
DISCLAIMER

This report was prepared as an account of work sponsored by an

agency of the United States Government. Neither the United States

Government nor any agency thereof, nor any of their employees,

makes any warranty, express or implied, or assumes any legal liability

or responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed, or represents

that its use would not infringe privately owned rights. Reference

herein to any specific commercial product, process, or service by

trade name, trademark, manufacturer, or otherwise does not

necessarily constitute or imply its endorsement, recommendation, or

favoring by the United States Government or any agency thereof. The

views and opinions of authors expressed herein do not necessarily

state or reflect those of the United States Government or any agency

thereof. Reference herein to any social initiative (including but not

limited to Diversity, Equity, and Inclusion (DEI); Community Benefits

Plans (CBP); Justice 40; etc.) is made by the Author independent of

any current requirement by the United States Government and does

not constitute or imply endorsement, recommendation, or support by

the United States Government or any agency thereof.

ORNL/TM-2024/3502

Oak Ridge National Laboratory
Scaling a Podman Container Factory in
the Cloud

David Heise1

Steven Amren2

Drew Morehead2

Brittany Flores2

Curtis Taylor1

1Oak Ridge National Laboratory
2The University of Texas San Antonio

February 21, 2025

Approved for public release.
Distribution is unlimited.

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

DOCUMENT AVAILABILITY
Online Access: US Department of Energy (DOE) reports produced after 1991 and a growing
number of pre-1991 documents are available free via https://www.osti.gov/.

The public may also search the National Technical Information Service’s National Technical
Reports Library (NTRL) for reports not available in digital format.

DOE and DOE contractors should contact DOE’s Office of Scientific and Technical Information
(OSTI) for reports not currently available in digital format:

US Department of Energy
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov
Website: https://www.osti.gov/

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or repre-
sents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

https://www.osti.gov/
https://ntrl.ntis.gov/NTRL/
https://ntrl.ntis.gov/NTRL/
mailto:reports@osti.gov
https://www.osti.gov/

ORNL/TM-2024/3502

National Security Sciences Directorate
Cyber Resilience and Intelligence Division

OAK RIDGE NATIONAL LABORATORY
SCALING A PODMAN CONTAINER FACTORY IN THE CLOUD

David Heise1

Steven Amren2

Drew Morehead2

Brittany Flores2

Curtis Taylor1

1Oak Ridge National Laboratory
2The University of Texas San Antonio

February 21, 2025

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831
managed by

UT-BATTELLE LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

CONTENTS

LIST OF FIGURES . iv
LIST OF ABBREVIATIONS . vi
ACKNOWLEDGMENTS . vii
ABSTRACT . 1
1. Introduction . 2

1.1 Motivation . 2
1.2 Background Assumptions . 3

2. Architecture Discussion . 4
3. Implementation . 5

3.1 Configure the Runner Executor Virtual Machines . 5
3.2 Create Azure Compute Gallery . 8
3.3 Create a VM Image Definition . 8
3.4 Take the Initial VM Image . 9
3.5 Configure the Scale Sets . 10
3.6 GitLab Runner Manager Configuration . 12

4. Maintenance . 22
5. Conclusion . 24

5.1 Future Work . 24
6. REFERENCES . 25
A. GitLab Runner Configuration File . A-1

iii

LIST OF FIGURES

Figure 1. Architecture Overview . 4

Figure 2. Architecture Focus: Executor Virtual Machine . 5
Figure 3. Pull Through Cache to Executors . 7
Figure 4. Compute Gallery Architecture . 8
Figure 5. Create Compute Gallery . 8
Figure 6. Create VM Image Definition . 8
Figure 7. Create VM Image Version . 9
Figure 8. Scale Set Image Source . 10
Figure 9. Create Virtual Machine Scale Set . 10
Figure 10. GitLab Runner Manager . 12
Figure 11. Create Role . 13
Figure 12. Begin Adding Permissions . 14
Figure 13. Permission Category Selection . 14
Figure 14. Specific Permission Selection . 15
Figure 15. Confirm and Create . 15
Figure 16. Turn on System Assigned Managed Identity . 16
Figure 17. Assign Azure Role to System . 16
Figure 18. Two Runner Configurations . 19

Figure 19. Maintenance Workflow . 22
Figure 20. Create a VM from a VM Image Version . 22
Figure 21. Create a VM from a VM Image Version . 22

iv

LISTINGS
1 Create a virtual machine . 5
2 Podman Executor virtual machine (VM) Operating System Configuration 6
3 /etc/security/limits.d/90-nofile.conf . 6
4 /home/gitlab-runner-executor/gitlab-runner/.bashrc . 6
5 Enable Podman User Service . 7
6 GitLab Runner Service Verification . 7
7 Image Definition . 9
8 Basics . 9
9 Replication . 10
10 Basics . 11
11 Disks . 11
12 Network Interface . 11
13 Scaling . 12
14 System Requirement . 12
15 Configuring the VM Operating System . 17
16 /etc/crontab . 17
17 systemd Unit Overrides: gitlab-runner . 17
18 Platform . 18
19 Platform . 18
20 GitLab Runner Configuration: Preamble . 19
21 GitLab Runner Configuration: GitLab Connection & Environment Variables 19
22 GitLab Runner Configuration: Executor . 20
23 GitLab Runner Configuration: Executor: Autoscaling . 20
24 Update VMSS Image . 23

v

LIST OF ABBREVIATIONS

AD Active Directory
CI continuous integration
CI/CD continuous integration/continuous deployment
CI/CDe continuous integration/continuous delivery
CyManII Cybersecurity Manufacturing Innovation Institute
GLRM GitLab Runner Manager
IFT Integrated Foundational Task
NIC network interface card
ORNL Oak Ridge National Laboratory
OS operating system
PinP Podman-in-Podman
PTC pull through cache
RG Resource Group
RHEL Red Hat® Enterprise Linux
SAMI System Assigned Managed Identity
SRDI Secure Reseach & Development Infrastructure
SSD solid state drive
SSH Secure Shell
UID user ID
vCPU virtual CPU
VM virtual machine
VMSS Virtual Machine Scale Set

vi

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Effi-
ciency and Renewable Energy (EERE) under the Advanced Materials & Manufacturing Technologies Office
(AMMTO) Award Number DE-EE0009046. The views expressed herein do not necessarily represent the
views of the U.S. Department of Energy or the United States Government.

vii

ABSTRACT

This technical report describes an implementation of a scalable continuous integration/continuous deployment
infrastructure in the cloud using Microsoft Azure™ and GitLab™ resources. We utilize GitLab continuous
integration podman executors to provide rootless container operations in both privileged and unprivileged
modes of operation. Privileged operation mode permits container-in-container capability, while unprivileged
mode can handle general job execution. We utilize the GitLab Fleeting plugin for Azure to manage the scaling
of continuous integration execution resources. This creates a scalable, rootless, and isolated continuous
integration/continuous deployment job execution infrastructure.

