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Executive Summary

This report presents research findings from a four-year Smart Charge Management (SCM) pilot
program conducted by Maryland’s largest electric utilities—Baltimore Gas and Electric (BGE),
Potomac Electric Power Company (Pepco), and Delmarva Power & Light (DPL)—to evaluate
strategies for optimizing electric vehicle (EV) charging loads and enhancing grid stability.
Supported by the U.S. Department of Energy (DOE), Argonne National Laboratory collaborated
with all project partners and examined the effectiveness of Time-of-Use (TOU) and Load
Balancing (LB) strategies in managing peak demand, deferring costly infrastructure upgrades,
and reducing grid constraints at the feeder level.

Using charging data from over 4,600 EV drivers, the study analyzed SCM’s impact on the
distribution systems of BGE and Pepco, which consists of over 2000 feeders. Unlike prior
research that focused on system-wide trends or synthetic feeders, this analysis offers granular,
feeder-level insights based on real-world operational data. It highlights how transformer density,
load profiles, and infrastructure constraints influence smart charging performance. Results show
feeder-level conditions play a crucial role in SCM effectiveness, with most feeders benefiting
more from LB, while TOU-based SCM may be sufficient for others. By 2035, LB reduced peak
charging loads by 27% on average, compared to 23% under TOU-based SCM, though some
feeders saw reductions exceeding 35%, while others experienced minimal impact. Feeders with
higher transformer utilization and limited capacity benefited more from LB, which more
effectively distributed charging demand during off-peak hours.

Beyond reducing grid constraints, SCM offers long-term operational and financial benefits. By
shifting EV charging demand strategically, utilities can optimize asset utilization, delay
infrastructure investments, and enhance grid performance. In terms of infrastructure upgrade
deferrals, at the feeder level, LB consistently reduced peak charging loads and resulting
infrastructure upgrade costs, particularly in high EV enrollment areas, decreasing the number of
overloaded transformers by up to 35%, while TOU-based SCM achieved 20-30% reductions
depending on feeder characteristics. At the system level, LB has the potential to defer total
upgrade costs by $186 million for BGE, compared to $159 million under TOU-based SCM. For
Pepco, TOU-based SCM performed slightly better, deferring upgrade costs by $30 million,
compared to $29 million under LB. Section 4.5 reviews some of the system differences between
BGE and Pepco. However, as EV adoption scales, TOU-based SCM will introduce secondary
peak charging loads, reinforcing the need for more advanced, adaptive SCM approaches to
prevent new grid challenges.

As EV adoption continues to grow, feeder-level managed charging strategies will be essential for
mitigating grid stress, improving infrastructure efficiency, and maintaining energy affordability
for consumers. This report provides critical insights for utilities, Public Utility Commissions
(PUCs), and state agencies on the role of feeder-specific smart charging in infrastructure
planning, policy development, and grid modernization. The findings underscore the importance
of tailored, data-driven SCM solutions that align with local grid conditions, ensuring a resilient,
cost-effective response to increasing demand while safeguarding distribution system
performance. The primary finding of this study is that implementing grid integration strategies
yields major benefits, chiefly through avoided infrastructure upgrade costs in the studied region.
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1 Introduction

Since 2021, Maryland’s largest electric utilities—Baltimore Gas and Electric Company (BGE),
Potomac Electric Power Company (Pepco), and Delmarva Power & Light (DPL), collectively
known as Exelon’s Joint Maryland Utilities (EJMU, referred as the Joint Utilities in the rest of
the report)—have been conducting a Smart Charge Management (SCM) pilot supported by the
U.S. Department of Energy (DOE). This four-year pilot, which concluded on December 31,
2024, aimed to develop and demonstrate a large-scale utility SCM system to optimize EV
charging for grid resilience and cost-effectiveness. Argonne National Laboratory (Argonne)
collaborated with the Joint Utilities, WeaveGrid, and the Smart Electric Power Alliance (SEPA)
on various research tasks, including charging protocol and standard testing, cybersecurity
assessments, charging behavior modeling, and grid economic impact analysis. This report covers
the research findings from the last two research tasks.

Unlike other electricity loads, EV charging is highly adaptable, providing a key opportunity to
strategically shift demand away from peak periods, reduce grid stress, and improve system
resilience. By testing increasingly sophisticated SCM strategies, the pilot sought to optimize
home charging to align with grid reliability needs while ensuring customer convenience. Starting
in May 2023, the Joint Utilities partnered with WeaveGrid to implement advanced SCM
strategies that created charging schedules tailored to both driver preferences and grid needs.
Customers voluntarily opted SCM controls, allowing automated charge scheduling while
retaining the ability to override the WeaveGrid-optimized schedule if necessary. Participants
could set their preferred “ready-by” time and target state of charge, informing the system’s
dynamic charging windows. As part of the pilot, WeaveGrid collected real-world charging
session data and compiled weekly charging reports. Argonne leveraged data from these reports to
analyze charging behavior and developed future EV adoption scenarios with expanded SCM
enrollment.

Argonne’s research focused on assessing the impact of EV charging on local distribution
operations and quantifying how smart charging can defer costly grid upgrades by reducing peak
demand and improving asset utilization. A key component of the research involved comparing
the effectiveness of different utility-scale SCM strategies in shifting and optimizing EV charging
loads, and the resulting reduced upgrade costs of distribution systems. Operational conditions of
real-world distribution feeders under different SCM methods and various enrollment scenarios
were considered. The analysis spans from 2022 to 2035, assessing EV charging demand patterns
of SCM, distribution systems upgrade requirements, and the deferred infrastructure investment
for the Joint Utilities. EV in this analysis refers to battery electric vehicles that operate solely on
electricity.

Following this introduction, Section 2 presents the data sources and methodology used in the
study, including feeder modeling techniques. Section 3 describes the scenarios analyzed, while
Section 4 discusses the results, focusing on home charging loads under different SCM strategies,
particularly for BGE and Pepco. Finally, Section 5 summarizes key insights and their
implications for future infrastructure planning.



2 Data and Methodology

This chapter outlines the framework and methods used to assess the impact of EV charging on
power distribution systems and to determine necessary infrastructure upgrades. The Argonne
analysis integrates diverse datasets, including Advanced Metering Infrastructure (AMI) base load
profiles, EV charging behavior, and distribution feeder characteristics. These inputs form the
basis for a load flow analysis using simulation tools to model distribution system behavior under
various scenarios. Figure 1 illustrates the framework of the analysis. Argonne utilizes the Agent-
based Transportation Energy Analysis Model (ATEAM) to simulate EV charging loads and
project future charging infrastructure needs, as detailed in Section 2.1. The study evaluates two
smart charging strategies—Time-of-Use (TOU) and Load Balancing (LB)—across multiple
enrollment scenarios from 2022 to 2035, reflecting different levels of EV adoption and smart
charging participation for a representative day, which are further explored in Chapter 3.

Real-world feeder data collected from BGE and Pepco is converted and analyzed to understand
the electrical characteristics of the power grid system, as described in Section 2.2. Upgrade
strategy along with cost estimations for necessary infrastructure upgrades were conducted using
data from the National Renewable Energy Laboratory (NREL), as outlined in Section 2.3.

Detailed load profiles are created by integrating the base load and EV load for representative
feeders, allowing for a comprehensive assessment of the distribution system's capacity and
performance, as explained in Sections 2.4 and 2.5. A time-series load flow analysis identifies
system vulnerabilities, guiding targeted upgrade strategies, which are discussed in Section 2.6.
Finally, an economic analysis estimates the costs of scaling up infrastructure upgrades across the
entire service territory for BGE and Pepco, using clustering and regression techniques, as
described in Section 2.7.

Inputs Grid Load Flow Analysis Upgrade Strategy

EV profile from ATEAM Real feeder models . Indicators: device

loading, voltage profiles

Representative day First occurrence,

I maximum requirement

2 Charging strategies

model

AMI base load profile

Cost Estimation

Component cost

[ J
[ Distribution network ]
[ J
[ J

4 Charging scenarios - Upgrade cost estimation

Figure 1 Workflow diagram of feeder level grid impact analysis

This structured approach provides a thorough evaluation of the impacts of EV charging on
distribution power systems, offering insights into effective strategies for grid management and
infrastructure planning.



2.1 EV Charging Simulation using ATEAM

This study used ATEAM, an agent-based simulation model co-developed by Argonne and
Exelon, to estimate the daily and annual EV charging load at a census tract-level based on
various inputs and scenario-based assumptions. The model incorporates diverse baseline data,
including existing vehicle registrations, charging infrastructure, household characteristics, travel
demand patterns, charging behaviors, and forecasts of future EV growth. The simulation outputs
include the regional distribution of EVs, recommended charging infrastructure deployment
locations, and daily charging load profiles. An overview of ATEAM’s inputs and outputs is
presented in Figure 2. Mintz et al. (2019) and Zhou et al. (2022) provide detailed explanations of
the ATEAM model methodology.

