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Abstract— A privacy-preserving average consensus algorithm
is designed based on the Beaver triple technique against passive
adversaries. The Beaver triple technique is integrated into a
restructure of the discrete-time average consensus algorithm
to preserve the privacy of initial values of agents in a multi-
agent system. The performance of the algorithm is theoretically
analyzed and simulation results with a power system application
show the efficacy of the proposed algorithm.

I. INTRODUCTION

Average consensus plays a pivotal role in various dis-
tributed applications, such as distributed control, estimation,
and optimization. In these applications, a group of agents
engages in iterative interactions with their neighbors within
the communication graph. Through these interactions, agents
update their states by assimilating information from neigh-
boring agents, ultimately converging asymptotically to the
average of all agents’ initial states.

In traditional average consensus schemes, agents directly
exchange their states with neighbors. However, this approach
raises privacy concerns since sensitive information of le-
gitimate agents may be exposed to adversarial agents or
external eavesdroppers. Therefore, it becomes imperative to
develop privacy-preserving algorithms capable of achieving
average consensus while safeguarding the privacy of legiti-
mate agents.

A. Literature Review

Privacy-preserving average consensus has garnered signif-
icant attention, with existing works falling into three main
categories.

The first group utilizes differential privacy [1]–[5]. Here,
agents introduce carefully crafted noises (often drawn from
specific probability distributions, e.g., Gaussian and Laplace)
into their states. This ensures that sensitive information, such
as individual agents’ initial states, cannot be deduced from
the perturbed data, even with access to arbitrary auxiliary
information. However, there exists a fundamental trade-
off between privacy and accuracy in differentially private
schemes due to the incorporation of random noises.

The second group employs encryption techniques to en-
able algebraic operations on ciphertexts while preserving
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plaintext privacy. Examples include homomorphic encryp-
tion, garbled circuit, and proxy re-encryption [6]–[12]. How-
ever, encryption schemes often involve modular exponenti-
ation operations over large integers, leading to significant
online computational overheads.

The third group focuses on obfuscating exchanged states
by adding decaying or correlated noise and perturbation
[13]–[20]. This approach ensures consensus accuracy, with
works like [13]–[15] obscuring exchanged states to the
extent that individual agents’ initial states cannot be uniquely
inferred. However, there remains a possibility of determining
an interval of an agent’s initial state, leading to potential
privacy leakage. On the other hand, works such as [16], [17]
propose obfuscation mechanisms that guarantee statistical
privacy, mitigating the issue of interval leakage. Never-
theless, these approaches require that colluding adversarial
agents do not form a vertex cut, which may pose constraints
in certain real-world applications.

B. Contribution Statement

In this paper, we propose a novel privacy-preserving
average consensus algorithm, called the Beaver-tripled-based
average consensus (BAC) algorithm, that can simultaneously
address the issues mentioned above.

Specifically, the Beaver triple provides a framework that
splits the agents’ private inputs and the edge weights into
shares and restructures the computation in average consen-
sus as a joint computation of the associated shares. This
restructured joint computation is equivalent to the origi-
nal computation, ensuring perfect computational correctness.
Additionally, it prevents the agents’ private inputs from being
inferred during the joint computation.

C. Organization

The remaining sections of this paper are organized as
follows. Section II provides preliminary knowledge. The
privacy-preserving BAC algorithm is then designed in Sec-
tion III, followed by an analysis of its privacy performance
in Section IV. In Section V, a simulation is performed
for a transactive energy system problem to demonstrate
effectiveness of the proposed algorithm. Finally, the paper
concludes in Section VI.

II. PRELIMINARY

In this section, we introduce some preliminary knowledge
of graph theory, distributed average consensus, and the
Beaver triple technique.



A. Graph Theory

An n-th order bidirectional graph, denoted as G(V,E,W ),
is defined by a vertex set V = {1, · · · , n}, an edge set
E ⊆ V × V , and a weight matrix W . Each edge (i, j)
represents a connection from vertex j to vertex i. It is
assumed that (i, i) /∈ E for all i ∈ V . The weight matrix
W = (wij)n×n ∈ Rn×n associated with the graph G is
defined such that wij is positive if (i, j) ∈ E or if i = j, and
wij = 0 otherwise. In a bidirectional graph, the presence of
(i, j) ∈ E implies (j, i) ∈ E as well. Additionally, W is row

stochastic, ensuring
n∑

j=1

wij = 1 and wij ≥ 0 for all i ∈ V ,

and symmetric, i.e., wij = wji for all i, j ∈ V . The neighbor
set of vertex i, denoted as Ni, consists of vertices j for which
(i, j) ∈ E. A path between vertices i and j comprises a
sequence of edges (i, i1), (i1, i2), · · · , (ip, j) connecting i to
j. The bidirectional graph G is connected if, for any pair of
vertices i and j, there exists a path connecting them.

