SNNVis: Visualizing Graph Embedding of
Evolutionary Optimization for Spiking Neural
Networks

Junghoon Chae Seung-Hwan Lim

Shruti Kulkarni Catherine Schuman

Oak Ridge National Laboratory Oak Ridge National Laboratory Oak Ridge National Laboratory University of Tennessee

Oak Ridge, USA
chaej@ornl.gov

Oak Ridge, USA
lims1@ornl.gov

Abstract—While Spiking Neural Networks (SNNs) show a lot
of promise, it is difficult to optimize them because applying
traditional gradient-based optimization techniques is difficult.
Even though evolutionary algorithms (EAs) have been shown
to promise to optimize SNNs, understanding the relationship be-
tween evolving the characteristics of SNNs and their performance
to improve the optimization algorithm is challenging because of
the complex characteristics and huge population size. We propose
visual analytics with novel graph embedding for evolutionary
SNNs to address the challenges. While existing graph embedding
techniques have limitations in preserving the specific features
of the nodes and edges, our approach maintains them. Also,
we develop visual analytics for understanding the relationship
between the network performance and the features of nodes and
edges and exploring and analyzing the evolving SNNs to build
insights into improving the EA.

Index Terms—Visual analytics, SNN, evolutionary algorithm

I. INTRODUCTION

Researchers from the domains of computational neuro-
science and neuromorphic engineering have designed neural
network models called Spiking Neural Networks (SNNs)
inspired by information processing in the biological human
brain. A SNN is depicted as a directed graph where neurons
are nodes and synaptic connections are edges with associ-
ated weights. Information propagation occurs through edge
traversal, reflecting spike transmission between neurons. This
graph-based representation facilitates analysis using graph al-
gorithms, offering insights into SNN structures and dynamics.

While SNNs offer promising advantages such as biolog-
ical plausibility, energy efficiency, and temporal processing
capabilities, optimizing SNNs can be challenging due to the
non-differentiable nature of spike-based computation and the
discrete nature of spike timing. This can make it difficult
to apply traditional gradient-based optimization techniques,

The manuscript is authored by UT-Battelle, LLC under Contract No. DE-
ACO05-000R22725 with the U.S. Department of Energy. The U.S. Government
retains for itself, and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government. The Department of Energy will
provide public access to these results of federally sponsored research in ac-
cordance with the DOE Public Access Plan. http://energy.gov/downloads/doe-
public-access-plan.

Oak Ridge, USA
kulkarnisr@ornl.gov

Knoxville, USA
cschuman@utk.edu

requiring the development of specialized optimization algo-
rithms. An evolutionary algorithm (EA) has been shown to
promise to optimize SNNs [1]. EA starts by randomly creating
networks within a specific criterion and then generates new
child networks using high-performance parent networks rather
than bad-performance ones based on principles of biological
evolution: selection, crossover, and mutation. This evolution-
ary iteration continues until reaching a specific max generation
(epoch) or gaining networks having good enough performance.

Understanding the relationship between SNN characteristics
and performance is crucial to improving EA-based optimiza-
tion methods because the methods aim to find characteristics
of SNNss that can lead to better performance. However, it is dif-
ficult to find the important characteristics that are strongly re-
lated to performance from complex data in the form of graphs.
Graph embedding techniques can be considered, converting the
complex SNNs into a lower-dimensional space, represented
by vectors. It aims to capture the important relationships
between nodes in the original graph and makes the data
more manageable and easier to process for machine learning
algorithms. However, existing graph embedding algorithms
have limitations in preserving the important characteristics of
SNNs. Understanding embedding results and turning them into
actionable insights can also be challenging.