Inputs Outputs

Yehicie Registations Regional Distribution

of EVs
Vehicle Efficiency
Census tract Demographics Charging Load Profile
m o at Individual Vehicle
Household Characteristics 05\95 e w and Charger Levels
0—0 X E— 0—0
EV Growth Projections o-,-,,/g:,, :::"IB\"O et o
= ocations of New
ATEAM Public Chargers

Public Chargers by type

Daily Travel Demand
Unmet Charging

Charging Behavior Demand

Figure 2 Inputs and outputs of ATEAM

The EV charging simulation in ATEAM is initiated by first estimating the number of EV drivers
in each census tract. The base-year EV adoption is derived from the Maryland Vehicle
Administration (MVA, July 2022) (Maryland Gov., 2020) and Experian (Q3 2022) (Experian,
2022), while future EV growth is informed by BGE forecasts (Exelon, 2022). Once EV fleet
composition for each census tract is established, vehicles are randomly assigned to households
within those tracts. Vehicle travel patterns are simulated using data from two complementary
travel surveys: the 2018-2019 Maryland Travel Survey (MTS, 2020) and the 2017-2018
Regional Travel Survey (RTS, 2021). These surveys, conducted concurrently, provide detailed
information on households’ daily travel patterns, trip characteristics, and socio-demographic
profiles, ensuring comprehensive spatial and temporal coverage of the study area.

The input data used in ATEAM for this study is summarized in Table 1. This study assumed that
EV adoption follows historical patterns, where census tracts with higher household income and
existing EV adoption exhibit higher future adoption rates.



Table 1 Input parameters of ATEAM

Topic Key Input Parameters Source/Value
EV Existing EV Distribution MVA (July 2022) + Experian
(Q3 2022)
EV Drivers' trip-chain MTS, 2020 + RTS, 2021
EV Adoption Target BGE Projection
Future EV efficiency (in kWh/100 mi) Energy Information

Administration’s Annual
Energy Outlook, 2022

EVSE Home Charger Availability 80%
Existing Public Chargers AFDC (AFDC, 2022)
Share of Public DC50/DC150kW chargers 50-50
Simulation Simulation Start Year 2022
Simulation End Year 2035
Daily Simulation Interval 15 minutes
Road TIGER/Line Shapefiles (U.S.

Road network

Census Bureau, 2023)

ATEAM simulates driver activity over a two-day period based on trip chain data. On the first
day, all EVs start with a fully charged battery. For subsequent days, vehicles with home charging
also start the day fully charged. Each driver completes daily trips in sequence, following the
shortest route within their trip chain. At the start of each trip, drivers anticipate their next three
trips and assess whether their remaining state of charge (SOC) might drop below a predefined
comfort threshold. If necessary, they use public charging to ensure sufficient range for
completing the trip. At the end of the day, drivers with home charging access plug in their
vehicles upon returning home, and charging continues until 1) the vehicle SOC reaches a pre-
defined threshold or 2) the next day's first trip, whichever comes first. At the conclusion of the
simulation, ATEAM generates a vehicle output file that records all EV activities, including home
charging start and end times. This data represents the Unmanaged home charging profiles used in
this study. Figure 3 illustrates a sample load profile for a census tract in 2035 with approximately
850 EVs.
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2.2 Feeder Data from BGE and Pepco

Figure 3 Unmanaged home charging load profile of a census tract in 2035

BGE's network comprised a total of 1,320 feeders, while Pepco's network consisted of 722
feeders. Figure 4 and Figure 5 depict the distribution of feeders within BGE and Pepco by
voltage class. Both BGE and Pepco have a larger share of feeders with 13.8 kV voltage class.
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Figure 4 BGE feeders by voltage class
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Figure 5 Pepco feeders by voltage class

The feeder characteristics, originally provided in CYME' format, were converted to OpenDSS
format for power system analysis, as OpenDSS is an open-source software. Since existing
conversion tools were primarily designed for single-feeder files and required adaptation for
updated versions of CYME, a customized approach was developed. Additionally, variations in
file structures from BGE and Pepco were addressed by refining the conversion process to ensure
consistency and completeness.

However, there are incomplete load information, and anomalous values such as negative loads in
the CYME files. To address these issues, a comprehensive validation and adjustment process was
conducted. The load data in the CYME files was cross-referenced with their corresponding
OpenDSS files for further analysis to ensure consistency and enhance the data reliability for the
power system analysis. These steps were critical for ensuring the accuracy and validity of the
analytical results.

Iterative comparisons between the original CYME files and the converted OpenDSS files helped
verify data integrity, while targeted modifications addressed differences in conductor
specifications, load information, and structural formats across utilities. By refining the
conversion code and applying tailored corrections, the process was streamlined, ensuring reliable
inputs for analysis.

Figure 6 and Figure 7 illustrate a geographical overlay of the feeder data in the OpenDSS
environment, combining geospatial information with the electrical characteristics of the power
system. This overlay integrates the physical locations of substations, feeders, transformers, and
distribution lines with system topology data, such as distances, connectivity, and geographical

"' CYME is a suite of power engineering software solutions developed by Eaton. https://www.eaton.com/us/en-
us/digital/brightlayer/brightlayer-utilities-suite/cyme-power-engineering-software-solutions.html
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alignment. The OpenDSS format enables precise representation of the feeder layout, providing a
comprehensive visualization of the system's physical and electrical structure for enhanced
analysis.

Due to the large number of feeders for both BGE and Pepco, analyzing each individual feeder for
the entire service territory was beyond the scope and time of this study. Therefore, Argonne,
BGE and Pepco selected a set of representative feeders for each utility service area- 10 for BGE
and 9 for Pepco, for detailed analysis. The selected feeders serve different customer types
(residential and commercial) and operate across diverse geographical settings, including urban,
suburban, and rural areas. The characteristics of these representative feeders are detailed in Table
2 and Table 3.

Figure 6 Geographical overlay of BGE feeder Figure 7 Circuit plot of BGE feeder Bl in

B1 OpenDSS
Table 2 Characteristics of 10 BGE feeders

Feeder Voltage | Feeder Type Number of transformers | Number of lines

Bl 138KV rural, mainly residential load, heavily 685 3099
populated

B2 138KV subu.rban, mainly residential load, 232 1142
heavily populated

B3 138KV rural, residential load, not heavily 9 448
populated

B4 138KV subuyban, mainly residential load, 396 1729
heavily populated

B5 138KV subu.rban, mainly residential load, 194 312
heavily populated

suburban, mixed

B6 13.8kV commercial/residential load 52 361
suburban, mainly commercial load,

B7 13.8kV not heavily populated 69 342
suburban, mixed

B8 13.8 kV | commercial/residential load not 169 927
heavily populated

B9 13.8 KV urban, mainly commercial loads, not 08 668

) heavily populated
B10 13.8 KV urban, mixed commercial/residential 126 358

load, heavily populated




Table 3 Characteristics of 9 Pepco feeders

Feeder Voltage Feeder Type Number of Transformers Number of Lines
P1 4.33kV NA 28 92
P2 132 KV urban, mainly residential, not 201 663
' heavily populated
P3 13.8kV NA 45 383
P4 132KV urban, mostly mixed use, heavily 51 372
' populated
urban, mixed
P5 13.8kV commercial/residential load, not 89 386
heavily populated
urban, mixed
P6 13.2kV commercial/residential load, 33 343
heavily populated
P7 13.8kV NA 94 546
P8 13.8 KV downtowp urban, mostly 59 345
commercial, heavily populated
P9 13.8 kV NA 61 374

2.3 Base Load

The CYME files provided by BGE and Pepco contain a snapshot of the base load for each feeder
in 2022 but do not include 24-hour load values. To develop a full 24-hour load profile, Argonne
incorporated hourly load factors derived from AMI data.

To project future load growth, Argonne used the 2022 Pennsylvania-New Jersey-Maryland (PJM)
Load Forecast Report, which indicates that the non-EV base load (including residential,
commercial, and industrial demand) in the study area increases at an annual rate of 0.8%. Based
on this growth rate, the load multiplier is defined as:

Li=Lox1.008"
Where:

e Lt =Loadatyeart
e Lo=Base year load
o t= Number of years from the base year

To generate hourly feeder-level load profiles, Argonne first derived hourly load factors from
2022 AMI data. These factors represent the ratio of load at each time step to the annual peak load
and are specific to residential, commercial, and industrial demand patterns. The team then
applied these factors to the snapshot load from CYME, scaling them appropriately using a
feeder-specific adjustment factor to account for localized demand variations. Finally, Argonne
integrated these adjustments with the projected base load to construct 24-hour load profiles for
all non-EV base loads.