B. Average Consensus Algorithm

A standard discrete-time consensus algorithm is repre-
sented by the following equation:

xi(k + 1) =

n∑
j=1

wij(k)xj(k), (1)

where xi(k) denotes the state of agent i at time step k, and
wij(k) represents the edge weight assigned by agent i to
the edge (i, j). For simplicity, we assume scalar values for
the agents’ states xi(k) for all i ∈ V and k ∈ N. Denote
x = (x1, x2, · · · , xn)

T . The consensus algorithm in (1) can
be equivalently rewritten as:

x(k + 1) = W (k)x(k),

where W (k) = (wij(k))n×n ∈ Rn×n represents the weight
matrix at time step k.

The following assumptions are commonly made in the
literature on multi-agent systems:

Assumption 1. The communication graph G of the multi-
agent system is connected.

Assumption 2. The weight matrix W (k), for all k ∈ N, is
symmetric and row stochastic.

Assumption 3. There exist positive wij and wij , for all
i, j ∈ V , such that wij(k) ∈ [wij wij ] for all k ∈ N if
wij(k) ̸= 0.

With these assumptions, we have the following lemma:

Lemma 1. [21] Under Assumptions 1, 2, and 3, all agents
in a multi-agent system asymptotically achieve an average
consensus according to equation (1), i.e., lim

k→∞
xi(k) =

n∑
j=1

xj(0)

n for all i ∈ V .

Remark 1. From Assumptions 2 and 3, along with the
condition that (i, i) /∈ E, it follows that

n∑
j=1
j ̸=i

wij(k) = 1− wii(k) < 1, ∀k ∈ N. (2)

C. Beaver Triple

The Beaver triple, as introduced in [22], facilitates the
computation of the product of shares held by two parties
while maintaining the secrecy of those shares. Consider two
agents, denoted as P1 and P2, each holding private values
x1, y1 and x2, y2, respectively. To compute the product of
(x1+x2)(y1+y2) in a secret way, Beaver triples ai, bi, ci, i =
1, 2 are first generated satisfying the condition c1 + c2 =
(a1 + a2)(b1 + b2). Define a = a1 + a2, b = b1 + b2, c =
c1 + c2, x = x1 + x2, and y = y1 + y2. The computation
unfolds in the following steps [22], [23]:

1) Each party Pi, i ∈ {1, 2}, computes the pair (xi −
ai, yi − bi) and sends the pair to the other party.

2) Each party Pi, i ∈ {1, 2}, computes x− a =
2∑

j=1

(xj −

aj), y − b =
2∑

j=1

(yj − bj) using the received pair.

3) Each party Pi, i ∈ {1, 2}, computes zi = (x − a)bi +
(y − b)ai + ci and sends it to the other party.

4) Each party Pi, i ∈ {1, 2}, computes xy = z1 + z2 +
(x− a)(y − b).

Remark 2 (Motivating Example on Safeguarding Initial Val-
ues of Agents). In a transactive energy system (TES) [24],
[25], average consensus algorithms can be used to achieve
market clearing, in which the power1 of all agents sums up to
zero, or equivalently, averages at zero. The initial values of
agents are their demand or supply curves representing their
personal preferences for power at various prices. The agents
will be at a disadvantage and may suffer losses if the true
initial values are disclosed to others. Therefore, the privacy
of the initial values should be preserved to encourage agents
to actively participate in the TES.

III. BEAVER-TRIPLE-BASED AVERAGE CONSENSUS
ALGORITHM

A privacy-preserving distributed algorithm for average
consensus, named the Beaver-triple-based average consensus
(BAC) algorithm is designed in this section. The BAC algo-
rithm integrates the Beaver triple technique into a reformu-
lation of the average consensus algorithm in (1) to safegurad
the initial values of agents in a multi-agent network.

