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Executive Summary 

This report presents research findings from a four-year Smart Charge Management (SCM) pilot 

program conducted by Maryland’s largest electric utilities—Baltimore Gas and Electric (BGE), 

Potomac Electric Power Company (Pepco), and Delmarva Power & Light (DPL)—to evaluate 

strategies for optimizing electric vehicle (EV) charging loads and enhancing grid stability. 

Supported by the U.S. Department of Energy (DOE), Argonne National Laboratory collaborated 

with all project partners and examined the effectiveness of Time-of-Use (TOU) and Load 

Balancing (LB) strategies in managing peak demand, deferring costly infrastructure upgrades, 

and reducing grid constraints at the feeder level. 

Using charging data from over 4,600 EV drivers, the study analyzed SCM’s impact on the 

distribution systems of BGE and Pepco, which consists of over 2000 feeders. Unlike prior 

research that focused on system-wide trends or synthetic feeders, this analysis offers granular, 

feeder-level insights based on real-world operational data. It highlights how transformer density, 

load profiles, and infrastructure constraints influence smart charging performance. Results show 

feeder-level conditions play a crucial role in SCM effectiveness, with most feeders benefiting 

more from LB, while TOU-based SCM may be sufficient for others. By 2035, LB reduced peak 

charging loads by 27% on average, compared to 23% under TOU-based SCM, though some 

feeders saw reductions exceeding 35%, while others experienced minimal impact. Feeders with 

higher transformer utilization and limited capacity benefited more from LB, which more 

effectively distributed charging demand during off-peak hours. 

Beyond reducing grid constraints, SCM offers long-term operational and financial benefits. By 

shifting EV charging demand strategically, utilities can optimize asset utilization, delay 

infrastructure investments, and enhance grid performance. In terms of infrastructure upgrade 

deferrals, at the feeder level, LB consistently reduced peak charging loads and resulting 

infrastructure upgrade costs, particularly in high EV enrollment areas, decreasing the number of 

overloaded transformers by up to 35%, while TOU-based SCM achieved 20-30% reductions 

depending on feeder characteristics. At the system level, LB has the potential to defer total 

upgrade costs by $186 million for BGE, compared to $159 million under TOU-based SCM. For 

Pepco, TOU-based SCM performed slightly better, deferring upgrade costs by $30 million, 

compared to $29 million under LB. Section 4.5 reviews some of the system differences between 

BGE and Pepco. However, as EV adoption scales, TOU-based SCM will introduce secondary 

peak charging loads, reinforcing the need for more advanced, adaptive SCM approaches to 

prevent new grid challenges. 

As EV adoption continues to grow, feeder-level managed charging strategies will be essential for 

mitigating grid stress, improving infrastructure efficiency, and maintaining energy affordability 

for consumers. This report provides critical insights for utilities, Public Utility Commissions 

(PUCs), and state agencies on the role of feeder-specific smart charging in infrastructure 

planning, policy development, and grid modernization. The findings underscore the importance 

of tailored, data-driven SCM solutions that align with local grid conditions, ensuring a resilient, 

cost-effective response to increasing demand while safeguarding distribution system 

performance. The primary finding of this study is that implementing grid integration strategies 

yields major benefits, chiefly through avoided infrastructure upgrade costs in the studied region.
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1  Introduction  

Since 2021, Maryland’s largest electric utilities—Baltimore Gas and Electric Company (BGE), 

Potomac Electric Power Company (Pepco), and Delmarva Power & Light (DPL), collectively 

known as Exelon’s Joint Maryland Utilities (EJMU, referred as the Joint Utilities in the rest of 

the report)—have been conducting a Smart Charge Management (SCM) pilot supported by the 

U.S. Department of Energy (DOE). This four-year pilot, which concluded on December 31, 

2024, aimed to develop and demonstrate a large-scale utility SCM system to optimize EV 

charging for grid resilience and cost-effectiveness. Argonne National Laboratory (Argonne) 

collaborated with the Joint Utilities, WeaveGrid, and the Smart Electric Power Alliance (SEPA) 

on various research tasks, including charging protocol and standard testing, cybersecurity 

assessments, charging behavior modeling, and grid economic impact analysis. This report covers 

the research findings from the last two research tasks. 

Unlike other electricity loads, EV charging is highly adaptable, providing a key opportunity to 

strategically shift demand away from peak periods, reduce grid stress, and improve system 

resilience. By testing increasingly sophisticated SCM strategies, the pilot sought to optimize 

home charging to align with grid reliability needs while ensuring customer convenience. Starting 

in May 2023, the Joint Utilities partnered with WeaveGrid to implement advanced SCM 

strategies that created charging schedules tailored to both driver preferences and grid needs. 

Customers voluntarily opted SCM controls, allowing automated charge scheduling while 

retaining the ability to override the WeaveGrid-optimized schedule if necessary. Participants 

could set their preferred “ready-by” time and target state of charge, informing the system’s 

dynamic charging windows. As part of the pilot, WeaveGrid collected real-world charging 

session data and compiled weekly charging reports. Argonne leveraged data from these reports to 

analyze charging behavior and developed future EV adoption scenarios with expanded SCM 

enrollment.  

Argonne’s research focused on assessing the impact of EV charging on local distribution 

operations and quantifying how smart charging can defer costly grid upgrades by reducing peak 

demand and improving asset utilization. A key component of the research involved comparing 

the effectiveness of different utility-scale SCM strategies in shifting and optimizing EV charging 

loads, and the resulting reduced upgrade costs of distribution systems. Operational conditions of 

real-world distribution feeders under different SCM methods and various enrollment scenarios 

were considered. The analysis spans from 2022 to 2035, assessing EV charging demand patterns 

of SCM, distribution systems upgrade requirements, and the deferred infrastructure investment 

for the Joint Utilities. EV in this analysis refers to battery electric vehicles that operate solely on 

electricity. 

Following this introduction, Section 2 presents the data sources and methodology used in the 

study, including feeder modeling techniques. Section 3 describes the scenarios analyzed, while 

Section 4 discusses the results, focusing on home charging loads under different SCM strategies, 

particularly for BGE and Pepco. Finally, Section 5 summarizes key insights and their 

implications for future infrastructure planning. 
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2  Data and Methodology 

This chapter outlines the framework and methods used to assess the impact of EV charging on 

power distribution systems and to determine necessary infrastructure upgrades. The Argonne 

analysis integrates diverse datasets, including Advanced Metering Infrastructure (AMI) base load 

profiles, EV charging behavior, and distribution feeder characteristics. These inputs form the 

basis for a load flow analysis using simulation tools to model distribution system behavior under 

various scenarios. Figure 1 illustrates the framework of the analysis. Argonne utilizes the Agent-

based Transportation Energy Analysis Model (ATEAM) to simulate EV charging loads and 

project future charging infrastructure needs, as detailed in Section 2.1. The study evaluates two 

smart charging strategies—Time-of-Use (TOU) and Load Balancing (LB)—across multiple 

enrollment scenarios from 2022 to 2035, reflecting different levels of EV adoption and smart 

charging participation for a representative day, which are further explored in Chapter 3.  

Real-world feeder data collected from BGE and Pepco is converted and analyzed to understand 

the electrical characteristics of the power grid system, as described in Section 2.2. Upgrade 

strategy along with cost estimations for necessary infrastructure upgrades were conducted using 

data from the National Renewable Energy Laboratory (NREL), as outlined in Section 2.3. 

Detailed load profiles are created by integrating the base load and EV load for representative 

feeders, allowing for a comprehensive assessment of the distribution system's capacity and 

performance, as explained in Sections 2.4 and 2.5. A time-series load flow analysis identifies 

system vulnerabilities, guiding targeted upgrade strategies, which are discussed in Section 2.6. 

Finally, an economic analysis estimates the costs of scaling up infrastructure upgrades across the 

entire service territory for BGE and Pepco, using clustering and regression techniques, as 

described in Section 2.7. 

 

Figure 1 Workflow diagram of feeder level grid impact analysis 

This structured approach provides a thorough evaluation of the impacts of EV charging on 

distribution power systems, offering insights into effective strategies for grid management and 

infrastructure planning. 
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2.1 EV Charging Simulation using ATEAM 

This study used ATEAM, an agent-based simulation model co-developed by Argonne and 

Exelon, to estimate the daily and annual EV charging load at a census tract-level based on 

various inputs and scenario-based assumptions. The model incorporates diverse baseline data, 

including existing vehicle registrations, charging infrastructure, household characteristics, travel 

demand patterns, charging behaviors, and forecasts of future EV growth. The simulation outputs 

include the regional distribution of EVs, recommended charging infrastructure deployment 

locations, and daily charging load profiles. An overview of ATEAM’s inputs and outputs is 

presented in Figure 2. Mintz et al. (2019) and Zhou et al. (2022) provide detailed explanations of 

the ATEAM model methodology. 