In this paper, we introduce a visual analytics tool called
SNNVis with novel graph embedding for evolutionary SNN.
While most existing graph embedding approaches mainly
focus on the topological structure of a network, our approach
supports not only the node connections but also the specific
characteristics of SNNs. It unveils the relationship between
the network performance and the features of nodes and edges,
such as node threshold, edge delays, and edge weights. We
use Evolutionary Optimization for Neuromorphic Systems
(EONS) [2] as the SNN optimization algorithm for our tool.
Also, SNNVis supports exploring and analyzing the evolving
SNNGs, visualizing how the characteristics evolve and converge
to better performance SNNs as evolution progresses.

N3,
3 N5 N2
) NO
oo
U
[=)
£1
NI,
0 N6 N4
0 1 2 3
Out-Degree

(a) ASNN

(b) Defining a Base Semantic Substrate

Threshold substrate (channel)

av av

W |Edge Weight substrate (channel)

Edge Delay substrate (channel)

Node Connection substrate (channel)

T 0.5 0.5

05| | wp[[[ITEITEITT]

Converted Vector

| 1 |1

(c) Generating Multiple Channels (d) Combining Multiple Channels

Fig. 1. Graph embedding process. Given a network, we compute In-Degree (¢) and Out-Degree (o) for each node (First step). Then, we define a 2D array
(0max X imax) called as a Base Semantic Substrate and assign each node to a position of the substrate according to its ¢ and o (Second step). We create four
new substrates for the four network features: node connection, node threshold, edge delay, and edge weight respectively based on the base substrate. For each
feature, we compute the feature values and map the values into the substrate (Third step). Finally, we generate a vector by combining the substrates (Fourth

step).

II. RELATED WORK

Many visualization methods have been developed to better
understand the learning process and behavior of SNNs, but
due to space limitations, we only present a few of the most
relevant studies. Drouhard et al. [3] and SNN3DViewer [4]
proposed a visual analytics method for SNNs of neuroscience-
inspired architectures. Their visualization tool is to aid in the
understanding of network learning activities and the decision-
making process. Disney et al. [S] presented a software ecosys-
tem for a neuromorphic hardware platform called Dynamic
Adaptive Neural Network Arrays (DANNAs). The visualizer
of the system allows users to visually explore the structure
and properties of a running instance of DANNA, visualizing
a snapshot of the DANNA network, how their states have
changed between snapshots. The visualization is helpful in
debugging the simulator and evaluating the hardware.

III. GRAPH EMBEDDING FOR SNNs

Prior research on deep neural network models has predom-
inantly centered on visualizing trained filters and attention
maps to reveal learned features and areas of focus. However,
evolving SNNs lack stored information and learned features,
complicating our understanding of model behavior. Hence,
our primary objectives revolve around extracting features from
populated SNNs and translating them into actionable insights
for model refinement. To achieve the goals, first we convert the
complex SNNs into a lower-dimensional space, represented by
vectors using graph embedding.

Each SNN is represented as a directed graph. Neurons
and synapses are mapped as nodes and edges, respectively.
The direction of each edge corresponds the direction of
spike signals of each synapse. Therefore, it is necessary to
consider the multiple features of a network as one, rather than
computing each node separately. However, most existing graph
embedding methods [6] focus on node embedding rather than
whole-graph embedding and undirected graphs. Also, they
have limitations in preserving the specific features of the nodes
and edges: node threshold, edge delay, and edge weight that

determine the operation of the SNNs. In this work, we consider
not only the node connections but also the network features.

The overall embedding process is illustrated in Figure 1.
First, given a network, we count the incoming edges (In-
Degree) and outgoing edges (Out-Degree) for each node in
Figure 1 (a) and then create a 2D array called Base Semantic
Substrate using the In and Out degrees in Figure 1 (b). We
assign each node to a position of the substrate array according
to its In-Degree () and Out-Degree (o) where ¢ and o are used
as the row and column indexes respectively. The following
computations are based on this base semantic substrate. First,
we create a new Node Connection substrate. Then, we count
the number of nodes (V) for each position of the substrate and
normalize the numbers (1 > N, > 0). Finally, IV, is mapped
into the node connection substrate (see the gray substrate at
the third step in Figure 1 (c)). This substrate does not fully
reflect the topological structure of the network, but it captures
node connection changes.