First, the average consensus algorithm in (1) can be re-
formulated as

xi(k + 1) =

n∑
j=1

wij(k)xj(k)

= xi(k) +
∑
j∈Ni

wij(k) (xj(k)− xi(k)) .
(3)

1The convention is taken that the power supply is positive and the power
demand is negative.



In (3), neighboring agents i and j need to collaboratively
compute the message

mij(k) = wij(k) (xj(k)− xi(k)) (4)

to update their states. Denote

∆xij(k) = xj(k)− xi(k). (5)

From the perspective of secret sharing, ∆xij(k) can be
regarded as a secret that is split into two shares xj(k) and
−xi(k) owned by agent j and agent i, respectively. However,
the privacy of xj(k) cannot be preserved against agent i
because agent i can easily infer xj(k) though

mij(k)/wij(k) + xi(k) (6)

and vice versa agent j can infer the value of xi(k).
One way to preserve the privacy of agents’ states is to

make the edge weight wij(k) also a secret that is split into
two shares wij,i(k) and wij,j(k) owned by agents i and j,
respectively, with

wij(k) = wij,i(k) + wij,j(k). (7)

Intuitively, agent i cannot infer the value of xj(k) through (6)
if it does not know wij,j(k).

With (5) and (7), the message mij(k) in (4) becomes the
product of two secrets, i.e., ∆xij(k) in (5) and wij(k) in (7),
each of which is split into two shares owned by agents i and
j, respectively, shown as follows

mij(k) = (wij,i(k) + wij,j(k)) (−xi(k) + xj(k)) , (8)

where wij,i(k) and −xi(k) are private shares of agent i,
and wij,j(k) and xj(k) are private shares of agent j. To
preserve the privacy of xi(k) (or xj(k)) against agent j (or
agent i), the Beaver-triple-based multiplicative secret sharing
technique is applied such that agents i and j cooperatively
obtain mij without knowing the exact values of xj and xi,
respectively.

The detailed steps to compute mij(k) with the Beaver
triple technique are summarized in Algorithm 1, in which the
step index k is omitted and the superscript “+” in Steps 10
and 11 represents the next step.

Remark 3. A key condition to the successful implementation
of Algorithm 1 is to obtain the Beaver triples ai, bi, ci and
aj , bj , cj by agents i and j without disclosing the triples to
other parties. Methods in the literature, e.g., [26], can be
used to generate multiple Beaver triples in such a way.

Remark 4 (Range of Edge Weight). Bounds of weight shares
wij,i, wij,i, wij,j , wij,j are needed prior to running the
algorithm to ensure that the selection of wij,i and wij,j

satisfies (2). A straightforward way to obtain such bounds
is to make

wij,i = wij,j =
wij

2
,

wij,i = wij,j =
wij

2
,

where wij and wij are specified in Assumption 3.

Algorithm 1 Beaver-triple-based Average Consensus (BAC)
Algorithm
Input: Beaver triples ai, bi, ci and aj , bj , cj pre-computed

in the offline process, the bounds of weight shares wij,i,
wij,i, wij,j , wij,j negotiated offline

Output: the message mij

1: agent i generates wij,i in the interval [wij,i wij,i]
2: agent j generates wij,j in the interval [wij,j wij,j ]

3: agent i computes x
(a)
i = −xi−ai and w

(b)
i = wij,i− bi

and sends x
(a)
i and w

(b)
i to agent j

4: agent j computes x
(a)
j = xj − aj and w

(b)
j = wij,j − bj

and sends x
(a)
j and w

(b)
j to agent i

5: both agent i and agent j calculate ∆x
(a)
ij = x

(a)
j + x

(a)
i

and ∆w
(b)
ij = w

(b)
j + w

(b)
i , where ∆x

(a)
ij is xj − xi − a

and ∆w
(b)
ij is wij − b

6: agent i computes zi = ∆x
(a)
ij bi+∆w

(b)
ij ai+ci and sends

it to agent j
7: agent j computes zj = ∆x

(a)
ij bj + ∆w

(b)
ij aj + cj and

sends it to agent i
8: agent i computes mij = zi + zj +∆x

(a)
ij ∆w

(b)
ij

9: agent j computes mji = −(zi + zj +∆x
(a)
ij ∆w

(b)
ij )