1

1. INTRODUCTION

The Secure Reseach & Development Infrastructure (SRDI) Integrated Foundational Task (IFT) provides a
shared continuous integration/continuous delivery infrastructure to Cybersecurity Manufacturing Innovation
Institute (CyManII) researchers. There are three key challenges that arise in providing such a shared
infrastructure: user permission management, user and job isolation, and a need to scale resources based on
utilization. We utilize three technologies to solve these problems: rootless podman, GitLab Fleeting, and
Azure Virtual Machine Scale Sets (VMSSs).

One of our important use cases is container-in-container operations while maintaining user isolation and
limited user privileges. Container-in-container operations are needed in order to build, scan, and deliver
containers within our continuous integration/continuous deployment (CI/CD) pipelines. Utilizing a traditional
a rootful container runtime requires giving users privileged mode access to a daemon running as a root
user on the host. This access level permits the user of the CI/CD system to have root access to the host.
Effectively, any user with this level of access has root level arbitrary code execution. Rather than relying on
policy to control access to the CI/CD executor, we wish to utilize technical means to prevent elevated access
to the system. We therefore utilize a rootless podman runtime, which executes in the context of a user on
the container host. In order to support container-in-container operations, rootless podman still requires a
privileged mode; however, the level of access to the host is restricted to that of a limited, non-root, user.

By utilizing GitLab Fleeting and Azure Virtual Machine Scale Sets we are able to arbitrarily scale both in and
out depending on the current CI/CD utilization. As a configuration option, we can also allow only a single
continuous integration (CI) job to execute per virtual machine, which provides strong isolation between users
in the case of privileged mode executions. For protection against data persistence, virtual machines can also
be deleted after a single job execution.

1.1 MOTIVATION

We have built out a container factory template following the DevSecOps principles described in [2]. However,
as usage of this pattern in our CI/CD infrastructure has increased, users have been experiencing performance
bottlenecks. This affected container-in-container operations most acutely because only a single job at a time is
permitted to run on a privileged executor, even when functioning in rootless mode. Therefore, a solution that
provided greater performance was desired. By utilizing GitLab CI/CD autoscaling we can run an arbitrary
number of CI jobs in parallel utilizing executors created on demand. In addition to providing an increase in
job throughput, this results in cost savings because Azure compute resources are only running when needed
rather than waiting idle for work to do. The 24/7 compute resource is reduced to a small manager VM with a
low cost virtual hardware allocation. If load increases beyond the current architecture limitations, it is simple
to expand the available number of executor VMs, or scale up the size of the manager with minimal or no
software reconfiguration.

Microsoft and Microsoft Azure are trademarks of the Microsoft group of companies.
GITLAB is a trademark of GitLab Inc. in the United States and other countries and regions.
Red Hat, and the Red Hat logo are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in the United States

and other countries.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
The Sardina name, the Sardina Systems name, the Sardina logo and the FishOS brand and logo are trade marks belonging to

Sardina Systems Ltd.

2

1.2 BACKGROUND ASSUMPTIONS

For purposes of this document, it is assumed the reader has knowledge of how to install podman 4.0 or
greater1, install GitLab Runner2, register a GitLab Runner3, and the basics of working with Azure4 (e.g., the
Azure Portal, Azure Wizards, setting up networking, setting up resource groups). The specifics of how to
configure these tools will be discussed. The steps described here exist as a snapshot at a point in time of the
tool user interfaces. Cloud offerings and GitLab frequently modify their user interfaces, and the reader may
need to adapt the instructions to new workflows.

For setting up a GitLab runner with rootless podman without virtual hardware instance scaling, refer to [1].

1https://podman.io/docs/installation
2https://docs.gitlab.com/runner/install/
3https://docs.gitlab.com/runner/register/
4https://azure.microsoft.com

3

https://podman.io/docs/installation
https://docs.gitlab.com/runner/install/
https://docs.gitlab.com/runner/register/
https://azure.microsoft.com

2. ARCHITECTURE DISCUSSION

The autoscaling GitLab Runner infrastructure utilizes GitLab and Azure scaling features. On the Azure side,
we utilize VMSS to create and destroy virtual machines on demand. The virtual machines are booted from an
image configured to act as a GitLab Runner Docker Executor with the podman container runtime. We will
refer to this as a Podman Executor, although the GitLab documentation refers to this as a ’Docker’ executor
due to communications using the Docker communication protocol. For GitLab, we utilize the 5GitLab Runner
Autoscaler, which in turn utilizes the 6Azure Fleeting Plugin. The GitLab Runner registered in the GitLab
repository manager now acts as a manager for the VMSS to boot executor VM on demand, assign jobs for
execution, and then delete the virtual machine once it fulfills its configuration limits.

Figure 1. Architecture Overview

The diagram in Figure 1 is an overview of the Azure component architecture. The GitLab Runner Manager
(GLRM) watches for pipelines to execute from the GitLab repository manager. When it detects a job to
execute, it will communicate with a Podman Executor Scale Set to create a GitLab Runner Executor virtual
machine if needed. A single GLRM can have multiple logical runners which communicate with separate
scale sets. Once a GitLab Runner Executor VM has booted, the GLRM communicates with the Executor VM
to execute the pipeline tasks and return the results to GitLab. The Podman Executor Scale Set is configured
to boot off of a Podman Executor Disk Image Version.

