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Disaggregation of Transmission Load Profiles with

High Penetration of Behind-The-Meter Solar
Zhenyu Zhao, Daniel Moscovitz, Shengyi Wang, Liang Du, Senior Member, IEEE, Xiaoyuan Fan

Abstract—The ever-growing integration of distributed energy
resources (DERs), especially behind-the-meter (BTM) solar gen-
erations, poses imperative operational challenges to system op-
erators such as regional transmission organizations (RTOs). It is
important for RTOs to effectively and accurately extract actual
load profiles at the transmission level for a single node with
significant BTM solar injection. This paper first illustrates the
necessity of disaggregating the daily actual load profile of a single
node. Furthermore, by segmenting nodes with selected time-
series features, nodes with significant BTM solar generation are
identified. Lastly, a bi-level framework is proposed, comprising
reference node disaggregation and DeepFM nodal disaggregation,
aimed at disaggregating the nodal load profiles from which
system operators require more information. By adopting a hybrid
Deep Factorization Machine (DeepFM) model, the model achieve
accurate results by extracting both linear and nonlinear relations
between nodes in the same region and the zonal load and nodal
load profile. To overcome the lack of ground truth, this paper
segments the load profile into daytime, nighttime, and zero-
crossing points and utilizes the latter two for evaluation purposes.
The proposed disaggregation procedure is validated using real-
world, minute-level, normalized, and anonymized nodal data in
the PJM service territory.

Index Terms—Factorization Machine, Behind-the-meter Solar,
Load Disaggregation

NOMENCLATURE

Indices and Sets
i Index of transmission zones
Zi Transmission zonal load profile of each zone i
Z Set of all zonal load profiles
Si Proxy solar profile of each zone i
SMA
i Proxy solar profile with MA

S Set of all proxy solar profiles
n Index of transmission nodes in each zone
Xnoden Nodal load profiles of each zone i
XMA

noden Nodal load profiles with moving average
Xnoderef Metered nodal load profile of reference node
Pnoderef Net nodal load profile of reference node
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X Set of transmission nodal load profiles
Pnoden Net load profiles of each zone i
P Set of net transmission nodal load profiles
XBTM Set of transmission nodes with BTM solar
XMA Set of transmission nodes with moving average
snoderef BTM solar of reference node
Parameters and Variables
Tdaytime Time period from sunrise to sunset
Tnighttime Time period from sunset to sunrise
Talltime Whole dataset without segmentation
σ Standard deviation
Cl Coefficient of net load in linear model
pc Constant of net load in linear model
Cref Coefficient of net reference nodal load
pref Constant of net reference nodal load
λ Moving average step size
wi Weight term in FM model
w0 Intercept term in FM model
wij weight term in FM model
⟨vi,vj⟩ Latent factor for features, FM model
ŷ(x) Prediction of net nodal load
d Number of DNN layers
W (d) Weight of DNN model, layer d
b(d) Biases of DNN model, layer d
Functions
R(Z, X) Relation between zonal and nodal load profiles
CZn Correlation between zonal and node n’s load
f (d) Outcome of embedding layer in FM
DW (·, ·) Wasserstein distance
DKL (·, ·) Kullback-Leibler divergence
DKLsym (·, ·) Symmetrical Kullback-Leibler divergence

I. INTRODUCTION

Globally, electric power grids are experiencing major
paradigm shifts to operate with dominating renewable en-
ergy resources. The ever-growing penetration of distributed
energy resources (DERs), especially behind-the-meter(BTM)
solar generations, has imposed significant impacts on nodal
load profiles and consequently poses imperative operational
challenges to system operators such as regional transmis-
sion organizations (RTOs). BTM resources represent small-
scale installations physically located “behind” utility meters
or substation telemetry, i.e., without individual sub-metering.
California Energy Commission estimated over 40,000 GWh
annual BTM solar by 2030, and its impact on RTOs has been
overlooked [2].
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Fig. 1: Real-world example at PJM that needs actual load profiles: the peak
load time of the entire RTO (the top line) could be one hour after the peak
load time of a transmission (the middle line), whose actual load curve is
unknown due to BTM solar (the bottom line) and self-managed loads [3].

Fig. 1 illustrates a real-world example of how BTM solar
penetration could impact nodal load profiles and why advanced
techniques to extract actual load profiles (i.e., metered or
state-estimated load profiles without injection of any BTM
resources) are of imminent needs, which represents an actual
problem at PJM Interconnection, a major RTO in the U.S and
one of the largest transmission system operators in the world.
As shown in Fig. 1, an individual node’s load profile follows
the pattern of RTO load profile during the nighttime. During
the daytime, the load profile of single node records a negative
power flow during zonal peak load times and remains negative
for an extended period. Moreover, with the unknown actual
net load curve, the peak load time of the RTO load could
be hours later than the single transmission node’s peak time,
which is expected to be synchronized. As the amount of BTM
solar injection increases, causing the duck curve to deepen, the
need for ramping-up power also substantially increases, with
an unknown magnitude. The actual load remains unknown
may also lead to potential over generation.

