- PNNL-11192

!

RECEN ED

OST\

Statistical Classification
Methods Applied to Selsmlc

Dlscrlmmatlon(
D N. Anderson \ N. E. Miller
K. K. Anderson . . T. Redgate
- .D.N. Hagedorn A. C. Rohay o
K. T. Higbee - o ,
> ‘ - .

June 11,1996 -~ .

)

Prepared for the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830

1

Pacific Northwest National Laboratory‘ ,
Operated for the U.S. Department of Energy
- by Battelle Memorial Institute

.o , {

‘“mv Ballelle

MASTER

DISTR!RUTSON OF THIS DC‘?J.’:@ENT S UNLRITRD
- o N




ot S DISCLAIMER R 3

- v

\

* This report was prepared as an account of work sponsored by an agency of the
* United States Government. Neither the Umted States Government nor.any agency

thereof, nor Battelle: Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal lrablllty or. responsibility for the

" accuracy, completeness, or usefulness of any mformatron, apparatus, product, or

process disclosed, or represents that its use would not mfrmge privately owned

Tights. Reference herein to any specific.commercial - product process, or service by '
trade name, trademark, manufacture -or otherwise doés not necessafily constitute or °

imply its endorsement recommendatlon, or favoring by ‘the United States
‘Government, or any- ‘agency thereof, or Battelle Menmiorial Institute. The views and

opinions of authors expressed herein do not necessarily state or reflect those of the
) Umted States Government or. any agency thereof i ‘

~ ) o . _ ', .

\

PACIFIC NORTHWEST NATlONAL LABORATORY

- - . . operated by : .
S " BATTELLE MEMORIAL lNSTlTUTE . S
" .- forthe - - - ‘
S . UNlTED STATES DEPARTMENT OF ENERGYY ; -
‘ under Contract DE AC06 76RLO 1830 ' ' ’
' /‘ ; ) ' ’ \ ; T
, ¢ / CeL \ v i
' / ) \ ‘\(’, ( ' ; ‘ K "/ - ‘ l
\ l 5 . :{ ‘ , { -
l T g _— L ' . \ r
) P \ s i ) ; l - | |
. ‘ i \ i B . i \\; " ’ ) .
) ‘ \ ! R : .
| £ - Z \ i ’ LT
- . / \ R < ' A _ ,
' A ‘ ! .
' ) , < /) ‘ ’ .
A U ,
r N N . - - ! J
- [ o / ’ )N '\‘~ ‘ ’




Statistical Classification Methods Applied to Seismic
Discrimination

D.N. Anderson
K.K. Anderson
D.N. Hagedorn
K.T. Higbee
N.E. Miller
T. Redgate
"A.C. Rohay
Technical Editor: F.M. Ryan

June 11, 1996

DISTRIBUTION OF THis DOCUMENT 15 UNLIMITED Pl






DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.







Statistical Classification Methods Applied to Seismic Discrimination i

Executive Summary

To verify compliance with the CTBT, seismic measures must be incorporated in an appropri-
ate multivariate statistical classification framework. Various issues to consider in selecting a
classification method are outlined. The issues or selection criteria are grouped into the cat-
egories of simplicity, robustness, applicability, and performance. Some of the most notable
issues for the CTBT setting include: '

e Physical interpretability of the method and the classification decision boundaries.
e Proper handling of missing measurements.

e Incorporation of both discrete and continuous measurements.

e Classification accuracy.

The data from Taylor et al. (1989), augmented with 98 additional explosions, is used
to illustrate the need for an appropriate multivariate approach that incorporates both seismic
knowledge and statistical techniques in determining the appropriate seismic features to use
in classifying seismic events. This data is also used to show the importance of proper han-
dling of missing observations. A classification method must either directly handle missing
observations or appropriately compensate for their absence. The method of multiple impu-
tation for incorporating the uncertainty due to missing observations is shown to help avoid
an overly optimistic estimation of the classification error rate. Apparent error rates (those
obtained by training and then testing on the same data) are shown to be poor estimators of
the true classification error rate, as compared to cross-validated (hold one out) error rates.

Eight statistical classification methods, representing a wide range of possible ap-
proaches, are explained and discussed in relation to the selection criteria outlined in this
report. The eight methods are:

e Linear discriminant analysis (LDA)

e Quadratic discriminant analysis (QDA)

e Variably regularized discriminant analysis (VRDA)
e Flexible discriminant analysis (FDA)

e Logistic discrimination

e K-th nearest neighbor (KNN) discrimination

o Kernel discrimination ‘

e Classification and regression trees (CART)

A summary of several important selection criteria for each of the eight methods reveals that
no one method is best on all issues. However, the CART classification approach appears
to satisfy many important issues with regard to the CTBT setting. Further analysis based
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ii Statistical Classification Methods Applied to Seismic Discrimination

on more realistic operational data, is currently underway to better assess the important
issue of classification accuracy for the various methods. After this analysis is completed, a
recommendation for an appropriate CTBT classification framework will be made, based on
the analysis and the conclusions from this report.

The evaluation of statistical classification methods in this report not only helps in
determining an appropriate CTBT operational classification algorithm, but is also helpful in
determining which classification methods to include in an “analyst tool box” to be used to
understand new regions and to examine seismic events of interest. Examining the results from
several different classification algorithms and understanding the strengths and weaknesses
of each can help in better understanding and characterizing events of interest.
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Statistical Classification Methods Applied to Seismic Discrimination 1

1 Introduction

To verify compliance with a Comprehensive Test Ban Treaty (CTBT), low energy seismic
activity must be detected and discriminated. Monitoring small-scale activity will require
regional (within ~ 2000 km) monitoring capabilities (U.S. Congress, 1988). This report
provides background information on various statistical classification methods and discusses
the relevance of each method in the CTBT seismic discrimination setting. Criteria for
classification method selection are explained and examples are given to illustrate several
key issues. This report describes in more detail the issues and analyses that were initially
outlined in a poster presentation at a recent American Geophysical Union (AGU) meeting
(Anderson et al., 1995).