 

Figure 2 Inputs and outputs of ATEAM 

The EV charging simulation in ATEAM is initiated by first estimating the number of EV drivers 

in each census tract. The base-year EV adoption is derived from the Maryland Vehicle 

Administration (MVA, July 2022) (Maryland Gov., 2020) and Experian (Q3 2022) (Experian, 

2022), while future EV growth is informed by BGE forecasts (Exelon, 2022). Once EV fleet 

composition for each census tract is established, vehicles are randomly assigned to households 

within those tracts. Vehicle travel patterns are simulated using data from two complementary 

travel surveys: the 2018–2019 Maryland Travel Survey (MTS, 2020) and the 2017-2018 

Regional Travel Survey (RTS, 2021). These surveys, conducted concurrently, provide detailed 

information on households’ daily travel patterns, trip characteristics, and socio-demographic 

profiles, ensuring comprehensive spatial and temporal coverage of the study area. 

The input data used in ATEAM for this study is summarized in Table 1. This study assumed that 

EV adoption follows historical patterns, where census tracts with higher household income and 

existing EV adoption exhibit higher future adoption rates. 
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Table 1 Input parameters of ATEAM 

Topic Key Input Parameters Source/Value 

EV Existing EV Distribution MVA (July 2022) + Experian 

(Q3 2022)  

EV Drivers' trip-chain MTS, 2020 + RTS, 2021 

EV Adoption Target BGE Projection 

Future EV efficiency (in kWh/100 mi) Energy Information 

Administration’s Annual 

Energy Outlook, 2022 

EVSE Home Charger Availability 80% 

Existing Public Chargers AFDC (AFDC, 2022) 

Share of Public DC50/DC150kW chargers  50-50 

Simulation Simulation Start Year  2022 

Simulation End Year  2035 

Daily Simulation Interval  15 minutes 

Road 
Road network  

TIGER/Line Shapefiles (U.S. 

Census Bureau, 2023) 

 

ATEAM simulates driver activity over a two-day period based on trip chain data. On the first 

day, all EVs start with a fully charged battery. For subsequent days, vehicles with home charging 

also start the day fully charged. Each driver completes daily trips in sequence, following the 

shortest route within their trip chain. At the start of each trip, drivers anticipate their next three 

trips and assess whether their remaining state of charge (SOC) might drop below a predefined 

comfort threshold. If necessary, they use public charging to ensure sufficient range for 

completing the trip. At the end of the day, drivers with home charging access plug in their 

vehicles upon returning home, and charging continues until 1) the vehicle SOC reaches a pre-

defined threshold or 2) the next day's first trip, whichever comes first. At the conclusion of the 

simulation, ATEAM generates a vehicle output file that records all EV activities, including home 

charging start and end times. This data represents the Unmanaged home charging profiles used in 

this study. Figure 3 illustrates a sample load profile for a census tract in 2035 with approximately 

850 EVs. 
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Figure 3 Unmanaged home charging load profile of a census tract in 2035 

2.2 Feeder Data from BGE and Pepco 

BGE's network comprised a total of 1,320 feeders, while Pepco's network consisted of 722 

feeders. Figure 4 and Figure 5 depict the distribution of feeders within BGE and Pepco by 

voltage class.  Both BGE and Pepco have a larger share of feeders with 13.8 kV voltage class. 

 

Figure 4 BGE feeders by voltage class  

 

53 18

1249

0

200

400

600

800

1000

1200

1400

4.4 kV 13.2 kV 13.8 kV

N
u

m
b

er

Voltage Level

BGE Feeders



6 

 

 

Figure 5 Pepco feeders by voltage class  

The feeder characteristics, originally provided in CYME1 format, were converted to OpenDSS 

format for power system analysis, as OpenDSS is an open-source software. Since existing 

conversion tools were primarily designed for single-feeder files and required adaptation for 

updated versions of CYME, a customized approach was developed. Additionally, variations in 

file structures from BGE and Pepco were addressed by refining the conversion process to ensure 

consistency and completeness. 

However, there are incomplete load information, and anomalous values such as negative loads in 

the CYME files. To address these issues, a comprehensive validation and adjustment process was 

conducted. The load data in the CYME files was cross-referenced with their corresponding 

OpenDSS files for further analysis to ensure consistency and enhance the data reliability for the 

power system analysis. These steps were critical for ensuring the accuracy and validity of the 

analytical results. 

Iterative comparisons between the original CYME files and the converted OpenDSS files helped 

verify data integrity, while targeted modifications addressed differences in conductor 

specifications, load information, and structural formats across utilities. By refining the 

conversion code and applying tailored corrections, the process was streamlined, ensuring reliable 

inputs for analysis. 

Figure 6 and Figure 7 illustrate a geographical overlay of the feeder data in the OpenDSS 

environment, combining geospatial information with the electrical characteristics of the power 

system. This overlay integrates the physical locations of substations, feeders, transformers, and 

distribution lines with system topology data, such as distances, connectivity, and geographical 

 

1 CYME is a suite of power engineering software solutions developed by Eaton. https://www.eaton.com/us/en-

us/digital/brightlayer/brightlayer-utilities-suite/cyme-power-engineering-software-solutions.html  
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alignment. The OpenDSS format enables precise representation of the feeder layout, providing a 

comprehensive visualization of the system's physical and electrical structure for enhanced 

analysis. 

Due to the large number of feeders for both BGE and Pepco, analyzing each individual feeder for 

the entire service territory was beyond the scope and time of this study. Therefore, Argonne, 

BGE and Pepco selected a set of representative feeders for each utility service area- 10 for BGE 

and 9 for Pepco, for detailed analysis. The selected feeders serve different customer types 

(residential and commercial) and operate across diverse geographical settings, including urban, 

suburban, and rural areas. The characteristics of these representative feeders are detailed in Table 

2 and Table 3. 

 

Figure 6 Geographical overlay of BGE feeder 

B1 

 

Figure 7 Circuit plot of BGE feeder B1 in 

OpenDSS 

Table 2 Characteristics of 10 BGE feeders 
Feeder Voltage Feeder Type Number of transformers Number of lines 

B1 13.8 kV 
rural, mainly residential load, heavily 

populated 
685 3099 

B2 13.8 kV 
suburban, mainly residential load, 

heavily populated 
232 1142 

B3 13.8 kV 
rural, residential load, not heavily 

populated 
92 448 

B4 13.8 kV 
suburban, mainly residential load, 

heavily populated 
396 1729 

B5 13.8 kV 
suburban, mainly residential load, 

heavily populated 
194 812 

B6 13.8 kV 
suburban, mixed 

commercial/residential load 
52 361 

B7 13.8 kV 
suburban, mainly commercial load, 

not heavily populated 
69 342 

B8 13.8 kV 

suburban, mixed 

commercial/residential load not 

heavily populated 

169 927 

B9 13.8 kV 
urban, mainly commercial loads, not 

heavily populated 
98 668 

B10 13.8 kV 
urban, mixed commercial/residential 

load, heavily populated 
126 858 
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Table 3 Characteristics of 9 Pepco feeders 

Feeder Voltage Feeder Type Number of Transformers Number of Lines 

P1 4.33 kV NA 28 92 

P2 13.2 kV 
urban, mainly residential, not 

heavily populated 
201 663 

P3 13.8 kV NA 45 383 

P4 13.2 kV 
urban, mostly mixed use, heavily 

populated 
51 372 

P5 13.8 kV 

urban, mixed 

commercial/residential load, not 

heavily populated 

89 386 

P6 13.2 kV 

urban, mixed 

commercial/residential load, 

heavily populated 

33 343 

P7 13.8 kV NA 94 546 

P8 13.8 kV 
downtown urban, mostly 

commercial, heavily populated 
59 345 

P9 13.8 kV NA 61 374 

 

2.3 Base Load  

The CYME files provided by BGE and Pepco contain a snapshot of the base load for each feeder 

in 2022 but do not include 24-hour load values. To develop a full 24-hour load profile, Argonne 

incorporated hourly load factors derived from AMI data. 

To project future load growth, Argonne used the 2022 Pennsylvania-New Jersey-Maryland (PJM) 

Load Forecast Report, which indicates that the non-EV base load (including residential, 

commercial, and industrial demand) in the study area increases at an annual rate of 0.8%. Based 

on this growth rate, the load multiplier is defined as: 

Lt=L0×1.008t 

Where: 

• Lt  = Load at year t 

• L0= Base year load 

• t= Number of years from the base year 

To generate hourly feeder-level load profiles, Argonne first derived hourly load factors from 

2022 AMI data. These factors represent the ratio of load at each time step to the annual peak load 

and are specific to residential, commercial, and industrial demand patterns. The team then 

applied these factors to the snapshot load from CYME, scaling them appropriately using a 

feeder-specific adjustment factor to account for localized demand variations. Finally, Argonne 

integrated these adjustments with the projected base load to construct 24-hour load profiles for 

all non-EV base loads. 

This methodology aims to represent accurately both temporal and spatial variations in feeder-

level demand. Figure 8 illustrates the base load profile of a sample feeder for 2022, alongside the 

projected base load for 2035. Note that this study does not account for potential significant 
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increases in non-EV loads resulting from cross-sector electrification, such as building heating 

and industrial electrification. 

 

Figure 8 Base load profile for feeder B1 

2.4 EV Charging Load 

The charging load from ATEAM is available at the census tract level. Each census tract can have 

multiple feeders passing through it, and each feeder consists of multiple buses. To estimate the 

charging load at each feeder, Argonne developed a method to spatially map feeder assets (buses) 

to census tracts by associating their latitude and longitude with the corresponding census tract 

boundaries. 

