

1 Effect of molecular permanent dipole moment 2 on guest aggregation and exciton quenching 3 in phosphorescent organic light emitting diodes 4

5 Cite as: *J. Chem. Phys.* **160**, 000000 (2024); doi: 10.1063/5.0201560

6 Submitted: 31 January 2024 • Accepted: 27 May 2024 •

7 Published Online: 9 99 9999

View Online

Export Citation

CrossMark

■Q1

Paul Niyonkuru,¹ Roland Bennett,¹ Michael J. Zachman,² and Jeremy D. Zimmerman^{1,a)}

8 AFFILIATIONS

9 ¹ Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA

10 ² Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

11 Note: This paper is part of the JCP Special Topic on Light-matter Interaction at the Nano and Molecular Scale.

12 ^{a)} Author to whom correspondence should be addressed: jdzimmer@mines.edu

13

14 ABSTRACT

15 This study explores the effect of molecular permanent dipole moment (PDM) on aggregation of guest molecules in phosphorescent host-guest
16 organic light-emitting diodes (OLEDs). Through a combination of photoluminescence measurements, high-angle annular dark-field scanning
17 transmission electron microscopy analysis, and an Ising model based physical vapor-deposition simulation, we show that higher PDM of
18 tris[2-phenylpyridinato-C2,N]iridium(III) guest can actually lead to a reduced aggregation relative to tris[bis[2-(2-pyridinyl-N)phenyl-C]
19 (acetylacetato)iridium(III) when doped into a non-polar host 1,3,5-tris(carbazol-9-yl)benzene. This study further explores the effect of host
20 polarity by using a polar host 3',5'-di(carbazol-9-yl)-[1,1'-biphenyl]-3,5-dicarbonitrile, and it is shown that the polar host leads to reduced
21 guest aggregation. This study provides a comprehensive understanding of the impact of molecular PDM on OLED material efficiency and
22 stability, providing insights for optimizing phosphorescent OLED materials.

23 Published under an exclusive license by AIP Publishing. <https://doi.org/10.1063/5.0201560>

24 I. INTRODUCTION

25 Phosphorescent organic light-emitting diode (PhOLED) technology has significantly enhanced the efficiency of organic light-emitting diodes (OLEDs), potentially achieving an internal quantum efficiency close to 100%.¹² This improvement is attributed to the incorporation of heavy-metal phosphorescent emitters in a host material. The strong spin-orbit coupling, caused by the heavy atom effect, enables efficient intersystem crossing, allowing both singlet and triple excited states to be emissive.³⁻⁶

26 Despite these advancements, the efficiency of PhOLEDs is reduced by quenching processes, such as triplet-triplet annihilation (TTA),⁷ triplet-polaron quenching (TPQ), and concentration quenching (CQ).^{8,9} We show that CQ is exacerbated by aggregation of guest molecules in the emissive layer (EML) and that aggregation is reduced for a larger permanent dipole moment (PDM) for both guest and host molecules. Molecular aggregation in several physical glassy organics deposited by physical vapor deposition has been shown to be dominated by molecular surface diffusion

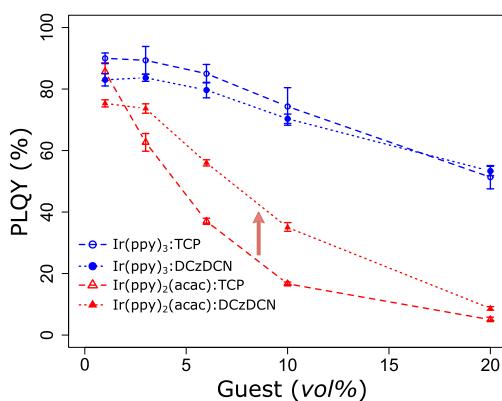
27 during film deposition rather than relaxation in the bulk after deposition,¹⁰⁻¹² but this has not been shown for OLED EML materials. During vacuum deposition, evaporated molecules land and diffuse across the surface until they find a metastable configuration and are buried by additional impinging molecules, leading to their kinetic entrapment.¹⁰⁻¹⁴ The aggregation of these molecules in the film is likely influenced by several factors related to this dynamic process, including substrate deposition temperature relative to the glass-transition temperature (i.e., T/T_g)¹⁵⁻¹⁷ and deposition rate.¹⁸⁻²⁰ For instance, a lower substrate temperature reduces surface diffusion, thereby diminishing aggregation, while a faster deposition rate may prevent the formation of aggregates by rapidly burying molecules and kinetically arresting them.²⁰ One factor, relevant to this work, that may affect surface diffusion is stronger intermolecular interactions, such as hydrogen bonding, which have been suggested to reduce the rate of surface diffusion in other glassy organic materials.²¹⁻²³ This insight into the aggregation mechanism raises questions about the role of material properties, such as polarity, in the aggregation of guest molecules.