To maintain the reliability of power systems with high
penetration of BTM solar and enhance situational awareness,
system operators must be aware of the actual load at each
transmission node. Conventionally, utilities conduct random
sampling to estimate BTM solar generation in unregistered
areas. Various data-driven and machine learning techniques
have been proposed recently to dissaggregate BTM solar and
actual load at distribution feeders or households. However,
effectively extract actual load profiles at transmission nodes
with significant BTM solar generation remains a gap in the
existing technology paradigm and is of imperative needs for
RTOs [4]. Due to the large number of transmission nodes, the
size of real-world data, and the need of real-time situational
awareness, advanced data-driven approaches are recognized as
the enabling scheme with benefits such as eliminating the need
for human intervention, reducing costs for estimating actual
load profiles, and enabling regular updating of datasets to keep
the disaggregation procedure up-to-date.

In general, the energy disaggregation problem for
distribution-level households is commonly formulated as re-
constructing the aggregated waveform using consumption pat-
terns and model parameters optimized during the learning
procedure [5]. To summarize the existing literature, a model-
based disaggregation is proposed in [6] for BTM solar and

battery storage simultaneously with customized features. On
the contract to model-based frameworks, a data-driven-only
framework is proposed in [7], presenting a two-layer dis-
aggregation approach for residential levels using only smart
meter data, which is similar to the two-layer architecture
proposed in [8]. Furthermore, another two-stage decoupled
estimation approach is introduced in [9], where the first stage
of the model learns the pattern of observable solar power and
actual load, and the second stage estimates the solar power
and customer load during the demand response event, aiming
for accurate aggregated baseline load estimation. Similarly,
a model-free energy disaggregation model at the substation
level is discussed in [10], utilizing partially labeled data as
part of the offline known disaggregation ground truth, which
is similar to the semi-supervised setting proposed in this
work. Regarding data availability issues, an adaptive frame-
work utilizing partially labeled data with minimal number of
BTM PV generation measurement sensors is also constructed
in [11]. Similarly, [12] proposes a consumer mixture model
to disaggregate BTM solar using consumption patterns of
neighboring customers with on solar installations, which is
validated with data comes from different aggregation levels.
To improve the flexibility of power systems, the authors in [13]
propose a machine learning approach to estimate solar capacity
accurately from net load data for demand response baseline
estimation. Finally, to address the data privacy while using
customer’s real load data, [14] proposes a federated learning
method to disaggregate BTM solar at the community level
while preserving the privacy of customers.

However, in the existing literature, most if not all data-
driven BTM solar disaggregation are focused on distribution
level, and at least have partial labeled data exists as the ‘ground
truth” for supervised training. In [15], an unsupervised house-
level BTM solar disaggregation method is proposed based
on physical models and validated with semi-synthetic data.
Since it is validated that the relations between zonal and nodal
load profiles established during nighttime also hold during
daytime [4], as the first effort to disaggregate BTM solar at the
transmission level without ground truth, the authors proposed
a linear regression-based zonal-to-nodal (Z2N) model utilizing
nighttime zonal load and nodal load profiles in [16]. To
enhance the performance of Z2N models and alleviate the
limitation of model-based approaches in interpretability and
accuracy, this paper proposes a data-driven-only deep learning
disaggregation framework to comprehensively capture linear
and nonlinear relationships among various data sources.

To fully utilize widely available data and capture nonlinear
patterns in power systems applications, researchers have pro-
posed a variety of advanced deep learning based comprehen-
sive frameworks to address various power system issues. To
localize real-time faults in distribution networks, a deep convo-
lutional neural network classifier is applied to feature vectors
extracted from distribution lines [17]. Moreover, a Graph
Neural Network (GNN) is adopted to enhance situational
awareness and fault location accuracy [18], which can capture
the spatial-temporal relationship between data from different
sensors in various locations. In [19], [20], several multi-head
Transformer-based deep learning architectures are adopted
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for better performance for more accurate solar forecasting to
enhance performance in solar generation forecasting.

In this work, to address the limitation of the linear-
regression-based approach on nodal load profiles with negative
injection and enhance the performance for all single nodes
in the same region, a Factorization Machine (FM) learning
model [21] is adopted to disaggregate nodal profile utilizing
zonal load profile and reference node load profile [1]. The pro-
posed Deep factorization Machine based load disaggregation
framework DFMLD consists of three modules: data process-
ing and analysis, deep learning, and quantitative evaluation,
which is shown in Fig. 2.

• Data processing and analysis: Real-world RTO nodal
data is first cleaned by removing days with incorrect
readings, erroneous recordings, or interrupted operations,
which are usually referred to as “cut-in” and may result
in consecutive zeros within the dataset. Next, to further
analyze characteristics of each nodal profile, the cleaned
data is segmented into daytime and nighttime periods.
Each segment, as well as the combined dataset, is used
to analyze the correlations between each nodal load
profile and the zonal load using the Pearson Correlation
Coefficient (PCC) [22]. Standard Deviation is utilized for
identifying nodes with high DC-offset.

• Deep learning: To comprehensively capture both linear
and nonlinear patterns between these load profiles, a Deep
Factorization Machine (DeepFM) is adopted [23]. As a
hybrid model, in addition to the linear and bilinear terms
in the FM, a deep feed-forward learning component is
included to extract nonlinear relationships.

• Quantitative evaluation: Symmetrical Kullback-Leibler
(KL) divergence and Wasserstein distance are adopted for
evaluating similarity between two time series [24] in a
sem-supervised manner, i.e., between disaggregated and
actual nighttime profiles (since there is no BTM solar
generation at nighttime only).