This methodology aims to represent accurately both temporal and spatial variations in feeder-
level demand. Figure 8 illustrates the base load profile of a sample feeder for 2022, alongside the
projected base load for 2035. Note that this study does not account for potential significant



increases in non-EV loads resulting from cross-sector electrification, such as building heating
and industrial electrification.

Base Load Profile
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Figure 8 Base load profile for feeder B1

2.4 EV Charging Load

The charging load from ATEAM is available at the census tract level. Each census tract can have
multiple feeders passing through it, and each feeder consists of multiple buses. To estimate the
charging load at each feeder, Argonne developed a method to spatially map feeder assets (buses)
to census tracts by associating their latitude and longitude with the corresponding census tract
boundaries.

Ideally, this mapping is exact, meaning every feeder asset is assigned to a census tract. However,
this requires access to the full distribution network for the study area. When all feeder assets are
mapped, the next step is to distribute the EV load—aggregated at the census tract level—across
individual buses within the tract. To do this, Argonne allocated the EV load proportionally based
on the existing base load at each bus, ensuring that buses with higher base loads receive a larger
share of the EV load.

If some feeder information is missing, certain assets may remain unmapped, which poses a
challenge. Distributing the full EV load among only the mapped buses would overestimate their
EV demand, as the load that should be shared among all buses would be concentrated on a
smaller subset. Additionally, since the base loads of unmapped buses are unknown, their
contribution cannot be directly estimated.

To address this, ANL implemented a probabilistic approach to redistribute the EV load when
feeder information is incomplete. This method introduces a parameter p, which determines how
extensively the load is reassigned:



e p =0 results in a zero-radius search (no reassignment of unmapped nodes).
e p =1 extends the search radius to encompass the entire census tract.

This method effectively assigns unmapped EV loads to mapped feeder assets, maintaining a
realistic spatial distribution of EV charging demand.

2.5 Feeder-level Load Flow Analysis

This study conducted a feeder-level analysis to evaluate the impact of total load—comprising
base load and EV charging load—on the power grid for selected BGE and Pepco feeders from
2022 to 2035. To capture seasonal variations in loading conditions, Argonne analyzed three
representative dates corresponding to summer, winter, and spring/fall. Among these, summer
exhibited the highest peak load, leading to the most severe overloading scenarios. As a result, a
representative day in July reflecting summer conditions became the primary focus for detailed
analysis and upgrade evaluations.

To assess system vulnerabilities, including overloaded lines, transformer capacity constraints,
and voltage violations, a time-series load flow analysis was conducted using the open-source
software OpenDSS. OpenDSS is a power distribution system simulator widely used for planning
and analyzing distributed generation integration with utility networks. It supports various
frequency-domain simulations and employs a current injection model as the default method for
load flow analysis. Using a fixed-point iterative approach, OpenDSS efficiently handles most
distribution systems with a stiff bulk power source. Its computational speed makes it particularly
suitable for yearly-mode and long sequential-time simulations.

The load flow solution is based on solving the nonlinear system admittance equation:
Iinj (V) :Ysystemv

Where I;;; (V) is compensation, or injection, currents from Power Conversion (PC) elements in
the circuit, which may be nonlinear elements, V is the voltage and Y ygier 18 the main system
admittance matrix.

Findings from this assessment inform a targeted upgrade strategy, minimizing premature capital
expenditures by scheduling equipment upgrades in the first year an overload is detected.
Capacity upgrades are designed to accommodate the highest projected demand during the study
period, ensuring long-term system reliability while optimizing investment efficiency.

2.6 Upgrade Strategy and Cost Analysis

The upgrade strategy is determined based on indicators such as voltage profile, transformer
loading, and line loading. System upgrades are triggered at the first occurrence of an overload,
with capacity added to accommodate the maximum projected load through 2035. For instance, if
an overload is first observed in 2025, upgrades are implemented that year to handle anticipated
load growth until 2035.

Component upgrade costs were from the NREL cost database (Horowitz 2019), which provides
unit costs of various components in distribution networks. The database includes costs for
reconductoring distribution lines, transformers, conductors, capacitors and regulators.
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A cost estimation is carried out to determine the investment required to upgrade the overloaded
infrastructure. The Net Present Value (NPV) of the upgrade cost is calculated using a discount
rate of 3% (NYSERDA, 2022), with 2022 as the base year. This framework provides a structured
approach to evaluating the impact of EV charging on power distribution, ensuring that
infrastructure is upgraded efficiently.

2.7  System-wide Analysis

This study conducted a system-wide analysis to estimate the cost of distribution system upgrades
needed across all feeders to mitigate capacity constraints. The flowchart in Figure 9 outlines a
structured methodology adopted for system -wide analysis. The process begins with the
collection of feeder data, including voltage levels, transformer capacities, line configurations,
and existing load conditions, which serve as the foundation for subsequent analysis. To manage
the complexity of analyzing numerous feeders, clustering techniques, such as k-means, are
applied to group feeders with similar characteristics. From these clusters, a few representative
feeders are selected to capture variations in the network while reducing computational effort.
Load flow analysis is then performed on these representative feeders to assess key performance
indicators, such as voltage profiles, transformer loading, and line loading, under different load
conditions, including scenarios involving EV integration. The results from this analysis are used
to develop a linear regression model, which estimates the cost of scaling up infrastructure
upgrades for the entire distribution network. This predictive model helps utilities estimate
investment requirements for various EV penetration scenarios while optimizing grid
reinforcement strategies.

Five clusters were identified, with 10 representative feeders selected from each cluster based on
their proximity to the cluster centroids. Clustering was based on combined Principal Component
Analysis (PCA) and K-Means clustering to categorize feeders based on key characteristics,
including:

o Feeder voltage level

o Peak base load

e Peak EV load

o Total transformer capacity

e Transformer type and number

e Line type and line count (underground or overhead sections within the feeder)

e Load type and load value of each type (Residential, Commercial, Industrial or any other

load types being served by the feeder)

The linear regression model incorporates key parameters such as base load peak, EV load peak,
and transformer capacity to formulate an equation for estimating upgrade costs. This derived
model was then applied to the remaining feeders within each cluster, enabling a systematic and
data-driven approach to extrapolate upgrade costs across the entire BGE and Pepco service
territories.

11



Collect feeder data

Conduct clustering and select representative feeders

Perform load flow analysis for representative feeders

Scale up to the system using linear regression model

Figure 9 Methodology for system-wide cost estimation

3 Study Scenarios Design

As part of the SCM pilot, WeaveGrid delivered weekly charging reports containing session data
from EV drivers participating in the program. From April 2023 to October 2024, the dataset
comprised records from 4,661 EV users and 1,203,912 charging sessions. In collaboration with
the Joint Utilities and WeaveGrid, several SCM strategies were developed and implemented,
including TOU-based SCM, PJM pricing-based SCM, and Load Balancing (LB). Argonne’s
analysis specifically examined the TOU-based SCM and LB strategies.

The TOU-based SCM strategy aims to reduce charging demand during the TOU peak hours,
defined by Argonne as 5 p.m. to 9 p.m. Under this strategy, charging is paused for enrolled EVs
which are plugged in during this window and resume charging after 9 p.m. Details on how this
strategy is implemented are in Appendix A.

The LB strategy groups consumers by grid assets, such as feeders, transformers, or substations, to
smooth charging loads within each group. This strategy reschedules charging sessions to prevent
overloads, more evenly distributing charging overnight. During periods of high demand, LB
optimizes the peak load by pausing certain charging sessions and shifting them to lower-demand
times. The implementation details of this strategy are provided in Appendix B.

Through discussions with BGE and Pepco, four scenarios were selected for analysis to evaluate
future SCM enrollment in their service territories:

e No enrollment (Unmanaged charging)

¢ Minimum enrollment (11% by 2035)

e Steady growth (a linear increase from 2% to 8% between 2023 and 2029, followed by
exponential growth reaching 38% by 2035).

e Maximum enrollment (50% of EV owners enrolled each year)

12



Figure 10 shows the yearly increase in EVs and the customer enrollment assumptions for these
scenarios in BGE and Pepco territories in Maryland.
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Figure 10 Number of EVs, and SCM enrolled customers in BGE and Pepco service territories for
different enrollment scenarios

4 Analysis Results and Discussions

4.1 EV Home Charging Load

Argonne generated home charging load profiles for Unmanaged, TOU-based SCM, and LB SCM
strategies for each enrollment scenario discussed in Chapter 3. This subsection evaluates the
performance of SCM strategies by analyzing EV charging loads across 19 selected feeders (10
from BGE and 9 from Pepco). The analysis in this section focuses solely on home charging loads
from EVs.