Section 2 of this report describes both the CTBT seismic discrimination setting and
the general statistical classification approach to this setting. Seismic data examples illustrate
the importance of synergistically using multivariate data as well as the difficulties due to
missing observations. Classification method selection criteria are presented and discussed
in Section 3. These criteria are grouped into the broad classes of simplicity, robustness,
applicability, and performance. Section 4 follows with a description of several statistical
classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), variably regularized discriminant analysis (VRDA), flexible discriminant analysis
(FDA), logistic discriminant analysis, K-th Nearest Neighbor discrimination (KNN), kernel
discrimination, and classification and regression tree discrimination (CART). The advantages
and disadvantages of these methods are summarized in Section 5.

2 Background

In a seismological setting, statistical discrimination is the process of classifying a candidate
seismic event as an earthquake, a single point explosion (either chemical or nuclear), or a
quarry blast (ripple-fired event) using information from seismic waveform features (seismic
discriminants). Blandford (1995) provides a lucid discussion of potential regional seismic
discriminants. To meet the exacting demands of monitoring a CTBT, tools that integrate
both seismic and statistical technologies are needed. Discriminating small seismic events
in a region of interest requires a geological and geophysical characterization of the earth’s
crust in that region. This knowledge will be used to accurately model the earth’s effects on
the seismic signal, and enable compensation for these effects, which often obscire the true
nature of the source. Characterization of regions of interest to the United States is currently
being pursued as part of the U.S. Department of Energy (DOE) CTBT R&D program (DOE,
1994). The findings from this research can assist in constructing the probability structure
of regional discriminants from a nuclear source. The result of a classification algorithm
is a prediction of the source of a seismic event and an estimate of the uncertainty in the
prediction. ' '

Sections 2.1 through 2.3 are provided to give further background into the seismic
discrimination problem and motivation for the work. A general description of the statistical
classification approach is outlined in Section 2.1. Section 2.2 demonstrates the importance
of approaching seismic discrimination from a multivariate perspective. The crucial issue of
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2 Statistical Classification Methods Applied to Seismic Discrimination

Table 1: Deﬁnit;ion of Data Set Measurements. See Taylor et al. (1989).
Measurement | Definition

Sn Ratio of the maximum amplitude of S, to L.

mp Body-wave magnitude measured from the maximum amplitude of F, at
frequency near 1 Hz.

my — M, Body-wave magnitude relative to regional surface-wave magnitude, the

latter measured from maximum amplitude of regional Rayleigh-wave am-
plitude at periods near 12s.

log(SH) Log ratio of the mean-square energy after SH arrival to energy before SH
arrival.

log(Ly/P,) Log ratio of the maximum amplitudes of L, to F.

MURA L, Ratio of 0.5 — 1.0 Hz average spectral amplitudes to 2.0 to 4.0 Hz average
spectral amplitudes, with a correction for attenuation with distance.
log(S:) — 2m; | Log energy of long-period (7-30s) Love wave (transverse horizontal) am-
plitudes relative to short period energy (2m,).

accounting for missing observations in seismic discrimination is illustrated in Section 2.3.

The data examples in Sections 2.2 and 2.3 come from seismic measurements of earth-
quakes and nuclear explosions provided by Dr. Ron Glaser of Lawrence Livermore National
Laboratory (LLNL) and Dr. Steve Taylor of Los Alamos National Laboratory (LANL), see
Taylor et al. (1989). The seven variables shown in Table 1 were used in the examples of this
section. The original data from (Taylor et al., 1989) is derived from 233 explosions and 130
earthquakes in the magnitude range 2.5 to 6.5, recorded at four broadband seismic stations
operated by LLNL. The data provided to us covers an additional 98 explosions, bringing the
total to 331 explosions and 130 earthquakes. The stations surround the Nevada Test Site
(NTS) at distances of about 200 to 400 km. It is important to remember that our analysis
of this data is not intended to be an authoritative seismic analysis. Rather, it illustrates
statistical concepts and issues in seismic discrimination. When presented with the real data
ezamples in Sections 2.2 and 2.3, the reader should focus on the statistical concept being
presented and not on the specific seismic inferences drawn from this data set.

2.1 General Discrimination Setting

For a seismic event, a vector of p waveform features (discriminants), x = (zy,...,zp), is
measured from a seismic waveform. The vector x might include wave arrival times, magni-
tudes, signal-to-noise measures, calculated location and depth, and other potential waveform
measurements. Note that individual discriminants, z;, i = 1,...,p, can be real (depth) or
discrete (polarity of first motion). As applied to the CTBT problem, statistical classifica-
tion involves two basic activities. First, we identify seismic discriminants that evidentially.
predict the source of a seismic disturbance, i.e., that have strong discriminative ability. This
aspect of statistical classification is accomplished with statistical methods and seismic the-

. ory. Secondly, we integrate these discriminants into an appropriate statistical classification
- framework. Statistical classification necessarily involves these two activities, since it is con-
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Statistical Classification Methods Applied to Seismic Discrimination 3

ceivable that strong discriminants can be integrated into an improper framework, which
would likely result in less than optimal decision error rates. As an example, if the covariance
structure of x is different for earthquakes and explosions, then linear statistical classification
methods would give a less than optimal performance.

