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Abstract—Classification of power system event data is a
growing need, particularly where non-protective relaying-based
sensors are used to monitor grid performance. Given the high
burden of obtaining event data with appropriate labeling, an
unsupervised approach is highly valuable. This approach enables
using event data without labeling, which is far easier to obtain.
This paper presents an unsupervised learning method to classify
and label transients observed in the distribution grid. A Convo-
lutional Variational Autoencoder (CVAE) was developed for this
purpose. We demonstrate the efficacy of our approach using the
transient data generated from the simulations. The simulation
data is used to train the CVAE that identifies different faults as
different clusters in the latent space. The clusters are then used
as the foundation model to categorize the real-world data.

Index Terms—Power Grid, Unsupervised Learning, Clustering

I. INTRODUCTION

In power system networks such as distribution grids, electric
disturbances are common. The distribution circuits are com-
monly above ground and exposed to many natural sources
of threat, such as severe weather and vegetation overgrowth.
These threats manifest as electrical faults which typically
result in power outages to nearby customers. The events them-
selves cause particular characteristics in the electric system
behavior which can be observed in the impacted voltage and
current waveforms. Protective relays and other devices use
these characteristics to isolate system faults. However, not all
disturbance types can be characterized and implemented in
protection systems (nor do they need to be). The result is that
many types of electric disturbances occur in power systems
that are not detected nor recorded by protection devices. Other
sensor devices are capable of capturing the full range of system
event types, and at lower cost (by virtue of not being tied to
protective relaying). Unfortunately, these other measurement
devices collect data without the common labeling of protection
systems. An unsupervised learning approach can use this
unlabeled system event data, potentially categorizing far more
event types than what standard protection systems can detect.
This is an important advancement in grid monitoring and
analytics to enable more sophisticated monitoring and control
in an increasingly power-electronics-based grid.

Unsupervised learning using neural networks is a rapidly
evolving field within artificial intelligence and machine learn-
ing. It involves training neural networks to identify patterns
and structures in data without labels, unlike supervised learn-

ing, where data comes with predefined labels. This approach
is particularly useful when labeled data is scarce or expensive
to obtain. Neural networks used for unsupervised learning
often include autoencoders. Autoencoders learn to compress
data into a lower-dimensional space and then reconstruct
it back to its original form, effectively learning the most
important features of the data [1]. One major challenge is
evaluating the model’s performance, as there are no predefined
labels to compare the results against. Despite the challenge,
as computational power increases and algorithms become
more sophisticated, neural networks’ ability to uncover hidden
patterns and insights in vast, unstructured datasets will only
grow more impactful.

Different machine-learning techniques have been used in
the past to detect faults in electric grid signals. Supervised
machine learning methods have been used to detect faults
in [2]. However, the supervised learning methods require
the undergoing signals to be labeled, which is not readily
available for real-world signals. Applying machine learning
algorithms in analyzing power signal waveforms is a well-
established research area [3]. For example, [4] introduced
a methodology combining compressed sensing with a deep
convolutional network for disturbance classification. Another
study by [5] explored using an artificial neural network and
decision trees for event classification, leveraging both time
and frequency domain features. Additionally, unsupervised
learning techniques have been employed in anomaly detection
[6], [7] and event localization [8]. However, much of this
research relies on either synthetically labeled data or data from
Phasor Measurement Units (PMUs), with minimal focus on
distribution grid analytics due to the scarcity of data from
the field. In one instance, [9] employed Ward and K-means
clustering methods to analyze voltage sag using micro-PMU
(µPMU) recordings. [10] provides a comparative review of
signal processing and AI-based methods for analyzing power
events in smart grids.

One of the primary techniques in unsupervised learning is
clustering, in which a neural network groups data points based
on similarity. For example, a neural network might cluster cus-
tomers based on their purchasing behavior, helping businesses
to tailor marketing strategies. In [11], an integrated approach
using an autoencoder and K-Means clustering was utilized to
identify and cluster power events. Their methodology involved
compressing 4096 samples down to 60 features using an



autoencoder. Subsequently, these 60 features were further
reduced to a three-dimensional feature space using Principal
Component Analysis (PCA) and K-Means for clustering.