4.1.1 Home charging load across different SCM strategies

A comparison of the charging load between Unmanaged and the two SCM strategies (TOU-
based and LB) under the Maximum Enrollment scenario, shown in Figure 11, revealed that the
Unmanaged scenario generates a sharp peak around 7:00 p.m., coinciding with when EV owners
typically return home and plug in their EVs. In this scenario, the charging load gradually builds
throughout the day, reaching a peak in the evening before decreasing overnight. The peak
charging load rises each year from 2022 to 2035 due to the increasing number of EVs. With a
19.5-times increase in EV adoption in the study area over this period, the peak charging load
rises by almost 18 times in this scenario.
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Figure 11 Daily charging load across different years for Maximum Enrollment scenarios across
19 feeders, assuming 80% L2 chargers and 20% L1 chargers. The SCM charging load profile
includes both managed and Unmanaged charging loads for the entire study area.

In contrast, the LB scenario significantly flattens the evening peak compared to the Unmanaged
scenario, leading to a more evenly distributed charging load throughout the day and reducing
grid stress during peak hours. By 2035, it lowers the peak charging load by approximately 27%
on average. The TOU-based SCM shifts a portion of the charging load to the TOU off-peak
window, creating a pronounced peak around 9:00 p.m. In 2035, it reduces the peak charging load
by an average of 23% compared to the Unmanaged scenario.

4.1.2  Impact of customer enrollment in SCM on home charging load

The level of customer participation in the SCM program significantly influences the reduction of
peak charging loads. Higher enrollment rates lead to greater reductions in peak charging demand.
Figure 12 illustrates the average percentage reduction in peak charging load across 10 BGE and 9
Pepco feeders over different years, highlighting the effectiveness of managed charging strategies.
The y-axis in the figure represents the percentage reduction in peak charging load, rather than
absolute values, to allow for a consistent comparison across years as EV adoption and home
charging demand increase. Among the three levels of enrollment, the Maximum Enrollment
scenario achieves the most substantial reduction in peak charging load for both LB and TOU-
based SCM strategies.
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Figure 12 Average reduction in peak charging load, calculated by averaging the reductions from
Unmanaged scenarios across all 19 feeders

Charging load varies throughout the day based on enrollment levels and the chosen SCM
strategy, as depicted in Figure 13. In the LB scenario, increased customer enrollment results in
reduced charging loads from 7 a.m. to 10 p.m., with a corresponding increase from 10 p.m. to 7
a.m. This shift occurs because LB redistributes charging to overnight hours. Conversely, in the
TOU-based SCM, charging loads remain unchanged from 7 a.m. to 5 p.m. across different
enrollment levels, as customers can charge without restrictions during this period. However,
from 5 p.m. to 9 p.m., charging loads decrease with higher enrollment, as enrolled customers are
restricted from charging during this window. After 9 p.m., these customers resume charging,
leading to increased loads with higher enrollment.
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Figure 13 Daily charging load profile in different enrollment scenarios.

4.1.3 Load shifting from peak to off-peak hours

The TOU-based SCM strategy is particularly effective at shifting peak charging loads from peak
to non-peak hours. The analysis indicates that higher enrollment ratios in the TOU-based SCM
correlate with a greater percentage of feeders successfully moving peak charging loads to non-
peak periods. Figure 14 illustrates the relationship between enrollment ratios and the percentage
of feeders experiencing peak charging loads during non-peak hours for LB, TOU-based SCM, and
Unmanaged charging scenarios.
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In the Unmanaged scenario, around 30% of feeders exhibit peak charging load during the TOU
non-peak hours. The TOU-based SCM shows a clear upward trend, with a significant increase in
the percentage of feeders shifting peak loads to non-peak hours as enrollment ratios rise. This
suggests that higher enrollment effectively redistributes home charging demand away from peak
periods. In contrast, the LB method maintains a relatively stable percentage across different
enrollment ratios, indicating that its ability to shift charging loads is less sensitive to changes in
enrollment.

o
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—— Unmanaged
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Figure 14 Percentage of feeders with peak charging load during the TOU non-peak window as a
function of the enrollment ratio.

4.1.4 Factors affecting the peak charging load reduction

To identify the factors influencing peak charging load reduction, an Ordinary Least Squares
(OLS) regression model (Montgomery et al., 2021) is applied using the input variables described
in

Table 4. In this context, the percentage reduction in peak charging load is defined by comparing
the peak charging loads of each managed strategy to its corresponding Unmanaged scenario for
each year. The OLS regression equation fitted in the analysis is:

Percent Peak Load Reduction
= —6.47 + 5.05 X load balancing + 0.49 X enrollment ratio
— 0.05 X TOU ratio + 0.0006 X number of EVs served by a feeder
+ 10.36 X peak located in TOU peak window in unmnaged scenario
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Table 4 Inputs and outputs used in the OLS model

Variables Description

Percent Peak Load Reduction The output variable, representing the reduction in peak
charging load compared to the Unmanaged scenario,
expressed as a percentage.

load balancing A binary variable where 1 indicates Load Balancing is
used, and 0 indicates TOU-based SCM 1is used.

enrollment ratio The percentage of participants enrolled in the SCM
program, expressed as a fraction (0 to 1).

TOU ratio The percentage of participants using TOU rates,

expressed as a fraction (0 to 1).

number of EVs served by a feeder The total number of EVs served by a given feeder.

peak located in the TOU peak A binary variable indicating if the peak charging load
window in Unmanaged scenario occurs in the TOU peak window (5 pm to 9 pm) in the
Unmanaged scenario.

The positive coefficient suggests that using an LB strategy leads to a higher percentage reduction
in peak load compared to TOU-based SCM. Specifically, LB leads to a 5.05% greater reduction
in peak charging load than when compared to TOU-based SCM.

The enrollment ratio is positively related to peak charging load reduction, with a coefficient of
0.49. This suggests that a higher enrollment ratio enhances the effectiveness of reducing peak
charging load. This is further supported by Figure 15, which shows that as enrollment ratio
increases, the average peak charging load reduction also rises.

Conversely, the TOU ratio has a negative coefficient of -0.05. This suggests that a higher TOU
ratio slightly diminishes the effectiveness of peak charging load reduction. This occurs because a
higher TOU ratio means that more customers are already charging during the overnight TOU off-
peak window, leaving less flexibility to distribute or manage their charging times further. As a
result, it becomes difficult for the managed strategies to optimize the charging load effectively.
Consequently, this leads to an increased peak in home charging demand within the overnight
hours.

The number of EVs served by a feeder has a small but positive coefficient of 0.0006, indicating
a marginal contribution to peak charging load reduction. This could be due to the fact that, as the
number of EVs grows, the impact of SCM strategies becomes more pronounced. With more EVs
enrolled in SCM, the charging demand can be spread more evenly across non-peak hour time
window, leading to marginal reductions in peak charging load. However, the contribution
remains small because the effectiveness of SCM is more dependent on enrollment ratios and the
specific strategy used, rather than just the number of EVs alone.
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The variable peak located in TOU peak window in unmanaged scenario has a significant
positive coefficient of 10.36. This suggests that when peak charging load occurs during TOU
peak window in the Unmanaged scenario, the SCM strategies are particularly effective at
achieving substantial peak charging load reduction. However, when the peak charging load
occurs during TOU non-peak window (more specifically, from 9 pm to 7 am) in the Unmanaged
scenario, the TOU-based SCM actually increases the peak charging load, as illustrated in Figure
15. The box plot shows that when the Unmanaged peak charging load occurs after 9 pm, the
TOU-based SCM method leads to an increase in peak charging load, while LB still achieves a
reduction. This happens because, in the TOU-based SCM, customers are shifted to charge their
EVs during TOU non-peak hours. As a result, if the peak charging load in the Unmanaged
scenario already occurs after 9 pm, shifting even more charging to this period under the 7TOU-
based SCM can increase the peak charging load. This leads to a higher overall demand during
these hours compared to the Unmanaged scenario.

Time of charging peak load in Unmanaged scenario
[ Peak occurs after 9 pm

60 Bl Peak occurs between 5 pm and 9 pm

40

Load Balancing TOU-based SCM
Minimum llEnrDHment Steady Ilncrease Maximum IEnrc:llrm-:nt Minimum I]Enrullment Steady Ilncrease Maximum IEanment
Figure 15 Reduction in peak charging load for different charging times in the Unmanaged
scenario.

% peak load reduction compared to Unmanaged scenario

To further illustrate the situation when home charging peak occurs after 9 pm in the Unmanaged
scenario, Figure 16 compares profiles of two distinct feeders analyzed with two SCM strategies.
Notably, under the TOU-based SCM, peak charging load increased compared to the Unmanaged
scenario, whereas the LB method led to a peak charging load reduction. These results suggest
that when a feeder’s Unmanaged charging load profile peaks after 9 pm, the TOU-based SCM
may have little or even a negative impact. This indicates that, when implementing an SCM
program, it is crucial to examine the base load profile to understand how the program will
effectively influence it and what the impact will be.
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Figure 16 Daily charging load profile for two example feeders for Maximum Enrollment scenario
where the peak occurs after 9 pm in the Unmanaged scenario.