We create a new substrate for the node threshold (77). For
each node, its 7' is assigned to the substrate according to its
1 and o. For the nodes with the same ¢ and o, we compute
the average T (T,y). 1,y are mapped into the Threshold
substrate (yellow substrate in Figure 1 (c)). For edge delay and
weight, we create two more substrates and map average delay
(D,y) and weight (W,,) into the Edge-Delay (blue) and Edge-
Weight (orange) substrates respectively in the same manner
as above. As a result, the locations of mapping values inherit
the node connections of a network and the values represent
the characteristics of the nodes and edges. We note that the
substrates of a network can be considered as different channels
like the red, green, and blue channels of a color image. Then,
we flatten the four substrates (2D arrays) and combine them
into one vector as shown in Figure 1 (d). Finally, all populated
networks are embedded into a set of vectors.

IV. VISUAL ANALYTICS DASHBOARD

SNNVis aims to understand the graph embedding results and
investigate the evolutionary process, evolving network charac-
teristics through visualizations. As shown in Figure 2, SNNVis

Select All
Lineage

@Al
Better than Parents
Better than Best

Fitness: | 0 1
9

r g Gm Bom 1 82 B9 @am Gm Gum

(a)

Epoch:

0
Mutation: FR @ ¢ @i

(b) .

snsnnnnnnnnnls
S EEEEEEEEEEEEEEEEEEEEEEEE R R
s

20 20)

Node Threshold

120

i

100
%0
&0
7

H

PIVVVITITTTNY

-
2

Edge Delay

.
I

T % % 70 %o Mo 1z
Edge Weight 140
120
Ele

™ 100

] 80
&0

0]
2]

20

404
50
80
100

120

2 4 6 8 10121415 o

1 2 3 40 0 6 7 8 %

Genetic Operator Types

L e 5 (c)

\\ 12080 40 0 40 80 120

J0__20 30 40 50 60 70 80 90

J

Fig. 2. SNNVis consists of (a) graph embedding view, for showing a graph embedding result and classifying SNN clusters, (b) performance heatmap view,
showing the distribution of fitness scores for each generation, and (c) network feature view, for analyzing network features and genetic operator types of
selected SNNs. To investigate the evolutionary process and evolving SNNs, users are able to filter and select SNN populations of interest using multiple

interactive analytics features and tightly coordinated views.

consists of multiple coordinated visualization components
including the graph embedding view (a), the performance
heatmap (b), and the network feature view (c). Each view
visualizes different aspects of evolving SNNs. The intercon-
nected views also provide highly interactive capabilities for
effective analysis. The following subsections describe data and
the details of each view.

A. Data

We used SNN populations generated by using EONS for
a classification task of Digits data [7]. Digits data is optical
recognition of handwritten digits dataset (10 classes, about
180 images per class, 1,797 images in total). The dataset
includes 100 generations, 250 SNN per generation, and 25,000
networks in total. The best fitness score is 0.56, the average
is 0.39 with the STDEV of 0.13, and the median is 0.43.

B. Visualizing Graph Embedding

Dimensionality reduction: We project the embedding re-
sults for each network at a 2D latent space using dimensional-
ity reduction that allows high-dimensional data to be visually
interpreted revealing clusters and outliers. In this work, we
use the technique for evaluating our graph embedding method,
clustering SNN, and investigating the evolving process. There
are many different dimensionality reduction techniques. We

{]]1]
D (B-1) u:

0

(B-2)
||

Fig. 3. Comparing clusters: The two separate clusters (A-1 and B-1) have
the same fitness score, but their node threshold distributions are different.

tested the three most popular methods including principle com-
ponent analysis (PCA) [8], T-distributed stochastic neighbor
embedding (t-SNE) [9], and uniform manifold approximation
and projection (UMAP) [10]. While PCA is a linear technique,
t-SNE and UMAP are non-linear dimensionality reduction
techniques. We tested the techniques on multiple datasets.
UMAP often outperforms other techniques in terms of speed
and scalability. Also, UMAP often produces results that better
reflect the global structure of the data while still maintaining
the local relationships between nearby points.