The technical contributions made by this paper can be
summarized as follows.

• A novel Deep-Factorization Machine based load disag-
gregation framework DFMLD is proposed which con-
tains multiple module including data process and quanti-
tative evaluation procedure without known ground truth.

• This paper proposes a comprehensive data cleaning and
processing module with defined rules to improve the
quality of real-world transmission-level data for deep
learning.

• The transmission nodes within the same zone are further
segmented into different categories based on profile-
related parameters and characteristics. Three different
datasets, each containing varying lengths of data which
are: 1) daytime data only, 2) nighttime data only, and
3) both daytime and nighttime data—are used within the
analysis module, respectively.

• The proposed DFMLD is designed based on observations
from real-world RTO data and has been validated by
real-world RTO data, which has driven steps forwards
industry deployment and adoption into the RTO energy

Data Process & Analysis Module

Deep Learning & Evaluation Module

Raw Dataset: Zonal load profiles, proxy solar profile, zonal load profile

Nodal Load Profiles Proxy Solar Profile Zonal Load Profile

Nodal Load Analysis

High DC-offset node

Load with minor
BTM solar

Load with significant
BTM solar

Data Cleaning
Correlation Analysis & Learning Data

PCC between zonal load &
each nodal load

Zonal
load

Ref
node

High BTM
solar nodes

Proxy
solar

Highest

Synchronize timestamps based on each cleaned nodal load profiles
Segment data based on proxy solar (nighttime only)

 
Processed Data: Zonal load, Net reference node, and nodal profiles

Factorization Machine  Deep Neural Network

Linear & Bilinear Nonlinear

Concatenation layer

Applied trained model

Task: Regression
Error to minimize:
Target: Nighttime nodal load 

Distance Matrices

All Data     Load Disaggregation Outcome

Quantitative performance
evaluation, nighttime data

Fig. 2: Pipeline of the proposed DFMLD framework.

management systems (EMS).
The remainder of this paper is organized as follows. Section

II describes the data formats and resources and then formally
defines the energy disaggregation problem considered in this
paper. Section III introduces the data processing and analysis
module, which will be utilized by the proposed DFMLD
framework, which is proposed in Section IV in details. Numer-
ical validation results using real-world RTO data are reported
in Section V. Finally, Section VI summarizes findings of this
work and discusses some potential future directions.

II. DATA DESCRIPTION & PROBLEM FORMULATION

As the framework is formulated in a model-free, data-driven
manner, the input data used in calculations and modeling
determines the quantitative results. Therefore, it is important to
first introduce the data, followed by the problem formulation.

A. Data Description

The data utilized in this paper are collected from three types
of sources:

• Metered zonal load profiles Z = {Z1, Z2, . . . , Zi},
• Proxy solar profiles metered in solar farm in correspond-

ing zone S = {S1, S2, . . . , Si},
• Metered multiple nodal load profiles within each zone

X = {Xnode1 , Xnode2 , . . . , Xnoden},
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Fig. 3: Illustration of different sources of data real-world metered data. Dotted
green line is the proxy solar profile, solid black is the zonal load profile, solid
purple line with round markers and solid blue line with triangle markers
represent different nodal load profiles.

As illustrated in Fig. 3, which contains 24 hours of data from
various sources, including one proxy solar data, one zonal load
profile, and two nodal load profiles within the same zone.
All of these files from various sources consist of minute-level
time-series data that has been anonymized and normalized for
confidentiality. It can be observed that

• During nighttime, different nodal load follows the trend
of the nodal load profile despite the different in scales.

• During the daytime, with significant BTM solar, both
node 1 and node 2 present very different load profiles
compared to the zonal total demand.

B. Problem Formulation

The objective of DFMLD is to disaggregate actual nodal
load profiles P = {Pnode1 , Pnode2 , . . . , Pnoden} from metered
nodal profiles X. To create a universal procedure for disag-
gregating all nodes in one zone, the problem is formulated
as a multi-module deep learning-based framework. First, the
raw data is filtered using pre-defined rules to clean bad data,
followed by a moving average (MA) (with step size λ) for
data smoothing. The smoothed load and solar profiles are thus

XMA
noden(t) =

1

λ
(Xnoden(t) + . . .+Xnoden(t+ λ− 1)),

SMA(t) =
1

λ
(S(t) + . . .+ S(t+ λ− 1)).

(1)

where the moving averaged load profile set is denoted as
XMA. The moving average processing improves not only the
computational efficiency but also visualization of time-series
data.

The processed data is then segmented into two parts based
on the value of proxy solar S: Tdaytime (with BTM solar),
Tnighttime (no solar), and the tuning points (sunrise and sunset).
The nodes in the nodal load set X are further segmented into
different groups based on their load patterns, using daytime
data only and all-time data, respectively. Also, reference node
Xnoderef is selected inside set X which is the nodal load has

highest correlation with zonal load Z and net load of reference
node Pnoderef is acquired through existing Z2N procedure by

p(t) = ClZ(t) + pc + ϵ(t), ∀t = 1, . . . , T, (2)

where the actual nodal load profile p follows the zonal load
profile data z in an affine manner, subject to a constant
weight Cl, a constant load component pc, and an unknown
stochastic load mismatch error ϵ [16]. As a regression problem,
parameters are trained by minimizing the difference between
metered and disaggregated nodal load profiles:

argmin ∥Pnodal,nighttime, P̂nodal,nighttime∥. (3)