In this paper, we employ an unsupervised learning approach
to cluster a set of unlabeled signals from simulations and
apply the same algorithm to group real-world signals gathered
from sensors. In contrast to [11], our proposed method directly
compresses the data into a 2D or 3D latent space using only
1002 samples, eliminating the need for intermediate steps such
as PCA and K-Means clustering. The principal contributions
of this paper include:
• Developing a Convolutional Variational Autoencoder

(CVAE) to cluster synthetic waveform data.
• Analyzing and improving clustering methods that utilize

the reduced feature space.
• Exploring the feasibility of using the CVAE model with

real-world data.
The remainder of the paper is organized as follows: Section

II presents the data generation process, Section III presents
pre-processing of the data, Section IV presents the unsuper-
vised learning approach, Section V presents the results, and
finally, Section VI concludes the paper.

II. DATA COLLECTION

a) Synthetic Data: The model was created in MATLAB
Simulink. The individual feeders are modeled in detail, in-
cluding transformers, line impedances, individual loads, and
capacitor banks. To create contingency cases for the machine
learning algorithms, different types of faults are applied at the
end of each feeder as well as capacitors switching events. The
different fault types are three-phase faults (ABC), three-phase
to ground faults (ABCG), Phase to phase (AB, BC, CA), Phase
to phase to ground (ABG, BCG, CAG), and Phase to ground
(AG, BG, CG). The main components that were varied for the
different simulation files are the load percentage across the
whole network, the A to D converter noise as random white
noise and converter bit number, and the start and end time
of the fault within a cycle. The output files created include
the following vectors with a sampling frequency of 20kHz,
the timestamp, the individual phases’ current, the individual
phases’ voltage, the voltage and current, the signal-to-noise
ratio, and a code that is set to 1 at the start of a fault event
and to 0 at the end of the event. The position and duration of
the fault event vary randomly across different power signals.

b) Real World Data: The second set of input data is a
collection of real-world data collected by the Electric Power
Board of Chattanooga (EPB). EPB data consists of fast tran-
sient events, including 3-phase voltage and 3-phase current
data. EPB collects this data at a sample rate of approximately
20,000 samples per second. The events are of variable length,
but they could last as short as 0.05 milliseconds and as long as
500 milliseconds. From a practical standpoint, however, longer
events have more utility for training.

The electrical data was hosted on a remote server upon
collection by EPB, which could then be scraped for events over
different time intervals and stored locally for further use as

training or validation data as needed. These real-world samples
provided a valuable reference against the synthetic data when
evaluating the proposed unsupervised learning approach

III. DATA PRE-PROCESSING

Prior to using unsupervised learning, we conducted an
exploratory analysis of the data. The simulation dataset com-
prises 960 distinct simulation output files, with each file
containing 16, 001 data points or samples. These data points
include information such as time, voltages, and currents for
three phases (Phase A, Phase B, and Phase C), along with a
column indicating the presence of faults in the simulated data.
Fig. 1 presents an example of the signal. The sequence within
each file starts with a segment of normal operation data (shown
as green shade in Fig. 1), transitions to a segment indicative
of a fault (shown as red shade in Fig. 1), and concludes with
another segment of normal operation. This sequence simulates
the occurrence of a fault within a typical signal. It’s important
to highlight that the duration and position of the fault-related
data vary across all 960 files, resulting in no uniform length
for the fault segments within any given file. To align with the
requirements of unsupervised learning, we extract samples of
fixed lengths from each file. Given that the data exhibits a
periodicity of 334 data points, we select sample lengths of
334, 668, and 1002 data points, corresponding to one, two, and
three complete data periods, respectively, for our experiments.
Voltage readings range from −57 kV to 55 kV, while current
measurements span from −3379 A to 3367 A. We normalized
the voltage and current values to a range between 0 and 1 for
using for training.