The Podman Executor VMSS disk image versions are taken from the Podman Executor Base virtual machine.
This virtual machine is configured with the podman container runtime and a podman socket user service so
it can function as a podman executor for GitLab. An image is taken of the Podman Executor Disk (that is,
the operating system (OS) disk attached to the Podman Executor Base virtual machine) and stored as a Disk
Image Version in a Podman Executor Compute Gallery. Once the virtual machine image is taken, the Podman
Executor Base virtual machine and its disk can be deleted until there is a need to update the image as part of
a maintenance plan.

In order to perform routine maintenance on a Podman Executor Disk Image stored in the Podman Executor
Compute Gallery (e.g., OS patching), a new Podman Executor Base VM is created from a Podman Executor
Disk Image Version in the Podman Executor Compute Gallery, and the process above for making system
modifications, taking an image, and configuring the Podman Executor VMSS (if it is not configured to use
the latest image) is repeated.

5https://docs.gitlab.com/runner/runner_autoscale/
6https://gitlab.com/gitlab-org/fleeting/plugins/azure

4

https://docs.gitlab.com/runner/runner_autoscale/
https://gitlab.com/gitlab-org/fleeting/plugins/azure

3. IMPLEMENTATION

Throughout this section, we will trace the implementation of the architecture described above. Each subsection
will focus on a specific area of interest until we have described the full system.

3.1 CONFIGURE THE RUNNER EXECUTOR VIRTUAL MACHINES

This section covers the initial bootstrap process for the runner executor disk, see Figure 2. Updates from an
existing disk image version are covered under Section 4.

Instructions will be given for the creation of the resource in Azure, then the system setup.

Figure 2. Architecture Focus: Executor Virtual Machine

3.1.1 Create Azure Virtual Machine

Only the directly pertinent subset of Azure settings are given. Settings not enumerated here are environment
specific (e.g., resource group, subnet, and most network security settings).

Basic system requirements are enumerated in Listing 1. We require a Red Hat® Enterprise Linux (RHEL)
based image to obtain a recent enough release of podman, although any distribution flavor with podman
version greater than or equal to 4.0 is expected to work.

Listing 1. Create a virtual machine
1Image: Red Hat Enterprise Linux 9.3 (LVM) - Gen2
2VM architecture: x64
3Size: Standard D2s v3 (2 vCPUs, 8 GiB memory)
4OS disk size: Image default (64GB)
5OS disk type: Premium SSD LRS
6Use managed disks: Yes
7Delete OS disk with VM: Enabled
8Ephemeral OS disk: No
9Public IP: None
10Delete NIC when VM is deleted: Enabled

The virtual CPU (vCPU) and memory configuration at this phase are arbitrary; at runtime their configuration
will be managed by the scale set. Just enough resources are needed to configure the system.

The disk configured here persists into the scale set in both its size and performance tier. The performance tier
is the primary consideration; this virtual machine should not require significant storage capacity. 64GB is the
lowest available performance tier at this time. A higher performance tier may be desirable, but may require

5

unnecessary storage capacity as well. It may be possible to override during VMSS deployment, but the disk
will not automatically expand to use additional space.

It is possible to utilize Azure Active Directory (AD) based Secure Shell (SSH) Login, so that and any other
needed extensions may be installed on the executor virtual machines. However, this is not required to follow
this manual successfully and this architecture has been deployed without it as well.

The authentication mechanism chosen at this stage will be overridden at a later stage; use whatever is typical
in the environment with respect to gaining root level access to install and configure the system.

For the operating system install we will resize the home area filesystem, install podman, enable users to run
systemd services, and add a limited user to run a podman socket service. The CI/CD jobs will run in the
context of this rootless user. The commands to accomplish this are given in Listing 2

The default RHEL 9 VM in Azure has much of the disk unallocated. By default, podman stores container
images in the executing user’s home area. Container images can be large, therefore, we expand the home
partition significantly to allow for the execution of substantially sized images and any data the user may insert
into the container instance during job execution. One could expand to a larger size than specified here, or use
a larger disk as well.

Listing 2. Podman Executor VM Operating System Configuration
1[root]# lvresize /dev/rootvg/homelv --resizefs --size 32G
2[root]# dnf install podman podman-docker
3[root]# adduser gitlab-runner-executor
4# Allow a normal user to run a systemd service
5[root]# loginctl enable-linger gitlab-runner-executor
6# Create a strong password, and note it for later.
7[root]# passwd gitlab-runner-executor

The default open file limit on many Linux® systems is 1024; we will increase that substantially to prevent
resource exhaustion during CI/CD pipeline execution. The configuration in Listing 3 allows setting the open
file limit higher.

Listing 3. /etc/security/limits.d/90-nofile.conf
1soft nofile 65536
2hard nofile 65536

Add the lines in Listing 4 to /home/gitlab-runner-executor/.bashrc so the socket can start correctly
and the GLRM can locate the correct socket to connect to.

Listing 4. /home/gitlab-runner-executor/gitlab-runner/.bashrc
1export XDG_RUNTIME_DIR=/run/user/$UID
2export XDG_DATA_HOME=$HOME/.local/share
3export XDG_CONFIG_HOME=$HOME/.config
4export DOCKER_HOST=unix://$XDG_RUNTIME_DIR/podman/podman.sock
5ulimit -n 65536

Switch to the limited user just created and enable and start the podman socket service as shown in Listing 5.

6

Listing 5. Enable Podman User Service
1[root]# sudo -iu gitlab-runner-executor
2[gitlab-runner-executor]$ systemctl --user enable podman.socket
3[gitlab-runner-executor]$ systemctl --user start podman.socket

Reboot the system. Ensure the podman socket service is working correctly by checking the service status as
in Listing 6. The user ID (UID) may differ.

Listing 6. GitLab Runner Service Verification
1[gitlab-runner-executor]$ systemctl --user status podman.socket
2podman.socket - Podman API Socket
3Loaded: loaded (/usr/lib/systemd/user/podman.socket; enabled; preset: disabled)
4Active: active (listening) since Mon 2024-03-25 19:15:12 UTC; 14min ago
5Until: Mon 2024-03-25 19:15:12 UTC; 14min ago
6Triggers: podman.service
7Docs: man:podman-system-service(1)
8Listen: /run/user/1001/podman/podman.sock (Stream)
9CGroup: /user.slice/user-1001.slice/user@1001.service/app.slice/podman.socket

Shut down the system.