The primary challenge is that there is no ground-truth for
disaggregation outcomes of P. To accurately disaggregate the
actual nodal load and overcome the lack of ground-truth, the
disaggregation procedure is based on the relation between
transmission level zonal and nodal load which is the nighttime
relations still stands during daytime

Rdaytime(Z, X) = Rnighttime(Z, X) ± ε, ∀X ∈ X (4)

where ε represents an unknown transposition error term which
combines stochastic mismatch errors from both the load and
BTM solar and needs to be learned as a residue term [4]. To
obtain the trained relations necessary for disaggregating the net
nodal load, this paper proposes a novel learning and evaluation
procedure based on data segmentation and a hybrid model
capable of capturing linear, bilinear, and nonlinear relations.

Specifically, each zonal load profile Z and corresponding
nodal load profiles in set X are partitioned into three segments
based on proxy solar :

• When S < 0, the segmented data represents nighttime;
• When S > 0, the segmented data represents daytime;
• When S = 0, the segemtned data represents a set of

cross-zero points (sunset and sunrise times).

The nighttime data of zonal load Z and net reference nodal
load Pnoderef are utilized for training to disaggregate all nodal
load profiles in set X:

Pnoden = f(Pnoderef,nighttime ,Znighttime), (5)

where f is learned from the the proposed deep learning mod-
ule. Note that the nighttime data is utilized not only during the
training but also for evaluating the disaggregation outcomes of
P since there is no BTM solar generation during the nighttime,
which results in Xnoden = Pnoden . In other words, the nighttime
data can therefore be used for disaggregation evaluation as
well [4]. Moreover, the learned function f is then applied
to the entire dataset including both daytime and nighttime
segments, as the relations established during the night also
hold during the daytime [4]. The boundaries between daytime
and nighttime data can be represented by the sunrise and sunset
events, which can in turn be considered as cross-zero points,
i.e., at the intersection of daytime and nighttime segments and
thus belong to both. Therefore, these points are utilized in
both the Z2N procedure for performance enhancement and
the evaluation step to overcome the challenge of no (or only
partial) ground truth.
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III. DATA PROCESSING AND ANALYSIS MODULE

Within the data processing and analysis module, pre-defined
rules are applied for data cleaning. The nodal load profiles are
then further segmented, and a reference node is selected.

A. Data Cleaning Module

Lack of data quality in the above domains manifests in
several forms, including missing, incomplete, inconsistent,
inaccurate, duplicate, and outdated data, which can result
in low performance when utilized in machine learning and
analytical models. While using real-world transmission net-
work nodal load profiles and proxy solar data in the proposed
data-driven techniques, uncertainty and error in measurement
and communication could causes random noises [25]. The
following abnormalities are observed in the real-world dataset:

• The load profile sudden drops to zero during the night
(when no BTM solar injection), followed by recoveries
within seconds or sometimes minutes to hours.

• The load profile suddenly drops from non-zero to zero
with an abnormal trend during daytime.

• The proxy solar suddenly drops to zero during daytime
while the positive readings are expected.

• Null values (NaN) have been observed in both proxy solar
and load profiles, range from one minutes to hours.

These data abnormalities may be caused by different rea-
sons, including but not limit to data transmission error, relay
devices malfunction, as well as services on a branch (line,
transformer, series device, or phase shifter) which could af-
fect modeled topology, device reconfiguration, or equipment
upgrade which causes no readings for an extended period.
Therefore, it is of great importance to clean the data to improve
its quality first. There are two sets of data that need to be
looked into: the load profile dataset X and the proxy solar
dataset S, as no data abnormality has been observed in zonal
load profiles. As illustrated in Section II, all data is processed
on a daily basis, and so is the cleaning procedure. For daily
load and solar files segmented into daytime and nighttime data,
clean the data based on two novel pre-defined rules. Rule 1
cleans the data based on abnormal detection during nighttime.
It removes the entire day’s data if any zero value exists in the
nighttime data. This indicates a recording error since nighttime
load should be greater than zero, as there’s no BTM solar
generation. While rule 2 cleans the data using daytime data,
the rule defines that if there are consecutive 14 data points
(20 minutes) of zero, the daily profile should be deleted. This
indicates either a cut-in procedure or a reading error, which
will result in invalid outcomes in the nodal analysis module.
The threshold of 14 is chosen based on the deep learning
model’s robustness against missing data while the missing data
is less than 1% [26]. The two rules are listed below:

If ∀Xnighttime[t] = 0, delete the day, (Rule 1)

If
i+14∑
t=i

|Xdaytime[t]| = 0 for any i, delete the day. (Rule 2)

Fig. 4: Illustration of different nodes with significantly different patterns,
where the dark blue line with triangle markers represents the pattern of a
node with high percentage of DC-offset.

B. Nodal Load Profile Analysis

In each zone, X contains distinct groups of nodal load
profile patterns. Before disaggregating nodal load profiles,
all nodes need to be analyzed to identify which nodal load
profiles require disaggregation. With the increasing proportion
of renewable energy generation, load profiles will significantly
change if solar is behind-the-meter. During the daytime when
solar generation peaks, the nodal peak time will be delayed for
hours, and the trend will show a significant difference, which
is expected to be similar. As shown in Fig. 3, the purple line
with round markers exhibits subtle value drop observed during
the solar generation peaks, while the blue line with triangle
markers shows a significant drop and even goes under zero
during noon.