From a decision theory approach, a classification framework for a CTBT setting
is composed of three basic components — the probability structures (parametric or non-
parametric) for each seismic source, the prior-to-event probabilities that an event will be
generated by a particular seismic source, and the costs associated with incorrectly predict-
ing the source of an event. We illustrate, with a fabricated example, how these components
contribute to the construction of a classification framework. For a discussion of the math-
ematical details of the decision theory approach to discrimination, see McLachlan (1992).
In Figure 1(a), two normal (Gaussian) probability densities are given. To link these fabri-
cated models to the CTBT problem, we may think of the “red” and “green” densities as the
probability models for seismic discriminants generated from an explosion and earthquake,
respectively. A classification region can be formed by determining the values of the discrimi-
nant for which the explosion density is larger than the earthquake density. The classification
region is shown in Figure 1(b). If the prior probability for an explosion is small, the region
changes as shown in Figure 1(c). Intuitively, in this case, a discriminant must exhibit over-
whelming evidence that an event is an explosion, since it is very unlikely for an explosion
to occur. If we assign an extremely high cost to erroneously declaring an event to be an
earthquake, then the region in Figure 1(c) is adjusted again, as in Figure 1(d). This region
minimizes the expected cost of making an incorrect source prediction.

Statistical classification frameworks are tuned, based on past experience, with a train-
ing or calibration sample. A training sample is a set of discriminant vectors x; generated
by known seismic sources. Ideally, a training sample should be sufficiently large to char-
acterize the multivariate probability structure of the discriminants for each seismic source.
Otherwise, the probability structure of x must be conjectured for each seismic source. A
training sample is used to estimate the statistical parameters (such as covariance matrices)
in a classification framework and to test the framework performance or accuracy. With de-
cision theory methods, the classification framework parameters are tuned to minimize the
expected cost of making an erroneous source prediction. The accuracy of a classification
framework is assessed by estimating the probabilities associated with incorrectly predicting
the source of an event. Estimating these probabilities is accomplished with cross-validation
methods.

2.2 Multivariate Discrimination

Several discriminants in combination provide greater classification power than the same
discriminants applied individually. For instance, a classification rule may change with the
size of an event. The data provided by Dr. Ron Glaser of LLNL and Dr. Steve Taylor
of LANL (Taylor et al., 1989) illustrates the need for a multivariate classification process.
Figure 2 illustrates the discriminative power of combining m,— M, with Murphy’s L, spectral
ratio. Additionally, the co-plots of Figure 2 shows how these two waveform features (mp— M
and Murphy’s adjusted L,) vary with a third feature (m;). Note that in these co-plots a

Pacific Northwest National Laboratory PNNL-11192
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b 10 15 20
(a) Probability Models of a Single Dis- (b) Classification Region Constructed
criminant for Two Types of Events. from the Ratio of the Probability Mod-
Distribution of “Red” on the left and els (Likelihood Ratio).

“Green” on the right. ot

g

04

03

0.2

0.1

(c) Classification Region Constructed (d) Classification Region Constructed
From the Combination of the Likelihood From the Combination of the Likelihood
Ratio and Prior Probabilities. Ratio, Prior Probabilities, and Misclassi-

fication Costs.

Figure 1: Decision Theoretic Classification: An illustration of the effect that prior proba-

bilities and misclassification costs have on a simple likelihood ratio classification
region. The prior probability of the “Red” population is very small —-1(c), and
the misclassification cost of incorrectly predicting “Red” as “Green” is large —
1(d).
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Figure 2: MURA L, Versus (m; — M) for Various Values of m,; Earthquakes = green,
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6 Statistical Classification Methods Applied to Seismice Discrimination

distinct separation emerges for events where 3 < m;, < 3.5 (see Figure 2(b)).

Using the seven variables: S,, my, my — M;, Log(SH), log(Le/P,), MURA L,, and
log(S;) — 2m, (see Table 1), both linear and quadratic discriminant analysis (LDA and QDA
— see Section 4.1) were applied to illustrate the improved discriminative performance ob-
tained as additional features are incorporated. Figure 3 shows box plots of the cross-validated
misclassification rates for all possible two, three, four, and five variable combinations of the
seven variables using LDA (Figure 3(a)) and QDA (Figure 3(b)). Figure 3 shows that the
misclassification rates decrease as the number of terms in the model increases. The increase
in discriminative ability as more features are added becomes less pronounced after the first
few. In general, it has been shown that as the number of features increases, the discrimina-
tive ability generally also increases. However, after a certain point, adding more features can
actually harm performance. This peaking phenomenon (not shown in Figure 3) is due to the
classification algorithm fitting to random noise rather than to seismic structure, because of
the finite number of training observations compared to the number of features incorporated.
If the number of training observations were infinite, there would be no performance loss
when adding additional features.

2.3 Missing Data in Discrimination

In the CTBT discrimination setting, missing data can cause formidable problems. Missing
data can occur in three main ways as illustrated by the following three example cases. First,
a station may be off line. Second, the energy signal may be clipped by the seismometer or
recording system. Third, the missing data may be unmeasurable, e.g., surface wave seismic
signals for extremely deep earthquakes. Seismic measurements can be missing from the
regional training samples used to build and test the discrimination rules, as well as at the
operational stage when unknown events are classified. In both cases, consideration must be
given to how best to proceed. In this section, we discuss the impact that missing data has
on the training and on discrimination performance evaluation.

Some discrimination algorithms can be trained even if the regional training samples
have missing data (Anderson, 1995). Other discrimination algorithms require complete data
and hence the missing data must be filled in (as in the Taylor et al. (1989) study). Filling in
missing data is complicated by the necessity to take into account the inherent uncertainty
in the data. Failing to do so can lead to over-optimistic evaluation of the discriminative
ability of the regional monitoring system. One way to take account of the uncertainty in
the missing data is through the use of multiple imputation methods (Rubin and Schenker,
1986).

Other complications arise when the data are not “missing at random.” Consider the
NTS discrimination data introduced in Section 2.2, which is the data from Taylor et al.
(1989), augmented by data from 98 additional explosions. The numbers in Table 2 indicate
that the missing data are not randomly missing. The diagonal elements of Table 2 represent
the observed percentages of missing measurements on an individual measurement basis.
The numbers in red (above the diagonal) represent the observed percentages of missing
measurements on a joint (pairwise) basis. The green elements (below the diagonal) are the
estimated percentages of measurements missing, assuming pair-wise independence. If the

PNNL-11192 Pacific Northwest National Laboratory
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Figure 3: Misclassification Rates For All Possible Combinations of 7 Discriminants Taken
2, 3, 4, and 5 at a Time Using LDA and QDA
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Table 2: Missing at Random?