3.1.2 Optional Component: Pull Through Cache

Figure 3. Pull Through Cache to Executors

A component that can be included in the container factory architecture is a container image pull through
cache (PTC). As shown in Figure 3, the PTC will stand between the executors and the upstream container
registries. While a stand-alone executor running in an always-on VM will maintain its own local cache of
images, the ephemeral executor VMs utilized here will not have an effective local cache. Therefore, setting
up a PTC is highly recommended both for performance reasons and because jobs will fail if the upstream
registry pull limits are reached.

Setting up a PTC and configuring it to be used by the podman runtime is beyond the scope of this document,
but you can refer to [1] for details on how to build the PTC and configure podman on the executor image to
utilize it.

7

3.2 CREATE AZURE COMPUTE GALLERY
This section will management of the disk images from the executors, as shown in Figure 4.

Figure 4. Compute Gallery Architecture

The Azure Compute Gallery stores image definitions for later use in a VMSS. We now create a compute
gallery that will hold our Podman Executor Base image definition.

Navigate to the Azure compute galleries dashboard and click "Create" as shown in Figure 5.

Figure 5. Create Compute Gallery

Enter the basic information, e.g., Name and Resource Group.

For sharing method select "Role based access control (RBAC)."

3.3 CREATE A VM IMAGE DEFINITION
Next we will take an image of the disk of the temporary Podman Executor base VM and store it in the
compute gallery that was just created. The image definition provides some parameters for how an image
is intended to be used; for example, setting what VM generation can boot from the image. Recommended
settings can be found in Listing 7.

Navigate to the compute gallery you just created and select "Add → VM image definition" shown in
Figure 6.

Figure 6. Create VM Image Definition

8

Listing 7. Image Definition
1OS type: Linux
2Security type: Trusted launch supported or Standard
3VM generation: V2
4Accelerated networking: Enabled
5VM architecture: x64
6OS state: Generalized
7Publisher: <Your Organization>
8Offer: <Arbitrary>
9SKU:<Arbitrary>
10

11Recommended VM VCPUs: 1-16
12Recommended VM memory: 1-32 GB
13Excluded disk types: None
14VM image definition end of life date: None

3.4 TAKE THE INITIAL VM IMAGE

Now we have a Compute Gallery and an image definition and can take the actual virtual machine image and
store it in the image definition.

Navigate to the virtual machine disk dashboard (Virtual Machine → Settings → Disks → Click
the OS Disk) and click Create VM Image Version, see Figure 7. Reccomended settings are given in
Listings 8 and 9.

Figure 7. Create VM Image Version

Listing 8. Basics
1Subscription: <your subscription>
2Resource group: <your resource group>
3Region: <your region>
4Target Azure compute gallery: <the compute gallery created above>
5Target VM image definition: <The compute image definition created above>
6Version number: <arbitrary version number>
7Source: Disks and/or snapshots
8OS disk: <name of the OS disk selected above>
9Exclude from latest: No
10End of life date: <arbitrary date in the future>
11Lock deleting Replicated Locations: Yes
12Shallow replication: No
13Default replica count: 1

9

Listing 9. Replication
1Default storage sku: Premium SSD LRS
2Default replica count: 1
3Target Regions: <your choice>
4Replica count: <1, or your choice>
5Stoage SKU: Premium SSD LRS for first entry, arbitrary for the rest

We use Premium SSD LRS as our primary storage because disk performance is important for system boot
times and container operations.

3.5 CONFIGURE THE SCALE SETS

This section will cover configuration of the scale sets. Scale sets are used to create an arbitrary number of
virtual machines booted from image definitions contained in an Azure Compute Gallery, as shown in Figure
8.

Figure 8. Scale Set Image Source

We will configure two identical scale sets. One will be used for unprivileged Podman executors, and the
other set will be used for privileged Podman-in-Podman (PinP) executors. We use two scale sets because
the GLRM sets (un)privileged mode and the creation/deletion of VMSS assets at the level of the logical
runner configuration. The password configuration is important here. Due to the mechanism of Azure virtual
machine access with Fleeting, authentication must be set to "Password" so that the GLRM can log in to the
limited user created previously with SSH Password authentication. The admin user user name should be set
to something other than the default, and the password should be strong. However, neither of these data need
to be retained; there should be no reason to log into the ephemeral executor VMs with an admin account.

Navigate to Virtual Machine Scale Sets and click "Create" as shown in Figure 9.

Figure 9. Create Virtual Machine Scale Set

The Virtual Machine Scale Set is more complex than the other workflows and as of this writing also requires
a workaround for an Azure user interface issues, so we will step through it tab by tab.

10

Listing 10. Basics
1Virtual machine scale set name: <Arbitrary>
2Orchestration mode: Uniform
3Security type: <Filler based on image selected>
4Image: Select the image created above (See all images -> Shared images -> Select the

image)
5Run with Azure Spot discount: Unchecked
6Size: <Arbitrary>
7Authentication type: Password
8Username: <Arbitrary>
9Password: <Arbitary>

Listing 10 shows the basic settings. We will be creating two scale sets, so give names that distinguish
between the set intended for unprivileged podman and privileged podman execution(e.g., CincExecutor
and ContainerExecutor). It is critical that the VMSS be placed in its own Resource Group (RG). This will
be used to manage Azure permissions when setting up the GLRM later.

Skip the Spot configuration section.

The selection of OS disk size as shown in Listing 11 is primarily for the associated performance tier. We
have not had any issues with the 64GB/P6 tier, but this can be selected as needed. The size selected should be
at least as large as the size of the disk image in the Image Definition. We choose premium solid state drive
(SSD) for performance reasons, but as these VMs are ephemeral there is no need for redundancy.