Fig. 1: An example of a signal from the dataset

Owing to the limited size of the dataset, we randomly select
multiple samples from both the normal and fault-affected
segments of each file for the learning process. Consequently,
our dataset comprises a mix of normal and fault-affected
signals, each randomly and repeatedly sampled from the files.
Our approach to analyzing phase faults involves a multi-
faceted analysis, focusing on autocorrelation, inter-signal cor-
relation, and phase angle comparison. We used the following
approaches to analyze the data:

Autocorrelation of Fault Signals: Fault signals display an
oscillatory pattern with high autocorrelation, repeating every
334 time step. This suggests a 334 time-step window could
effectively detect faults, improving model efficiency and re-
ducing dataset noise.



Correlation Within Fault Types: Single-phase fault signals
show a strong correlation, especially in voltage, indicating the
chosen window size works well across similar fault signals.

Phase Angles Analysis: Using Hilbert transformations for
phase angle generation reveals phase synchrony across various
fault signals, despite amplitude differences. This highlights the
importance of periodic patterns in model refinement.

It is widely recognized that clustering high-dimensional data
presents considerable challenges. Therefore, utilizing dimen-
sionality reduction and executing clustering in feature space
rather than data space enhances clustering effectiveness [12].
We used a deep convolutional variational autoencoder on these
waveforms to capture the essential characteristics of the data
in a reduced-dimensional feature space.

IV. UNSUPERVISED LEARNING USING CONVOLUTIONAL
VARIATIONAL AUTOENCODER

The use of a Convolutional Variational Autoencoder
(CVAE) for unsupervised learning of electrical signals, such
as those found in power distribution grids is useful for several
reasons [13]. CVAEs are adept at extracting features from
high-dimensional data and compressing these features into a
lower-dimensional latent space [14]. Electrical signals, espe-
cially transient signals indicative of faults or other anomalies,
can exhibit significant variability. CVAEs can model this
variability by learning the distribution of the data in the latent
space, allowing for a better understanding of the underlying
patterns and variations in the signals. By learning a model
of what ”normal” signals look like, CVAEs can be used to
identify anomalies or faults when electrical signals deviate
significantly from the learned distribution.

The CVAE framework extends the traditional Variational
Autoencoder by incorporating convolutional layers, enabling
the model to capture spatial hierarchies in data, which is
especially beneficial for handling image and sequence data.
The foundation of the CVAE can be encapsulated by two main
equations that govern its operation: the encoder and decoder
networks.

Encoder: The encoder part of a CVAE maps the input data
x to a latent space z through a probabilistic mapping. The
encoder network outputs parameters to a posterior distribution
qφ(z|x), typically assumed to be Gaussian:

qφ(z|x) = N (z;µφ(x), σ
2
φ(x)I)

where µφ(x) and σφ(x) are the mean and standard deviation
vectors computed by the CNN layers of the encoder.

Decoder: Conversely, the decoder network aims to recon-
struct the input data from the latent space. The decoder defines
the likelihood of the data given the latent variables, pθ(x|z),
which is also typically modeled as a Gaussian:

pθ(x|z) = N (x;µθ(z), σ
2
θ(z)I)

Here, µθ(z) and σθ(z) are derived from the latent variables
using the CNN layers of the decoder.

The training of a CVAE involves optimizing the Evidence
Lower Bound (ELBO) on the marginal likelihood of the

observed data, which can be broken down into two terms: the
reconstruction loss, which encourages the decoded samples to
be close to the original inputs, and the KL divergence, which
regularizes the learned latent space:

L(φ, θ;x) = Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z))

By integrating convolutional layers, CVAEs not only im-
prove the feature extraction capabilities of standard VAEs but
also enhance the model’s applicability to a wider range of real-
world data, such as images and sensor signals. This paper
explores the potential of CVAEs to effectively cluster and
analyze the waveforms.

A. CVAE Model for Power System Faults

Before developing the CVAE model, we initially created
a supervised model to classify the data as either normal or
fault. The architecture of this model included three sets of
convolutional layers, each followed by a batch normalization
layer and a pooling layer. We employed ReLU as the activation
function. The final output layer consisted of two outputs indi-
cating ”Normal” or ”Fault” signals. During the preprocessing
step, we utilized three different sets of input sample lengths:
334, 668, and 1002, to train our model. This base model
successfully classified faulty signals from normal signals with
an accuracy exceeding 95%, which bolstered our confidence
to further develop the variational autoencoder model.