S

® > w3
= ) &q, < -
I ST R =< n
s £ £ ¥ B 5 3B
Sn 2.39 2.39 2.39 1.08 239 2.39 2.39
me 0.06 2.39 239 1.08 239 239 2.39
my — M, 0.94 094 39.48 1518 239 651 32.54
log(SH) 0.96 096 1593 40.35 1.08 3.04 40.35
log(L,/P,) | 0.06 0.06 094 096 2.39 239 2.39
MURA Lg 0.16 0.16 2.66 2.71 0.16 6.72 6.51
log(St)—2mb 1.50 1.50 2475 25.29 150 4.22 62.69

Observed % missing individually (diagonal)
Observed % missing jointly (upper triangle)
Estimated % missing jointly assuming pairwise
independence (lower triangle), e.g. P;; = P;;P;;/100

data were truly missing at random, corresponding off-diagonal (red and green) percentages
would be close in value. It is easy to understand why the pattern of missing observations
shows dependence on the particular seismic measurements, since many of the measurements
are related (if one is difficult to obtain then a related measurement will also be difficult to
obtain).

Because the data may not be missing at random, discrimination results which require
filling in of the missing data may not be valid. Reliable analysis requires an understanding of
why the data is missing. A full discussion of the reasons for missing data in the seismic setting
is beyond the scope of this report. However, the available data (with missing observations)
is used here to demonstrate that failing to account for the uncertainty in filling in missing
data leads to over-optimistic evaluation of discriminative ability. The well-known fact that
apparent misclassification rates (obtained by assessing the discrimination algorithm on the
training samples) are over-optimistic is also shown.

Two simulation studies were performed, which provide a worst-case and best-case sce-
nario for filling in the missing data. The discrimination algorithm selected for the simulation
studies is CART (see Section 4.5), but any other discrimination algorithm could have been
used.

In the first simulation, illustrated in Figure 4, the data are randomly partitioned into
80% and 20% subsets by source. The 80% group is the training set and the 20% is the holdout
prediction set. A robust Expectation Maximization (EM) algorithm (Anderson, 1995) is used
separately on the earthquake and explosion training subsets to produce estimated means
and covariance matrices for each source. These means and covariance matrices are used to
calculate imputed values, which are then used to fill in the missing data in the 80% training
set (Note that the EM algorithm uses source information, since the estimation procedure is

PNNL-11192 Pacific Northwest National Laboratory




Statistical Classification Methods Applied to Seismic Discrimination 9

performed separately for earthquakes and explosions). One hundred iterations of the EM
algorithm are used for each source subset to ensure convergence. CART is then used to build
a classification tree based on the 80% EM-filled subset. We do not fill in the missing data
in the 20% holdout group with imputed values from the EM algorithm. Since in a real-time
setting one will not know the source for a new event, we “naively” fill in the missing values in
the holdout 20% with marginal means calculated without regard to source. We next use the
CART “EM-filled” tree to predict the source for the 20% holdout set. This entire process is
repeated 100 times. Thus, we calculate 100 apparent misclassification rates for the training
sets and 100 corresponding misclassification rates for the holdout sets.

In the second simulation, illustrated in Figure 5, we assume the most optimistic view
of the real-time operational setting, that no missing data were encountered in the 20% hold-
out set. In this experiment, we calculate the EM algorithm means and covariance matrices
(separately for each source), using 100 iterations to ensure convergence. We fill the holes in
the entire data matrix using pseudo-random number generation from the appropriate mul-
tivariate normal distributions whose mean and covariance matrices were estimated from the
source-specific EM algorithm run. Next, a random 80% training set and 20% holdout set
are selected for each source. CART is used to build a classification tree on the training set,
which is in turn used to predict the source for the holdout set. This process, from the calcu-
lation of the randomized imputed values to building a new classification tree and predicting
on the 20% subset, is repeated 100 times. Thus, in the second simulation we also have 100
apparent (training set) misclassification rates and 100 corresponding misclassification rates
for the holdout sets. We used a more realistic'method to fill in missing values, in that we
incorporated the variances as well as the means produced by the EM algorithm. By incorpo- .
rating the variance in filling in the missing data in each simulation run (multiple imputation)
we take into account the uncertainty inherent in the missing values.

The first box plot of Figure 6(a) illustrates the apparent misclassification rates ob-
tained for the 100 simulations from the first (worst-case) simulation method. The second
box plot of Figure 6(a) illustrates the misclassification rates for the holdout 20% for 100 sim-
ulations, also from the first (worst-case) simulation method. The box plots of Figure 6(b)
show analogous results for the second (best-case) simulation method. For both simulations,
the apparent misclassification rates are lower than the misclassification rates for the holdout
sets. It is well-known that the misclassification rates for holdout sets provide more real-
istic assessment of the discriminative ability for future unknown events than the apparent
error rate. The box plots show that the “naive” filling in of the holdout sets for the first
simulation method produced increased variation in misclassification rates compared with the
second simulation'method, although the average misclassification rates were nearly the same.

As seen in Figure 6, the apparent misclassification rates from the first simulation are
Iower than those from the second simulation. The reason is that the first simulation does
not take into account the uncertainty associated with filling in missing values. The holdout
misclassification rates should still be viewed with caution, however, because the missing
values were not missing randomly.
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3 Classification Method Selection Criteria

No single classification method is best for all applications. According to Hand (1981):

In any particular application the practical differences rather than the theoretical
differences are the determining factors in choice of method, and which practical
differences are important depends, unfortunately, on the problem itself. As is
often the case, there is no best method.