Listing 11. Disks
1OS Disk Size: 64GB (P6)
2OS Disk Type: Premium SSD (locally-redundant storage)
3Key Management: Platform managed key

As of this writing, the Networking section of the workflow has an issue with creating the network interface
card (NIC) for the scale set. The NIC needs to be created after first viewing the "Review + Create" screen;
any network configuration prior to viewing that screen will be lost. Nevertheless, we will describe how to
create and configure the NIC here.

The virtual network the VMSS is placed in needs to meet several criteria. It needs (1) a route to the GLRM,
(2) a route to the GitLab server, (3) a subnet with enough free space to house the maximum intended number
of runner executors, (4) a route to any intended external resource (e.g., the Internet to pull in packages), and
(5) a route to reach the container image PTC, if there is one.

Click the "Edit" pencil next to the NIC and enter the setting from Listing 12.

Listing 12. Network Interface
1Name: <Arbitrary>
2Subnet: Your subnet created for the VMSS
3NIC network security group: Follow your network policy.
4Public inbound ports: None
5Public IP address: Disabled
6Accelerated networking: Enabled

Skip the Load Balancing Options section.

11

Listing 13. Scaling
1Default Instance Count: 0
2Scaling Policy: Manual
3Scale-in Policy: Any
4Apply force delete to scale-in operations: Checked

The scaling will be controlled by the GLRM so we do not need any Azure management of the VMSS scale,
as shown in Listing 13.

No required settings in Management, Health, and Advanced.

As noted above regarding the Azure UI issue, on the "Review and Create" tab, review all settings carefully,
especially the networking configuration. Go back to the Networking tab and apply the changes a second time
if needed, and they should remain applied as configured the second time through. Check the settings again.
You are now ready to create the VMSS. Once the first scale set is created, go through the process a second
time for the other executor type.

3.6 GITLAB RUNNER MANAGER CONFIGURATION

The GLRM shown in Figure 10 controls job execution caused by activity on repositories in GitLab and
controls scale set scaling to handle the jobs based on current load and capacity. The GLRM will be a persistent
virtual machine that runs 24/7. However, the hardware resources needed are light. We have successfully run
the infrastructure with 18 executors across two scale sets on a 2-core burstable vCPU (Standard_B2ls_v2)
VM.

Figure 10. GitLab Runner Manager

3.6.1 Create The Virtual Machine

For virtual machine creation, only a subset of Azure settings are given explicitly. Settings not enumerated
here are environment specific (e.g., resource group, subnet, most network security settings).

Listing 14. System Requirement
1Image: Red Hat Enterprise Linux 9.3 (LVM) - Gen2
2VM architecture: x64
3Size: B2ls_v2 (2 burstable vCPUs, 4 GiB memory)
4OS disk size: Image default (64GB)
5OS disk type: Premium SSD LRS
6Use managed disks: Yes
7Delete OS disk with VM: Enabled
8Ephemeral OS disk: No
9Public IP: None
10Delete NIC when VM is deleted: Enabled

12

The primary settings in Listing 14 that may be tweaked if needed for performance are the VM size and the
OS disk performance tier. However, both our experience and the GitLab documentation indicate that GLRM
tasks are not generally resource intensive.

3.6.2 Configure System Assigned Managed Identity

The GLRM will need permission within the Azure cloud infrastructure to manage a VMSS. This is accom-
plished by assigning the GLRM a System Assigned Managed Identity (SAMI) role. A system managed
identity allows the system it is installed on to authenticate against Azure and execute Azure actions using
the Azure CLI or API. This is a system level authorization and not tied to a particular user on the system in
question. We utilize this method because this effectively a single-user system.

It is important to know that the GLRM is not involved in executing CI/CD scripts. It only manages the start
up and shut down of executors in the VMSS. Therefore, users of the CI/CD system do not have access to its
Azure authorizations at any time.

3.6.3 Create the Azure Role

We must first create the Azure Role with the correct permissions to manage a VMSS. The Azure wizard steps
are shown in Figures 11 through 15.

Figure 11. Create Role

The first step of role creation is to give a name and description. Here we use the name VmssManager.

13

Figure 12. Begin Adding Permissions

We can now begin adding specific permissions. We first click "Add Permissions."

Figure 13. Permission Category Selection

Azure has hundreds of available permissions. The first step is to locate the category that contains permissions
relevant to managing VMSS. The VMSS permissions are inside the Microsoft.Compute.

14

Figure 14. Specific Permission Selection

For the purposes of this document, we give the role all permissions related to managing VMSS by searching
for scaleset and choosing the checkbox next to Permission to select all. While it is likely a more restricted
set of permissions could be utilized, that has not been explored for this report.

Figure 15. Confirm and Create

We will call our SAMI role VmssManager.

3.6.4 Assign the System Assigned Managed Identity

Once we have created the Azure role we can turn on SAMI for our GLRM. We navigate to the GLRM virtual
machine and select Security → Identity.

15

Figure 16. Turn on System Assigned Managed Identity

Figure 16 shows the Identity screen for the virtual machine. We change Status to on, click Save, and
then click Azure role assignments.

Figure 17. Assign Azure Role to System

16

Figure 17 shows the role assignment interface. We select Resource Group as the scope for the role, and
select the subscriptions and resource group that contains the CI/CD executor VMSS. This restricts the GLRM
to the VMSS within the specified subscription and resource group.

3.6.5 Configure the Virtual Machine Operating System

As shown in Listing 15 we expand the root volume and file system, follow the instructions for installing a
GitLab Runner, and install the Azure Fleeting Plugin. This virtual machine will not need significant user
storage.