10: agent i updates its state x+
i = xi +

∑
j∈Ni

mij

11: agent j updates its state x+
j = xj +

∑
j∈Ni

mji

Remark 5. As the time-consuming and computation-
extensive steps to generate the Beaver triples can be done of-
fline prior to the iterative consensus process in Algorithm 1,
the agent i only needs to compute x

(a)
i , w(b)

i , ∆x
(a)
ij , ∆w

(b)
ij ,

zi, and mij though summation and multiplication of real
numbers in plaintexts and send x

(a)
i , w(b)

i , and zi that are
all real numbers in plaintexts. Therefore, Algorithm 1 is more
computationally and communicationally efficient for online
implementation than encryption-based average consensus
algorithms, e.g., [9].

Remark 6 (Consensus of BAC Algorithm). One of the
differences of Algorithm 1 from the typical average consensus
algorithm in (3) is that the message mij is computed
with the Beaver-triple-based multiplicative secret sharing
technique. All agents’ states xi(k), i ∈ V, k ∈ N, generated
by Algorithm 1 and (3) are identical with identical initial
conditions, identical communication topology, and identical
edge weights. Therefore, all agents in Algorithm 1 reach
an average consensus under Assumptions 1, 2, and 3 from
Lemma 1.

IV. PRIVACY ANALYSIS

In this section, the privacy property of Algorithm 1 is
analyzed.

For the adversary, it is assumed that



Assumption 4 (Passive Adversary). All adversarial agents
are passive, or equivalently, honest but curious. They follow
the rules of the designed algorithm but intend to infer the
initial states of benign agents.

The information that an adversary knows via Algorithm 1
is defined in the information set as follows.

Definition 1 (Information Set). For any initial conditions
C = {xE(0), xj(0), j ∈ V/{E}}, the information set of
agent E is

I
(C)
E = {xE(k),mEj(k), j ∈ NE , k ∈ N}. (9)

for Algorithm 1, where NE is the set of neighbors of the
agent E.

Before analyzing the privacy property, we give definitions
of bounded privacy, which represents different levels of
privacy preservation degrees.

Definition 2 (Definition of Bounded Privacy). The bounded
privacy of the initial value of an agent A against a passively
adversarial agent E is preserved if, for any set of initial
conditions C = {xE(0), xA(0), xj(0), j ∈ V/{A,E}}, there
exists x′

A(0) in a neighborhood of xA(0) such that I(C)
E =

I
(C′)
E , where C ′ = {xE(0), x

′
A(0), x

′
k(0), k ∈ V/{A,E}}.

Given an initial condition C, the bounded privacy in
Definition 2 requires only the existence of one x′

A that
generates the same information set.

The following assumption on communication topology
regarding the neighborhood of benign agents is also made.

Assumption 5. None of the adversaries is the unique neigh-
bor of a benign agent.

In general, a vicinity of the true state of an agent can be
inferred by adversaries with only the protection of the Beaver
triple, as stated in the following lemma.

Lemma 2. An adversarial agent E can infer a range of
the initial state of any of its neighboring agent A with the
information of mAE(0).

Proof: Denote

r
(l)
AE(0) = min{ mAE(0)

wAE,E(0) + wAE,A

,
mAE(0)

wAE,E(0) + wAE,A
},

r
(u)
AE(0) = max{ mAE(0)

wAE,E(0) + wAE,A

,
mAE(0)

wAE,E(0) + wAE,A
}.

From (8), we can then obtain that

xA(0) =xE(0)−
mAE(0)

wAE,A(0) + wAE,E(0)

∈[xE(0)− r
(u)
AE(0), xE(0)− r

(l)
AE(0)],

where wAE,A and wAE,A are the minimum and maximum
of wAE,A(0), respectively.

The interval specified in Lemma 2 is formally defined as
follows:

Definition 3 (Inferred Interval). The inferred interval from
mij by agent j is [

xj − r
(u)
ij , xj − r

(l)
ij

]
, (10)

where

r
(l)
ij = min{ mij

wij,j + wij,i

,
mij

wij,j + wij,i
},

r
(u)
ij = max{ mij

wij,j + wij,i

,
mij

wij,j + wij,i
}.

Remark 7. If x′
i is in the inferred interval from mij by agent

j, then there always exists w′
ij,i such that mij = (w′

ij,i +
wij,j)(xj − x′

i).