61 This study investigates the influence of molecular permanent
62 dipole moment (PDM) of guest and host materials on the aggre-
63 gation of guest molecules in thermally vapor-deposited host-guest
64 system EMLs of PhOLEDs. To study the effect of guest PDM, we use
65 a single non-polar host, 1,3,5-tris(carbazol-9-yl)benzene (TCP), and
66 two Ir(III)-based phosphorescent dopants, tris[2-phenylpyridinato-
67 C₂N]iridium(III) [Ir(ppy)₃] and tris[bis[2-(2-pyridinyl-N)phenyl-
68 C] (acetylacetato)iridium(III) [Ir(ppy)₂(acac)], which are similar
69 in physical and optical properties but differ significantly in their
70 PDMs of 6.26 and 1.91 D, respectively.²⁴ To investigate the effect
71 of host polarity, we employ a polar host 3',5'-Di(carbazol-9-yl)-
72 [1,1'-biphenyl]-3,5-dicarbonitrile (DCzDCN), similar in mass and
73 geometry to the non-polar host TCP, but with a large PDM of
4.1 D.^{25,26}

74 We first investigate the effect of molecular PDM on guest
75 aggregation by analyzing the concentration quenching (CQ) of photo-
76 toluminescence (PL) efficiency in EML systems of the two guest
77 molecules doped in a non-polar host, TCP. CQ in PhOLEDs is a
78 phenomenon in which the efficiency of light emission decreases as
79 the concentration of the phosphorescent guest material increases.
80 This happens due to interactions between phosphorescent guest
81 molecules, which reduce their ability to emit light.^{8,9} As the
82 guest concentration increases, the intermolecular distance of guest
83 molecules becomes smaller and the number of guests with guest-
84 type neighbors increases, which gives rise to the formation of
85 excimer states, which are suggested to act as PL quenching sites
86 for various Ir(III)-based dopants.²⁷⁻²⁹ The formation of excimers
87 can also happen at relatively low guest concentrations, if the guest
88 molecules to form clusters in the host matrix. It is noteworthy that
89 this clustering of guest molecules has previously been suggested, but
90 never clearly demonstrated.^{7,9,15}

91 To support the PL analysis, we use high-angle annular dark-
92 field scanning transmission electron microscopy (HAADF-STEM)
93 for direct microscopic measurements of guest aggregation in the
94 EML, extending upon the methodologies used by Reineke *et al.*⁷ The
95 heavy iridium core of the dopant molecule allows for scattering con-
96 trast with the surrounding organic host, which enables the imaging
97 of guest distribution. Although Reineke *et al.*⁷ suggested that cluster-
98 ing is occurring, we note that the two-dimensional (2D) projection
99 in these images can partially obscure the intricate three-dimensional
(3D) structure of the material and that typical doping densities will
100 lead to significant numbers of dimers, trimers, and small clusters
101 in fully random host-guest dispersions. To address this limitation
102 and gain a more nuanced understanding of the cluster structure,
103 we implement spatial statistics based point-pattern analysis, which
104 enables statistical verification of these complex three-dimensional
105 structural details. We conclude that CQ dynamics at device-relevant
106 guest concentrations are driven by differing levels of aggregation,
107 which are reduced for larger PDM guest molecules, contrary to what
108 has been previously suggested.³⁰