Ideally, this mapping is exact, meaning every feeder asset is assigned to a census tract. However, 

this requires access to the full distribution network for the study area. When all feeder assets are 

mapped, the next step is to distribute the EV load—aggregated at the census tract level—across 

individual buses within the tract. To do this, Argonne allocated the EV load proportionally based 

on the existing base load at each bus, ensuring that buses with higher base loads receive a larger 

share of the EV load. 

If some feeder information is missing, certain assets may remain unmapped, which poses a 

challenge. Distributing the full EV load among only the mapped buses would overestimate their 

EV demand, as the load that should be shared among all buses would be concentrated on a 

smaller subset. Additionally, since the base loads of unmapped buses are unknown, their 

contribution cannot be directly estimated. 

To address this, ANL implemented a probabilistic approach to redistribute the EV load when 

feeder information is incomplete. This method introduces a parameter p, which determines how 

extensively the load is reassigned: 
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• p = 0 results in a zero-radius search (no reassignment of unmapped nodes). 

• p = 1 extends the search radius to encompass the entire census tract. 

This method effectively assigns unmapped EV loads to mapped feeder assets, maintaining a 

realistic spatial distribution of EV charging demand. 

2.5 Feeder-level Load Flow Analysis 

This study conducted a feeder-level analysis to evaluate the impact of total load—comprising 

base load and EV charging load—on the power grid for selected BGE and Pepco feeders from 

2022 to 2035. To capture seasonal variations in loading conditions, Argonne analyzed three 

representative dates corresponding to summer, winter, and spring/fall. Among these, summer 

exhibited the highest peak load, leading to the most severe overloading scenarios. As a result, a 

representative day in July reflecting summer conditions became the primary focus for detailed 

analysis and upgrade evaluations. 

To assess system vulnerabilities, including overloaded lines, transformer capacity constraints, 

and voltage violations, a time-series load flow analysis was conducted using the open-source 

software OpenDSS. OpenDSS is a power distribution system simulator widely used for planning 

and analyzing distributed generation integration with utility networks. It supports various 

frequency-domain simulations and employs a current injection model as the default method for 

load flow analysis. Using a fixed-point iterative approach, OpenDSS efficiently handles most 

distribution systems with a stiff bulk power source. Its computational speed makes it particularly 

suitable for yearly-mode and long sequential-time simulations. 

The load flow solution is based on solving the nonlinear system admittance equation: 

Iinj(V)=YsystemV 

Where Iinj(V) is compensation, or injection, currents from Power Conversion (PC) elements in 

the circuit, which may be nonlinear elements, V is the voltage and Ysystem is the main system 

admittance matrix. 

Findings from this assessment inform a targeted upgrade strategy, minimizing premature capital 

expenditures by scheduling equipment upgrades in the first year an overload is detected. 

Capacity upgrades are designed to accommodate the highest projected demand during the study 

period, ensuring long-term system reliability while optimizing investment efficiency. 

2.6 Upgrade Strategy and Cost Analysis 

The upgrade strategy is determined based on indicators such as voltage profile, transformer 

loading, and line loading. System upgrades are triggered at the first occurrence of an overload, 

with capacity added to accommodate the maximum projected load through 2035. For instance, if 

an overload is first observed in 2025, upgrades are implemented that year to handle anticipated 

load growth until 2035. 

Component upgrade costs were from the NREL cost database (Horowitz 2019), which provides 

unit costs of various components in distribution networks. The database includes costs for 

reconductoring distribution lines, transformers, conductors, capacitors and regulators.  
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A cost estimation is carried out to determine the investment required to upgrade the overloaded 

infrastructure. The Net Present Value (NPV) of the upgrade cost is calculated using a discount 

rate of 3% (NYSERDA, 2022), with 2022 as the base year. This framework provides a structured 

approach to evaluating the impact of EV charging on power distribution, ensuring that 

infrastructure is upgraded efficiently. 

2.7 System-wide Analysis 

This study conducted a system-wide analysis to estimate the cost of distribution system upgrades 

needed across all feeders to mitigate capacity constraints. The flowchart in Figure 9 outlines a 

structured methodology adopted for system -wide analysis. The process begins with the 

collection of feeder data, including voltage levels, transformer capacities, line configurations, 

and existing load conditions, which serve as the foundation for subsequent analysis. To manage 

the complexity of analyzing numerous feeders, clustering techniques, such as k-means, are 

applied to group feeders with similar characteristics. From these clusters, a few representative 

feeders are selected to capture variations in the network while reducing computational effort. 

Load flow analysis is then performed on these representative feeders to assess key performance 

indicators, such as voltage profiles, transformer loading, and line loading, under different load 

conditions, including scenarios involving EV integration. The results from this analysis are used 

to develop a linear regression model, which estimates the cost of scaling up infrastructure 

upgrades for the entire distribution network. This predictive model helps utilities estimate 

investment requirements for various EV penetration scenarios while optimizing grid 

reinforcement strategies. 

Five clusters were identified, with 10 representative feeders selected from each cluster based on 

their proximity to the cluster centroids. Clustering was based on combined Principal Component 

Analysis (PCA) and K-Means clustering to categorize feeders based on key characteristics, 

including: 

• Feeder voltage level 

• Peak base load 

• Peak EV load 

• Total transformer capacity 

• Transformer type and number 

• Line type and line count (underground or overhead sections within the feeder) 

• Load type and load value of each type (Residential, Commercial, Industrial or any other 

load types being served by the feeder) 

The linear regression model incorporates key parameters such as base load peak, EV load peak, 

and transformer capacity to formulate an equation for estimating upgrade costs. This derived 

model was then applied to the remaining feeders within each cluster, enabling a systematic and 

data-driven approach to extrapolate upgrade costs across the entire BGE and Pepco service 

territories. 
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Figure 9 Methodology for system-wide cost estimation 

3  Study Scenarios Design 

As part of the SCM pilot, WeaveGrid delivered weekly charging reports containing session data 

from EV drivers participating in the program. From April 2023 to October 2024, the dataset 

comprised records from 4,661 EV users and 1,203,912 charging sessions. In collaboration with 

the Joint Utilities and WeaveGrid, several SCM strategies were developed and implemented, 

including TOU-based SCM, PJM pricing-based SCM, and Load Balancing (LB). Argonne’s 

analysis specifically examined the TOU-based SCM and LB strategies. 

The TOU-based SCM strategy aims to reduce charging demand during the TOU peak hours, 

defined by Argonne as 5 p.m. to 9 p.m. Under this strategy, charging is paused for enrolled EVs 

which are plugged in during this window and resume charging after 9 p.m. Details on how this 

strategy is implemented are in Appendix A. 

The LB strategy groups consumers by grid assets, such as feeders, transformers, or substations, to 

smooth charging loads within each group. This strategy reschedules charging sessions to prevent 

overloads, more evenly distributing charging overnight. During periods of high demand, LB 

optimizes the peak load by pausing certain charging sessions and shifting them to lower-demand 

times. The implementation details of this strategy are provided in Appendix B.  

Through discussions with BGE and Pepco, four scenarios were selected for analysis to evaluate 

future SCM enrollment in their service territories: 

• No enrollment (Unmanaged charging) 

• Minimum enrollment (11% by 2035) 

• Steady growth (a linear increase from 2% to 8% between 2023 and 2029, followed by 

exponential growth reaching 38% by 2035). 

• Maximum enrollment (50% of EV owners enrolled each year) 

Collect feeder data

Conduct clustering and select representative feeders

Perform load flow analysis for representative feeders

Scale up to the system using linear regression model
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Figure 10 shows the yearly increase in EVs and the customer enrollment assumptions for these 

scenarios in BGE and Pepco territories in Maryland.  

 

Figure 10 Number of EVs, and SCM enrolled customers in BGE and Pepco service territories for 

different enrollment scenarios 

4  Analysis Results and Discussions 

4.1 EV Home Charging Load 

Argonne generated home charging load profiles for Unmanaged, TOU-based SCM, and LB SCM 

strategies for each enrollment scenario discussed in Chapter 3. This subsection evaluates the 

performance of SCM strategies by analyzing EV charging loads across 19 selected feeders (10 

from BGE and 9 from Pepco). The analysis in this section focuses solely on home charging loads 

from EVs. 

4.1.1 Home charging load across different SCM strategies 

A comparison of the charging load between Unmanaged and the two SCM strategies (TOU-

based and LB) under the Maximum Enrollment scenario, shown in Figure 11, revealed that the 

Unmanaged scenario generates a sharp peak around 7:00 p.m., coinciding with when EV owners 

typically return home and plug in their EVs. In this scenario, the charging load gradually builds 

throughout the day, reaching a peak in the evening before decreasing overnight. The peak 

charging load rises each year from 2022 to 2035 due to the increasing number of EVs. With a 

19.5-times increase in EV adoption in the study area over this period, the peak charging load 

rises by almost 18 times in this scenario. 
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Figure 11 Daily charging load across different years for Maximum Enrollment scenarios across 

19 feeders, assuming 80% L2 chargers and 20% L1 chargers. The SCM charging load profile 

includes both managed and Unmanaged charging loads for the entire study area. 

In contrast, the LB scenario significantly flattens the evening peak compared to the Unmanaged 

scenario, leading to a more evenly distributed charging load throughout the day and reducing 

grid stress during peak hours. By 2035, it lowers the peak charging load by approximately 27% 

on average. The TOU-based SCM shifts a portion of the charging load to the TOU off-peak 

window, creating a pronounced peak around 9:00 p.m. In 2035, it reduces the peak charging load 

by an average of 23% compared to the Unmanaged scenario. 