Besides the aforementioned observations that nodes could
present very different patterns at varying levels of BTM solar
penetration, nodes with a substantial percentage of DC offset
have a unique profile pattern. As shown in Fig. 4, it can be
observed that different from the typical load, the orange dotted
line with square markers and the brown dotted line with the
round markers, the dotted dark blue line with triangle markers
presents no peaks or troughs as the value remains relatively
flat and only fluctuates within a small range.This is attributed
to a high percentage of load consumed by always-on facilities,
such as data centers.

Therefore, there are three types of nodal loads: nodes
without BTM solar injection, nodes with BTM solar injection,
and nodes with high DC-offset. Therefore, the nodal load
profile analysis module serves three purposes:

• Identify nodes with or without significant BTM solar
(both daytime and nighttime data utilized).

• Identify high DC-offset nodes (all-time data included).
• Evaluate the similarity between nodal load profiles and

corresponding zonal load profiles, and select a reference
node to be further used in the disaggregation module
(nighttime data utilized).

To maximize the utilization of the dataset, various segments
of the load profile are utilized for analysis purposes, including
daytime-only, nighttime-only, and all-time data. To identify
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high DC-offset nodes, Standard Deviation is adopted to eval-
uate the fluctuation of time-series data, formulated as:

σ =

√∑N
i=1 (xt − µ)

2

N
, (6)

where xt represents each individual data point in each dataset,
µ is the mean (average) of each dataset, and N is the total
number of data points. If the value of single file is relatively
low compared to overall of other files inside a dataset, it
indicates that the data fluctuates within a small range. All-
time data is used for evaluation. To analyze the relations
between the zonal load Z and nodal load Xi without negative
injection, the Pearson Correlation Coefficient (PCC) is used to
quantitatively evaluate the correlation using nighttime data:

Czn =

∑n
i=1 (xt − x̄) (zt − ȳ)√∑n

i=1 (xt − x̄)
2 ∑n

i=1 (zt − ȳ)
2
, (7)

which xt and zt represent each nodal load profile and zonal
load profile, respectively. n represents the number of data
points. For which a larger absolute value of Czn indicates
stronger linear relations. The nodal load profile with the
highest value of PCC is selected as the reference node for
the corresponding zonal load.

To identify how many files in X have substantial BTM
solar injection, utilize the observed patterns of the impact of
solar penetration. These patterns include significant declines
during the daytime and increased ramp-up energy required
during sunset. To classify nodes, PCCs are used to evaluate the
relation changes during the daytime and nighttime. For nodes
without BTM solar injection, the relations between the nodal
load profile and the corresponding zonal load profile during
daytime and nighttime are in an affine manner [4]:

Rdaytime(Z, X)

Rnighttime(Z, X)
= (1± 0.05), (8)

where the relations during daytime and nighttime are bounded
within the range of ±5% error, which is widely acceptable in
RTO operations. Therefore, for a single node in X with a day-
night ratio greater than 1.1, the nodes are classified as having
BTM solar injection and included in dataset XBTM.

IV. DEEPFM BASED LEARNING MODULE

In the DeepFM-based learning module, net load profile of
the reference node is first acquired by the Z2N disaggregation
process [16], which utilizes the nighttime zonal load denoted
as Z, and the nighttime metered reference nodal load profile
denoted as Xnoderef, to disaggregate the actual reference load
denoted as Pnoderef , by formulating it as a regression task to ac-
quire the relation. After acquiring the disaggregated reference
load Pnoderef , along with the zonal load Z, the variables are used
as the input for the hybrid deep learning model to disaggregate
the actual node in XBTM. To acquire linear, bilinear, and
nonlinear relationships, all parameters are obtained through
training on the nighttime data.

Algorithm 1: Deep Factorization Machine Learning
Based Load Disaggregation Framework

1 Input S, Z, λ, X
// Applying Moving Average

2 XMA
noden ←

1
λ

(
Xnoden(t) + . . .+Xnoden(t+ λ− 1)

)
3 SMA(t)← 1

λ (S(t) + . . .+ S(t+ λ− 1))
4 for t = 0 : T − 1 do
5 XMA

noden(t+ 1)← XMA
noden(t)−Xnoden(t) +Xnoden(t+ λ)

6 SMA(t+ 1)← SMA(t)− S(t) + S(t+ λ)
7 t← t+ 1

8 end
// Nodal Load Profiles Analysis

9 Input Z, XMA, Initialize variables
10 for each X in dataset XMA do
11 Calculate Tnighttime zone-node correlation

Calculate day-night ratio
12 if Xnoderef zone-node PCC is the highest then
13 Select the highest as reference node
14 end
15 if ∀X day-night ratio > 1.1 then
16 Add to set XBTM
17 end
18 end
19 Output Xnoderef , XBTM
// Disaggregation at Reference Node

20 Input Xnoderef (Tnighttime), Z
21 Calculate Cref, pref ← Min. σMSE, OLS outcome
22 Update Cref, pref ← Min. switching points error, tuning
23 Output Pnoderef = CrefZ + pref
// Deep FM Disaggregation