There are many issues in selecting a classification method for use in the CTBT regional dis-
crimination setting. In addition to the misclassification rate (i.e., the percent of observations
incorrectly classified) for the method, there are many other criteria to be considered when
selecting a classification method. These criteria can be loosely grouped into the categories
of simplicity, robustness, applicability, and performance. Some of the criteria outlined in
this section could logically be grouped under more than one of the four categories, but are
included only once under the most appropriate category. The full impact of each individual
selection criterion can only be seen in context with all of the other issues. Several of the
criteria are also-related (e.g., for many classification methods, speed and memory use are
related — often inversely related). Also, the criteria are not of equal importance to all ap-
plications. No single classification method completely satisfies all of the criteria. . For each
issue, a short description is provided to place the criterion in the proper context.

3.1 Simplicity

Several classification method selection criteria fall under the general heading of simplicity.
This applies both to the algorithm itself and to the results of applying the algorithm. On
this general subject of comprehensibility (simplicity) of the classification rule the following
example is cited in Michie et al. (1994):

... It is important also, that human operators believe the system. An oft-quoted
example is the Three-Mile Island case, where the automatic devices correctly
recommended a shutdown, but this recommendation was not acted upon by the
human operators who did not believe that the recommendation was well founded.

The classification method and resulting classifications in a CTBT setting need to be under-
stood to be accepted. The simplicity criteria are outlined below.

e Easy to Understand — The adopted CTBT classification method should be sophisti-
cated but lucid.

e Easy to Use — The method should be easy to integrate into the CTBT monitoring
environment.

e Easy to Interpret Results — The method should give easily interpretable predictions of
an unknown event, i.e., probabilities, conditional probabilities, or a class membership
score.
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e Sequential Decision Rules — The method should not require computation of complex
seismic measurements except when necessary for a decision.

e Number of statistical parameters — The method should employ a reasonably small
number of statistical parameters.

e Automatic parameter selection — The method should have the ability to automatically
estimate or select the values of the model parameters used by the classification method.

e Parsimonious model — The method should not have an excessively complicated struc-
ture.

3.2 Robustness

Issues of robustness are important in selecting a classification method. The robustness
criteria deal with the appropriate handling of situations that are not ideal. These non-ideal
situations are often present in real world applications (such as the CTBT) and the selected
classification method must be able to adequately handle them. The robustness criteria are
outlined below.

e Physical basis for assumptions — The adopted CTBT classification method should be
based on assumptions that agree with physical laws.

e Models structure, not noise (sampling variability) — The method should not over fit a
training sample (i.e. it should fit the real structure instead of an apparent structure).

e Handles training outliers — The method should not be excessively influenced by out-
liers in a training sample.

e Stable for small changes in training data — The classification regions should be reason-
ably stable with minor.additions or deletions to the training data and/or small random
changes to the training data.

e Accommodates multi-modal sources — The method should have the ability to accu-
rately differentiate between sources characterized by seismic measurement data with
two or more modes (i.e., data with two or more local distribution peaks or density
maxima). -

e Handles data transformations — The method should not be overly sensitive to math-
ematical transformations (as may be required for statistical or seismic analysis) of the .
training data.

e Handles small group sizes — In some regional CTBT settings few training measure-
ments may be available for the explosion group. The classification method should
accommodate this.

e Handles small training size — When placed in a regional setting, all groups in the
initial training data may be small.
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o Handles missing data — In a CTBT setting, it is very probable that not all seismic
measurements will be seen by each monitoring station. The method should allow
incorporating missing values into the algorithm.

3.3 Applicability

Particular classification methods are more appropriate than others, depending on the special
needs of the application. The applicability criterion outlined below detail some of the needs
that should be examined for the CTBT discrimination setting.

e Allows prior probabilities — In a CTBT setting, the number of nuclear weapon tests
relative to earthquakes and commercial explosions will be very small. The method
should have the ability to incorporate this prior information.

¢ Accounts for misclassification costs — The cost of erroneously classifying a nuclear
weapon test as an earthquake may be considerably different than the cost of classifying
an earthquake as a nuclear weapon test. The method should be able to mcorporate
the costs of errors into a decision process.

e Can handle many discriminants — The method should be able to synergistically com-
bine several seismic measurements into a decision rule.

e Select or weight discriminants — The method should be able to identify or weight the
discriminants that best separate the groups.

¢ Discrete and continuous discriminants in combination — Polarity of first motion is
discrete and mj, — M, is continuous. "The classification method should be applicable to
both types of measurement.

3.4 Performance

While the misclassification rate is a very important performance issue, there are several other
performance issues that should be considered in selecting a classification method. In many
real world settings several classification methods will have similar misclassification rates, but
will differ in other important ways. Performance criteria to be considered when selecting a
classification method for CTBT discrimination are outlined below.

e Results stable over long term — The classification regions should not change drastically
as new data is incorporated in the training sample.

o Results accurate over long term — The accuracy of the statistical classification method
should not degrade as new data is incorporated in a training sample.

e Provides probability or ranking of source membership — - The method should provide
a numerical likelihood that an event was generated by a particular source. Such a
likelihood can also serve as a tool to rank or prioritize events for further in-depth
analysis.
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e Amenable to uncertainty analysis — The uncertainties in the classification regions
should be calculable (e.g., when the probability that an event was generated by a
particular source is estimated to be 0.85, can a confidence interval on this probability
be calculated?).

e Detects outliers in new data — The method should flag events that are not similar
to any group. Most statistical classification methods are capable of outlier detec-
tion (Note: One possible classification approach involves characterizing the probability
structure of seismic measurements from only earthquakes. Events that are inconsistent
with an earthquake probability model are declared to be outliers. If the classification
scheme is based completely on detecting outliers in this manner, then the probability
of incorrectly declaring an explosion to be an earthquake cannot be assessed).