110 II. EXPERIMENTAL SECTION

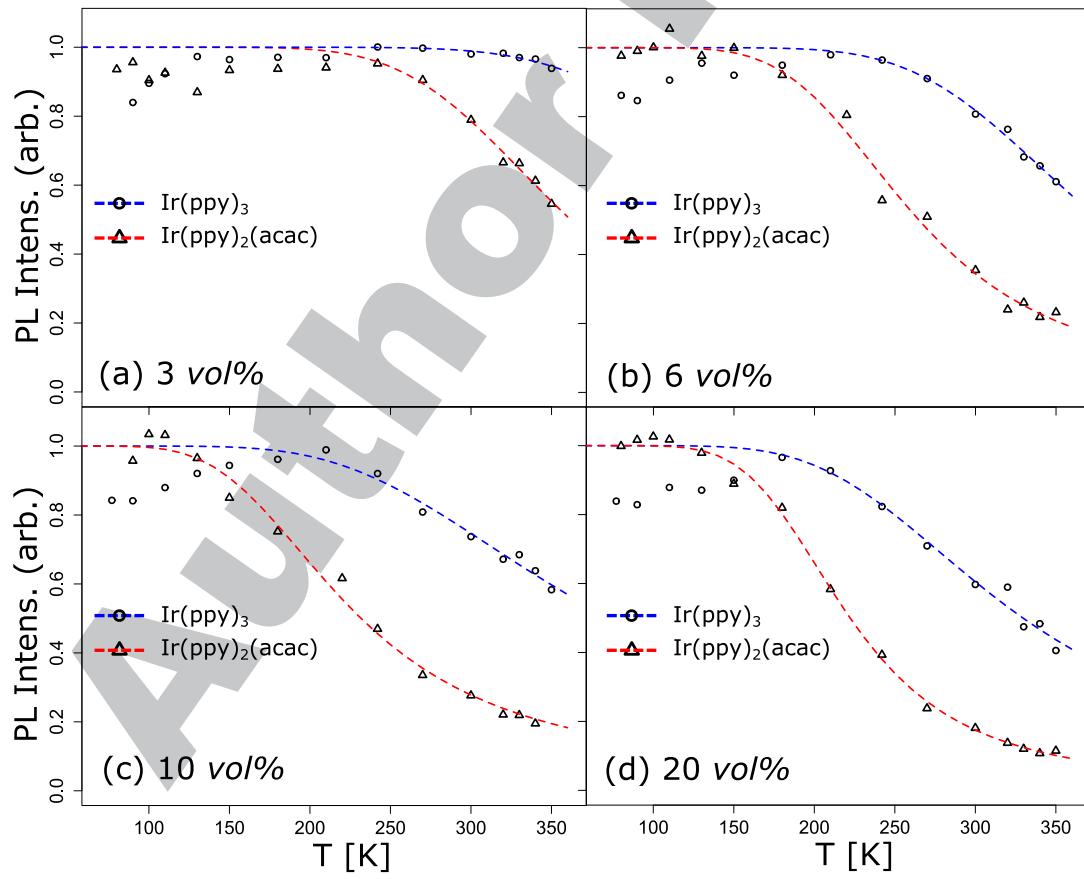

111 Organic materials were used as-purchased from Luminescent
112 Technology Corp. (Lumtec). For all samples, the guest-host EML
113 layers were co-deposited by vacuum thermal evaporation at a rate
114 of ~ 1 Å/s at a background pressure of 1×10^{-6} Torr and ambient
115 temperature.

Samples for PL measurements were 80 nm-thick and unloaded
116 directly into a nitrogen-atmosphere glovebox and encapsulated with
117 a glass cover using UV-cure epoxy to prevent oxygen intrusion.
118 Temperature-dependent (TD)-PL measurements were performed
119 on samples prepared on Si substrates in an in-house fabricated sys-
120 tem consisting of a diode laser (375 nm wavelength, 25 mW power),
121 neutral density filters, a temperature-controlled liquid-nitrogen
122 cooled cryostat, a 450 nm long-pass filter, and an Ocean Optics
123 mini-spectrometer. Initial excitation densities are estimated to be
124 $n_0 < 1.6 \times 10^{23} \text{ m}^{-3}$ to avoid exciton-exciton quenching effects. The
125 PL results are provided in Fig. S1 of the [supplementary material](#).

