, the extra low-frequency peaks at 10-1-10-2 Hz 211 
are likely associated with the surface electrode reaction of PNMCFC coating.38 Thus, the PNMCFC coating 212 
may alter the mass transfer process on the electrode surface while ensuring that the PBC backbone 213 
maintains structural integrity and fast bulk ion transfer. 214 
 215 

Origin of the durability improvement 216 

Changing steam partial pressure (p(H2O)) from 3 to 20 vol% makes a dramatic decrease in the Rp of 217 
the hybrid electrode from 0.69 to 0.54 Ω cm2 (Figure 3A, bottom). The electrochemical reactions of the 218 
hybrid electrode can be deconvoluted by DRT analysis on the EIS in the air containing different p(H2O) 219 
(Figure S11). As fitted by the equation of Rp = k(pH2O)-m, the reaction order of m value can determine the 220 
rate-limiting step of isolated electrode reaction at each frequency range. The Rp of peaks at the low-221 
frequency range (reaction order m of 0.83) are more sensitive to p(H2O). Note that m=1, HTPB 

+ + OHTPB
-  → 222 

H2OTPB  and H2OTPB → H2O(g)  are highly associated with the key rate-limiting steps.42 These results 223 
indicate that the electrochemical reactions of the PNMCFC-PBC in wet air are likely controlled by mass 224 
transfer and gas diffusion on the electrode surface. In addition, the impedances of the peaks at intermediate 225 
and low frequencies were dramatically reduced, corresponding to the ionic diffusion and mass transfer 226 
process, respectively. This result suggests that PNMCFC coating can optimize the PBC electrode 227 
electrochemical processes of ionic diffusion and mass transfer. The behavior of the bare PBC electrode is 228 
distinctive from that of the hybrid electrode, which performed a sharp increase from 1.15 to 2.13 Ω cm2 229 
under identical conditions (Figure 3A, top). Water-induced phase segregation may occur at the surface of 230 
the PBC electrode, impacting the surface exchange kinetics of oxygen reactions. To prove this hypothesis, 231 
the surface exchange coefficients (kchem) of the PBC and PNMCFC-PBC were further investigated by ECR 232 
(Figure S12 and 3B). The hybrid electrode exhibits higher kchem than the PBC electrode at 500-650 °C, 233 
resulting in better electrochemical performance (Figure S12). A more obvious decrease of kchem at 600 °C 234 
was obtained on the PBC electrode compared to the hybrid electrode after the interaction with the steam 235 
(10% H2O) for 100 h (Figure 3B and S13). The corresponding surface chemistry of the PBC and hybrid 236 
samples was investigated via X-ray photoelectron spectroscopy (XPS), quantified from Ba 3d5/2, Co 2p3/2, 237 
and O 1s spectra (Figure 3C, S14, and S15). Compared to the PBC sample measured in O2 at 600 °C, the 238 
surface Ba contents were induced for segregation from 62% to 66% with the steam (10% H2O) injecting 239 
(Figure 3C and S14A). Differing from PBC, the PNMCFC-PBC performed a contrary tendency from 57% 240 
to 54% after the identical steam pretreatments (Figure 3C and S14B), indicating that the Ba segregation 241 
of PBC was suppressed by the PNMCFC thin-film coating. Combined with the O1s results, a large amount 242 
of Ba segregation at the PBC surface caused vacancy formation for the increased adsorbed oxygen (Oad) 243 
(Figure S15). The phase structure of the PNMCFC-PBC remains stable before and after the treatment of 244 
humidified oxygen, as checked from the Ba 3d and O1s XPS (Figure 3C and S15). To more visually reveal 245 
how the PNMCFC coating inhibits the element segregation, we provided the surface atomic information of 246 
PBC and hybrid samples by XPS analyses under different measured conditions of O2 at 300 °C, O2 at 600 247 
°C, and 10% H2O-90% O2 at 600 °C, which are expressed as the ratio of A-site and B-site cations (Figure 248 
3D and Table S3). The samples were firstly decarbonized for normalization in pure O2 at 300 °C, then 249 
heated to 600 °C, and finally exposed to the humidified O2 (10% H2O). The (Pr+Ba)/Co ratio of PBC 250 
dramatically decreased in such an operating process due to the severe Ba segregation under 251 



oxygen/steam-rich conditions. In contrast, the surface of the PNMCFC-PBC performed a relatively 252 
balanceable A/B-site ratio, efficiently enhancing the structural stability of the PBC substrate.  253 