4.2 Feeder-level Load Profiles for SCM Scenarios

Figure 17Figure 18Figure 19Figure 20Each representative feeder includes a base load, an EV
load, and the total load, which is the sum of both as described in section 2.5. The base load
consists of the regular electricity demand from residential and commercial users, while the EV
load comes from both enrolled and non-enrolled drivers in the SCM program. Figures 17 and 18
show total load variations for a BGE feeder (B1), highlighting how the base load and EV load
contribute to the overall demand. In contrast, Figures 19 and 20 present similar data for a Pepco
feeder (P1) across four enrollment scenarios in 2035, focusing on LB and Time-of-Use (TOU)
charging strategies.

Both strategies effectively reduce peak loads across all scenarios (shown in Figures 17-20). The
TOU-based strategy shifts peak EV charging to off-peak hours, typically around 9 PM, while the
LB strategy distributes charging demand more evenly throughout the day. However, the TOU-
based approach may introduce a secondary peak at the beginning of the off-peak period. In such
cases, additional enrollment primarily reduces demand between 5 PM and 9 PM but does not
significantly lower peak loads outside this timeframe. In contrast, the LB strategy achieves a
smoother, more uniform load reduction without introducing a secondary peak. The impact of
smart charging strategies varies by feeder. Generally, the LB strategy is more effective in
reshaping the load curve to reduce peak loads. Error! Reference source not found.The f
ollowing figures are for illustrative purposes only and do not reflect the average behavior of the
utility. Analysis results show that EV load at each feeder is different, influenced by factors such
as EV adoption, charging access, driving habit and managed strategy.
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Figure 17 Load variation of BGE feeder B1 for LB scenarios in 2035

Load Variation Over Time - Summer Peak Load-TOU

----- Base Load 2035

140001 —— Total Load (Base + EV) - Unmanaged

—— Total Load (Base + EV) - Minimum Enrollment
—— Total Load (Base + EV) - Steady Increase
120001 — Total Load (Base + EV) - Maximum Enrollment

10000

Total kW

8000

6000

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time

Figure 18 Load variation of BGE feeder B1 for TOU scenarios in 2035
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Figure 19 Load variation of Pepco feeder P1 for LB scenarios in 2035
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Figure 20 Load variation of Pepco feeder P1 for TOU scenarios in 2035

Evolution of Base Load vs. EV Load Contribution: During the early years of the study period,
the total load was predominantly driven by the base load, which includes traditional non-EV
consumption from residential, commercial, and industrial users. However, as EV adoption
increases, the charging demand grows significantly, altering the overall load composition. Over
time, EV load represents a much larger share of the total load profile, even though base load
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continues its gradual upward trend. Figure 21 shows the variation between base load and EV
load for representative feeder B1:
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Up to the year 2027, the base load dominates across all 24-time steps in the day.

By 2032, the EV load increases to the point where it surpasses the base load during
several time steps, highlighting the growing influence of EV charging on grid demand.
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Figure 21 Variation of the Base and EV load over time

BGE Analysis Results

Feeder level analysis

A. Performance and upgrade costs of LB and TOU-based SCM in 2035

Table 5 and Table 6 compare the performance and resulting upgrade costs for LB and TOU-based
SCM in year 2035. Each column—transformer overloads, upgrade capacity (MVA), upgrade cost
(MUSD), line overloads, and line upgrade cost—directly corresponds to the enrollment
scenarios, providing a comprehensive assessment of network stress. The results highlight the
effectiveness of smart charging in mitigating grid impacts across various feeders.

Both LB and TOU-based SCM show a consistent decline in transformer overloads, upgrade
capacity, and associated costs as enrollment shifts from Unmanaged to Maximum Enrollment.
Feeders such as B1, B2 and B4 experience the highest stress in the Unmanaged scenario, with
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numerous overloaded transformers and significant upgrade requirements. For example, under
TOU-based SCM, the number of overloaded transformers in feeder B1 decreased from 163 in the
Unmanaged scenario to 125 in the Maximum Enrollment scenario, accompanied by reductions in
upgrade capacity needed and associated costs. In contrast, feeders like B5 and B7 remain largely
unaffected by enrollment variation, indicating these two feeders are less sensitive to variations in
charging demand, due to their inherent load profiles.

As EV enrollment increases, shifting from Unmanaged charging to Maximum Enrollment lowers
the distribution system’s burden. Higher SCM enrollment redistributes demand away from peak
periods, reducing line and transformer overloads, while minimizing upgrade requirements and
costs. However, these benefits are not uniform across all feeders. Some experience significant
improvements while others show minimal change due to load profiles and network
configurations of the feeders. Table 5 and Table 6 emphasize the benefit of feeder-specific
planning to maximize smart charging benefits. Even with higher EV enrollment, well-designed
SCM strategies can alleviate distribution system stress and defer infrastructure investment costs,
but optimization must account for feeder-specific characteristics.

Table 5 Summary for LB scenarios for BGE

Total Total
Transformer | Total Line
Number of Upgrade Transformer | Number of | Upgrade
Overloaded Capacity Upgrade Overloaded | Cost

Feeder Scenario Transformers (MVA) Cost ($MM) | Lines (SMM)
Unmanaged 158 10.8 1.0 105 1.364
Minimum
Enrollment 146 10.1 0.9 78 1.031
Steady
Increase 102 7.1 0.6 69 0.926
Maximum

Bl Enrollment 122 8.7 0.8 71 0.976
Unmanaged 131 8.9 0.7 2 0.155
Minimum
Enrollment 127 8.5 0.6 2 0.155
Steady
Increase 125 8.3 0.6 2 0.155
Maximum

B2 Enrollment 117 7.7 0.6 2 0.155
Unmanaged 55 10.6 1.2 12 0.071
Minimum
Enrollment 51 9.1 1.1 1 0.002
Steady
Increase 45 6.2 0.8 1 0.002
Maximum

B3 Enrollment 42 5.8 0.8 1 0.002
Unmanaged 220 17.5 1.4 131 5.465
Minimum
Enrollment 212 16.5 1.4 129 4.768
Steady

B4 Increase 200 15.1 1.2 126 4.724
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Total Total
Transformer | Total Line
Number of Upgrade Transformer | Number of | Upgrade
Overloaded Capacity Upgrade Overloaded | Cost
Feeder Scenario Transformers (MVA) Cost ($MM) | Lines (SMM)
Maximum
Enrollment 185 13.3 1.1 122 4.459
Unmanaged 4 1.4 0.13 4 0.333
Minimum 0.062
Enrollment 2 0.6 4 0.333
Steady 0.062
Increase 2 0.6 3 0.217
Maximum 0.004
B5 Enrollment 1 0.1 3 0.217
Unmanaged 39 24.5 2.0 23 0.66
Minimum
Enrollment 39 24.3 2.0 23 0.66
Steady
Increase 38 21.7 1.9 23 0.66
Maximum
B6 Enrollment 38 21.7 1.9 23 0.66
Unmanaged 42 18.0 1.9 25 0.62
Minimum
Enrollment 42 18.0 1.9 25 0.62
Steady
Increase 42 18.0 1.9 25 0.62
Maximum
B7 Enrollment 42 18.0 1.9 25 0.62
Unmanaged 24 59 0.4 16 4.59
Minimum
Enrollment 24 5.8 0.4 12 3.99
Steady
Increase 23 5.7 0.4 12 3.99
Maximum
B8 Enrollment 22 5.6 0.4 10 3.99
Unmanaged 42 7.0 0.9 21 1.09
Minimum
Enrollment 42 6.9 0.9 20 1.09
Steady
Increase 42 6.1 0.8 9 0.52
Maximum
B9 Enrollment 42 5.9 0.8 8 0.51
Unmanaged 52 104 1.1 122 6.22
Minimum
Enrollment 52 10.4 1.1 119 6.2
Steady
Increase 52 9.3 1.0 106 5.75
Maximum
B10 Enrollment 52 9.0 1.0 105 5.26
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Table 6 Summary of TOU-based scenarios for BGE