126 Temperature-dependent time-resolved photoluminescence
127 (TRPL) measurements were performed on similar samples in the
128 same cryostat but with an in-house fabricated system designed to
129 collect TRPL spectra from a minimum number of excitation pulses,
130 using a SRS NL100 nitrogen laser (337 nm wavelength, 170 μJ pulse
131 energy), a long-pass filter, a photomultiplier tube (185–900 nm
132 spectral response, gain $> 10^7$, 1.4 ns response time, Thorlabs
133 PMTSS), a preamplifier (DC to 350 MHz, SRS SR445A), and a
134 100 MHz oscilloscope. Initial excitation densities are estimated to
135 be $n_0 = 1.6 \times 10^{23} \text{ m}^{-3}$ to minimize TTA processes, as our focus is
136 on excited state lifetimes. The TRPL results are provided in Figs.
137 S2 and S3 of the [supplementary material](#) for TCP and DCzDCN
138 systems, respectively.

139 Photoluminescence quantum yield (PLQY) samples with an
140 EML thickness of 40 nm were similarly prepared on quartz
141 substrates and measured on a Hamamatsu Quantaurus-QY Plus
142 UV-near-infrared (NIR) absolute PL quantum yield spectrome-
143 ter with an excitation wavelength of 340 nm with a continuous
144 N_2 purge.

145 HAADF-STEM samples were prepared on single or double
146 layer graphene transmission electron microscopy (TEM) grids (Ted
147 Pella, PELCO). The layer structure is a 10 nm-thick tris(4-carbazoyl-
148 9-ylphenyl)amine (TCTA) base-layer to coat the substrate, a
149 10 nm-thick EML, and a 10 nm-thick TCTA capping layer; the base
150 and capping layers were designed to prevent dewetting of the EML
151 on the graphene grid during the necessary degassing step. The total
152 thickness of these three layers is kept to a minimum to ensure higher
153 contrast and resolution of the images. Before STEM experiments,
154 the samples were baked at 80 °C for 8 h in vacuum to reduce car-
155 bon contamination during imaging. After baking, the samples were
156 rapidly transferred to the instrument vacuum. Aberration-corrected
157 HAADF-STEM imaging was performed on a Nion UltraSTEM
158 100 instrument operated at 100 keV with a 31 mrad semiconver-
159 gence angle. Electron doses of $\sim 5 \times 10^4$ electrons/Å² were utilized
160 for imaging, which minimized Ir atom movement within a given
161 image. Analysis of Ir atom positions was performed using a cus-
162 tom Python code utilizing common packages. Briefly, the process
163 involved removal of low-frequency background image intensity, ini-
164 tial atom position determination, which was performed with single-
165 pixel precision using a difference of Gaussian blob-finding approach,
166 and a refinement of these positions with sub-pixel precision through
167 Gaussian function fitting of each individual atom.³¹ The effective
168 depth of field, where the code could identify atom positions, was
169 ~ 8 nm; however, variations between 5 and 10 nm did not signifi-
170 cantly impact the statistical modeling conclusions. Additional details
171 on these measurements and statistical analyses will be provided in an
172 upcoming publication.


174
175
176 **FIG. 1.** PLQY dependence on guest vol. % concentration for host-guest systems
177 of Ir(ppy)₃ (blue circles) and Ir(ppy)₂(acac) (red triangles) doped in either TCP
178 (open symbol with dashed lines) or DCzDCN (closed symbols with dotted lines).

III. RESULTS AND DISCUSSION

A. Effect of guest polarity: Photoluminescence properties

Concentration quenching for various phosphorescent dopants is best quantified through measurements of PLQY vs dopant concentration.⁸ In systems with high triplet confinement energy, triplet excitons are predominantly localized on the guest (dopant) molecules.³² The observed concentration quenching is mainly due to dopant self-quenching, which arises from the formation of excimers on guest dimers. This occurs as the average separation between dopant molecules reduces and the number of dopant-type nearest neighbors increases with concentration.^{8,9,33,34}

To study the effect of guest PDM on CQ, we conducted our analysis using Ir(ppy)₃ and Ir(ppy)₂(acac), separately doped into the non-polar host TCP. This host material was chosen for its large triplet energy ($E_T = 2.95$ eV³⁵), which allows for a sufficiently large confinement energy ($\Delta E_T \approx 0.50$ eV). The findings, depicted in Fig. 1, reveal that both guest systems in the TCP host start with a high

177 **FIG. 2.** Normalized TD-PL intensity for Ir(ppy)₃ (circles) and Ir(ppy)₂(acac) (triangles), doped in TCP host, fitted to the model in Eq. (7).