24 Input response variables Xnoderef , Z, target variable XBTM
25 Training task: regression
26 for n = 1, . . . , N, n ̸= ref do
27 Features: Xnoderef (Tnighttime),Z (Tnighttime)
28 Regression target: Xnoden (Tnighttime)
29 Train Hyper-parameters← Min. nighttime σMSE
30 end
31 Output trained model
32 Apply trained model on data (Talltime)

A. Reference Node Selection and Disaggregation

The first step of the proposed framework is to identify the
corresponding reference node. Specifically, the reference node
of each dataset is chosen based on the Pearson Correlation
Coefficient (PCC) between the nodal and zonal load profiles
at nighttime. The node has the highest PCC value is identified
as the reference node noderef. As the actual load profile of
reference node is required in the deep learning module, the
reference node is then disaggregated to the actual load profile
of reference node Pnoderef by applying the Z2N disaggregation
process, as justified in [4]. On the reference node, where both
Pnoderef(t) and snoderef(t) are unknown. The disaggregation for
the reference node is formulated based on Eqn. (2):

Pnoderef(t) = CrefZ(t) + pref + ϵ(t), ∀t = 1, . . . , T, (9)

where ϵ represents an unknown stochastic load mismatch error.
The constant weight Cref and constant load component pref are
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Fig. 5: Detail structure of Deep Factorization Machine learning module

obtained by by minimizing the error between the actual and
disaggregated nodal load profiles using Ordinary Least Squares
(OLS) [27]:

argmin
1

t

t∑
i=1

(
Pnoderef,nighttime(t) − P̂noderef,nighttime(t)

)2

. (10)

The nighttime data is used for training purpose. Noted that
during nighttime, the actual reference node load Pref,nighttime(t)
equals to the metered reference node load Xref,nighttime(t). To
enhance the obtained disaggregation performance, the accu-
mulated errors on both zero-crossing points is minimized:

argmin

n∑
i=1

(
Pnoderef(t)

)
, t ∈ {Tdaytime, Tnighttime}, (11)

where the final constant weight Cref and constant load com-
ponent pref is obtained.

B. DeepFM Learning for Disaggregating All Nodes

The DeepFM module is proposed to to disaggregate all
single nodes. The entire module includes multiple layers for
feature extraction and learning both high and low orders of
relations. Dense embedding layer process the dense input
and compress the input vector. This compressed vector is
then passed to both the Factorization FM [21] and the Deep
Neural Network (DNN), which share the same input. The
concatenation layer combines the outputs from each learning
module and produces the final output. The details of the hybrid
learning model is illustrated in Fig. 5. The key advantages
DeepFM module brings are as follow:

• Both low-order feature interactions and high-order feature
interactions are considered in FM and DNN, respec-
tively. Linear, bilinear, and nonlinear relations are all
captured [23].

• DeepFM training procedure is efficient as different mod-
ules receive the same embedded vector.

1) Data Input and Dense Embedding: The response vari-
able input of the model include reference node actual load
Pnoderef and zonal load Z, Where the actual reference node load
is Pnoderef is acquired by Z2N procedure. The dense inputs of
two time-series datasets are compressed into low-dimensional,
dense real-value vectors for feature extraction [23]. The same

vector is passed to both of the learning modules. The target is
individual nodal load profiles in XBTM.

2) Factorization Machines and Deep Neural Networks:
Factorization Machines learning was originally proposed for
collaborative recommendation [21], and it provides substantial
enhancements over linear regression as well [28]. Within FM,
the model includes an intercept term denoted as w0 and a
weight parameter wi associated with each feature xi which
has corresponding n numbers of weights. FM estimates the
target variable by capturing the interactions between all pairs
of features using factorized interaction parameters [28]. The
predicted value for the target variable ŷ(x)is calculated by

ŷ(x) = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

wijxixj . (12)

In this paper, the feature dimension i is 2, which is the zonal
load profile Z and the actual load profile of reference bus
Pnoderef . To address the issue of computational complexity,
latent factors ⟨vi,vj⟩ associated with each feature are in-
troduced [21]. The mathematical representation of the FM
equation becomes

ŷ(x) = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

⟨vi,vj⟩xixj . (13)

Both linear and bilinear terms are utilized to capture the
relationship between features and the target. The deep learning
module is a feed-forward deep neural network consisting of
all the training components with FM. Denote the outcome of
the embedding layer:

f (0) = [T1, T2] , (14)

where Ti include Z(t) and Pnoderef(t). Then f (0) is fed into the
deep neural network, and the forward process is:

f (d+1) = σ
(
W (d)f (d) + b(d)

)
, (15)

where d represents the layer depth, which is 4 in this paper,
and σ denotes the activation function, where ReLU is adopted
in this model. f (d), W (d), and b(d) respectively denote the
output, model weights, and biases of the d-th layer. After that,
a dense real-value feature vector is generated. The parallel
structure of leaning components brings several benefits:

• FM model serves as part of the overall learning architec-
ture, there’s no need to use FM’s latent feature vectors
to initialize the deep neural networks.

• The low and high order features interactions are learned
from raw data to reduce information loss.

• No separate feature engineering is needed for the deep
learning component [23].