4.1.2 Impact of customer enrollment in SCM on home charging load 

The level of customer participation in the SCM program significantly influences the reduction of 

peak charging loads. Higher enrollment rates lead to greater reductions in peak charging demand. 

Figure 12 illustrates the average percentage reduction in peak charging load across 10 BGE and 9 

Pepco feeders over different years, highlighting the effectiveness of managed charging strategies. 

The y-axis in the figure represents the percentage reduction in peak charging load, rather than 

absolute values, to allow for a consistent comparison across years as EV adoption and home 

charging demand increase. Among the three levels of enrollment, the Maximum Enrollment 

scenario achieves the most substantial reduction in peak charging load for both LB and TOU-

based SCM strategies. 
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Figure 12 Average reduction in peak charging load, calculated by averaging the reductions from 

Unmanaged scenarios across all 19 feeders 

Charging load varies throughout the day based on enrollment levels and the chosen SCM 

strategy, as depicted in Figure 13. In the LB scenario, increased customer enrollment results in 

reduced charging loads from 7 a.m. to 10 p.m., with a corresponding increase from 10 p.m. to 7 

a.m. This shift occurs because LB redistributes charging to overnight hours. Conversely, in the 

TOU-based SCM, charging loads remain unchanged from 7 a.m. to 5 p.m. across different 

enrollment levels, as customers can charge without restrictions during this period. However, 

from 5 p.m. to 9 p.m., charging loads decrease with higher enrollment, as enrolled customers are 

restricted from charging during this window. After 9 p.m., these customers resume charging, 

leading to increased loads with higher enrollment. 
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Figure 13 Daily charging load profile in different enrollment scenarios. 

4.1.3 Load shifting from peak to off-peak hours 

The TOU-based SCM strategy is particularly effective at shifting peak charging loads from peak 

to non-peak hours. The analysis indicates that higher enrollment ratios in the TOU-based SCM 

correlate with a greater percentage of feeders successfully moving peak charging loads to non-

peak periods. Figure 14 illustrates the relationship between enrollment ratios and the percentage 

of feeders experiencing peak charging loads during non-peak hours for LB, TOU-based SCM, and 

Unmanaged charging scenarios. 
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In the Unmanaged scenario, around 30% of feeders exhibit peak charging load during the TOU 

non-peak hours. The TOU-based SCM shows a clear upward trend, with a significant increase in 

the percentage of feeders shifting peak loads to non-peak hours as enrollment ratios rise. This 

suggests that higher enrollment effectively redistributes home charging demand away from peak 

periods. In contrast, the LB method maintains a relatively stable percentage across different 

enrollment ratios, indicating that its ability to shift charging loads is less sensitive to changes in 

enrollment. 

 
Figure 14 Percentage of feeders with peak charging load during the TOU non-peak window as a 

function of the enrollment ratio. 

4.1.4 Factors affecting the peak charging load reduction 

To identify the factors influencing peak charging load reduction, an Ordinary Least Squares 

(OLS) regression model (Montgomery et al., 2021) is applied using the input variables described 

in  

 

 

 

Table 4. In this context, the percentage reduction in peak charging load is defined by comparing 

the peak charging loads of each managed strategy to its corresponding Unmanaged scenario for 

each year. The OLS regression equation fitted in the analysis is: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑃𝑒𝑎𝑘 𝐿𝑜𝑎𝑑 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛
= −6.47 + 5.05 × 𝑙𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 + 0.49 × 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜
− 0.05 × 𝑇𝑂𝑈 𝑟𝑎𝑡𝑖𝑜 + 0.0006 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑉𝑠 𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑦 𝑎 𝑓𝑒𝑒𝑑𝑒𝑟
+ 10.36 × 𝑝𝑒𝑎𝑘 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑖𝑛 𝑇𝑂𝑈 𝑝𝑒𝑎𝑘 𝑤𝑖𝑛𝑑𝑜𝑤 𝑖𝑛 𝑢𝑛𝑚𝑛𝑎𝑔𝑒𝑑 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 
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Table 4 Inputs and outputs used in the OLS model 

Variables Description 

Percent Peak Load Reduction The output variable, representing the reduction in peak 

charging load compared to the Unmanaged scenario, 

expressed as a percentage. 

load balancing A binary variable where 1 indicates Load Balancing is 

used, and 0 indicates TOU-based SCM is used. 

enrollment ratio The percentage of participants enrolled in the SCM 

program, expressed as a fraction (0 to 1). 

TOU ratio The percentage of participants using TOU rates, 

expressed as a fraction (0 to 1). 

number of EVs served by a feeder The total number of EVs served by a given feeder. 

peak located in the TOU peak 

window in Unmanaged scenario 

A binary variable indicating if the peak charging load 

occurs in the TOU peak window (5 pm to 9 pm) in the 

Unmanaged scenario. 

 

The positive coefficient suggests that using an LB strategy leads to a higher percentage reduction 

in peak load compared to TOU-based SCM. Specifically, LB leads to a 5.05% greater reduction 

in peak charging load than when compared to TOU-based SCM. 

The enrollment ratio is positively related to peak charging load reduction, with a coefficient of 

0.49. This suggests that a higher enrollment ratio enhances the effectiveness of reducing peak 

charging load. This is further supported by Figure 15, which shows that as enrollment ratio 

increases, the average peak charging load reduction also rises.  

Conversely, the TOU ratio has a negative coefficient of -0.05. This suggests that a higher TOU 

ratio slightly diminishes the effectiveness of peak charging load reduction. This occurs because a 

higher TOU ratio means that more customers are already charging during the overnight TOU off-

peak window, leaving less flexibility to distribute or manage their charging times further. As a 

result, it becomes difficult for the managed strategies to optimize the charging load effectively. 

Consequently, this leads to an increased peak in home charging demand within the overnight 

hours. 

The number of EVs served by a feeder  has a small but positive coefficient of 0.0006, indicating 

a marginal contribution to peak charging load reduction. This could be due to the fact that, as the 

number of EVs grows, the impact of SCM strategies becomes more pronounced. With more EVs 

enrolled in SCM, the charging demand can be spread more evenly across non-peak hour time 

window, leading to marginal reductions in peak charging load. However, the contribution 

remains small because the effectiveness of SCM is more dependent on enrollment ratios and the 

specific strategy used, rather than just the number of EVs alone.  
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The variable peak located in TOU peak window in unmanaged scenario   has a significant 

positive coefficient of 10.36. This suggests that when peak charging load occurs during TOU 

peak window in the Unmanaged scenario, the SCM strategies are particularly effective at 

achieving substantial peak charging load reduction. However, when the peak charging load 

occurs during TOU non-peak window (more specifically, from 9 pm to 7 am) in the Unmanaged 

scenario, the TOU-based SCM actually increases the peak charging load, as illustrated in Figure 

15. The box plot shows that when the Unmanaged peak charging load occurs after 9 pm, the 

TOU-based SCM method leads to an increase in peak charging load, while LB still achieves a 

reduction. This happens because, in the TOU-based SCM, customers are shifted to charge their 

EVs during TOU non-peak hours. As a result, if the peak charging load in the Unmanaged 

scenario already occurs after 9 pm, shifting even more charging to this period under the TOU-

based SCM can increase the peak charging load. This leads to a higher overall demand during 

these hours compared to the Unmanaged scenario. 

 
Figure 15 Reduction in peak charging load for different charging times in the Unmanaged 

scenario. 

To further illustrate the situation when home charging peak occurs after 9 pm in the Unmanaged 

scenario, Figure 16 compares profiles of two distinct feeders analyzed with two SCM strategies. 

Notably, under the TOU-based SCM, peak charging load increased compared to the Unmanaged 

scenario, whereas the LB method led to a peak charging load reduction. These results suggest 

that when a feeder’s Unmanaged charging load profile peaks after 9 pm, the TOU-based SCM 

may have little or even a negative impact. This indicates that, when implementing an SCM 

program, it is crucial to examine the base load profile to understand how the program will 

effectively influence it and what the impact will be. 

Load Balancing TOU-based SCM 
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Figure 16 Daily charging load profile for two example feeders for Maximum Enrollment scenario 

where the peak occurs after 9 pm in the Unmanaged scenario. 

4.2 Feeder-level Load Profiles for SCM Scenarios 

Figure 17Figure 18Figure 19Figure 20Each representative feeder includes a base load, an EV 

load, and the total load, which is the sum of both as described in section 2.5. The base load 

consists of the regular electricity demand from residential and commercial users, while the EV 

load comes from both enrolled and non-enrolled drivers in the SCM program. Figures 17 and 18 

show total load variations for a BGE feeder (B1), highlighting how the base load and EV load 

contribute to the overall demand. In contrast, Figures 19 and 20 present similar data for a Pepco 

feeder (P1) across four enrollment scenarios in 2035, focusing on LB and Time-of-Use (TOU) 

charging strategies.  