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

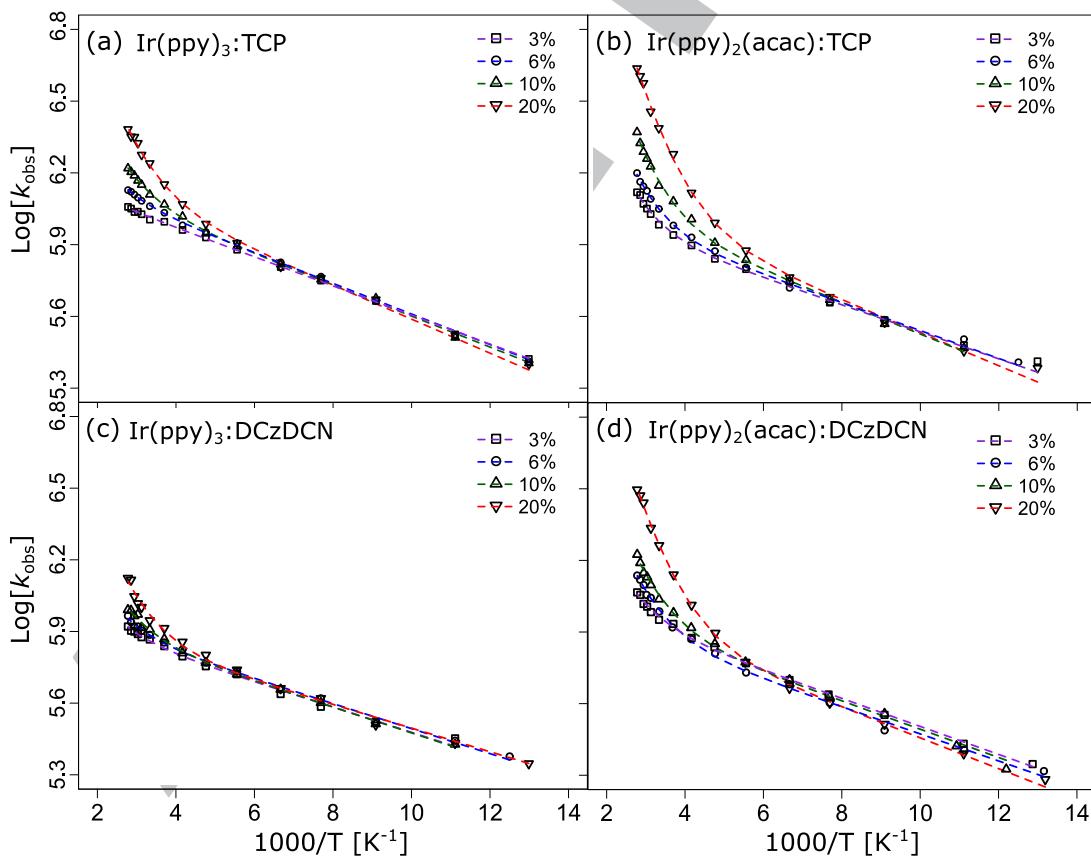
■ 193

194

195

197 PLQY efficiency (about 90%) at a low guest concentration (3 vol. %).
 198 However, as the dopant concentration increases, a notable decrease
 199 in PL efficiency is observed, characteristic of the self-quenching
 200 effect. Notably, the $\text{Ir}(\text{ppy})_3$ system maintains a relatively higher
 201 PLQY (~60%) at a 20 vol. % concentration, while the PLQY in the
 202 $\text{Ir}(\text{ppy})_2(\text{acac})$ system significantly decreases, dropping to 5% at the
 203 same concentration.

204 To delve deeper into the PL quenching mechanisms in these
 205 systems, we employed temperature-dependent PL analysis. This
 206 included studies of PL intensity (Fig. 2) and PL decay rates (Fig. 3).
 207 Figure 2 illustrates the temperature-dependent integrated PL intensity
 208 for both dopants, represented as $\text{Ir}(\text{ppy})_3$ (blue circles) and
 209 $\text{Ir}(\text{ppy})_2(\text{acac})$ (red triangles), across various doping levels in TCP.
 210 For both dopants in a TCP host, we observed a small initial increase
 211 in PL intensity with rising temperature, followed by a decrease with
 212 further temperature elevation. The specific temperature at which this
 213 peak occurs varies between the two dopant systems and is influenced
 214 by the doping levels.