3) Concatenation and Output Layer: For the target node
in the same region noden, the outputs of both learning com-
ponents are concatenated in a concatenation layer, resulting
in matrix C with dimensions (n, k + d), where n is the
number of samples, k is the number of latent factors from
the FM component, and d is the dimensionality of the output
of the DNN component. The hyper-parameters are trained
by minimizing the Mean Square Error (MSE) between the
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disaggregated results Pnoden and metered load Xnoden with a
supervised setting, which is denoted as:

min σMSE :=

N∑
n=1

(Xnoden − Pnoden)
2. (16)

The comparison of the proposed framework by this paper
with the state-of-the-art is summarized in the Table I.

V. NUMERICAL VALIDATIONS

The proposed framework is validated using real-world
minute-level, anonymized, and normalized PJM data. Two
datasets of differene sizes are utilized to validate the perfor-
mance of DFMLD in different situations.

• Dataset A contains a set of 2 transmission nodal load
profiles, 1 zonal load profile, and 1 proxy solar profile.
Which is selected by PJM with one nodal load with
negative injection during nighttime and the other node has
substantial BTM solar yet remains positive value during
daytime;

• Dataset B contains a set of 40 transmission nodal load
profiles (after cleaning), 1 zonal load profile, and 1 proxy
solar profile.

Each file is year-long, normalized, and anonymized. Dataset
A is pre-processed and cleaned; one of the transmission nodal
load profiles is highly correlated to the zonal load, and the
other one is a single node with a high percentage of BTM solar
penetration, which leads to an extended period of negative
metered value during the daytime. Dataset B is subjected to
the data cleaning and analysis module.

Remark V.1. Note that real-world load and BTM solar
patterns change significantly year-to-year. For example, actual
data in 2023 in general look very different from the year of
2022. Therefore, only recent years’ data are useful. Moreover,
though PJM has 86,397 internal electrical nodes with 10,251
nodes have actual loads, majority of nodes with loads have
missing or inconsistent data. We ran various steps and proce-
dures to verify data correctness and completeness and Dataset
B is the verified, trustworthy dataset with actual PJM nodes
with both loads and significant BTM solar.

A. Data Cleaning and Analysis

The data cleaning procedure is applied to the transmission
nodal load profile set and the proxy solar file. After data
cleaning and timestamp synchronization, the average data
length shrinks from 365 days to 217. To classify the high
DC-offset node, Standard Deviation is applied, and the
distribution is shown in Table II. As shown in the table, a
clear threshold of 0.08 separates files into two groups. After
manually inspecting the dataset, files with a standard deviation
value lower than 0.08 are confirmed as loads with high DC-
offset, which matches the quantitative outcomes. Then, the
daytime-nighttime zone-node ratio is calculated using the first
week of August as the solar strongest period: Rdaytime(Z,X)

Rnighttime(Z,X) .
All 32 nodes have a value less than 0.95, indicating that

all nodes have a certain level of solar injection. Moreover,
the load profile with highest PCC with zonal alod profile is

selected as reference node for deep learning module which is
0.943.

B. Deep Learning Disaggregation Outcomes

The performance of DFMLD and the comparison of bench-
mark disaggregation frameworks are shown in Fig. 6. It can
be observed that:

• During nighttime, the DFMLD disaggregation procedure
follows the metered nodal load more closely than the
other two outcomes, which indicates better performance.

• The disaggregation results of DFMLD are close to the
metered nodal load profile at cross-zero points, corre-
sponding to the sunset and sunrise times, which indicates
enhanced performance.

• The disaggregated outcome during daytime follows the
trend of the zonal load, consistent with the observations
made during nighttime.

Overall, the hybrid model based DFMLD outperforms the
benchmark Z2N disaggregation procedure and the Factoriza-
tion Machine based disaggregation procedure.

C. Quantitative Evaluation of Outcomes

To address the challenge of lacking ground truth data,
the disaggregated nighttime nodal profile from the proposed
DFMLD model is utilized to evaluate performance since there
is no BTM solar generation during the night. As illustrated in
Fig. 6, the performance evaluation focuses on how closely
the disaggregated nodal load profile follows the metered
nodal load profile. To quantitatively evaluate the how closely
it follows, the area-based spatial differences between two
time series of equal length is adopted [29]. The similarity
between two time-series data with same length is quantitatively
evaluated using the accumulation of point-to-point Euclidean
distances. Compared to the commonly used MSE, the area
difference evaluates the performance by considering the entire
time-series data as a whole, instead of only using several
timestamps. The smaller the value is, the higher the similarity
between two equal length time-series and vice versa. Beyond
the area difference, two more distance functions are also
utilized for comprehensively evaluating the outcomes.

1) Kullback–Leibler Distance: The Kullback-Leibler (KL)
divergence is a statistical measurement of the difference be-
tween a discrete (actual) probability distribution P from its
reference probability distribution Q in probability theory and
information theory, where discrete probability distributions P
and Q defined on the same probability space Y . The KL
divergence from Q to P is formulated as:

DKL(P∥Q) =
∑
y∈Y

P (y) log

(
P (y)

Q(y)

)
, (17)

which is the expected logarithmic difference between P and
Q. Though KL distance is originally used over two prob-
ability distribution, however recent works justified utilizing



9

TABLE I: Comparison of Different Models (Newly Proposed in This Work vs. State-of-the-art)
Model Name Learning Algorithm Model Type Target Difference/Notes
Z2N Disaggregation OLS Regression Linear only Single node First transmission BTM solar disaggregation model
FM-based Disaggregation Factorization Machine Linear & Bi-linear All nodes Bi-linear model to disaggregate all nodes, same zone
DFMLD Deep Factorization Machine Deep Learning All nodes DL model for better disaggregation performance

TABLE II: Distribution of Standard Deviation

Standard Deviation Range Frequency

0 - 0.05 2
0.05 - 0.08 6
0.08 - 0.1 0
> 0.1 32

a symmetrical KL divergence to evaluate the time-series’
similarity [30], which formulated by

DKLsym =
1

2
[D (pnodal,nighttime∥p̂nodal,nighttime)

+D (p̂nodal,nighttime∥pnodal,nighttime)],
(18)

where p̂ and p denote the disaggregated and metered nodal
load profiles, respectively.