From Lemma 2, the privacy of the initial values of agents
cannot be preserved by Algorithm 1 because the adversary
can immediately learn a bounded interval for states of its
neighboring agents. Next, we investigate whether bounded
privacy can be preserved with the BAC algorithm.

Lemma 3. Suppose that agent B is a neighbor of agent A.
Under the conditions that

1) there exists a number ε ̸= 0 such that x′
A(0) = xA(0)+

ε is in the inferred interval of mAE(0) by agent E;
2) if B ∈ NE , x′

B(0) = xB(0)− ε is also in the inferred
interval of mBE(0) by agent E;

3) (wBA,A(0)+wBA,B(0))(xB(0)−xA(0))−ε
xB(0)−xA(0)−2ε ∈ [wij wij ],

where wijand wij are specified in Assumption 3;
there exists w′

AB,A(0), w′
AB,B(0), w′

EA,A(0),

and w′
EB,B(0) such that I

(C)
E = I

(C′)
E , where

C = {xE(0), xA(0), xj(0), j ∈ V/{A,E}}, C ′ =
{xE(0), x

′
A(0) = xA(0) + ε, x′

B(0) = xB(0)− ε, xj(0), j ∈
V/{A,B,E}}.

Proof: We consider two cases:
Case 1: agent B is a neighbor of agent E. Then,

from (9), I
(C)
E = {xE(k),mEA(k),mEB(k),mEj(k), j ∈

NE/{A,B}, k ∈ N} and I
(C′)
E =

{xE(k),m
′
EA(k),m

′
EB(k),m

′
Ej(k), j ∈ NE/{A,B}, k ∈

N}, where mEA(k) and mEB(k) are defined as in (8),
xE(k) the state of agent E, m′

EA(k) and m′
EB(k) are the

counterpart of mEA(k) and mEB(k), respectively. Then,
the following three conditions are sufficient to guarantee
I
(C)
E = I

(C′)
E :

a) mEA(0) = m′
EA(0),

b) mEB(0) = m′
EB(0),

c) xA(1) = x′
A(1) and xB(1) = x′

B(1)

For the first condition, as x′
A(0) is in the inferred interval

of mAE(0) by agent E, from Remark 7, there exists a
w′

EA,A(0) ∈ (wEA,A, wEA,A) such that

mEA(0) = (wEA,A(0) + wEA,E(0))(xA(0)− xE(0))

= (w′
EA,A(0) + wEA,E(0))(x

′
A(0)− xE(0))

= m′
EA(0).

(11)



By solving (11), it can be obtained that

w′
EA,A(0)

=
(wEA,A(0) + wEA,E(0))(xA(0)− xE(0))

x′
A(0)− xE(0)

− wEA,E(0)

=
mEA(0)

x′
A(0)− xE(0)

− wEA,E(0).

(12)

For the second condition, it can similarly be obtained that

mEB(0) = (wEB,B(0) + wEB,E(0))(xB(0)− xE(0))

= (w′
EB,B(0) + wEB,E(0))(x

′
B(0)− xE(0))

= m′
EB(0).

(13)

and
w′

EB,B(0)

=
(wEB,B(0) + wEB,E(0))(xB(0)− xE(0))

x′
B(0)− xE(0)

− wEB,E(0)

=
mEB(0)

x′
B(0)− xE(0)

− wEB,E(0).

(14)

For the third condition, first xA(1) = x′
A(1) and xB(1) =

x′
B(1) are both equivalent to

mBA(0)−m′
BA(0) = x′

A(0)− xA(0) = ε. (15)

For agent A, that is because (15) is equivalent to

xA(0)− x′
A(0) + (mBA(0)−m′

BA(0)) = 0,

which is equivalent to xA(1) = x′
A(1) with the fact that

xA(1) = xA(0) +mBA(0) +mEA(0),

x′
A(1) = x′

A(0) +m′
BA(0) +mEA(0).

Similar analysis can be done for the condition xB(1) =
x′
B(1) to obtain the following equivalent condition

mAB(0)−m′
AB(0) = x′

B(0)− xB(0) = −ε.