215 This TD-PL behavior has been documented in neat films of
 216 $\text{Ir}(\text{ppy})_3$ by Kobayashi *et al.*,³⁶ and a comprehensive explanation
 217 was offered using a four-level model, which includes a non-radiative

220 state in addition to the three zero-field splitting (ZFS) sub-states
 221 of the lowest emissive triplet metal-to-ligand charge transfer state
 222 of the phosphorescent organometallic complexes;³⁷⁻³⁹ we herein
 223 extend this model for doped films. As later noted by Tsuboi and
 224 Aljaroudi,²⁷ the initial increase in PL, at low temperatures, is
 225 attributed to the thermal excitation of triplet excitons from lower
 226 ZFS triplet sub-states to the highest, most emissive, triplet sub-
 227 state. Further temperature increases lead to exciton transfer from
 228 this emissive sub-state to a non-emissive fourth state, causing the
 229 observed PL quenching. Tsuboi clarified this PL quenching mech-
 230 anism in neat $\text{Ir}(\text{ppy})_3$ films as a thermally activated transfer of
 231 monomer excitation to excimer states, which act as quenching
 232 sites in a Stern-Volmer formalism.³⁴

233 The dynamics of exciton population in this four-level model are
 234 described by the following rate equations and Boltzmann factors:

$$\frac{dN}{dt} = -k_{\text{obs}}N = -\sum_{i=1}^4 k_i n_i, \quad (1) \quad 235$$

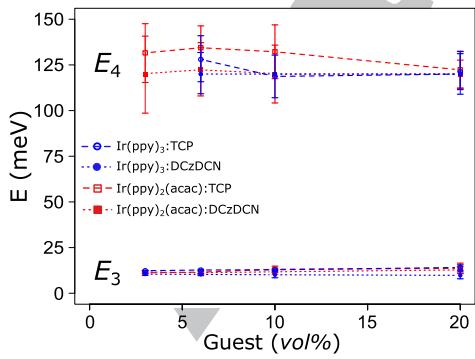
$$n_i = Ne^{\left(-\frac{E_i}{k_B T}\right)}, \quad (2) \quad 236$$

218 **FIG. 3.** TD-TRPL emission rate (k_{obs}) data of $\text{Ir}(\text{ppy})_3$ at different doping levels in (a) TCP and (c) DCzDCN hosts and $\text{Ir}(\text{ppy})_2(\text{acac})$ at different doping levels in (b) TCP
 219 and (d) DCzDCN hosts, fitted with the biexponential model in Eq. (5). 237

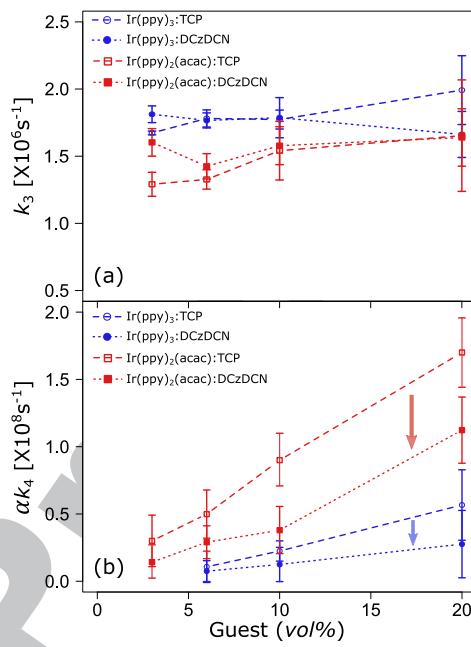
238 where N is the total number of triplet excitons, k_B is the Boltzmann
239 constant, and n_i and k_i represent the population and decay rate
240 of sub-state i , respectively. E_i is the energy difference between the
241 lowest sub-state and sub-state i . By inserting Eq. (2) into Eq. (1),
242 the average observed decay rate of excitons, k_{obs} , and the relative
243 phosphorescence efficiency ϕ_p can be calculated as

$$244 \quad k_{\text{obs}} = k_1 + k_2 e^{\left(\frac{-E_2}{k_B T}\right)} + k_3 e^{\left(\frac{-E_3}{k_B T}\right)} + k_4 e^{\left(\frac{-E_4}{k_B T}\right)}, \quad (3)$$

$$245 \quad \phi_p = \frac{k_1 + k_2 e^{\left(\frac{-E_2}{k_B T}\right)} + k_3 e^{\left(\frac{-E_3}{k_B T}\right)}}{k_1 + k_2 e^{\left(\frac{-E_2}{k_B T}\right)} + k_3 e^{\left(\frac{-E_3}{k_B T}\right)} + k_4 e^{\left(\frac{-E_4}{k_B T}\right)}}. \quad (4)$$