Both strategies effectively reduce peak loads across all scenarios (shown in Figures 17-20). The 

TOU-based strategy shifts peak EV charging to off-peak hours, typically around 9 PM, while the 

LB strategy distributes charging demand more evenly throughout the day. However, the TOU-

based approach may introduce a secondary peak at the beginning of the off-peak period. In such 

cases, additional enrollment primarily reduces demand between 5 PM and 9 PM but does not 

significantly lower peak loads outside this timeframe. In contrast, the LB strategy achieves a 

smoother, more uniform load reduction without introducing a secondary peak.  The impact of 

smart charging strategies varies by feeder. Generally, the LB strategy is more effective in 

reshaping the load curve to reduce peak loads. Error! Reference source not found.The f

ollowing figures are for illustrative purposes only and do not reflect the average behavior of the 

utility. Analysis results show that EV load at each feeder is different, influenced by factors such 

as EV adoption, charging access, driving habit and managed strategy. 
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Figure 17 Load variation of  BGE feeder B1 for LB scenarios in 2035 

 

Figure 18  Load variation of BGE feeder B1 for TOU scenarios in 2035  



22 

 

 

Figure 19 Load variation of Pepco feeder P1 for LB scenarios in 2035 

 

Figure 20 Load variation of Pepco feeder P1 for TOU scenarios in 2035 

Evolution of Base Load vs. EV Load Contribution: During the early years of the study period, 

the total load was predominantly driven by the base load, which includes traditional non-EV 

consumption from residential, commercial, and industrial users. However, as EV adoption 

increases, the charging demand grows significantly, altering the overall load composition. Over 

time, EV load represents a much larger share of the total load profile, even though base load 
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continues its gradual upward trend. Figure 21 shows the variation between base load and EV 

load for representative feeder B1: 

• Up to the year 2027, the base load dominates across all 24-time steps in the day. 

• By 2032, the EV load increases to the point where it surpasses the base load during 

several time steps, highlighting the growing influence of EV charging on grid demand. 

 

Figure 21 Variation of the Base and EV load over time 

4.3 BGE Analysis Results 

4.3.1 Feeder level analysis 

A. Performance and upgrade costs of LB and TOU-based SCM in 2035 

Table 5 and Table 6 compare the performance and resulting upgrade costs for LB and TOU-based 

SCM in year 2035. Each column—transformer overloads, upgrade capacity (MVA), upgrade cost 

(MUSD), line overloads, and line upgrade cost—directly corresponds to the enrollment 

scenarios, providing a comprehensive assessment of network stress. The results highlight the 

effectiveness of smart charging in mitigating grid impacts across various feeders. 

Both LB and TOU-based SCM show a consistent decline in transformer overloads, upgrade 

capacity, and associated costs as enrollment shifts from Unmanaged to Maximum Enrollment. 

Feeders such as B1, B2 and B4 experience the highest stress in the Unmanaged scenario, with 
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numerous overloaded transformers and significant upgrade requirements. For example, under 

TOU-based SCM, the number of overloaded transformers in feeder B1 decreased from 163 in the 

Unmanaged scenario to 125 in the Maximum Enrollment scenario, accompanied by reductions in 

upgrade capacity needed and associated costs. In contrast, feeders like B5 and B7 remain largely 

unaffected by enrollment variation, indicating these two feeders are less sensitive to variations in 

charging demand, due to their inherent load profiles. 

As EV enrollment increases, shifting from Unmanaged charging to Maximum Enrollment lowers 

the distribution system’s burden. Higher SCM enrollment redistributes demand away from peak 

periods, reducing line and transformer overloads, while minimizing upgrade requirements and 

costs. However, these benefits are not uniform across all feeders. Some experience significant 

improvements while others show minimal change due to load profiles and network 

configurations of the feeders. Table 5 and Table 6 emphasize the benefit of feeder-specific 

planning to maximize smart charging benefits. Even with higher EV enrollment, well-designed 

SCM strategies can alleviate distribution system stress and defer infrastructure investment costs, 

but optimization must account for feeder-specific characteristics. 

Table 5 Summary for LB scenarios for BGE 

Feeder Scenario 

Number of  

Overloaded  

Transformers 

Total 

Transformer 

Upgrade 

Capacity 

(MVA) 

Total 

Transformer 

Upgrade 

Cost ($MM) 

Number of 

Overloaded 

Lines 

Total 

Line 

Upgrade 

Cost 

($MM) 

B1 

Unmanaged 158 10.8 1.0 105 1.364 

Minimum 

Enrollment 146 10.1 0.9 78 1.031 

Steady 

Increase 102 7.1 0.6 69 0.926 

Maximum 

Enrollment 122 8.7 0.8 71 0.976 

B2 

Unmanaged 131 8.9 0.7 2 0.155 

Minimum 

Enrollment 127 8.5 0.6 2 0.155 

Steady 

Increase 125 8.3 0.6 2 0.155 

Maximum 

Enrollment 117 7.7 0.6 2 0.155 

B3 

Unmanaged 55 10.6 1.2 12 0.071 

Minimum 

Enrollment 51 9.1 1.1 1 0.002 

Steady 

Increase 45 6.2 0.8 1 0.002 

Maximum 

Enrollment 42 5.8 0.8 1 0.002 

B4 

Unmanaged 220 17.5 1.4 131 5.465 

Minimum 

Enrollment 212 16.5 1.4 129 4.768 

Steady 

Increase 200 15.1 1.2 126 4.724 
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Feeder Scenario 

Number of  

Overloaded  

Transformers 

Total 

Transformer 

Upgrade 

Capacity 

(MVA) 

Total 

Transformer 

Upgrade 

Cost ($MM) 

Number of 

Overloaded 

Lines 

Total 

Line 

Upgrade 

Cost 

($MM) 

Maximum 

Enrollment 185 13.3 1.1 122 4.459 

B5 

Unmanaged 4 1.4 0.13 4 0.333 

Minimum 

Enrollment 2 0.6 

0.062 

4 0.333 

Steady 

Increase 2 0.6 

0.062 

3 0.217 

Maximum 

Enrollment 1 0.1 

0.004 

3 0.217 

B6 

Unmanaged 39 24.5 2.0 23 0.66 

Minimum 

Enrollment 39 24.3 2.0 23 0.66 

Steady 

Increase 38 21.7 1.9 23 0.66 

Maximum 

Enrollment 38 21.7 1.9 23 0.66 

B7 

Unmanaged 42 18.0 1.9 25 0.62 

Minimum 

Enrollment 42 18.0 1.9 25 0.62 

Steady 

Increase 42 18.0 1.9 25 0.62 

Maximum 

Enrollment 42 18.0 1.9 25 0.62 

B8 

Unmanaged 24 5.9 0.4 16 4.59 

Minimum 

Enrollment 24 5.8 0.4 12 3.99 

Steady 

Increase 23 5.7 0.4 12 3.99 

Maximum 

Enrollment 22 5.6 0.4 10 3.99 

B9 

Unmanaged 42 7.0 0.9 21 1.09 

Minimum 

Enrollment 42 6.9 0.9 20 1.09 

Steady 

Increase 42 6.1 0.8 9 0.52 

Maximum 

Enrollment 42 5.9 0.8 8 0.51 

B10 

Unmanaged 52 10.4 1.1 122 6.22 

Minimum 

Enrollment 52 10.4 1.1 119 6.2 

Steady 

Increase 52 9.3 1.0 106 5.75 

Maximum 

Enrollment 52 9.0 1.0 105 5.26 
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Table 6 Summary of TOU-based scenarios for BGE 

Feeder Scenario 

Number of 

Overloaded 

Transformers 

Total 

Transformer 

Upgrade 

Capacity 

(MVA) 

Total 

Transformer 

Upgrade 

Cost ($MM) 

Number of 

Overloaded 

Lines 

Total Line 

Upgrade 

Cost 

($MM) 

B1 

Unmanaged 158 10.80 1.0 105 1.364 

Minimum Enrollment 154 9.90 0.92 112 1.51 

Steady Increase 127 7.80 0.69 110 1.48 

Maximum Enrollment 125 7.73 0.68 111 1.5 

B2 

Unmanaged 131 8.90 0.7 2 0.155 

Minimum Enrollment 127 8.53 0.65 2 0.16 

Steady Increase 124 8.25 0.63 2 0.16 

Maximum Enrollment 121 8.03 0.62 2 0.16 

B3 

Unmanaged 55 10.60 1.2 12 0.071 

Minimum Enrollment 54 10.05 1.14 12 0.07 

Steady Increase 52 9.58 1.05 12 0.07 

Maximum Enrollment 51 9.33 1.00 12 0.07 

B4 

Unmanaged 220 17.50 1.4 131 5.465 

Minimum Enrollment 205 15.65 1.28 129 4.77 

Steady Increase 192 14.20 1.17 125 4.72 

Maximum Enrollment 183 13.58 1.12 125 4.72 

B5 

Unmanaged 4 1.40 0.13 4 0.333 

Minimum Enrollment 2 0.55 0.06 4 0.33 

Steady Increase 2 0.55 0.06 3 0.22 

Maximum Enrollment 2 0.55 0.06 3 0.22 

B6 

Unmanaged 39 24.50 2.0 23 0.66 

Minimum Enrollment 39 23.50 1.97 23 0.66 

Steady Increase 38 21.50 1.88 23 0.66 

Maximum Enrollment 38 21.20 1.87 23 0.66 

B7 

Unmanaged 42 18.00 1.9 25 0.62 

Minimum Enrollment 42 17.98 1.90 25 0.62 

Steady Increase 42 17.98 1.90 25 0.62 

Maximum Enrollment 42 17.98 1.90 25 0.62 
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Feeder Scenario 