Under the condition that mAB(0) = −mBA(0), m′
AB(0) =

−m′
BA(0), and x′

B(0)−xB(0) = −ε = −(x′
A(0)−xA(0)),

it can be obtained that for agent B, xB(1) = x′
B(1) is also

equivalent to (15).
From (15),

(wBA,A(0) + wBA,B(0))(xB(0)− xA(0))

− (w′
BA,A(0) + w′

BA,B(0))(x
′
B(0)− x′

A(0))

=x′
A(0)− xA(0).

(16)

Thus, if x′
B(0)− x′

A(0) ̸= 0,

w′
BA,A(0) + w′

BA,B(0)

=
(wBA,A(0) + wBA,B(0))(xB(0)− xA(0))

x′
B(0)− x′

A(0)

− (x′
A(0)− xA(0))

x′
B(0)− x′

A(0)

=
mBA − (x′

A(0)− xA(0))

x′
B(0)− x′

A(0)
;

(17)

if x′
B(0)− x′

A(0) = 0, then (16) becomes mAB(0) = ε and
m′

AB(0) = 0, which is valid for any selection of w′
BA,A(0)+

w′
BA,B(0) from (15).

Therefore, if agent B is a neighbor of agent E, I(C)
E = I

(C′)
E .

Case 2: agent B is not a neighbor of agent E. Then,
I
(C)
E = {xE(k),mEA(k),mEj(k), j ∈ NE/{A}, k ∈ N}

and I
(C′)
E = {xE(k),m

′
EA(k),m

′
Ej(k), j ∈ NE/{A}, k ∈

N}. The following conditions are sufficient to guarantee
I
(C)
E = I

(C′)
E :

a) mEA(0) = m′
EA(0),

b) xA(1) = x′
A(1) and xB(1) = x′

B(1).
Following a similar process in the analysis of (12) and (17),
we can find w′

AB,A(0), w′
AB,B(0), and w′

EA,A(0) making

I
(C)
E = I

(C′)
E .

In summary, there exist w′
AB,A(0), w′

AB,B(0), w′
EA,A(0),

and w′
EB,B(0) such that I(C)

E = I
(C′)
E whether agent B is a

neighbor of the agent E or not under the conditions in this
lemma.

In Lemma 3, the bounded privacy of Algorithm 1 is
analyzed assuming the existence of ε, which is not yet
proven. Next, we analyze the conditions on the existence
of ε when the agent B is neighboring to the agent E in the
following lemma.

Lemma 4 (existence of ε). Suppose that agent B is a
neighbor of agent E. If xA(0)−xE(0) ̸= 0, xB(0)−xE(0) ̸=
0, xB(0) − xA(0) ̸= 0, wEA,A(0) ∈ (wEA,A, wEA,A),
wEB,B(0) ∈ (wEB,B , wEB,B), and wBA(0) ∈
(wBA, wBA), i.e., none of wEA,A(0), wEB,B(0), wBA(0)
reaches its bounds, then the conditions 1), 2), and 3) in
Lemma 3 hold.

Proof: Define

f1(ε, w
′
EA,A) = (w′

EA,A + wEA,E)(x
′
A − xE)−mEA

= (w′
EA,A + wEA,E)(xA − xE + ε)−mEA,

f2(ε, w
′
EB,B) = (w′

EB,B + wEB,E)(x
′
B − xE)−mEB

= (w′
EB,B + wEB,E)(xB − xE − ε)−mEB ,

f3(ε, w
′
BA) = (w′

BA,A + w′
BA,B)(x

′
B − x′

A)−mBA + ε

= w′
BA(xB − xA − 2ε)−mBA + ε,

and

F (ε, w′
EA,A, w

′
EB,B , w

′
BA) = (f1, f2, f3)

T .

It can be obtained that

F (0, wEA,A, wEB,B , wBA) = 0 (18)

from (11), (13), and (16).
For simplicity of notations, denote y =

(w′
EA,A, w

′
EB,B , w

′
BA)

T . Then, the Jacobian Jy of F
with respect to y is a diagonal matrix with the diagonal



entries being

Jy,11 =
∂f1

∂w′
EA,A

= xA − xE + ε,

Jy,22 =
∂f2

∂w′
EB,B

= xB − xE − ε,

Jy,33 =
∂f3

∂w′
BA

= xB − xA − 2ε.