Total
Transformer Total Total Line
Number of Upgrade Transformer | Number of | Upgrade
Overloaded Capacity Upgrade Overloaded | Cost
Feeder | Scenario Transformers | (MVA) Cost ($MM) | Lines ($MM)
Unmanaged 158 10.80 1.0 105 1.364
Minimum Enrollment | 154 9.90 0.92 112 1.51
Steady Increase 127 7.80 0.69 110 1.48
B1 Maximum Enrollment | 125 7.73 0.68 111 1.5
Unmanaged 131 8.90 0.7 2 0.155
Minimum Enrollment | 127 8.53 0.65 2 0.16
Steady Increase 124 8.25 0.63 2 0.16
B2 Maximum Enrollment | 121 8.03 0.62 2 0.16
Unmanaged 55 10.60 1.2 12 0.071
Minimum Enrollment | 54 10.05 1.14 12 0.07
Steady Increase 52 9.58 1.05 12 0.07
B3 Maximum Enrollment | 51 9.33 1.00 12 0.07
Unmanaged 220 17.50 1.4 131 5.465
Minimum Enrollment | 205 15.65 1.28 129 4.77
Steady Increase 192 14.20 1.17 125 4.72
B4 Maximum Enrollment | 183 13.58 1.12 125 4.72
Unmanaged 4 1.40 0.13 4 0.333
Minimum Enrollment | 2 0.55 0.06 4 0.33
Steady Increase 2 0.55 0.06 3 0.22
BS5 Maximum Enrollment | 2 0.55 0.06 3 0.22
Unmanaged 39 24.50 2.0 23 0.66
Minimum Enrollment | 39 23.50 1.97 23 0.66
Steady Increase 38 21.50 1.88 23 0.66
B6 Maximum Enrollment | 38 21.20 1.87 23 0.66
Unmanaged 42 18.00 1.9 25 0.62
Minimum Enrollment | 42 17.98 1.90 25 0.62
Steady Increase 42 17.98 1.90 25 0.62
B7 Maximum Enrollment | 42 17.98 1.90 25 0.62
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Total
Transformer Total Total Line
Number of Upgrade Transformer | Number of | Upgrade
Overloaded Capacity Upgrade Overloaded | Cost
Feeder | Scenario Transformers | (MVA) Cost (SMM) | Lines ($MM)
Unmanaged 24 5.90 0.4 16 4.59
Minimum Enrollment | 24 5.88 0.42 12 3.99
Steady Increase 23 5.73 0.40 12 3.99
B8 Maximum Enrollment | 21 5.58 0.39 12 3.99
Unmanaged 42 7.00 0.9 21 1.09
Minimum Enrollment | 41 6.90 0.88 20 1.09
Steady Increase 41 5.93 0.82 9 0.52
B9 Maximum Enrollment | 41 5.93 0.82 8 0.51
Unmanaged 52 10.40 1.1 122 6.22
Minimum Enrollment | 50 11.13 1.17 87 5.01
Steady Increase 50 10.63 1.14 89 5.26
B10 Maximum Enrollment | 50 10.68 1.15 87 5.01

B. Comparison between LB and TOU SCM

Figure 22 compares peak load reduction under Unmanaged and Maximum Enrollment scenarios
for both TOU-based and LB SCM across 10 feeders in 2035. The peak load, which includes both
the base and EV demand, responds differently depending on the feeder. For instance, feeders B3
and B10 show significantly greater reductions under LB, while TOU-based SCM achieves no
reduction. Notably, feeder B10 exhibits a slight increase (0.2%) in Maximum Enrollment under
TOU-based SCM, indicating that load shifting in this case inadvertently raised demand during
peak periods. Conversely, feeder B7 sees no peak load reduction under TOU-based SCM—since
its base load peak falls outside the TOU window—but does experience some reduction under LB.
Feeders like B1 and B6 demonstrate similar reductions under both strategies. Overall, LB
consistently outperforms TOU-based SCM in reducing peak loads, making it a more effective
strategy for managing demand peaks.
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Figure 22 Comparison of LB and TOU-based in terms of peak load reduction for 10 BGE feeders

Figure 23 illustrates transformer upgrade cost reductions comparing Unmanaged and Maximum
Enrollment scenarios for TOU-based and LB in 2035. Upgrade costs depend on the required
transformer capacity (kVA) for each scenario, which varies by feeder. Certain feeders, such as
B5, benefit significantly from LB, achieving a 97% cost reduction compared to 52% under TOU-
based. This is due to the lower transformer capacity upgrade requirements under the LB strategy.
However, feeder like B7 exhibit negligible differences between the two strategies, with cost
reductions close to zero. Additionally, the negative reduction for feeder B10 under TOU
highlights how some distribution network configurations can produce unexpected results when
load shifts do not align with peak demand periods. Overall, LB demonstrates greater cost-deferral
potential, while TOU-based provides moderate reductions in most cases. These findings
underscore the variability in smart charging performance across different feeders.

Figure 24 and Figure 25 present the Net Present Value (NPV) of upgrade costs for
accommodating EV integration from 2022 to 2035 across BGE feeders. Maximum Enrollment
under LB yields the most favorable outcome, achieving the lowest NPV across feeders.

The analysis identifies small-sized single-phase transformers in BGE feeders as particularly
vulnerable to overloading, making them a priority for upgrades. Figure 26 and Figure 27 show
the reduction in overloaded transformers over time, highlighting the effectiveness of both LB and
TOU-based SCM in mitigating asset stress from 2022 to 2035. Transitioning from Unmanaged to
Maximum Enrollment leads to a notable decline in transformer overloads, deferring costly
distribution system upgrades while supporting higher EV adoption.

Most distribution lines within the 10 BGE feeders had sufficient capacity for EV integration,
with only a few laterals experiencing overloading due to their limited current-carrying capacity.
Some feeders also exhibited undervoltage issues alongside overloading, which were largely
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resolved through transformer upgrades. In cases where undervoltage persisted, additional
capacitor banks were installed to stabilize voltage levels. These results reinforce the importance
of implementing smart charging strategies, particularly in urban and suburban feeders with high
demand.

Upgrade Cost Reduction:
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Figure 23 Comparison of LB and TOU-based transformer upgrade cost reduction for 10 BGE
feeders
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Figure 24 NPV comparison of upgrade costs for LB scenarios across 10 BGE feeders
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Figure 25 NPV comparison of upgrade costs for TOU-based scenarios across 10 BGE feeders
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Figure 26 Summary of overloaded transformers under LB for 10 BGE feeders
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Figure 27 Summary of overloaded transformers under TOU for 10 BGE feeders

4.3.2 System-wide analysis for BGE

Argonne estimated the total system-wide upgrade costs across three scenarios under LB and TOU-
based SCM strategies. For BGE, several feeders had load data missing, load flow convergence
errors and other load flow related issues. After accounting for these issues, there were 1031 feeders
for the clustering analysis described in Section 2.6. Figure 29 extends these estimates to all BGE
feeders using a linear approximation derived from the 1,031-feeder results.

o In the Minimum Enrollment scenario, upgrade costs are more greatly deferred out to later
years beyond the study for both strategies, with TOU-based SCM achieving a slightly
greater cost reduction by the year 2035 ($2,079 million) compared to LB ($2,137
million).

e However, in the Steady Increase scenario, costs continue to decline, with LB ($2,031
million) outperforming TOU-based SCM ($2,058 million).

e Based on the discussion with the Joint Utilities, Maximum Enrollment across all years is
not considered a supportable forecast scenario, so the system-wide analysis was not
conducted.

e Cost savings by 2035 in millions USD compared to the Unmanaged scenario (Figure 28):
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Figure 28 Comparison of upgrade cost with Unmanaged Scenario (BGE)

The limited EV enrollment in Minimum Enrollment restricts the potential grid benefits of either
strategy, as there is less load available to shift or balance. Steady Increase achieves the lowest
total costs, suggesting that higher EV adoption, when paired with effective load management,
yields greater infrastructure savings.

These findings highlight that the cost-effectiveness of LB versus TOU-based SCM depends on
specific enrollment patterns and operational conditions at the feeder level. Aligning SCM
strategies with grid characteristics is essential for maximizing grid benefits and minimizing
upgrade costs.
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Figure 29 System wide upgrade cost for BGE

4.4 Pepco Analysis Results

4.4.1 Feeder level analysis

A. Performance of LB and TOU-based strategies
Table 7 and

Table 8 compare the performance of LB and TOU-based SCM strategies across the four scenarios,
focusing on overloaded transformers, total upgrade capacity (MVA), and associated costs in 2035.
A comparison of these tables reveals key trends-as scenarios progress from Unmanaged to
Maximum Enrollment, most feeders experience reductions in transformer overloads, total upgrade
MVA, and upgrade costs. This confirms that SCM is effective in mitigating negative grid impacts
under high EV enrollment.