To obtain the mechanism for excellent steam-tolerance durability of hybrid electrodes, a more detailed 254 
morphology of the lattice maintenance and robust interface growth between PBC and PNMCFC was 255 
examined by the focused ion beam (FIB)-TEM. PNMCFC was firstly deposited onto the surface of the dense 256 
PBC substrate and then thermally calcined at 950 °C for 5 h. Shown in Figure 3E is the cross-sectional 257 
TEM image of the PNMCFC deposited PBC dense substrate after the steam (10% H2O) pretreatments at 258 
600 °C. Fewer elements can be utilized for phase differentiation due to the high similarity between PNMCFC 259 
and PBC phases and cation thermal diffusion during calcination, and the representative Ba and Mn 260 
elements were chosen for linear scanning and mapping. The content of Mn and Ba at the interface is likely 261 
caused by the cation thermal diffusion during high-temperature calcination at 950 °C for 5 h. EDS linear 262 
profiles and mapping (Figure 3E (inset), 3F, and S16) demonstrated that the PNMCFC thin film was 263 
conformally coated on the PBC substrate with enhanced durability against steam. According to the element 264 
contents from the EDS results (Figure S17), the PBC maintains full structural integrity by protecting the 265 
conformal PNMCFC coating against a steam-containing environment. As clearly observed by HR-TEM 266 
(Figure 3G), the PNMCFC phase epitaxially grew and kept well-connected with the PBC substrate to form 267 
a robust heterointerface. In addition, the PNMCFC layer maintains crystalline after interacting with steam, 268 
of which a space distance of 2.24 Å corresponds to the (211) plane, while the different space distance of 269 
3.90 Å belongs to the (100) plane of the PBC lattice. The marked ring (top) and spots (bottom) from the 270 
selected area electron diffraction (SAED) can confirm that they can be assigned to the (200) plane of 271 
PNMCFC, (210), and (200) planes of PBC, respectively (Figure 3h).  272 

DFT calculations were performed to investigate the conformal coating of high-entropy PNMCFC on 273 
PBC, demonstrating its effectiveness in enhancing PCC performance and stability by mitigating Ba 274 
segregation (Note S1). As summarized in Figure S18 and Table S4, initial screening calculations were 275 
conducted to optimize the most plausible high-entropy bulk PNMCFC structure, yielding the most oxygen 276 
vacancy formation energy (Evac) at 2.04 eV. The bulk lattice parameter of PNMCFC was adjusted to match 277 
PBC, assuming an ideal conformal coating. The recalculated Evac values of 2.04 eV and 1.83 eV, 278 
respectively, showed a 10% reduction, indicating improved bulk properties. Following the surface stability 279 
analysis of PBC and PNMCFC surfaces (Table S5 and Figure S19), the most stable surfaces were selected 280 
for segregation energy and O 2p-band center calculations. As summarized in Table S6, the total O 2p-band 281 
center for the hybrid PNMCFC/PBC(001) shifts closer to the Fermi energy (−2.51 eV) compared to the 282 
PNMCFC(001) surface (−3.04 eV). For the coated PNMCFC, the O 2p-band center is calculated to be 283 
−2.57 eV, highlighting the enhanced electronic interaction and more efficient surface oxygen kinetics.37 The 284 
shift indicates increased covalency of oxygen bonding at the interface, enhancing orbital overlap, charge 285 
transfer, and oxygen-related surface reactions.43 Besides elucidating surface oxygen kinetics by 286 
understanding the O 2p-band center, we conducted the segregation energy calculations of Ba cations from 287 
PBC to investigate the improved stability test results. As summarized in Figures 3I, S19 and Table S6, the 288 
segregation energy of Ba increases significantly from 0.48 eV (bare PBC) to 2.36 eV (PNMCFC/PBC), 289 
verifying that Ba migration to the surface is energetically prohibitive after coating. In summary, the PNMCFC 290 
coating suppresses Ba migration by increasing segregation energy, strengthening oxygen bonding 291 
interactions, and acting as a physical barrier, resulting in improved structural stability of air electrodes. The 292 
state-of-the-art conformal coating approach offers valuable guidance for the rational design of next-293 
generation high-entropy perovskite materials, paving the way for advancements in PCCs.  294 