¢ Speed requirements — The method should perform classifications in near real time. In
an operational setting, algorithm speed is very important. With regard to this issue,
emphasis should be placed on algorithm speed rather than on machine speed.

e Memory requirements — The classification method should not require excessive mem-
ory. Some statistical classification methods are memory intensive.

4 Statistical Classification Methods

Eight statistical classification methods are outlined in this section. The eight methods have
been chosen to represent a wide range of the numerous methods that are available in the
statistics community. Section 2.1 described the three components (prior probability of group
membership, cost of misclassification, and likelihood/probability estimation) that are the key
ingredients for classification decision making. The discussion in this section is focused on like-
lihood/probability estimation. The incorporation of prior probabilities and costs can easily
be incorporated with all eight methods. Section 4.1 outlines two popular normal distribution
based discrimination methods: linear discriminant analysis (LDA) and quadratic discrimi-
nant analysis (QDA). Two recent variations of the standard LDA and QDA are presented
in Section 4.2. These two methods are variably regularized discriminant analysis (VRDA)
and flexible discriminant analysis (FDA). Another popular discrimination method, logistic
discrimination is described in Section 4.3. Two non-parametric classification methods are
presented in Section 4.4. The two methods are kernel discrimination and K-th nearest neigh-
bor discrimination (KNN). A statistical tree based approach to classification is presented in
Section 4.5. The description of each of these methods is provided as a review rather than
a full technical exposition. References are given which provide a more detailed and techni-
cal explanation. The evaluation and comparison of these statistical methods in light of the
classification method selection criteria presented in Section 3 is provided in Section 5.

The data presented in Figures 7 through 15 of this section are fictitious and consist
of three groups in two dimensions. This data set is not based on any seismic data, but is
helpful in understanding the kind of classification boundaries that are obtained with the
different methods. Figures 7 through 15 act as visual icons to reinforce the basic concepts
underlying the statistical classification methods. In Figures 7 through 15 the data for the
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three groups are represented by circles, stars, and triangles. The classification regions are
correspondingly represented by the blue, yellow, and pink shaded areas.

4.1 Linear and Quadratic Discrimination

One of the best known classification rules, linear discriminant analysis (LDA), is based on the
assumption that the data are multivariate normal (Gaussian) with equal group covariance
structures (McLachlan, 1992). The linear discriminant rule assigns a candidate event to the
source whose mean is closest to the candidate event, using what is called the Mahalanobis
distance measure. The squared Mahalanobis distance between a point x and X;, the mean
of group i, is

Df = (X - J‘ci)'S‘l(x - ii) (1)

where S is the covariance matrix pooled (appropriately averaged) across the groups. If there
are two groups, explosions and earthquakes, then ¢ = x or 7 = ¢ respectively. If S = I (the
identity matrix) then Mahalanobis distance simplifies to simple Euclidean distance. LDA
can also provide for estimation of the probabilities of group membership. Figure 7 illustrates
the linear regions formed by applying a linear discrimination rule. -

25 25

20 20

15 15}
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10} 10t
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ot ot
X X
Figure 7: LDA Regions Figure 8: QDA Regions

Quadratic discriminant analysis (QDA) is also based on the assumption that the
data are multivariate normal. However, each group is allowed to have different covariance
structures (McLachlan, 1992). A more general form of the Mahalanobis distance is used as
the basis for QDA. The S used in LDA is replaced with S;, the covariance matrix for group
i.

D} = (x — %)'S7H(x — %) (2)

QDA probability formulas incorporate this distance measure and are used to classify obser-
vations. Figure 8 illustrates the regions with quadratic boundaries formed from the QDA
discrimination rule.

PNNL-11192 Pacific Northwest National Laboratory
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4.2 Generalizations of LDA and QDA

Several generalizations of LDA and QDA have been created. Regularized discriminant anal-
ysis (RDA) provides a generalization of both LDA and QDA (Friedman, 1989; McLachlan,
1992). RDA uses the same general formulas as QDA, but replaces the S; term with a co-
variance matrix that combines a weighted average of S; and S along with an appropriately
scaled multiple of the identity matrix. The best weighting and scaling (regularization) pa-
rameters are determined from the training data. Variably regularized discriminant analysis
(VRDA) further generalizes RDA by allowing the weighting and regularization parameters
to differ by group, based on the number of training samples for the group (Higbee, 1994).
Once again, the best parameters are determined from the training data. Figure 9 illustrates
the classification boundaries formed using VRDA.
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Figure 9: VRDA Regions Figure 10: FDA Regions

Flexible discriminant analysis (FDA) is a generalization of LDA (Hastie et al., 1994).
FDA first reformulates LDA in a least squares linear regression framework and then sub-
stitutes non-parametric regression techniques in place of least squares regression to obtain
new classification methods. A regression spline method such as multivariate adaptive regres-
sion splines (MARS) is one popular choice (Friedman, 1991) for use in the FDA algorithm.
Figure 10 shows the classification regions with FDA using a MARS of degree two.

4.3 Logistic Discrimination

Logistic discrimination uses logistic regression to predict the probability that an event is an
earthquake or explosion, conditional on a vector of seismic discriminants x. Specifically, the
logistic regression model is

Pr(earthquake | x) = F(8'%) %

Pr(explosion | x) = 1 — Pr(earthquake | x)

(3)
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X

Figure 11: Logistic Discrimination Regions

where 3 is a vector of regression coefficients. Logistic regression can be viewed as tossing
an earthquake/explosion coin where the probability of earthquake is F'(#'x). We classify an
event with seismic measurements x as an earthquake if Pr(earthquake | x) > Pr(explosion |
x), e.g., Pr(earthquake | x) > 1/2. A detailed discussion of the application of logistic
discrimination can be found in McLachlan (1992). If we form a log—odds ratio, we have

Pr(earthquake | x)
Pr(explosion | x)

= ﬂlxa (4)

which is the motivation for the term “logistic regression”. The log-odds ratio between
Pr(earthquake | x) and Pr(explosion | x) is a model reformulation known as a logit transfor-
mation. When generalized to more than two seismic sources, e.g., earthquake, single-point
explosion, and ripple-fire explosion, these methods are known as logit analysis or logit dis-
crimination (McLachlan, 1992). The parameters 3 are estimated using an iterative maximum
likelihood procedure. Note that x can include multiple discriminants as well as interaction
terms. Furthermore, categorical variables can be included since the model is formulated
conditional on x. An example is shown in Figure 11, again using simulated data.