Number of 

Overloaded 

Transformers 

Total 

Transformer 

Upgrade 

Capacity 

(MVA) 

Total 

Transformer 

Upgrade 

Cost ($MM) 

Number of 

Overloaded 

Lines 

Total Line 

Upgrade 

Cost 

($MM) 

B8 

Unmanaged 24 5.90 0.4 16 4.59 

Minimum Enrollment 24 5.88 0.42 12 3.99 

Steady Increase 23 5.73 0.40 12 3.99 

Maximum Enrollment 21 5.58 0.39 12 3.99 

B9 

Unmanaged 42 7.00 0.9 21 1.09 

Minimum Enrollment 41 6.90 0.88 20 1.09 

Steady Increase 41 5.93 0.82 9 0.52 

Maximum Enrollment 41 5.93 0.82 8 0.51 

B10 

Unmanaged 52 10.40 1.1 122 6.22 

Minimum Enrollment 50 11.13 1.17 87 5.01 

Steady Increase 50 10.63 1.14 89 5.26 

Maximum Enrollment 50 10.68 1.15 87 5.01 

 

B. Comparison between LB and TOU SCM 

Figure 22 compares peak load reduction under Unmanaged and Maximum Enrollment scenarios 

for both TOU-based and LB SCM across 10 feeders in 2035. The peak load, which includes both 

the base and EV demand, responds differently depending on the feeder. For instance, feeders B3 

and B10 show significantly greater reductions under LB, while TOU-based SCM achieves no 

reduction. Notably, feeder B10 exhibits a slight increase (0.2%) in Maximum Enrollment under 

TOU-based SCM, indicating that load shifting in this case inadvertently raised demand during 

peak periods. Conversely, feeder B7 sees no peak load reduction under TOU-based SCM—since 

its base load peak falls outside the TOU window—but does experience some reduction under LB. 

Feeders like B1 and B6 demonstrate similar reductions under both strategies. Overall, LB 

consistently outperforms TOU-based SCM in reducing peak loads, making it a more effective 

strategy for managing demand peaks. 
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Figure 22 Comparison of LB and TOU-based in terms of peak load reduction for 10 BGE feeders 

Figure 23 illustrates transformer upgrade cost reductions comparing Unmanaged and Maximum 

Enrollment scenarios for TOU-based and LB in 2035. Upgrade costs depend on the required 

transformer capacity (kVA) for each scenario, which varies by feeder. Certain feeders, such as 

B5, benefit significantly from LB, achieving a 97% cost reduction compared to 52% under TOU-

based. This is due to the lower transformer capacity upgrade requirements under the LB strategy. 

However, feeder like B7 exhibit negligible differences between the two strategies, with cost 

reductions close to zero. Additionally, the negative reduction for feeder B10 under TOU 

highlights how some distribution network configurations can produce unexpected results when 

load shifts do not align with peak demand periods. Overall, LB demonstrates greater cost-deferral 

potential, while TOU-based provides moderate reductions in most cases. These findings 

underscore the variability in smart charging performance across different feeders. 

Figure 24 and Figure 25 present the Net Present Value (NPV) of upgrade costs for 

accommodating EV integration from 2022 to 2035 across BGE feeders. Maximum Enrollment 

under LB yields the most favorable outcome, achieving the lowest NPV across feeders.  

The analysis identifies small-sized single-phase transformers in BGE feeders as particularly 

vulnerable to overloading, making them a priority for upgrades. Figure 26 and Figure 27 show 

the reduction in overloaded transformers over time, highlighting the effectiveness of both LB and 

TOU-based SCM in mitigating asset stress from 2022 to 2035. Transitioning from Unmanaged to 

Maximum Enrollment leads to a notable decline in transformer overloads, deferring costly 

distribution system upgrades while supporting higher EV adoption. 

Most distribution lines within the 10 BGE feeders had sufficient capacity for EV integration, 

with only a few laterals experiencing overloading due to their limited current-carrying capacity. 

Some feeders also exhibited undervoltage issues alongside overloading, which were largely 
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resolved through transformer upgrades. In cases where undervoltage persisted, additional 

capacitor banks were installed to stabilize voltage levels. These results reinforce the importance 

of implementing smart charging strategies, particularly in urban and suburban feeders with high 

demand. 

 

Figure 23 Comparison of LB and TOU-based transformer upgrade cost reduction for 10 BGE 

feeders 

 

Figure 24 NPV comparison of upgrade costs for LB scenarios across 10 BGE feeders 
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Figure 25 NPV comparison of upgrade costs for TOU-based scenarios across 10 BGE feeders 

 

Figure 26 Summary of overloaded transformers under LB for 10 BGE feeders 
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Figure 27 Summary of overloaded transformers under TOU for 10 BGE feeders 

4.3.2 System-wide analysis for BGE 

Argonne estimated the total system-wide upgrade costs across three scenarios under LB and TOU-

based SCM strategies. For BGE, several feeders had load data missing, load flow convergence 

errors and other load flow related issues. After accounting for these issues, there were 1031 feeders 

for the clustering analysis described in Section 2.6.  Figure 29 extends these estimates to all BGE 

feeders using a linear approximation derived from the 1,031-feeder results.  

• In the Minimum Enrollment scenario, upgrade costs are more greatly deferred out to later 

years beyond the study for both strategies, with TOU-based SCM achieving a slightly 

greater cost reduction by the year 2035 ($2,079 million) compared to LB ($2,137 

million). 

• However, in the Steady Increase scenario, costs continue to decline, with LB ($2,031 

million) outperforming TOU-based SCM ($2,058 million). 

• Based on the discussion with the Joint Utilities, Maximum Enrollment across all years is 

not considered a supportable forecast scenario, so the system-wide analysis was not 

conducted. 

• Cost savings by 2035 in millions USD compared to the Unmanaged scenario (Figure 28): 
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Figure 28 Comparison of upgrade cost with Unmanaged Scenario (BGE) 

The limited EV enrollment in Minimum Enrollment restricts the potential grid benefits of either 

strategy, as there is less load available to shift or balance. Steady Increase achieves the lowest 

total costs, suggesting that higher EV adoption, when paired with effective load management, 

yields greater infrastructure savings.  

These findings highlight that the cost-effectiveness of LB versus TOU-based SCM depends on 

specific enrollment patterns and operational conditions at the feeder level. Aligning SCM 

strategies with grid characteristics is essential for maximizing grid benefits and minimizing 

upgrade costs. 
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Figure 29 System wide upgrade cost for BGE 

4.4 Pepco Analysis Results 

4.4.1 Feeder level analysis 

A. Performance of LB and TOU-based strategies 

Table 7 and  

Table 8 compare the performance of LB and TOU-based SCM strategies across the four scenarios, 

focusing on overloaded transformers, total upgrade capacity (MVA), and associated costs in 2035. 

A comparison of these tables reveals key trends-as scenarios progress from Unmanaged to 

Maximum Enrollment, most feeders experience reductions in transformer overloads, total upgrade 

MVA, and upgrade costs. This confirms that SCM is effective in mitigating negative grid impacts 

under high EV enrollment. 

Under LB, several feeders—including P4, P6, P7, P8, and P9—require fewer upgrades and incur 

lower costs in the Maximum Enrollment scenario compared to TOU, highlighting LB’s potential 

for greater deferral of infrastructure investments. However, exceptions exist; for instance, feeder 

P2 performs better under TOU in later scenarios, demonstrating that the optimal strategy depends 

on each feeder’s unique load profile and peak timing. While LB generally delivers greater cost 

reductions, the extent of its advantage varies across feeders, emphasizing the importance of 

feeder-specific planning. 
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Table 7 Summary of LB scenarios for Pepco 

Feeder Scenario 

Number of  

Overloaded  

Transformers 

Total Transformer 

Upgrade Capacity 

(MVA) 

Total Transformer 

Upgrade Cost 

(MUSD) 

P1 

Unmanaged 7.0 0.68 0.06 

Minimum Enrollment 7.0 0.68 0.06 

Steady Increase 7.0 0.63 0.05 

Maximum Enrollment 7.0 0.63 0.05 

P2 

Unmanaged 34.0 4.30 0.34 

Minimum Enrollment 33.0 3.98 0.30 

Steady Increase 30.0 3.45 0.28 

Maximum Enrollment 28.0 3.20 0.26 

P3 

Unmanaged 16.0 10.90 0.68 

Minimum Enrollment 15.0 10.05 0.62 

Steady Increase 14.0 8.35 0.57 

Maximum Enrollment 14.0 7.35 0.56 

P4 

Unmanaged 12.0 2.43 0.24 

Minimum Enrollment 11.0 2.13 0.22 

Steady Increase 10.0 1.90 0.19 

Maximum Enrollment 9.0 1.75 0.17 

P5 

Unmanaged 4.0 6.00 0.39 

Minimum Enrollment 4.0 5.50 0.37 

Steady Increase 4.0 5.00 0.31 

Maximum Enrollment 4.0 4.75 0.30 

P6 

Unmanaged 8.0 4.20 0.35 

Minimum Enrollment 8.0 3.95 0.31 

Steady Increase 6.0 2.10 0.19 

Maximum Enrollment 5.0 2.00 0.18 

P7 

Unmanaged 19.0 8.50 0.59 

Minimum Enrollment 17.0 7.83 0.52 

Steady Increase 15.0 6.28 0.43 

Maximum Enrollment 15.0 5.83 0.43 

P8 

Unmanaged 20.0 12.15 1.04 

Minimum Enrollment 19.0 10.45 0.91 

Steady Increase 17.0 7.30 0.72 

Maximum Enrollment 15.0 6.50 0.62 

P9 

Unmanaged 26.0 17.20 0.98 

Minimum Enrollment 25.0 15.05 0.94 

Steady Increase 24.0 12.15 0.83 

Maximum Enrollment 24.0 11.35 0.82 
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Table 8 Summary of TOU scenarios for Pepco 