Fig. 2: Convolutional Variational Autoencoder model

Fig. 3: Convergence of training data

This supervised model served as the encoder part of our
initial CVAE model, with the decoder part designed as a
mirrored version of the encoder layers. However, we omitted
the batch normalization layer from our decoder as it did not
enhance the results.



(a) Sample Length = 334 Samples (b) Sample Length = 668 Samples (c) Sample Length = 1002 Samples

Fig. 4: Formation of clusters using the similar CVAE model with different sample sizes

Using our initial CVAE model, we successfully populated
clusters that contained four distinguishable groups within a
two-dimensional latent space. We experimented with various
kernel sizes and channel configurations for the convolutional
layers. By adding several additional layers, we refined our
model further. This enhanced version of the CVAE model
was capable of identifying up to eight distinct clusters in
the two-dimensional latent space. Our final CVAE model
includes a 12-layer encoder, consisting of a combination of
2D Convolutional layers, Batch Normalization layers, and
MaxPooling layers, leading to a latent space of either two or
three dimensions. This is complemented by an 8-layer deep
decoder, which utilizes multiple repetitions of UpSampling
and Transposed Convolutional layers. An illustration of the
model configuration is provided in Fig. 2.

We designed the foundational Convolutional Variational
Autoencoder (CVAE) framework using TensorFlow 2.16, ad-
hering to a specific model architecture for training. It’s im-
portant to note that we adapted this CVAE model slightly to
accommodate three input dataset sizes with sample lengths of
334, 668, and 1002, ensuring that our approach is robust across
different data scales. We trained the model for 100 epochs,
which resulted in convergence as illustrated in Fig. 3.

V. RESULTS

To deepen our understanding of the problem at hand, we
chose to implement a latent layer with a dimensionality of
2. After undergoing 100 training iterations, we analyzed the
latent space distribution corresponding to each input. This
distribution is illustrated in Fig. 4. We used sample size of
334, 668, and 1002 to study the formation of clusters. Our
model converges quickly within 50 iterations as seen from
Fig. 3. Note that our model with the smallest sample size
is able to form multiple distinct clusters but the model with
1002 provides the clearest view of cluster formation. We also
experimented with models with higher sample sizes but the
sample size of 1002 provides a clear clustering of input data

and also quite succinct to be useful for faults with smaller data
duration.

Fig. 5: Histogram of Euclidean distances from the center

Fig. 6: Formation of clusters based on latent variables



A. Analyzing and Labeling of Clusters using 2D Latent Space

While the clusters are visible in the figures, accurately
segregating the data points into distinct groups is challenging.
Specifically, Fig. 4(c) reveals the presence of eight distinct
circular clusters. To categorize them, we explored several clus-
tering algorithms suitable for circular data, including Spectral
Clustering and DBSCAN, yet these methods struggled to cohe-
sively unify the clusters. This led us to investigate alternative,
more effective clustering techniques for our dataset. Observing
that the cluster formations appeared circular around a central
point, we employed Euclidean distance measures to group
the data points. The Euclidean distance between the origin
point (0, 0) and the two dimensional latent space (x1, y1) is
given by d =

√
x21 + y21 . After calculating the distance, we

can plot the distribution of the distances to get an idea of
the clustering. The distribution of these distances, depicted in
Fig. 5, clearly indicates eight separate clusters with peaks in
different distances.

We then devised an algorithm to identify these distinct
regions, subsequently organizing the data points into clusters
accordingly. The refined clustering, illustrated in Fig. 6, suc-
cessfully delineates the eight clusters, each represented by a
different color.

B. Properties of the Generated Clusters

In the simulated data set, various fault types are labeled,
including AG, BG, CG (single-phase faults), AB, BC, CA,
ABG, BCG, CAG (double-phase faults), and ABC, ABCG (three-
phase faults). In this section, we examine the composition of
each cluster with respect to these fault types to measure the
performance of the unsupervised learning method. The details
of the faults statistics are shown in Table I.

Clusters 0 through 6 exclusively contain fault data, while all
normal signals are grouped into Cluster 7, which comprises
97% of the points in that cluster.