247 At temperatures above 100 K, k_1 and k_2 terms are orders
248 of magnitude lower than k_3 ,^{36,37} allowing Eqs. (3) and (4) to be
249 simplified to

$$250 \quad k_{\text{obs}} = k_3 e^{\left(-E_3/k_B T\right)} + \alpha k_4 e^{\left(-E_4/k_B T\right)}, \quad (5)$$


$$251 \quad \phi_p = \frac{k_3 e^{\left(-E_3/k_B T\right)}}{k_3 e^{\left(-E_3/k_B T\right)} + \alpha k_4 e^{\left(-E_4/k_B T\right)}}. \quad (6)$$

253 We extend the previous models for neat films to work with
254 doped films by including α , a dimensionless parameter related to the
255 concentration of quenching states within the system. At low dopant
256 concentrations, α is nearly zero, leading to a conventional three-
257 level monomer-like system. As the dopant concentration increases,
258 α rises due to an increased presence of quenching states (i.e., excimer
259 states),^{33,34} which would result from an increased amount of dopant
260 aggregation (e.g., dimers). The significance of α is explored by fitting
261 temperature-dependent exciton decay rates (k_{obs}) in Fig. 3,
262 obtained from TRPL measurements (provided in Figs. S1 and S2
263 of the supplementary material), with the biexponential model in
264 Eq. (5). The fit results are presented in Figs. 4 and 5.

265 In Fig. 4(a), the values of E_3 (~12 meV) align well with the
266 reported activation energy between the second and third monomer

267 **FIG. 4.** Comparative analysis of extracted fit parameters from TD-TRPL emission
268 rate data in Fig. 3 (TCP and DCzDCN hosts). E_3 and E_4 for host-guest systems
269 of $\text{Ir}(\text{ppy})_3$ (blue circles) and $\text{Ir}(\text{ppy})_2(\text{acac})$ (red squares) doped in either TCP
270 (open symbols and dashed lines) or DCzDCN (closed symbols and dotted lines).

271 **FIG. 5.** Extracted fit parameters from TD-TRPL emission rate data in Fig. 3 (TCP
272 and DCzDCN hosts). (a) k_3 and (b) αk_4 for host-guest systems of $\text{Ir}(\text{ppy})_3$ (blue
273 circles) and $\text{Ir}(\text{ppy})_2(\text{acac})$ (red squares) doped in either TCP (open symbols and
274 dashed lines) or DCzDCN (closed symbols and dotted lines).

275 triplet sub-states,⁴⁰ while the obtained E_4 (~120 meV) is consistent
276 with the activation energy for excimer formation.²⁷ Figure 5(a) shows that the radiative decay rate k_3 remains constant across the
277 studied range of emitter concentrations, while the quenching rate,
278 corresponding to the product αk_4 in Fig. 5(b), increases with increasing
279 doping concentration. Similar behaviors have been observed by
280 Kawamura *et al.*, who attributes the quenching process to a Förster
281 energy transfer.⁹ The quenching rate rises to about $5 \times 10^7 \text{ s}^{-1}$ at
282 a guest doping concentration of 20 vol. % for $\text{Ir}(\text{ppy})_3$, while it
283 is approximately three times larger for $\text{Ir}(\text{ppy})_2(\text{acac})$. Assuming
284 that the decay rate k_4 is similar for $\text{Ir}(\text{ppy})_3$ and $\text{Ir}(\text{ppy})_2(\text{acac})$,
285 this increase in α would be indicative of more aggregation in
286 $\text{Ir}(\text{ppy})_2(\text{acac})$ relative to $\text{Ir}(\text{ppy})_3$.