Feeder Scenario 
Number of  

Overloaded  

Transformers 

Total Transformer 

Upgrade Capacity 

(MVA) 

Total Transformer 

Upgrade Cost 

(MUSD) 

 

P1 

  

Unmanaged 7.0 0.68 0.06 

Minimum Enrollment 7.0 0.68 0.06 

Steady Increase 7.0 0.63 0.05 

Maximum Enrollment 7.0 0.63 0.05 

 

P2 

  

Unmanaged 34.0 4.30 0.34 

Minimum Enrollment 32.0 3.88 0.30 

Steady Increase 30.0 3.35 0.27 

Maximum Enrollment 25.0 2.60 0.23 

 

P3 

  

Unmanaged 16.0 10.90 0.68 

Minimum Enrollment 15.0 10.05 0.62 

Steady Increase 14.0 8.25 0.56 

Maximum Enrollment 14.0 7.35 0.56 

 

P4 

  

Unmanaged 12.0 2.43 0.24 

Minimum Enrollment 10.0 1.90 0.19 

Steady Increase 10.0 1.90 0.19 

Maximum Enrollment 10.0 1.90 0.19 

 

P5 

  

Unmanaged 4.0 6.00 0.39 

Minimum Enrollment 4.0 5.50 0.37 

Steady Increase 4.0 5.25 0.34 

Maximum Enrollment 4.0 5.00 0.31 

 

P6 

  

Unmanaged 8.0 4.20 0.35 

Minimum Enrollment 7.0 3.45 0.25 

Steady Increase 5.0 2.25 0.18 

Maximum Enrollment 5.0 2.25 0.18 

 

P7 

  

Unmanaged 19.0 8.50 0.59 

Minimum Enrollment 17.0 7.83 0.52 

Steady Increase 17.0 6.83 0.50 

Maximum Enrollment 15.0 6.03 0.42 

 

P8 

  

Unmanaged 20.0 12.15 1.04 

Minimum Enrollment 19.0 10.45 0.91 

Steady Increase 18.0 7.88 0.77 

Maximum Enrollment 17.0 7.78 0.75 

P9 

15708 

  

Unmanaged 26.0 17.20 0.98 

Minimum Enrollment 26.0 15.20 0.95 

Steady Increase 25.0 13.70 0.89 
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Feeder Scenario 
Number of  

Overloaded  

Transformers 

Total Transformer 

Upgrade Capacity 

(MVA) 

Total Transformer 

Upgrade Cost 

(MUSD) 

Maximum Enrollment 25.0 13.20 0.89 

B. Comparison between LB and TOU-based SCM 

Figure 30 shows the variation in peak load reduction achieved under Maximum Enrollment 

compared to the Unmanaged scenario for 9 Pepco feeders in 2035. The results show significant 

variability in program effectiveness: 

• TOU-based outperforms LB in feeders such as P3 and P6, achieving greater peak load 

reductions. 

• LB outperforms TOU-based in feeders like P1 and P8. 

• Minimal differences are observed in feeders like P4, where both strategies perform nearly 

identically. 

This variability underscores the feeder-specific nature of load management strategies, reinforcing 

that the effectiveness of TOU-based or LB depends on the unique operational characteristics of 

each feeder. Additionally, peak load reduction alone does not always translate directly to cost 

savings. If reductions occur within the same capacity bucket, upgrade costs remain unchanged. 

Moreover, the distribution of load reductions across transformers can affect overloading patterns 

and associated upgrade costs, highlighting the need for a granular approach to cost impact 

assessment. 

Figure 31 further compares upgrade cost reductions achieved under Maximum Enrollment for 

TOU-based and LB SCM across various feeders, revealing additional variability: 

• Feeders such as P1and P6 show identical cost savings under both strategies. 

• TOU-based yields higher cost reductions for feeders like P2 and P7. 

• LB achieves greater reductions for feeders like P8 and P9. 

• Feeders like P3 Drive exhibit the highest cost reductions, with both strategies performing 

equally well. 

These findings reinforce that the effectiveness of each strategy is highly dependent on feeder-

specific characteristics. Optimizing cost efficiency requires tailored implementation rather than a 

one-size-fits-all approach. 

Figure 32 and Figure 33 depict the NPV of upgrade costs for EV integration in Pepco from 2022 

to 2035. Like trends observed in BGE, Maximum Enrollment under LB consistently results in the 

lowest NPV across most feeders, highlighting its long-term cost-effectiveness. 

Figure 34 and Figure 35 show the cumulative trend of overloaded transformers across Pepco 

feeders. As EV loads increase, transformer overloads steadily rise. However, Maximum 

Enrollment results in the lowest number of overloaded transformers, further demonstrating the 

effectiveness of high EV enrollment paired with load management strategies in mitigating 

infrastructure stress. 
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Figure 30 Comparison of LB and TOU in peak load reduction for 9 Pepco Feeders 

 

Figure 31 Comparison of LB and TOU-based upgrade cost reduction for 9 Pepco Feeders 

 

9%

17%

33%

10%

15%

24%

20%

13%

24%

14% 13%

27%

11%

15%

19%
17%

21%

26%

0%

5%

10%

15%

20%

25%

30%

35%

P1 P2 P3 P4 P5 P6 P7 P8 P9

Feeders

Peak Load Reduction

Maximum vs. Unmanaged

TOU LB

16%

31%

18%
22% 21%

49%

31%
28%

9%

16%

23%
18%

28%
23%

49%

27%

40%

16%

0%

10%

20%

30%

40%

50%

60%

P1 P2 P3 P4 P5 P6 P7 P8 P9

Feeders

Upgrade Cost Reduction:

Maximum vs. Unmanaged

TOU LB



38 

 

 

Figure 32 NPV comparison of upgrade costs for LB scenarios across 9 Pepco feeders 

 

Figure 33 NPV comparison of upgrade costs for TOU scenarios across 9 Pepco feeders 
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Figure 34 Summary of overloaded transformers under LB for 9 Pepco feeders 

 

Figure 35 Summary of overloaded transformers under TOU for 9 Pepco feeders 
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4.4.2 System wide analysis for Pepco 

For Pepco,722 feeders remained available for the clustering analysis described in Section 2.6. 

Figure 37 presents the total upgrade costs (MUSD) across three scenarios under LB and TOU-

based SCM strategies. The results indicate: 

• In the Minimum Enrollment scenario, upgrade costs shift out to later years, with TOU-

based achieving slightly lower costs by 2035 ($236 million) compared to LB ($240 

million). 

• In the Steady Increase scenario, LB achieves total upgrade costs by 2035 of $219 million, 

slightly higher than TOU-based SCM’s $218 million. 

• Cost differences in millions USD compared to Unmanaged scenario (Figure 36): 

 

Figure 36  Comparison of upgrade cost with Unmanaged Scenario (Pepco) 

The differences between LB and TOU-based are minimal, suggesting that both strategies perform 

similarly in terms of system-wide cost reductions for Pepco. In the Minimum Enrollment 

scenario, more than half of the feeders exhibit comparable avoided upgrade costs under both LB 

and TOU-based, leading to lower data variability. Error! Reference source not found.The r

esults reinforce that while both LB and TOU-based can effectively defer distribution system 

upgrade costs, their relative performance varies by feeder, highlighting the need for strategic 

alignment of smart charging strategies with local grid conditions. 
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Figure 37 System wide upgrade cost for Pepco 

4.5 Comparison of BGE and Pepco feeders 

BGE and Pepco exhibit notable differences in their distribution infrastructure, influencing the 

impact of EV demand integration and the effectiveness of smart charging strategies. 

• Transformer Density: BGE has nearly 50% more transformers per feeder than Pepco, 

averaging 180 transformers per feeder compared to 123 in Pepco. 

• Line Density: Despite a slight difference, both utilities maintain a similar number of lines 

per feeder, with an average of 1,026 lines in BGE and 987 in Pepco. 

• Equipment Ratings: Pepco feeders generally have higher equipment ratings relative to 

their load sizes, which helps mitigate stress on the grid. 

Capacity Utilization and Overloading 

• Transformer Utilization: 58% of transformers in BGE operate above 50% capacity, 

compared to 47% in Pepco among the selected feeders. 

• Overloading: BGE experiences a higher prevalence of overloaded transformers, with 

80% more overloaded units than Pepco. 

• Line Overloads: Among the selected feeders, 36 feeders in BGE have overloaded lines, 

compared to 20 in Pepco, a trend that scales proportionally across the full network. 