Visual representation: The graph embedding view in Fig-
ure 2 (a) shows the projection results of the 25,000 SNNs
in the 2D latent space. This view is a major visualization
component of the visual analytics workspace and a starting
point of the analytics process. Users can evaluate embedding
results, investigate clusters and outliers, and understand the
evolving patterns. Each dot corresponds to a network and
its color represents the performance (fitness score, f) of
the network (1 > f > 0). Dark red means a low fitness
score and yellow and dark green do medium and high fitness
scores respectively. There are many clusters where instances
(networks) are close together and have similar colors. This
reflects each cluster has similar network characteristics.

C. Visualizing Network Performance and Characteristics

Performance heatmap: The grid-based heatmap in Fig-
ure 2 (b) shows how the performance changes as they evolve
and its distribution for each generation. The generation is
mapped to the z-axis and the performance value to the y-
axis. The heatmap is constructed by partitioning the visible
portion of the data into two-dimensional bins in both the y-
and z-axis dimensions (dark black means more networks).

Network feature view: The network feature view in Fig-
ure 2 (c) allows users to analyze the node and edge features to
understand the relationships between the features and network
performance. For the three features: node threshold, edge
delay and weight, each feature has a pair of a stacked bar
histogram and a boxplot. The histogram shows the distri-
bution of feature values, with the color of the stacked bars
indicating performance (the color scheme is the same as of
the graph embedding view). The boxplots show the change in
feature values as evolution progresses. For example, the node
threshold histogram displays the distribution of the threshold
values of entire nodes of selected networks. Also, the stacked
bars of the histograms show the portions of corresponding
networks. The boxplot shows the degree of dispersion in
node thresholds for each generation. Unlike the histograms of
the three network features, the histogram at the bottom-right
shows the distribution of the selected networks with respect
to the types of genetic operators. In Figure 2, the histograms
and boxplots show the results when selecting the entire SNN
population. In this case, the node threshold for most networks
is low, below 10, but after generation 65, the number of nodes
with high values increased. For the delay and weight, no
drastic change can be seen. For the genetic operator type, large
number of networks are generated by a first or second child
of crossover and mutation. Also, we can realize the randomly
generated networks have low fitness scores.

D. Interactive visual analytics:

Network filtering: SNNVis provides multiple filtering op-
tions for interactive analysis using the control panel at the top-
left in Figure 2. Users can select SNNs that have a specific
range of generations and fitness scores and select SNNs
generated by specific genetic operator types. Genetic operator
types used in this study and their descriptions are in Table I.
This is useful when filtering randomly generated SNNs and
analyzing the relationship between the genetic operator types
and optimization progress. Also, users can select networks
that have better performance than their direct parents for each
generation. Similarly, users can select better networks than
the best ones in the previous generation. This is a feature that
hides the intermediate results of finding the optimal value.
For example, users can see how the best fitness score changes,
how network features are optimized, and what types of genetic
operators produce better SNNs. Selecting the filtering options
shows the corresponding information of the selected SNNs
across the three views.