Listing 15. Configuring the VM Operating System
1[root]# lvresize /dev/rootvg/rootlv --resizefs --size +5G
2[root]# curl -L \
3"https://packages.gitlab.com/install/repositories/runner/gitlab-runner/script.rpm.sh" | \
4sudo bash
5[root]# sudo yum install gitlab-runner
6[root]# sudo yum install azure-cli
7[root]# wget \
8https://gitlab.com/gitlab-org/fleeting/plugins/azure/-\
9/releases/v0.2.0/downloads/fleeting-plugin-azure-linux-amd64
10[root]# mv fleeting-plugin-azure-linux-amd64 /usr/local/bin/
11[root]# chmod +x /usr/local/bin/fleeting-plugin-azure-linux-amd64
12[root]# ln -s /usr/local/bin/fleeting-plugin-azure-linux-amd64 \
13/usr/bin/fleeting-plugin-azure
14[root]# fleeting-plugin-azure --version
15Name: fleeting-plugin-azure
16Version: v0.2.0
17Git revision: f8ddf20a
18Git ref: refs/pipelines/1150104799
19GO version: go1.19.6
20Built: 2024-01-24T17:16:42+0000
21OS/Arch: linux/amd64

To ensure the GLRM always has the needed authorizations, we configure a crontab entry to periodically
refresh the Azure login as shown in Listing 16.

Listing 16. /etc/crontab
1@reboot az login --identity
20 */8 * * * az login --identity

The GitLab Runner systemd service will function out of the box; however, we have found that some overrides
can provide increased service reliability.

Listing 17. systemd Unit Overrides: gitlab-runner
1[Service]
2KillSignal=SIGQUIT
3ExecStartPre=-az vmss scale --resource-group ’<Unprivleged VMSS Resource Group>’ \
4--name ’<Unprivleged VMSS Name>’ --new-capacity 0
5ExecStartPre=-az vmss scale --resource-group ’<Privleged VMSS Resource Group>’ \
6--name ’<Privleged VMSS Name>’ --new-capacity 0

17

Listing 17 gives some recommended gitlab-runner systemd unit file overrides. We open the systemctl override
editor with the command [root]# systemctl edit gitlab-runner.

Setting the kill signal to SIGQUIT will tell the runner to cease accepting new jobs and to delay exit until active
jobs are finished. The default service kill timer is 60 seconds, so you may wish to combine this with setting
TimeoutSec to the same length as the CI/CD timeout extend the timeout period long enough to prevent job
failure on service restart; however, long service stop timeouts may not be desirable.

The two ExecStartPre directives destroy all VMs in the privileged and unprivileged executor VMSSs.
Occasionally, the GLRM may not be able to recover the VMSS into a usable state on start up, so this creates
a clean slate for the Fleeting plugin to start in. Restarting the service on some schedule may also enhance
overall availability.

We assume the reader has GitLab Repository Manager application administrator privileges to set up a shared
runner for all GitLab users. Similar steps can be followed to create a group or project runner, since tokens
can be created for those access levels as well. The token is obtained through a different GitLab workflow for
each strategy. Refer to the GitLab documentation.

3.6.6 Register Runners in GitLab

We create two runners in GitLab, one for unprivileged jobs and one over privileged jobs that have PinP
capbaility.

Navigate to the New Instance Runner screen in GitLab (Admin Area→ CI/CD→ Runners→ New Instance
Runner) to register the unprivileged podman runner as shown in Listing 18. We allow this runner to execute
untagged jobs, but that is not required.

Listing 18. Platform
1Operating systems: Linux
2Tags: podman, x86
3Run untagged jobs: checked
4Runner Description: GitLab Podman Autoscaled Manager

A token will now be displayed: "The runner authentication token <token>." Note it for use in the
configuration file.

Navigate to the New Instance Runner screen in GitLab (Admin Area→ CI/CD→ Runners→ New Instance
Runner) to register the privilged podman runner with the settings given in Listing 19. Because this is a
privileged runner, we require users to opt into using it with job tags.

Listing 19. Platform
1Operating systems: Linux
2Tags: pinp, x86
3Run untagged jobs: unchecked
4Runner Description: GitLab Podman Autoscaled Manager

A token will now be displayed: "The runner authentication token <token>." Note it for use in the
configuration file.

18

3.6.7 Configuring the GitLab Runner Manager Service

When configuring the manager, it is important to know that the distinction between unprivileged and privileged
mode is made a podman run-time option set by the GLRM. That is, the distinction is made in the manager
configuration and is not related to the executor virtual machine images or the VMSS settings. There are two
separate scale sets so that the manager can have two separate runner configurations each corresponding to
one run-time privilege level, and manage them independently and in isolation as depicted in Figure 18. This
allows CI/CD users to use the appropriate runner set for the job they need to execute simply via CI/CD job
tags.

Figure 18. Two Runner Configurations

We will step through each major section of the GLRM configuration below. You can find a full sample
configuration without breaks with both a privileged and unprivileged runner section in Appendix A.

Although we utilize podman as our container runtime, the GitLab Runner executor is "docker-autoscaler"
because the docker protocol is used for communication. Since Podman supports the docker protocol, it can
be used as a drop in replacement run-time instead of Docker.

Listing 20. GitLab Runner Configuration: Preamble
1concurrent = 18 # Maximum number of possible parallel executors
2check_interval = 0
3shutdown_timeout = 0
4

5[session_server]
6session_timeout = 1800

The first lines of the GLRM configuration are given in Listing 20. The primary setting for our purposes
is concurrent. This should be set to the maximum possible number of executors across all of the logical
runners controlled by this manager. In other words, the sum of the size of the privileged and unprivileged
runner subnets, minus address space reservations by Azure.

Listing 21. GitLab Runner Configuration: GitLab Connection & Environment Variables
1[[runners]]
2name = "Podman Runner (Managed)"
3limit = 9 # The combined limit of both runners must not exceed the "concurrent"
4# setting above

19

5url = "<GitLab URL>"
6token = "<The Podman Runner Token>"
7shell = "sh"
8

9environment = [
10"FF_NETWORK_PER_BUILD=1", # Isolated networking for each job.
11"FF_USE_DOCKER_AUTOSCALER_DIAL_STDIO=true", # Use the Docker stdio protocol.
12"FF_ENABLE_JOB_CLEANUP=true", # Clean working directory at end of job. Optional.
13"FF_SCRIPT_SECTIONS=true", # Provides job log UI enhancements. Optional.
14"FF_USE_IMPROVED_URL_MASKING=true" # Better masking of sensitive URLS. Optional.
15]

Listing 21 is the start of the configuration section for a logical runner. In this example, we give a name
to indicate this is an unprivileged runner with GLRM managed scaling. The limit parameter sets the
maximum number of jobs to be handled by this runner. Because we create a virtual machine for every job,
this is equal to the size of the VMSS subnet minus Azure address reservations. The two required environ-
ment variables are FF_NETWORK_PER_BUILD and FF_USE_DOCKER_AUTOSCALER_DIAL_STDIO. The option
FF_NETWORK_PER_BUILD is required for podman executors, and FF_USE_DOCKER_AUTOSCALER_DIAL_STDIO
ensures the correct communication protocol is utilized between the manager and executor.