Infrastructure Upgrade Needs 

• Transformer kVA Upgrade Requirements: The transformer upgrade demand in BGE is 

45% higher than in Pepco, reflecting greater grid stress. 
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• Line Lengths: BGE feeders have longer average line lengths—65% greater than those in 

Pepco, adding complexity to grid management and upgrade planning. 

These findings underscore the need for utility-specific strategies to address the distinct 

challenges of each network. While BGE faces more severe infrastructure constraints, requiring 

greater investment in upgrades, Pepco’s higher equipment ratings and relatively lower 

transformer utilization suggest different grid management priorities.  This also suggests that 

moving to maximum SCM enrollment scenarios, Pepco might begin to see more constraints 

consistent with BGE. Tailored smart charging strategies are essential to effectively support EV 

integration within each utility's unique operational framework. 
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5  Conclusions 

This study demonstrates that LB consistently achieves greater peak load reduction for EV 

home charging compared to TOU-based SCM. Higher enrollment in SCM enhances peak load 

reductions for both strategies by improving coordination, shifting demand away from peak hours, 

and optimizing load distribution. However, EV plug-in behavior significantly influences the 

effectiveness of each approach. When most EVs plug in after 9 p.m. (when off-peak starts), 

TOU-based SCM offers limited benefits, making LB the more effective strategy for managing 

home charging loads. Additionally, LB benefits from the flexibility of flat-rate users, 

particularly in feeders with a higher proportion of such users, allowing for more efficient load 

optimization and greater peak load reduction. 

Both LB and TOU-based strategies effectively defer the system upgrade costs to later years 

for BGE and Pepco, but their relative advantages vary by scenario and utility: 

• LB outperforms TOU-based in the Steady Increase scenario, particularly across BGE’s 

representative feeders and system-wide analysis. 

• TOU-based SCM shows a slight system-wide advantage for Pepco, though the difference 

is marginal. 

• In the Minimum Enrollment scenario, the benefits of managed charging are limited due to 

low EV participation, leading to only minor differences between LB and TOU-based and 

SCM. More than half of Pepco’s feeders in this scenario exhibit similar avoided upgrade 

costs for both strategies, reducing data variability and impacting the accuracy of system-

wide cost estimations. 

While both strategies contribute to extending the lifespan of existing infrastructure and 

deferring—but not eliminating—future distribution upgrades, LB provides greater 

flexibility by dynamically distributing demand across broader time periods. This 

adaptability helps minimize overload conditions more effectively than TOU-based, which relies 

on fixed peak and off-peak periods that may not align with actual load patterns. 

As EV adoption continues to rise, TOU-based SCM is likely to create a secondary peak 

when large numbers of EVs begin charging simultaneously at the start of the off-peak period. 

This new peak could shift grid stress from traditional peak hours to later in the evening, 

particularly in high-adoption regions. The results suggest that static TOU pricing alone will not 

be sufficient in the long term. More sophisticated SCM approaches—such as Load 

Balancing, dynamic pricing, or real-time grid-aware smart charging—will be necessary to 

distribute charging demand more efficiently and prevent new grid constraints. 

From a regulatory and utility planning perspective, managed charging strategies provide 

critical benefits: 

• Optimizing asset utilization, reducing transformers and line overloads. 

• Delaying capital-intensive infrastructure upgrades, benefiting all rate payers. 

• Enhancing grid reliability by preventing localized congestion and overloading. 
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• Providing a more gradual and cost-effective path toward widespread EV adoption. 

Although managed charging can postpone costly infrastructure investments, eventually grid 

upgrades might still be necessary as EV penetration increases. However, prioritizing smart 

charging—particularly through more advanced strategies like LB—enables utilities to 

better plan infrastructure investments, improve operational efficiency, and support long-

term grid resiliency. By integrating flexible, data-driven load management strategies, 

utilities, PUCs, and state agencies can ensure a smoother, more cost-effective response to 

electrified transportation while maintaining grid stability and affordability for all 

consumers. 
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7  Appendix 

Appendix A: TOU-based SCM 

Algorithm 1: Load profile calculation in TOU-based SCM 

1 Input: Plug-in and plug-out times for each EV, maximum charging speed of each EV, total 

energy required for a charging session 

2 Initialization: active ev list ← [] (list of EVs that can charge) 

  pending ev queue ← [] (queue for EVs waiting to charge) 

  charging load profile ← [] (store charging load at each time step) 

  ev charging rate ← [] (store charging rate for each EV) 

3 Iteration: For each time step 𝑡 from 7:00 a.m. to 7:00 a.m. the next day, in 15-

minute intervals: 

   Identify EVs plugged in at 𝑡: 

charge request list ← EVs plugged in at 𝑡 + pending ev queue 

   If time 𝑡 is between 7:00 a.m. and 5:00 p.m.: 

    Allow all EVs in charge request list to charge at maximum rate: 

active ev list ← charge request list 

    Update charging load profile with total charging load of active ev 

list 

   Else if time 𝑡 is between 5:00 p.m. and 9:00 p.m.: 

    Pause charging for all EVs in charge request list: 

Add charge request list to pending ev queue 

   Else if time 𝑡 is between 9:00 p.m. and 7:00 a.m.: 

    For EVs in charge request list: 

     If EV is plugged in after 9:00 p.m. (late-plugged EV): 

      Allow charging at maximum rate: active ev list ← EV 

     Else: 

      Calculate adjusted charging rate for each EV: rate ← 

remaining required energy / remaining time 

      Update charging load profile with adjusted charging rates 

      Update charging load profile with total load of active ev list 

   Remove fully charged EVs from pending ev queue 

  End For 

4 Return charging load profile 

 

Appendix B: Load Balancing Algorithm 

The Load Balancing strategy primarily shifts most Load to overnight hours, resulting in the highest 

peak load during this overnight charging period. We can denote the peak load for this strategy as 

𝑁 , which occurs during the overnight charging window. According to WeaveGrid data, the 

magnitude of peak home charging during the daytime low-demand period is observed to be 10% 

of the overall peak load throughout the 24-hour cycle. Therefore, the allowable peak load during 

this period is a fraction of 𝑁, represented as r×N. In the peak-hour window, EVs on flat-rate plans 

are allowed to charge, while the allowable load gradually increases from 𝑟 × 𝑁 to 𝑁 by midnight. 

To minimize the peak load during these hours, charging for TOU users is postponed until after 9 
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pm. By establishing unique peak load limits for each time window and estimating the total home 

charging demand required from 7 am to 7 am, we calculate the total allowable load N for each 

feeder using the following equation. 

𝑁 =
2 ∗ (𝐴1 + 𝐴2 + 𝐴3 + 𝐴4)

20 𝑟 + 7(𝑟 + 1) + 14
 

(B1) 

  

 
Figure B1: Peak Load limits across daily time windows in the proposed Load Balancing 

approach. 

In this equation, 𝑟 is initially set to 0.1 but can be adjusted as a variable, providing control over 

the allowable peak Load. Based on WeaveGrid results, we observed r to be approximately 0.1. Our 

method leverages knowledge of each EV's plug-in time and total daily energy (𝐴1 + 𝐴2 + 𝐴3 +

𝐴4)  requirement, allowing us to estimate the total energy needed for the day in advance. The 

overall process for Load Balancing is outlined in Algorithm 2. 

 

Algorithm 2: Load profile algorithm in Load Balancing 

1 Input: Plug-in and plug-out times for each EV 

2 Initialization: active ev list ← [] (list of EVs that can charge) 

  pending ev queue ← [] (queue for EVs waiting to charge) 

  charging load profile ← [] (store charging load at each time step) 

3 Calculate Maximum capacity 𝑁 by using Equation B1 

4 Sort EVs based on plug-in time, current state of charge (SOC), and target SOC 

5 Iteration For each time step 𝑡 from 7:00 a.m. to 7:00 a.m. the next day, in 15-

minute intervals: 

   charge request list ← EVs plugged in at 𝑡 + pending ev queue 

   load request ← total load from charge request list 

   If 𝑡 is in 7:00 a.m. to 5:00 p.m. 

    Determine the first set of EVs from charge request list where load < 

𝑟 ⋅ 𝑁 

    active ev list ← selected EVs meeting the load threshold 

    non active ev list ← charge request list – active ev list 
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    Add non active ev list to pending ev queue 

    Update charging load profile with total charging load of active ev 

list 

   If 𝑡 is in 5:00 p.m. to 9:00 p.m. 

    For EVs that are flat rate user  

     Select EVs from charge request list (flat-rate) where load is 

below the threshold for 𝑡 

     active ev list ← selected flat-rate EVs. 

     non active ev list ← charge request list – active ev list 

     Add non active ev list to pending ev queue 

     Update charging load profile with total charging load of active ev 

list 

    For EVs that are TOU rate users: 

     Pause charging for all EVs in charge request list: 

     Add charge request list to pending ev queue 

    If 𝑡 is in 9:00 p.m. to 7:00 a.m. 

     Determine the first set of EVs from charge request list where 

load is below the threshold for 𝑡 

     active ev list ← selected EVs meeting the load threshold 

     non active ev list ← charge request list – active ev list 

     Add non active ev list to pending ev queue 

     Update charging load profile with total charging load of active ev 

list 

  End For 

6 Return charging load profile 
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