 295 
Figure 4. Electrochemical performance and durability of the single cells with the hybrid electrode.  296 
(A) Cross-sectional SEM image of a fuel-electrode-supported single cell with the hybrid (PNMCFC-PBC) 297 
electrode. 298 
(B and C) (B) Typical I-V-P curves and (C) EIS of single cells with the hybrid electrode at 450-650 °C. 299 
(D) Typical I-V curves of single cells with the bare PBC (black line) at 650 °C and hybrid electrodes at 450-300 
650 °C. 301 
(E and F) (E) Comparisons of fuel cell Pmax (Table S7) and (F) current densities at 1.3 V and 600 °C (Table 302 
S8). 303 
(G) Stability of the single cells at 550 °C applied a current density of 0.5 A cm-2 (in fuel cell mode).  304 
(H) current densities of -0.5 and -1.0 A cm-2 (in electrolysis mode); (i) Reversible cycling operation at current 305 
densities of ±0.5 A cm-2 at 550 °C.  306 
 307 

Single-cell performance and durability  308 
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Shown in Figure 4A is the cross-sectional image of the single cell with the construction of Ni-BZCYYb 309 
fuel electrode, BZCYYb electrolyte (~ 6 μm), and hybrid (PNMCFC-PBC) air electrode. The I-V-P curves 310 
were recorded by fueling H2 to the fuel electrode and exposing the air electrode to ambient air. The PBC 311 
electrode achieved a peak power density of 1.82 W cm-2 with an ohmic resistance (Rohm) of 0.061 Ω cm2 312 
and polarization resistance (Rp) of 0.044 Ω cm2 at 650 °C (Figure S20). More outstanding electrochemical 313 
performances were demonstrated on the cell with the hybrid electrode, showing the peak power densities 314 
of 2.29, 1.72, 1.30, 0.94, and 0.64 W cm-2 at 650, 600, 550, 500, and 450 °C, respectively (Figure 4B). For 315 
reasonable comparisons, the Rohm of the two cells kept identical, and the performance discrepancy may be 316 
mainly attributed to the decreasing Rp, such as a lower Rp of 0.038 Ω cm2 for the hybrid electrode at 650 317 
°C than PBC (Figure 4C). Figure 4D demonstrated the I-V curves of the electrolysis cell using wet air (3% 318 
H2O) as the oxidant at 450-650 °C. The current densities of -3.12, -2.17, -1.36, -0.72, and -0.32 A cm-2 at 319 
650-450 °C and 1.3 V were achieved for the cell with the hybrid electrode, higher than that (-2.57 A cm-2 at 320 
650 °C and 1.3V) of the cell with the PBC electrode. The impressive peak power densities found with the 321 
hybrid electrode are better than most of the state-of-the-art air electrodes reported recently (Table 322 
S7),3,5,21,26,44-53 such as BaCo0.7(Ce0.8Y0.2)0.3O3-δ (0.985 W cm-2 at 650 °C),44 PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (1.40 323 
W cm-2 at 650 °C)47 and PrNi0.5Co0.5O3-δ (1.7 W cm-2 at 600 °C in wet O2)5 (Figure 4E and Figure S21). 324 
The interface engineering can further improve electrochemical performance, exemplified by 325 
BaSc0.1Ta0.1Co0.8O3-δ perovskite air electrode via pulsed laser deposition (PLD) with a power density of 2.25 326 
W cm-2 at 600 °C.46 The obtained top electrolysis performance at 1.3 V and 600 °C (Figure 4F and Table 327 
S8) signifies that the hybrid electrode exhibits not only an enhanced activity of oxygen reduction reaction 328 
and excellent surface kinetics for oxygen evolution reaction.5,6,22,26,27,45,49,51-55  329 