Under LB, several feeders—including P4, P6, P7, P8, and P9—require fewer upgrades and incur
lower costs in the Maximum Enrollment scenario compared to TOU, highlighting LB’s potential
for greater deferral of infrastructure investments. However, exceptions exist; for instance, feeder
P2 performs better under TOU in later scenarios, demonstrating that the optimal strategy depends
on each feeder’s unique load profile and peak timing. While LB generally delivers greater cost
reductions, the extent of its advantage varies across feeders, emphasizing the importance of
feeder-specific planning.
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Table 7 Summary of LB scenarios for Pepco

Number of Total Transformer | Total Transformer
Overloaded Upgrade Capacity | Upgrade Cost
Feeder Scenario Transformers (MVA) (MUSD)
Unmanaged 7.0 0.68 0.06
Minimum Enrollment 7.0 0.68 0.06
Steady Increase 7.0 0.63 0.05
Pl Maximum Enrollment 7.0 0.63 0.05
Unmanaged 34.0 4.30 0.34
Minimum Enrollment 33.0 3.98 0.30
Steady Increase 30.0 3.45 0.28
P2 Maximum Enrollment 28.0 3.20 0.26
Unmanaged 16.0 10.90 0.68
Minimum Enrollment 15.0 10.05 0.62
Steady Increase 14.0 8.35 0.57
P3 Maximum Enrollment 14.0 7.35 0.56
Unmanaged 12.0 2.43 0.24
Minimum Enrollment 11.0 2.13 0.22
Steady Increase 10.0 1.90 0.19
P4 Maximum Enrollment 9.0 1.75 0.17
Unmanaged 4.0 6.00 0.39
Minimum Enrollment 4.0 5.50 0.37
Steady Increase 4.0 5.00 0.31
P5 Maximum Enrollment 4.0 4.75 0.30
Unmanaged 8.0 4.20 0.35
Minimum Enrollment 8.0 3.95 0.31
Steady Increase 6.0 2.10 0.19
P6 Maximum Enrollment 5.0 2.00 0.18
Unmanaged 19.0 8.50 0.59
Minimum Enrollment 17.0 7.83 0.52
Steady Increase 15.0 6.28 0.43
P7 Maximum Enrollment 15.0 5.83 0.43
Unmanaged 20.0 12.15 1.04
Minimum Enrollment 19.0 10.45 0.91
Steady Increase 17.0 7.30 0.72
P8 Maximum Enrollment 15.0 6.50 0.62
Unmanaged 26.0 17.20 0.98
Minimum Enrollment 25.0 15.05 0.94
Steady Increase 24.0 12.15 0.83
P9 Maximum Enrollment 24.0 11.35 0.82
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Table 8 Summary of TOU scenarios for Pepco

Feeder Scenario Number of Total Transformer Total Transformer
Overloaded Upgrade Capacity | Upgrade Cost
Transformers (MVA) (MUSD)
Unmanaged 7.0 0.68 0.06
Pl Minimum Enrollment 7.0 0.68 0.06
Steady Increase 7.0 0.63 0.05
Maximum Enrollment 7.0 0.63 0.05
Unmanaged 34.0 4.30 0.34
P Minimum Enrollment 32.0 3.88 0.30
Steady Increase 30.0 3.35 0.27
Maximum Enrollment 25.0 2.60 0.23
Unmanaged 16.0 10.90 0.68
3 Minimum Enrollment 15.0 10.05 0.62
Steady Increase 14.0 8.25 0.56
Maximum Enrollment 14.0 7.35 0.56
Unmanaged 12.0 2.43 0.24
P4 Minimum Enrollment 10.0 1.90 0.19
Steady Increase 10.0 1.90 0.19
Maximum Enrollment 10.0 1.90 0.19
Unmanaged 4.0 6.00 0.39
Ps Minimum Enrollment 4.0 5.50 0.37
Steady Increase 4.0 5.25 0.34
Maximum Enrollment 4.0 5.00 0.31
Unmanaged 8.0 4.20 0.35
P6 Minimum Enrollment 7.0 3.45 0.25
Steady Increase 5.0 2.25 0.18
Maximum Enrollment 5.0 2.25 0.18
Unmanaged 19.0 8.50 0.59
P7 Minimum Enrollment 17.0 7.83 0.52
Steady Increase 17.0 6.83 0.50
Maximum Enrollment 15.0 6.03 0.42
Unmanaged 20.0 12.15 1.04
P8 Minimum Enrollment 19.0 10.45 0.91
Steady Increase 18.0 7.88 0.77
Maximum Enrollment 17.0 7.78 0.75
P9 Unmanaged 26.0 17.20 0.98
15708 Minimum Enrollment 26.0 15.20 0.95
Steady Increase 25.0 13.70 0.89
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Number of

Total Transformer

Total Transformer

Feeder Scenario Overloaded Upgrade Capacity | Upgrade Cost
Transformers (MVA) (MUSD)
Maximum Enrollment 25.0 13.20 0.89

B. Comparison between LB and TOU-based SCM

Figure 30 shows the variation in peak load reduction achieved under Maximum Enrollment
compared to the Unmanaged scenario for 9 Pepco feeders in 2035. The results show significant
variability in program effectiveness:

e TOU-based outperforms LB in feeders such as P3 and P6, achieving greater peak load
reductions.

e LB outperforms TOU-based in feeders like P1 and PS.

e Minimal differences are observed in feeders like P4, where both strategies perform nearly
identically.

This variability underscores the feeder-specific nature of load management strategies, reinforcing
that the effectiveness of TOU-based or LB depends on the unique operational characteristics of
each feeder. Additionally, peak load reduction alone does not always translate directly to cost
savings. If reductions occur within the same capacity bucket, upgrade costs remain unchanged.
Moreover, the distribution of load reductions across transformers can affect overloading patterns
and associated upgrade costs, highlighting the need for a granular approach to cost impact
assessment.

Figure 31 further compares upgrade cost reductions achieved under Maximum Enrollment for
TOU-based and LB SCM across various feeders, revealing additional variability:

e Feeders such as Pland P6 show identical cost savings under both strategies.
e TOU-based yields higher cost reductions for feeders like P2 and P7.
e LB achieves greater reductions for feeders like P8 and P9.

o Feeders like P3 Drive exhibit the highest cost reductions, with both strategies performing
equally well.

These findings reinforce that the effectiveness of each strategy is highly dependent on feeder-
specific characteristics. Optimizing cost efficiency requires tailored implementation rather than a
one-size-fits-all approach.

Figure 32 and Figure 33 depict the NPV of upgrade costs for EV integration in Pepco from 2022
to 2035. Like trends observed in BGE, Maximum Enrollment under LB consistently results in the
lowest NPV across most feeders, highlighting its long-term cost-effectiveness.

Figure 34 and Figure 35 show the cumulative trend of overloaded transformers across Pepco
feeders. As EV loads increase, transformer overloads steadily rise. However, Maximum
Enrollment results in the lowest number of overloaded transformers, further demonstrating the
effectiveness of high EV enrollment paired with load management strategies in mitigating
infrastructure stress.
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Figure 30 Comparison of LB and TOU in peak load reduction for 9 Pepco Feeders
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Figure 31 Comparison of LB and TOU-based upgrade cost reduction for 9 Pepco Feeders
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Figure 32 NPV comparison of upgrade costs for LB scenarios across 9 Pepco feeders
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Figure 33 NPV comparison of upgrade costs for TOU scenarios across 9 Pepco feeders
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Figure 34 Summary of overloaded transformers under LB for 9 Pepco feeders
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Figure 35 Summary of overloaded transformers under TOU for 9 Pepco feeders




4.4.2 System wide analysis for Pepco

For Pepco,722 feeders remained available for the clustering analysis described in Section 2.6.
Figure 37 presents the total upgrade costs (MUSD) across three scenarios under LB and TOU-
based SCM strategies. The results indicate:

e In the Minimum Enrollment scenario, upgrade costs shift out to later years, with TOU-
based achieving slightly lower costs by 2035 ($236 million) compared to LB ($240
million).

e In the Steady Increase scenario, LB achieves total upgrade costs by 2035 of $219 million,
slightly higher than TOU-based SCM’s $218 million.

e Cost differences in millions USD compared to Unmanaged scenario (Figure 36):

Total Upgrade Cost Reduction from Unmanaged Scenario
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Figure 36 Comparison of upgrade cost with Unmanaged Scenario (Pepco)

The differences between LB and TOU-based are minimal, suggesting that both strategies perform
similarly in terms of system-wide cost reductions for Pepco. In the Minimum Enrollment
scenario, more than half of the feeders exhibit comparable avoided upgrade costs under both LB
and TOU-based, leading to lower data variability. Error! Reference source not found.The r
esults reinforce that while both LB and TOU-based can effectively defer distribution system
upgrade costs, their relative performance varies by feeder, highlighting the need for strategic
alignment of smart charging strategies with local grid conditions.
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Figure 37 System wide upgrade cost for Pepco

4.5 Comparison of BGE and Pepco feeders

BGE and Pepco exhibit notable differences in their distribution infrastructure, influencing the
impact of EV demand integration and the effectiveness of smart charging strategies.

o Transformer Density: BGE has nearly 50% more transformers per feeder than Pepco,
averaging 180 transformers per feeder compared to 123 in Pepco.

o Line Density: Despite a slight difference, both utilities maintain a similar number of lines
per feeder, with an average of 1,026 lines in BGE and 987 in Pepco.

o Equipment Ratings: Pepco feeders generally have higher equipment ratings relative to
their load sizes, which helps mitigate stress on the grid.