Cluster 0 is characterized by three-phase faults (ABC and
ABCG). Clusters 1 and 2 are composed of two-phase faults
such as AB, ABG, BCG, and BC. Notably, Cluster 1 predomi-
nantly includes AB phase faults, whereas Cluster 2 primarily
consists of BC phase faults. Cluster 3 is dedicated to two-
phase faults involving CA and CAG. Clusters 4, 5, and 6 contain
single-phase faults. Cluster 4 includes AG and CG faults, with a
predominance of AG faults. Cluster 5 features BG phase faults.
Similarly, Cluster 6 contains AG and CG faults; however, it

primarily consists of CG phase faults, distinguishing it from
Cluster 4, which focuses mainly on AG faults.

C. Using Real-World Fault Data with the 2D Latent Space
Next we used real-world data to see how it aligns with

the clusters. We used the EPB data for the purpose and used
the trained model to produce the latent space from the EPB
dataset. The latent space variables are shown in Fig. 6 in black
color. As seen from the figure, the EPB data aligns well with
the generate clusters.

D. Extending the CVAE Model using 3D Latent Space
To demonstrate the performance of our model with a higher-

dimensional latent space, we refined our initial Convolutional
Variational Autoencoder (CVAE) to use a three-dimensional
latent space. The model was trained for 100 epochs until the
training error converged. The distribution of these latent spaces
is illustrated in Fig. 7.

In exploring the structure within the three-dimensional
latent space of our Convolutional Variational Autoencoder
(CVAE), defined as (x, y, z), we observed the formation of
distinct configurations. Fig. 7(a) displays this latent space pro-
jected onto a 2D grid along the y and z axes, revealing clusters
similar to those identified in the two-dimensional latent space,
albeit less distinct. Conversely, Fig. 7(b) illustrates the x, y
projection, where the latent space appears as lines parallel
to the y axis. Fig. 7(c) depicts the clustering in the three-
dimensional space, resembling groups of circular clusters.

From these observations, it is clear that clustering is more
complex in the three-dimensional space compared to two
dimensions. However, a closer examination allows us to define
clusters using two different Euclidean distances. In the (y, z)
plane, the first distance from the origin (0, 0) is calculated as
d1 =

√
y2 + z2. In the (x, y) plane, the second distance is

simply the x-coordinate, defined as d2 = x. This approach
enables us to classify points into groups based on ranges of
〈d1, d2〉, and we have applied clustering accordingly, with the
clusters colored distinctively.

Interestingly, the three-dimensional model identifies the
same number of clusters (eight) as the two-dimensional model.
However, the two-dimensional model proves simpler and more
straightforward for defining clustering. Consequently, for this
application, the two-dimensional unsupervised model is more
appropriate, demonstrating that higher dimensionality does not
necessarily lead to a more practical or clearer representation
of the model.

TABLE I: Composition of Clusters by Fault Types

Normal 1-Phase Faults 2-Phase Faults 3-Phase Faults
AG BG CG AB ABG BC BCG CA CAG ABC ABCG

Cluster 0 46% 54%
Cluster 1 35% 30% 16% 18%
Cluster 2 17% 18% 33% 33%
Cluster 3 45% 55%
Cluster 4 66% 34%
Cluster 5 100%
Cluster 6 37% 63%
Cluster 7 97% 0.3% 0.4% 0.4% 0.3% 0.3% 0.2% 0.2% 0.4% 0.3% 0.2% 0.3%



(a) Clustering in first two dimensions (b) Clustering in another two dimensions (c) Clustering in three dimensions

Fig. 7: Formation of clusters based on 3D latent space

VI. CONCLUSION AND FUTURE WORK

The use of a Convolutional Variational Autoencoder
(CVAE) for unsupervised learning to analyze electrical signals
from power distribution grids has yielded promising results.
Our CVAE model effectively formed distinct clusters in both
two-dimensional and three-dimensional latent spaces. How-
ever, the effectiveness of the two-dimensional model highlights
that higher dimensionality does not necessarily provide more
useful insights. The ability of these models to identify various
fault types in both simulated and real-world data establishes a
strong foundation for future smart grid analytics applications.
Future efforts will focus on adapting these models to different
data types and enhancing clustering techniques and model
architectures to improve their analytical performance.
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