Listing 22. GitLab Runner Configuration: Executor
1executor = "docker-autoscaler"
2

3# Docker Executor config
4[runners.docker]
5# Check the UID for the socket path!
6host = "unix:///run/user/1001/podman/podman.sock"
7tls_verify = false
8image = "quay.io/containers/podman:latest"
9privileged = false # Set according to need
10disable_entrypoint_overwrite = false
11oom_kill_disable = false
12# We pass in the host container registry configuration as a read-only bind mount so
13# that the images hit the container pull through cache
14volumes = ["/certs/client",
15"/etc/containers/registries.conf:/etc/containers/registries.conf:ro"
16]
17shm_size = 0

The section in Listing 22 configures the options for the podman runtime on the executor. The host parameter
specifies the user service socket to communicate on. Refer to taken from Listing 6. The image directive
sets the default image. We use the podman image since container operations are our default focus. The
privileged flag is set to false, since this is our unprivileged generic runner. For the privileged runner, we
simply change this flag to true. In the volumes directive we pass in the registries.conf file from the
host. This causes the podman-in-podman runtime in the executor to use the same registry configuration as
this host. In our configuration we use a PTC and this is the configuration line that allows podman-in-podman
operations to make use of the PTC.

Listing 23. GitLab Runner Configuration: Executor: Autoscaling
1# Autoscaler config

20

2[runners.autoscaler]
3plugin = "fleeting-plugin-azure"
4

5capacity_per_instance = 1 # Each job gets its own VM
6max_use_count = 2 # Each VM is used for this many jobs
7max_instances = 9 # Should equal the limit setting above
8delete_instances_on_shutdown = true
9

10[runners.autoscaler.plugin_config]
11name = "<VMSS Name in Azure>" # VMSS Name
12subscription_id = "<The Azure subscription ID of the VMSS>"
13resource_group_name = "<The Azure resource group name of the VMSS>"
14

15[runners.autoscaler.connector_config]
16username = "gitlab-runner-executor"
17password = "<the password for the gitlab-runner-executor user>"
18use_static_credentials = true
19timeout = "10m"
20keepalive = "60s"
21use_external_addr = false
22

23[[runners.autoscaler.policy]]
24idle_count = 0 # How many idle instances are required
25idle_time = "30m0s" # How long instances exceeding idle_count will remain

The configuration section in Listing 23 specifies the parameters that control VMSS scaling. The plugin
parameter specifies which Fleeting plugin to use. In our case this is Azure, but there are plugins for other
cloud providers as well; the required parameters for other provider will differ from those given here. The
capacity_per_instance directive is how many jobs per virtual machine executor. Setting this to 1 means
every job gets its own VM. The parameter max_use_count is the maximum number of jobs an executor
will run before retiring an executor VM. The choice for this parameter depends on how isolated jobs need
to be from one another. We generally choose one for privileged jobs and a number greater than one for
generic jobs. The parameter delete_instances_on_shutdown configures whether to delete the VMSS
machine when no longer in use. The information for runners.autoscaler.plugin_config is taken from
the Azure portal in your environment. The password in runners.autoscaler.connector_config is the
one set in Section 3.1.1 Listing 2.

The runners.autoscaler.policy controls the idle executor capacity awaiting work. The idle_count
parameter controls the minimum number of idle executors that are always available. The idle_time
parameter controls how long executors in excess of idle_count will remain remain idle before shutting
down. For example, if an executor has max_use_count = 2 then it will remain active for idle_time before
being removed if it does not receive a second job.

21

4. MAINTENANCE

Patching the executor images needs to be part of regular system maintenance. We accomplish this by booting
a virtual machine off of the same compute gallery image as the executor VMSS, applying patches and/or
configuration changes, and then creating a new VMSS image. The VMSS can be configured to use the latest
image in a compute gallery, or a specific image version. This update lifecycle is shown in Figure 19.

Figure 19. Maintenance Workflow

Navigate to the Podman Executor Compute Gallery Azure dashboard, select the latest image version, and
select "Create VM" to create a new virtual machine based off the current Podman Executor image as shown
in Figures 20 and 21.

Figure 20. Create a VM from a VM Image Version

Figure 21. Create a VM from a VM Image Version

Set up the Virtual Machine according to the directions in Section 3.1.1.

Log in to the virtual machine machine and perform any needed system maintenance (e.g., operating system
software updates, configuration modifications). After performing system maintenance, shut down the machine,
and then you can perform the tasks described in Section 3.3.

22

Take particular care that if you rotate the limited user password during maintenance that you will need to
change the password in the GitLab Runner Manager configuration and restart the manager gitlab-runner
service.

If the VMSS is configured to use the latest image, then it will seamlessly begin booting new instances with the
new image. If you have not configured it to use the latest compute gallery image, then perform the following
steps. These configuration steps are given in Listing 24.

Listing 24. Update VMSS Image
1Navigate to the VMSS dashboard in Azure
2Click "Operating Systems"
3Click "Change image reference"
4Select the Compute gallery, image definition, and image version to use
5(or configure to always use the latest version)

23

5. CONCLUSION

By utilizing the limited privileged mode of rootless podman and ephemeral virtual machine scaling, we are
able to implement container-in-container operations with strong user isolation at scale. The trade offs between
performance and isolation can be controlled at configuration time of the GitLab Runner. This architecture
has enabled the implementation of a container factory at scale in multiple multi-user and multi-project
environments. This has increased development velocity and shortened research product delivery timelines.
This technical report describes an implementation utilizing a particular cloud provider but the principles can
be applied to other cloud offerings.