2) Wasserstein Distance: Wasserstein distance metric is
originally designed for evaluating between two probability dis-
tributions and has been widely used in calculating ambiguity
sets in power system applications [31]. The Wasserstein metric
DW (P,Q) :M(Ξ)×M(Ξ)→ R between two distributions
P and Q is formulated as:

DW (P,Q) = inf

{∫
Ξ×Ξ

∥w1 −w2∥Π(dw1, dw2)

}
, (19)

where M(Ξ) represents the set of probability distributions
with support Ξ, Π is a joint distribution of w1 and w2 with
marginal distributions P and Q, respectively, and ∥ · ∥ is a
norm term [4]. In this paper, metered nodal load profile and
disaggregated nodal load profile are considered two samples
with same length and same support, which matches the best
practices in industry.

3) Quantitative Outcomes: The quantitative outcome of the
distance matrices is shown in Table III, where the distances
are calculated on a three-day basis (4320 data points). The
outcomes represent the mean value of all three-day outcomes
for each nodal load profile within the corresponding dataset.
It can be observed that on both datasets, DFMLD performs
better than FM (both outperforms Z2N) evaluated by smaller
lower area difference, KL distance, and Wassertein distance.
Specifically, on Dataset A (nodes with significant BTM solar)
DFMLD presents significant improvement compared to other
two methods, while on Dataset B both FM and DFMLD
outcomes have less significant improvements and DFMLD
exhibits slightly better performance compared to the FM
model with a narrow margin. The differences in performance
improvement could mainly be caused by different scales of
BTM solar in each node. Dataset A has significant BTM solar
injection (over 100% during some summer days), indicating
significant different load patterns of nodal and zonal load
profiles during nighttime and daytime. On the other hand,
Dataset B has less BTM solar injection (less than 30%) which
exhibit higher similarity between zonal and nodal load profiles

Fig. 6: Comparison of the performance of Z2N (green dotted line), FM
disaggregation (yellow dashed line), and DFMLD (red dash dotted line) shows
significant improvements on small-scale load with negative injection compared
to the benchmark during different seasons.

during daytime. Therefore, the benchmark (Z2N) disaggrega-
tion framework has a better outcome with Dataset B as the
scale of BTM solar is much smaller, leaving less room for
improvement.

VI. CONCLUSION

This paper proposed a deep Factorization Machine
Learning-based framework (DFMLD) to disaggregate actual
transmission nodal load profiles from metered profiles with
significant BTM solar penetration. Firstly, a comprehensive
data clean process was introduced for large batches of real-
world data to improve data quality for granular analysis.
Secondly, the Pearson Correlation Coefficient served two pur-
poses: 1) the node with the highest coefficient with the zonal
load profile during nighttime was selected as the reference,
which was then used along with the zonal load for disaggre-
gating all nodes in the same region; 2) daytime-nighttime ratio
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TABLE III: Comparison of numerical results on different dataset with different disaggregation models

Dataset Disagg. Framework Area
Diff.

KLSYM
Distance

Wassertein
Distance

Area Diff.
Improvement

KLSYM
Improvement

Wassertein
Improvement

Dataset A
Z2N [4] 85.23 52.07 0.031 Benchmark

FM 50.56 36.05 0.027 40.6% 30.8% 12.9%
DFMLD 40.27 27.85 0.025 52.8% 46.5% 19.4%

Dataset B
Z2N [4] 130.62 61.46 0.036 Benchmark

FM 81.53 39.45 0.027 37.6% 35.81% 25%
DFMLD 80.53 39.07 0.027 38.34% 36.43% 25%

between nodal and zonal load was calculated, which could
help to distinguish the level of BTM solar penetration. Finally,
a hybrid Factorization Machine-Deep Neural Network model
was proposed to capture the linear, bilinear, and nonlinear
relations between the selected time-series. Validated on real-
world data from PJM, this model outperforms both linear
disaggregation frameworks and FM-only frameworks.

The proposed DFMLD is designed based on observations
from real-world RTO data and has been validated by real-
world RTO data. Therefore, the proposed proposed DFMLD
is readily available for industry adoption to provide granular
modeling of both BTM DERs at scale to enhance system
security and reliability under high penetration of DERs.

In terms of limitations, although achieved significant perfor-
mance improvements, the proposed disaggregation framework
has not yet fully utilized the available proxy solar data. More-
over, the performance improvement on nodes with less BTM
solar can be further investigated. Suggested future research
areas could be focused on not only use the proxy solar as a
tool for segmentation and tuning but also consider adopting
advanced machine learning algorithms to further enhance the
BTM disaggregation performance by mining the relationship
between BTM solar and proxy solar.
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