Capacity Utilization and Overloading

e Transformer Utilization: 58% of transformers in BGE operate above 50% capacity,
compared to 47% in Pepco among the selected feeders.

e Overloading: BGE experiences a higher prevalence of overloaded transformers, with
80% more overloaded units than Pepco.

e Line Overloads: Among the selected feeders, 36 feeders in BGE have overloaded lines,
compared to 20 in Pepco, a trend that scales proportionally across the full network.

Infrastructure Upgrade Needs

o Transformer kVA Upgrade Requirements: The transformer upgrade demand in BGE is
45% higher than in Pepco, reflecting greater grid stress.
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o Line Lengths: BGE feeders have longer average line lengths—65% greater than those in
Pepco, adding complexity to grid management and upgrade planning.

These findings underscore the need for utility-specific strategies to address the distinct
challenges of each network. While BGE faces more severe infrastructure constraints, requiring
greater investment in upgrades, Pepco’s higher equipment ratings and relatively lower
transformer utilization suggest different grid management priorities. This also suggests that
moving to maximum SCM enrollment scenarios, Pepco might begin to see more constraints
consistent with BGE. Tailored smart charging strategies are essential to effectively support EV
integration within each utility's unique operational framework.
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5 Conclusions

This study demonstrates that LB consistently achieves greater peak load reduction for EV
home charging compared to TOU-based SCM. Higher enrollment in SCM enhances peak load
reductions for both strategies by improving coordination, shifting demand away from peak hours,
and optimizing load distribution. However, EV plug-in behavior significantly influences the
effectiveness of each approach. When most EVs plug in after 9 p.m. (when off-peak starts),
TOU-based SCM offers limited benefits, making LB the more effective strategy for managing
home charging loads. Additionally, LB benefits from the flexibility of flat-rate users,
particularly in feeders with a higher proportion of such users, allowing for more efficient load
optimization and greater peak load reduction.

Both LB and TOU-based strategies effectively defer the system upgrade costs to later years
for BGE and Pepco, but their relative advantages vary by scenario and utility:

e LB outperforms TOU-based in the Steady Increase scenario, particularly across BGE’s
representative feeders and system-wide analysis.

e TOU-based SCM shows a slight system-wide advantage for Pepco, though the difference
is marginal.

e In the Minimum Enrollment scenario, the benefits of managed charging are limited due to
low EV participation, leading to only minor differences between LB and TOU-based and
SCM. More than half of Pepco’s feeders in this scenario exhibit similar avoided upgrade
costs for both strategies, reducing data variability and impacting the accuracy of system-
wide cost estimations.

While both strategies contribute to extending the lifespan of existing infrastructure and
deferring—but not eliminating—future distribution upgrades, LB provides greater
flexibility by dynamically distributing demand across broader time periods. This
adaptability helps minimize overload conditions more effectively than TOU-based, which relies
on fixed peak and off-peak periods that may not align with actual load patterns.

As EV adoption continues to rise, 7TOU-based SCM is likely to create a secondary peak
when large numbers of EVs begin charging simultaneously at the start of the off-peak period.
This new peak could shift grid stress from traditional peak hours to later in the evening,
particularly in high-adoption regions. The results suggest that static TOU pricing alone will not
be sufficient in the long term. More sophisticated SCM approaches—such as Load
Balancing, dynamic pricing, or real-time grid-aware smart charging—will be necessary to
distribute charging demand more efficiently and prevent new grid constraints.

From a regulatory and utility planning perspective, managed charging strategies provide
critical benefits:

e Optimizing asset utilization, reducing transformers and line overloads.
o Delaying capital-intensive infrastructure upgrades, benefiting all rate payers.

o Enhancing grid reliability by preventing localized congestion and overloading.
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e Providing a more gradual and cost-effective path toward widespread EV adoption.

Although managed charging can postpone costly infrastructure investments, eventually grid
upgrades might still be necessary as EV penetration increases. However, prioritizing smart
charging—particularly through more advanced strategies like LB—enables utilities to
better plan infrastructure investments, improve operational efficiency, and support long-
term grid resiliency. By integrating flexible, data-driven load management strategies,
utilities, PUCs, and state agencies can ensure a smoother, more cost-effective response to
electrified transportation while maintaining grid stability and affordability for all
consumers.
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7 Appendix

Appendix A: TOU-based SCM

Algorithm 1: Load profile calculation in TOU-based SCM
1 Input: Plug-in and plug-out times for each EV, maximum charging speed of each EV, total
energy required for a charging session
2 Initialization: active ev list < [] (list of EVs that can charge)
pending ev queue < [] (queue for EVs waiting to charge)
charging load profile < [] (store charging load at each time step)
ev charging rate < [] (store charging rate for each EV)
3 Iteration: For each time step t from 7:00 a.m. to 7:00 a.m. the next day, in 15-
minute intervals:
Identify EVs plugged in at ¢t:
charge request list — EVs plugged in at t + pending ev queue
If time t is between 7:00 a.m. and 5:00 p.m.:
Allow all EVs in charge request list to charge at maximum rate:
active ev list < charge request list
Update charging load profile with total charging load of active ev
list
Else if time t is between 5:00 p.m. and 9:00 p.m.:
Pause charging for all EVs in charge request list:
Add charge request list to pending ev queue
Else if time t is between 9:00 p.m. and 7:00 a.m.:
For EVs in charge request list:
If EV is plugged in after 9:00 p.m. (late-plugged EV):
Allow charging at maximum rate: active ev list < EV
Else:
Calculate adjusted charging rate for each EV: rate «
remaining required energy / remaining time
Update charging load profile with adjusted charging rates
Update charging load profile with total load of active ev list
Remove fully charged EVs from pending ev queue
End For
4 Return charging load profile

Appendix B: Load Balancing Algorithm

The Load Balancing strategy primarily shifts most Load to overnight hours, resulting in the highest
peak load during this overnight charging period. We can denote the peak load for this strategy as
N, which occurs during the overnight charging window. According to WeaveGrid data, the
magnitude of peak home charging during the daytime low-demand period is observed to be 10%
of the overall peak load throughout the 24-hour cycle. Therefore, the allowable peak load during
this period is a fraction of N, represented as »xN. In the peak-hour window, EVs on flat-rate plans
are allowed to charge, while the allowable load gradually increases from r X N to N by midnight.
To minimize the peak load during these hours, charging for TOU users is postponed until after 9
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pm. By establishing unique peak load limits for each time window and estimating the total home
charging demand required from 7 am to 7 am, we calculate the total allowable load N for each

feeder using the following equation.

_2*(A1 +A,+A;+A,) (B1)
20r+7(r+1)+ 14
AN + 37N
7 N N
N j TOU peak Late evening S
"*N " Daytime low-demand, A, T*N window, A, | ramp-up, A Overnight charging, Aq
8 17 21 24 7

Time of the day (in 24 hours)

Figure B1: Peak Load limits across daily time windows in the proposed Load Balancing

approach.

In this equation, r is initially set to 0.1 but can be adjusted as a variable, providing control over
the allowable peak Load. Based on WeaveGrid results, we observed r to be approximately 0.1. Our
method leverages knowledge of each EV's plug-in time and total daily energy (4; + 4, + A3 +
A,) requirement, allowing us to estimate the total energy needed for the day in advance. The

overall process for Load Balancing is outlined in Algorithm 2.

Algorithm 2: Load profile algorithm in Load Balancing

1 Input: Plug-in and plug-out times for each EV
2 Initialization: active ev list < [] (list of EVs that can charge)

minute intervals:

If t is in 7:00 a.m. to 5:00 p.m.

r-N
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pending ev queue < [] (queue for EVs waiting to charge)
charging load profile < [] (store charging load at each time step)

3 Calculate Maximum capacity N by using Equation B1
4 Sort EVs based on plug-in time, current state of charge (SOC), and target SOC
5 [Iteration For each time step t from 7:00 a.m. to 7:00 a.m. the next day, in 15-

charge request list — EVs plugged in at t + pending ev queue
load request < total load from charge request list

Determine the first set of EVs from charge request list where load <

active ev list < selected EVs meeting the load threshold
non active ev list < charge request list — active ev list




6 Return

Add non active ev list to pending ev queue

Update charging load profile with total charging load of active ev

list

If t is in 5:00 p.m. to 9:00 p.m.

For EVs that are flat rate user
Select EVs from charge request list (flat-rate) where load is
below the threshold for ¢
active ev list — selected flat-rate EVs.
non active ev list < charge request list — active ev list
Add non active ev list to pending ev queue
Update charging load profile with total charging load of active ev
list

For EVs that are TOU rate users:
Pause charging for all EVs in charge request list:
Add charge request list to pending ev queue

If t is in 9:00 p.m. to 7:00 a.m.
Determine the first set of EVs from charge request list where
load is below the threshold for t
active ev list < selected EVs meeting the load threshold
non active ev list < charge request list — active ev list
Add non active ev list to pending ev queue
Update charging load profile with total charging load of active ev
list

End For
charging load profile
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