Cluster analysis on the embedding view: Users can
use region selection using mouse dragging in the embedding
view and also apply a combination of the filtering options
(e.g., generation, fitness score, and genetic operator type). As
other visualizations are connected to the embedding view, the
views make it easier to see the corresponding information
of the selected SNNs. For example, once selecting networks,
the performance heatmap shows only the selected networks,
and the histograms and the boxplots show the feature values
of the selected networks. Cluster analysis of SNNs, finding

TABLE I
GENETIC OPERATOR TYPES

Label | Description

R Randomly generated at the initial epoch
dm Duplicate and mutation

1 First child of crossover

2 Second child of crossover

Im First child of crossover and mutation
2m Second child of crossover and mutation

specific sets of SNNs that deliver good or bad performance is
critical to optimize the SNNs. The SNNs do not have specific
labels for classification. The generations or the fitness scores
of the networks cannot be used as labels for classification,
because the networks with totally different generations or
characteristics can achieve similar fitness scores. An example
is shown in Figure 3. We select two different clusters (A-1
and B-1) in the graph embedding view where the two clusters
include networks with the same fitness score. The boxplot (A-
2) shows the distribution of node thresholds of the cluster (A-
1) and the boxplot (B-2) is for the cluster (B-1). The median
and upper quartile values of most generations of B-1 are
higher than A-1. Network clustering via graph embeddings is
therefore essential for revealing hidden relationships between
network characteristics and performance. For example, in the
embedding view, there is a big red (low fitness) cluster at
the upper-left of the view, while a couple of green and dark
green clusters are located at the bottom-middle. This view
also allows users to detect outliers with fitness scores that are
significantly different from the dominant score of the cluster.

V. CONCLUSION AND DISCUSSION

We introduce SNNVis, visual analytics with novel graph
embedding for evolutionary SNNs. We introduce a novel graph
embedding for preserving important network features. We
demonstrate SNNVis to analyze and interpret the evolutionary
process and get insights into improving evolutionary SNN.
While we focused on analyzing evolving SNNs in terms of
specific network features, we realized analyzing spiking signal
activities would help to optimize SNNs. Even though visual-
izing the behind continuous activities will be a challenging
problem, for future work, we will investigate techniques to
understand and interpret the spiking activities of SNNs.

REFERENCES

[1] C. D. Schuman, J. S. Plank, A. Disney, and J. Reynolds, “An evolu-
tionary optimization framework for neural networks and neuromorphic
architectures,” in International Joint Conference on Neural Networks.
Vancouver: IEEE, July 2016.

[2] C.D. Schuman, J. P. Mitchell, R. M. Patton, T. E. Potok, and J. S. Plank,
“Evolutionary optimization for neuromorphic systems,” in Proceedings
of the Neuro-inspired Computational Elements Workshop, 2020, pp. 1-9.

[3] M. Drouhard, C. D. Schuman, J. D. Birdwell, and M. E. Dean, “Visual
analytics for neuroscience-inspired dynamic architectures,” in 2014
IEEE Symposium on Foundations of Computational Intelligence (FOCI),
2014, pp. 106-113.

[4] A. Kasiniski, J. Pawtowski, and F. Ponulak, “‘snn3dviewer’ - 3d visu-
alization tool for spiking neural network analysis,” in Computer Vision
and Graphics, L. Bolc, J. L. Kulikowski, and K. Wojciechowski, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 469-476.

[5]

[6]

[7]

[8]

[9]
[10]

A. Disney, J. Reynolds, C. D. Schuman, A. Klibisz, A. Young, and
J. S. Plank, “Danna: A neuromorphic software ecosystem,” Biologically
Inspired Cognitive Architectures, vol. 17, pp. 49-56, 2016.

P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” Knowledge-Based Systems, vol. 151, pp.
78-94, 2018.

E. Alpaydin and C. Kaynak, “Optical Recognition of Hand-
written Digits,” UCI Machine Learning Repository, 1998, DOI:
https://doi.org/10.24432/C50P49.

K. Pearson, “Liii. on lines and planes of closest fit to systems of points
in space,” The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol. 2, no. 11, pp. 559-572, 1901.

L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579-2605, 2008.
L. Mclnnes, J. Healy, and J. Melville, “Umap: Uniform manifold
approximation and projection for dimension reduction,” arXiv preprint
arXiv:1802.03426, 2018.