4.4 Non-parametric Discrimination

Two well known non-parametric classification methods are kernel discrimination and K-th
nearest neighbor (KNN) discrimination (Hand, 1981; Silverman, 1986; Scott, 1992; McLach-
lan, 1992). Kernel discrimination uses non-parametric estimates of the density (distribution)
of each group (from the training data) to determine the likelihood or probability that an ob-
servation belongs to a particular group. Examples of non-parametric estimates of the density
include the histogram and the kernel estimator. The kernel estimator can be viewed as an
improved histogram. Instead of simple counts in non-overlapping bins (as in a histogram),
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a kernel estimator uses a weighted count from a sliding window. The sliding window has
two parameters: the kernel or shape (e.g., uniform, triangular, normal) that controls the
weighting, and the kernel width which controls the length of the sliding window. Figure 12
shows decision boundaries based on a normal kernel estimator for the three groups of the
example data. Note that the boundaries are highly nonlinear, offering greater flexibility. The
kernel width is the major factor in determining the relative smoothness of the boundaries.
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Figure 12: Kernel Discrimination Regions Figure 18: KNN Discrimination Regions

Figure 13 illustrates a discrimination method in which new events are classified ac-
cording to a K-th nearest-neighbor (KNN) rule (McLachlan, 1992). With KNN, a candidate
event is classified to the group which has the largest number of the nearest k points to
the candidate event. The boundaries in this case are highly irregular, due to the lack of
“smoothing”. The decision boundary for the k-th nearest-neighbor rule will “smooth” as the
value of k increases. The white region in Figure 13 is due to ties (equal number of circles
and triangles in the k nearest neighbors).

4.5 Tree-Based Discrimination (CART)

The classification tree (Breiman et al., 1984) is a non-parametric method that seeks to
partition a training sample of seismic discriminants into regions, each with a homogeneous
event source. The end product of a classification tree is a collection of if~then questions
(a decision tree) that can be applied to measured seismic discriminants. A classification
tree can incorporate both continuous and categorical data. A classification tree is easily
interpreted — an important feature when dealing with multi-dimensional discriminants with
complex probability structures. Another important feature of a constructed classification
tree is the ability to predict the source of a seismic event when some seismic measurements
are not possible (surface-wave energy from a very deep earthquake) or simply missing (a
broken seismometer).
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A classification tree is constructed by recursively partitioning the discriminants in a
training sample into regions that have progressively more homogeneous sources (classes).
This tree-growing process tends to over fit to the training sample. To fit the structure of the
training data, an overly complex tree is constructed first, and is then pruned using a measure
that rewards predictive accuracy but penalizes large tree sizes (complexity). Pruning a tree
essentially removes the least important splits or branches. From another viewpoint, the “ac-
curacy versus complexity” measure used in pruning is designed to balance the homogeneity
of the final regions and the complexity of the tree.

25} 0.54y+0.84x> 22
0.54y+0.84x> 17
20 0.78y-0.63x > 4.5
0.54y+0.84x < 22
P 054y+0845 < 17
>
10}
5t x>12
0 L
0.78-06% <45
x x<12
Figure 14: CART Regions Figure 15: CART Decision Tree

Figure 14 shows the classification regions resulting from the construction of a clas-
sification tree. Figure 15 is the associated decision tree. In order to predict whether an
unknown observation belongs to the blue (circles), yellow (stars), or pink (triangle) group,
one follows the path from the root of the decision tree to a leaf. For example, in Figure 15, if
.78y — .63z < 4.5 and = < 12, then the event is classified as belonging to the pink (triangle)
group.

5 Preliminary Evaluation of Classification Methods

The eight statistical classification methods that have been described in Section 4 (LDA, QDA,
VRDA, FDA, logistic, KNN, kernel, and CART) can be compared and contrasted using
the criteria outlined in Section 3. While all of the selection criteria should be considered,
some criteria are of higher priority for the CTBT discrimination setting. Additionally, some
important criteria such as “Amenable to Uncertainty Analysis” are reasonably satisfied by all
eight statistical methods presented, and will not be considered further (though they should
be considered carefully when looking at other possible methods such as neural net classifiers).
Several major advantages and disadvantages (as viewed from a CTBT setting) for each of
the eight methods are presented in Tables 3 through 10 on pages 21-23.
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Table 3: LDA Advantages/Disadvantages

Advantages

Disadvantages

e The algorithm and the linear boundaries
are simple to understand.

e Small group sample sizes are handled
(because of equal covariance assumption).

¢ Robust to non-normality as long as
distribution is symmetric and uni-modal.

e Doesn’t over fit to the training data.

e All statistical parameters are automatically
determined.

e Assumption of equal covariance and
normality.

» Missing values not handled within
algorithm.

e Sequential decision rules not provided.

Table 4: QDA Advantages/Disadvantages

Advantages

Disadvantages

o Different covariances allowed for each
group.

¢ Robust to non-normality as long as
distribution is symmetric and uni-modal.

¢ Doesn’t over fit to the training data.

e All statistical parameters are automatically
. a
determined.

No small group sample sizes allowed.

Assumption of normality.

Missing values not handled within
algorithm.

Sequential decision rules not provided.

Table 5: VRDA Advantages/Disadvantages

Advantages

Disadvantages

e Generalization of LDA and QDA that
combines best properties of both.