Under the condition that xA − xE ̸= 0, xB − xE ̸= 0, and
xB − xA ̸= 0,

det Jy|ε=0 ̸= 0, (19)

where det represents the determinant of a matrix.
Combining (18) and (19) with the facts that F

is well-defined and continuous in a neighborhood of
(0, wEA,A, wEB,B , wBA) and that its partial derivatives
with respect y exist and are continuous, it can be ob-
tained from the implicit function theorem [27] that in a
neighborhood of (0, wEA,A, wEB,B , wBA), y, or equiva-
lently, w′

EA,A, w
′
EB,B , w

′
BA, can be expressed as continuous

functions of ε with continuous derivatives. Therefore, if
wEA,A, wEB,B , wBA are not at their lower or upper bounds,
there exists ε ̸= 0 such that the conditions (1), (2), and (3)
in Lemma 3 hold.

When agent B is not a neighbor of agent E, following a
similar process to the proof of Lemma 4, we can obtain the
following lemma on the existence of ε:

Lemma 5. Suppose that agent B is not a neighbor
of agent E. If xA(0) − xE(0) ̸= 0 and xB(0) −
xA(0) ̸= 0, wEA,A(0) ∈ (wEA,A, wEA,A), wEB,B(0) ∈
(wEB,B , wEB,B), and wBA(0) ∈ (wBA, wBA), i.e., none
of wEA,A(0), wEB,B(0), wBA(0) reaches its bounds, then
the conditions 1) and 3) in Lemma 3 hold.

Combining Lemmas 3, 4, and 5, we can obtain that the
BAC algorithm in Algorithm 1 can preserve bounded privacy
of the initial values of agents against passive adversaries. It
results from the bounds of the edge weights. To improve
the privacy preservation performance of the BAC algorithm,
agent i can generate wij,i from (−∞,∞) at the initial step
and then from the range specified in Algorithm 1 at the
rest steps. With such a selection, the BAC algorithm is
computationally equivalent to

xi(1) =

n∑
j=1

wij(0)xj(0), wij(k) ∈ R

at the initial step. From the symmetry of the weight matrix
W (0), it can be obtained that

n∑
j=1

xi(1) =

n∑
i=1

xi(0)

and thus the average consensus can be achieved. In this way,
we can concurrently preserve the unbounded privacy of the
initial values of agents and reach an average consensus.

Remark 8. The analysis in this subsection focuses on the
interaction among the agents A, B, and E. When there is
another agent C connected to the agent A, a similar analysis
to that in Lemmas 3 and 4 can also be performed with
x′
C(0) = xC(0) and Condition 3) in Lemma 3 should also

include the one obtained considering the agent C.

V. SIMULATION

In this section, the proposed BAC algorithm is verified
through simulation on a TES consisting of 1000 consumers
represented by controllable air conditioners (ACs) and one
supplier representing the utility. The market period is selected
to be five minutes. The lowest market-clearing price λmin is
set to be $0.00, the highest price λmax = $1.00, and the
price increment ∆λ = $0.01.

The supply curve of the supplier is set to be ps(λ) =
P s
maxλ

1
3 , where P s

max is the supplier’s capacity, and λ is the
price between $0.00 and $1.00. P s

max is set to be the sum of
the rated power of all ACs, which makes the supplier able to
provide enough energy to all ACs. The controllable load of
consumers is residential ACs. The rated power of the ACs
is uniformly distributed between 2.5 kW and 5.0 kW. The
thermal parameters of buildings, which are related to floor
area, ceiling height, glass type, glazing layers, material, area
per floor, etc., are derived from GridLAB-D, of which the
details can be found in [28]. The weather data and the Typical
Meteorological Year (TMY) data are obtained for Columbus,
OH from [29] and [30], respectively.

A. Demand Curve Generation

The demand curve for a residential AC is generated in
this subsection. The occupants of a house directly control the
temperature setpoint, instead of the power consumption, of
the AC. Thus, the demand curve is generated in the following
two steps: 1) a response curve is generated to characterize the
relationship between the price and AC temperature set point;
2) the relationship between the AC temperature setpoint and
the AC power consumption is established.