5.1 FUTURE WORK

Oak Ridge National Laboratory (ORNL) has a local OpenStack environment. It may be desirable from a
security and/or policy perspective to have scalable runners hosted on-site. While there is no GitLab supported
OpenStack Fleeting plugin at this time, Sardina Systems® has published an open source OpenShift Fleeting
plugin7. We would like to explore the use of this plugin.

7https://github.com/sardinasystems/fleeting-plugin-openstack

24

https://github.com/sardinasystems/fleeting-plugin-openstack

6. REFERENCES

[1] David Heise. Container factories in the oak ridge research cloud. Technical report, Oak Ridge National
Laboratory (ORNL), Oak Ridge, TN (United States), 03 2024. https://www.osti.gov/biblio/
2341396.

[2] Chief Information Officer. Dod enterprise devsecops reference design. Technical report, Depart-
ment of Defense, August 2019. https://dodcio.defense.gov/Portals/0/Documents/DoD%
20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=
2019-09-26-115824-583.

25

https://www.osti.gov/biblio/2341396
https://www.osti.gov/biblio/2341396
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583

APPENDIX A. GITLAB RUNNER CONFIGURATION FILE

A-1

APPENDIX A. GITLAB RUNNER CONFIGURATION FILE

/etc/gitlab-runner/config.toml

1concurrent = 18
2check_interval = 0
3shutdown_timeout = 0
4

5[session_server]
6session_timeout = 1800
7

8[[runners]]
9name = "Podman Runner (Managed)"
10limit = 9
11url = "<GitLab URL>"
12token = "<The Podman Runner Token>"
13shell = "sh"
14environment = [
15"FF_NETWORK_PER_BUILD=1",
16"FF_ENABLE_JOB_CLEANUP=true",
17"FF_SCRIPT_SECTIONS=true",
18"FF_USE_IMPROVED_URL_MASKING=true",
19"FF_USE_DOCKER_AUTOSCALER_DIAL_STDIO=true"
20]
21

22# Docker Executor config
23executor = "docker-autoscaler"
24

25[runners.docker]
26# Check the UID for the socket path!
27host = "unix:///run/user/1001/podman/podman.sock"
28tls_verify = false
29image = "quay.io/containers/podman:latest"
30privileged = false # Explicitly disable the privileged flag
31disable_entrypoint_overwrite = false
32oom_kill_disable = false
33# We pass in the host container registry configuration as a read-only bind mount so
34# that the images hit the container pull through cache
35volumes = [
36"/certs/client",
37"/etc/containers/registries.conf:/etc/containers/registries.conf:ro"
38]
39shm_size = 0
40# Autoscaler config
41

42[runners.autoscaler]
43plugin = "fleeting-plugin-azure"
44capacity_per_instance = 1 # Each job gets its own VM
45max_use_count = 2 # Each VM is used for this many jobs
46max_instances = 9 # Should equal the limit setting above
47delete_instances_on_shutdown = true
48

49[runners.autoscaler.plugin_config]
50name = "<Podman VMSS Name in Azure>" # \ac{vmss} Name
51subscription_id = "<The Azure subscription ID of the VMSS>"

A-2

52resource_group_name = "<The Azure resource group name of the \ac{vmss}>"
53

54[runners.autoscaler.connector_config]
55username = "gitlab-runner-executor"
56password = "<the local password for gitlab-runner-executor>"
57use_static_credentials = true
58timeout = "10m"
59keepalive = "60s"
60use_external_addr = false
61

62[[runners.autoscaler.policy]]
63idle_count = 0 # How many idle instances are permitted
64idle_time = "30m0s" # How long they are allowed to idle
65

66[[runners]]
67name = "Podman-in-Podman Runner (Managed)"
68limit = 9
69url = "<GitLab URL>"
70token = "<The Podman Runner Token>"
71shell = "sh"
72environment = [
73"FF_NETWORK_PER_BUILD=1",
74"FF_ENABLE_JOB_CLEANUP=true",
75"FF_SCRIPT_SECTIONS=true",
76"FF_USE_IMPROVED_URL_MASKING=true",
77"FF_USE_DOCKER_AUTOSCALER_DIAL_STDIO=true"
78]
79

80# Docker Executor config
81executor = "docker-autoscaler"
82

83[runners.docker]
84# Check the UID for the socket path!
85host = "unix:///run/user/1001/podman/podman.sock"
86tls_verify = false
87image = "quay.io/containers/podman:latest"
88privileged = true
89disable_entrypoint_overwrite = false
90oom_kill_disable = false
91# We pass in the host container registry configuration as a read-only bind mount so
92# that the images hit the container pull through cache
93volumes = [
94"/certs/client",
95"/etc/containers/registries.conf:/etc/containers/registries.conf:ro"
96]
97shm_size = 0
98

99# Autoscaler config
100[runners.autoscaler]
101plugin = "fleeting-plugin-azure"
102capacity_per_instance = 1 # Each job gets its own VM
103max_use_count = 1 # Each VM is used for this many jobs
104max_instances = 9 # Should equal the limit setting above
105delete_instances_on_shutdown = true

A-3

106

107[runners.autoscaler.plugin_config]
108name = "<Podman \ac{vmss} Name in Azure>" # VMSS Name
109subscription_id = "<The Azure subscription ID of the VMSS>"
110resource_group_name = "<The Azure resource group name of the VMSS>"
111

112[runners.autoscaler.connector_config]
113username = "gitlab-runner-executor"
114password = "<the local password for gitlab-runner-executor>"
115use_static_credentials = true
116timeout = "10m"
117keepalive = "60s"
118use_external_addr = false
119

120[[runners.autoscaler.policy]]
121idle_count = 0 # How many idle instances are permitted
122idle_time = "30m0s" # How long they are allowed to idle

A-4

	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ACKNOWLEDGMENTS
	ABSTRACT
	Introduction
	Motivation
	Background Assumptions

	Architecture Discussion
	Implementation
	Configure the Runner Executor Virtual Machines
	Create Azure Compute Gallery
	Create a VM Image Definition
	Take the Initial VM Image
	Configure the Scale Sets
	GitLab Runner Manager Configuration

	Maintenance
	Conclusion
	Future Work

	REFERENCES
	GitLab Runner Configuration File