Figure 4G demonstrates the stability of a single cell in fuel-cell mode using H2 as the fuel and air as 330 
the oxidant. For an extended duration of ~120 h under a current density of 0.5 A cm-2 at 550 °C, the cell 331 
showed no noticeable degradation, highlighting the great potential of robust air electrodes. Continuous 332 
degradation was found on the voltage of the cells with the PBC electrode at -0.5 A cm-2 and 550 °C under 333 
wet air (3% H2O) within 38 h (Figure 4H). As judged by XRD and Raman spectra, the formation of impurities 334 
(likely Ba(OH)2) may lead to the deactivation of the PBC air electrode and electrolysis performance 335 
degradation (Figure S22). When the PBC electrode was covered by the conformally high-entropy 336 
PNMCFC, the electrolysis stabilities under the applied current densities of -0.5 and -1 A cm-2 at 550 °C 337 
were largely improved for over 200 h, even in the hash humidified air (30% H2O) (Figure 4H). Combined 338 
with the durable fuel-cell and electrolysis stability, a 2 h-fast reversible cycling was conducted at 550 °C 339 
and ±0.5 A cm-2, exhibiting relatively stable with low degradation rates (Figure 4I). Faradaic efficiency is a 340 
critical standard for energy conversion from the H2O to valuable H2 production, theoretically defined as the 341 
ratio of the H2 production rate detected by gas chromatography (GC) to that calculated by electron transfer 342 
number. When the applied current density was fixed at -1 A cm-2, the Faradaic efficiencies were increased 343 
from 81.8% to 91.1%, with the steam concentration increasing from 3% to 60% (Figure S23). Such results 344 
were attributed to the high steam concentration, which can inhibit the electronic (electron-hole) conduction 345 
and provide more protons via hydration. Therefore, developing highly steam-tolerance air electrodes via 346 
high-entropy conformal coating can enhance the Faradaic efficiency for energy conversion and storage in 347 
the high-concentration steam electrolysis mode in a system of protonic ceramic cells.  348 
 349 
Conclusion 350 

In summary, the electrocatalytic activity and stability of the PBC electrode have been significantly 351 
enhanced by a wet-chemical solution infiltration of a high-entropy PNMCFC, which is more suitable for low-352 
temperature PCCs. As steam is commonly encountered in PCCs, the impact of humidity on the 353 
electrocatalytic activity and structural stability of air electrodes is systemically investigated. Compared to 354 
the bare PBC electrode, the surface oxygen exchange kinetics of the hybrid electrode can be maintained 355 
without obvious deterioration by the high-entropy PNMCFC thin-film coating after interacting in wet air at 356 
600 °C for 100 h. The surface composition examined by XPS and Rp stability directly indicated that the 357 
inherently robust interface between PBC and PNMCFC leads to performance and durability enhancements 358 
by suppressing water-mediated segregation. Due to faster oxygen exchange kinetics and unique 359 



architecture, the cell with the hybrid electrode obtained a higher power density of 1.30 W cm-2 and excellent 360 
stability for 120 h at 550 °C. Considering enhanced structural tolerance against steam, the hybrid electrode 361 
with conformal high entropy coating also exhibits outstanding advantages in the performance and stability 362 
of electrolysis modes and reversible cycling under a high-concentration humidified air (30% H2O). 363 
 364 

METHODS 365 

The details of materials preparation, cell fabrication, materials characterization, and electrochemical 366 
measurements are provided in Supplemental Experimental Procedures. 367 
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