¢ Small group sample sizes are handled.

e Robust to non-normality as long as
distribution is symmetric and uni-modal.

e Doesn’t over fit to the training data.

e All statistical parameters are automatically
determined.

e Assumption of normality.

e Missing values not handled within
algorithm.

o Sequential decision rules not provided.

Pacific Northwest National Laboratory
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Table 6: FDA Advantages/Disadvantages

Advantages

Disadvantages

o Generalization of LDA that relaxes the
normality assumption.

e Can handle multi-modal data.

o Can be robust to training data outliers.

Boundaries are not easily interpretable.

Statistical parameters not determined
automatically.

Missing values not handled within
algorithm.

Sequential decision rules not provided.

Table 7: Logistic Discrimination Advantages/Disadvantages

Advantages

Disadvantages

o The method is reasonably simple to
understand.

o Statistical parameters are automatically
determined (however, model form is not).

e Handles both discrete and continuous
variables.

Becomes unstable when groups are widely
separated.

Must specify number of terms and which
terms (linear, quadratic, etc.) in model.

Missing values not handled within
algorithm.

Sequential decision rules not provided.

Table 8: Kernel Discrimination Advantages/Disadvantages

Advantages,

Disadvantages

e No distributional assumption.
e Can handle multi-modal data.

e Can be robust to training data outliers.

Need to select kernel shape and width.
The boundaries are not easily interpretable.

Missing values not handled within
algorithm.

Sequential decision rules not provided.
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Table 9: KNN Advantages/Disadvantages

Advantages Disadvantages
¢ The algorithm is simple to understand. o Need to select k.
e No distributional assumption. ¢ The boundaries are not easily interpretable.
¢ Can handle multi-modal data. e Missing values not handled within
.- . algorithm.
¢ Can be robust to training data outliers.
¢ Sequential decision rules not provided.

Table 10: CART Advantages/Disadvantages
Advantages Disadvantages

e The algorithm and the linear boundaries ¢ Can over-fit to the training data.

are simple to understand. e Need to specify parameters for pruning the

¢ Handles both discrete and continuous tree.
variables.

e Supports a sequential decision rule.

o Missing values are handled within the
algorithm.

e Can handle multi-modal data.

A more concise summary of the capabilities of the eight classification methods in
comparison to several important selection criteria is presented in Table 11. In Table 11, each
criterion is worded so that yes is good and no is bad. The table entries are Y for yes, N for
no, or blank. A blank indicates that either a definitive answer is unavailable, or an answer
depends on the application. As seen in Table 11, no single method is ideal for every criterion.
"There is often a trade-off between the criteria. One example of such a trade-off can be seen
by comparing the entries (Y and N) in Table 11 for the criteria of “No/Few Assumptions”
and “Works Well With Small Group Size”.

6 Conclusions

To verify compliance with the CTBT, seismic measures must be incorporated in an ap-
propriate multivariate statistical classification framework. Numerous issues to consider in
selecting a classification method are outlined in this report. The issues or selection crite-
ria are grouped into the categories of simplicity, robustness, applicability, and performance.
Some of the most notable issues for the CTBT setting include:

e Physical interpretability of the method and the classification decision boundaries.
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Table 11: Classification Method Comparison

< <
a A
Selected Issues/Criteria < R
Allows Both Discrete & Continuous Data
Missing Data Handled Directly
Easily Understood Algorithm
Easily Interpretable (Linear) Boundaries
Works Well With Small Group Size
No/Few Assumptions
Sequential Decision Rule Possible
Allows Multi-modal Groups
Automatic Parameter Selection
All issues/criterion stated so that Y is good and
A blank entry indicates one of the following;:

1) A middle answer between Y and N is appropriate.

2) Either Y or N is appropriate depending on setting or parameters.

3) A definitive answer is unavailable.

Z < 2 2 < 2 < Logistic

ZZ2<22 2 Kernel

:
>
N
N
N
Y
N
N
N
Y

<22 2<~<~<22ZLDA
Z<z2~<2Z22~<2Z |KNN
Z << < Z <<~ < CART

Z2<2< 222z

N
N
N
N
N
N
N
Y
N

is bad.

e Proper handling of missing measurements.
e Incorporation of both discrete and continuous measurements.
e Classification accuracy.

The data from Taylor et al. (1989), augmented with 98 additional explosions, is used
to illustrate the need for an appropriate multivariate approach that incorporates both seismic
knowledge and statistical techniques in determining the appropriate seismic measures to use
in classifying the source of seismic disturbances. The data is also used to show the importance
of proper handling of missing observations. A classification method must either directly
handle missing observations or appropriately compensate for their absence. The method of
multiple imputation for incorporating the uncertainty due to missing observations was shown
to help avoid an overly optimistic estimation of the classification error rate. Apparent error
rates (those obtained by training and then testing on the same data) were shown to be poor
estimators of the true classification error rate, as compared to cross-validated (hold one out)
error rates.

Eight statistical classification methods (LDA, QDA, VRDA, FDA, Logistic, KNN,
Kernel, and CART), representing a wide range of possible approaches, are explained and
discussed in relation to the selection criteria outlined in this report. A summary of several
important selection criteria for each of the eight methods reveals that no one method is best
on all issues. However, the CART classification approach appears to satisfy many important
issues with regard to the CTBT setting. Further analysis, based on more realistic operational
data, is currently underway to better assess the important issue of classification accuracy for
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the various methods. After this analysis is completed, a recommendation for an appropriate
CTBT classification framework will be made, based on the analysis and the conclusions from
this report.

The evaluation of statistical classification methods in this report not only helps in
determining an appropriate CTBT operational classification algorithm, but is also helpful in
determining which classification methods to include in an “analyst tool box” to be used to
understand new regions and to examine seismic events of interest. Examining the results from
several different classification algorithms and understanding the strengths and weaknesses
of each can help in better understanding and characterizing events of interest.
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