The response curve is generated as follows. The house
occupants specify their comfort zones characterized by min-
imum temperature set point Tmin, desired temperature set
point Tdesired, and maximum temperature set point Tmax. ACs
compute the average λavg and variance σ of the historical
market-clearing price over a period of time in the past,
e.g., 24 hours. The control response curve is then generated
as shown in Fig. 1. The parameter k in Fig. 1, which is
related to the occupant’s tolerance to price change and indoor
temperature change, can be obtained from their historical
behavior. When the price is the average of the historical price,
the temperature set point is the desired one. The temperature
set point is responsive to the price when the price is between
λavg −kσ and λavg +kσ and becomes irresponsive when the
price is out of the range.

After the temperature setpoint Tset is selected, the power
consumption of the AC is computed from the AC dynamics
in (20) and the hysteresis temperature control. The dynamics



Fig. 1. Illustration of control response curve [31]

of the AC are [31],

Ṫa =
Hm

Ca
(Tm − Ta) +

Ua

Ca
(To − Ta) +

Q

Ca
,

Ṫm =
Hm

Cm
(Ta − Tm) +

Q

Cm
,

(20)

where Ta is the indoor air temperature, Tm is the inner
mass temperature, e.g. that of the building materials and
furnishings, Ua is the conductance of the building envelope,
To is the outdoor air temperature, Hm is the conductance
between the inner air and inner solid mass, Ca is the thermal
mass of the air, Cm is the thermal mass of the building
materials and furnishings, Q is the total heat flux consisting
of the heat gain from the internal load Qi , the solar heat
gain Qs and the heat gain from the cooling system Qh, and

Q(t) =

{
Qi +Qs +Qh, when AC is on,
Qi +Qs, when AC is off.

The hysteresis temperature control over a given temperature
set point Tset and predefined temperature deadband δ is as
follows: the AC is turned on if the indoor air temperature
is higher than Tset + δ/2, is turned off if the indoor air
temperature is lower than Tset − δ/2, and keeps the previous
on/off state if the indoor air temperature is between Tset+δ/2
and Tset − δ/2.

The power demand corresponding to a temperature set
point is then calculated as the product of the AC rated power
and the period of AC being on, where the rated power is
proportional to the heat gain Qh from the cooling system.
The demand curve can then be obtained from a combination
of the response curve and the temperature setpoint-power
relationship. The resulting demand curve is illustrated in
Fig. 2. As λavg, σ, and the power demand, which depends
on indoor air temperature, outdoor air temperature, solar heat
gain, etc., changes with time, the demand curves of ACs are
also time-varying.

B. BAC-based Market-clearing Results

A simulation for 24-hour market clearing with the BAC
algorithm is performed. The market-clearing results with
the centralized market-clearing method and the proposed
BAC algorithm are presented in Fig. 3. With the centralized
method, all suppliers and consumers submit their supply
curves and demand curves, respectively, to a coordinator and

Fig. 2. Illustration of the AC demand curve [31].

Fig. 3. Market-clearing prices with the centralized method and the BAC
algorithm

the coordinator then clears the market at the price point at
which the power supply equals the power demand. With the
BAC algorithm, all suppliers and consumers collaborate to
clear the market. From Fig. 3, it can be observed that the
BAC algorithm can ensure the correct market-clearing results
for the TES.

The consensus error of the power of each supplier and
consumer at the market-clearing price at a randomly selected
market period is presented in Fig. 4. The curve starting from
a very large positive value represents the supplier while all
other curves represent consumers. As the capacity of the
supplier covers the power consumption of all consumers, the
initial value, which is the power supply or demand preference
at the market-clearing price, of the supplier is much larger
than each consumer. Fig. 4 is zoomed in in Fig. 5 to show the
power of consumers in the consensus process. From Figs. 4
and 5, it can be observed that the power of all suppliers and
consumers converges to the average of their initial power.

VI. CONCLUSION

A Beaver-triple-based average consensus (BAC) algorithm
was proposed to preserve the privacy of the initial values of
agents against passive adversaries in a multi-agent system.
The algorithm is proven to protect the privacy of a benign
agent against passive adversaries if none of the adversaries is
the unique neighbor of the agent in the multi-agent network.
A simulation example of a transactive energy system is
adopted to show the efficacy of the BAC algorithm. Future



Fig. 4. Consensus error of the market-clearing power to the average of
initial power at the market-clearing price

Fig. 5. Consensus error of the market-clearing power to the average of
initial power at the market-clearing price (zoomed in)

work may be focused on extending the results to other prob-
lems, e.g., distributed optimization and multi-agent learning.
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