287 In Fig. 2, we show that, at each concentration studied, the PL
288 quenching in $\text{Ir}(\text{ppy})_2(\text{acac})$ systems is more pronounced than in
289 the corresponding $\text{Ir}(\text{ppy})_3$ systems. For further analysis, we consider
290 that $\phi_p(T) = I(T)/I_0$. Here, I_0 is the maximum PL intensity,
291 occurring when the temperature is low enough that there is no
292 transfer of excitation to the quenching state. We express the TD-
293 PL intensity [$I(T)$] in a form similar to the classic Stern-Volmer
294 equation,³⁴

$$295 \quad I(T) = \frac{I_0}{1 + A e^{\left(-E_a/k_B T\right)}}, \quad (7)$$

296 where $A = \alpha(k_4/k_3)$ and the activation energy $E_a = E_4 - E_3$.

297 Applying this model at temperatures above 200 K—where the
298 effects of thermal transfer between the triplet sub-states are efficient

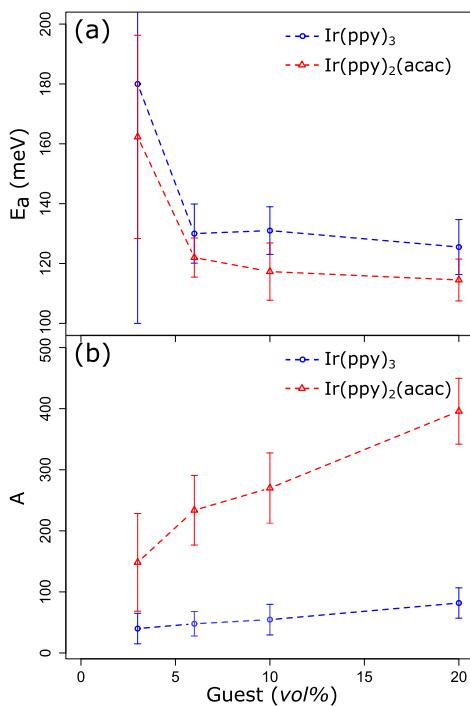


FIG. 6. Fit parameters to TD-PL data in Fig. 2 data with Eq. (7) for Ir(ppy)₃ (blue circles) and Ir(ppy)₂(acac) (red triangles) doped in TCP host.

and emission from the third sub-state dominates—we extract key insights into the quenching process. These are depicted in Fig. 6, illustrating (a) the activation energy E_a , transitioning from the third triplet sub-state to the fourth quenching state, and (b) the prefactor A , which is proportional to the concentration of quenching states. In agreement with previous TD-TRPL analysis, the activation energy is roughly 120 meV for both dopants. The quenching prefactor A increases with guest concentration; however, the growth in A is more rapid for Ir(ppy)₂(acac) compared to Ir(ppy)₃.

In summary, PL quenching increases with increased doping concentration. This increase is notably more substantial in the Ir(ppy)₂(acac) systems than in Ir(ppy)₃. We attribute this to a higher degree of aggregation in the Ir(ppy)₂(acac) systems, a conclusion bolstered by direct microscopic analysis (see below), employing HAADF-STEM measurements and spatial-statistics based point-pattern analysis (PPA) on thin films of the two host-guest systems.

B. Effect of guest polarity: HAADF-STEM analysis

HAADF-STEM provides a 2D projection of the spatial distribution of guest molecules within the depth of field of the instrument, thanks to the high scattering contrast from the heavy iridium core of the dopant molecules. In Fig. 7, we present the HAADF-STEM experimental results on thin films of host-guest systems containing 10 vol. % of Ir(ppy)₃ doped in TCP host (example micrograph shown in Fig. 7(a) with the extracted molecular positions in Fig. 7(b)). Additional HAADF-STEM images and corresponding

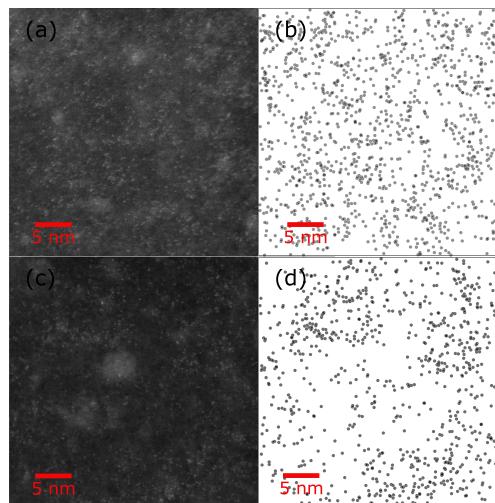
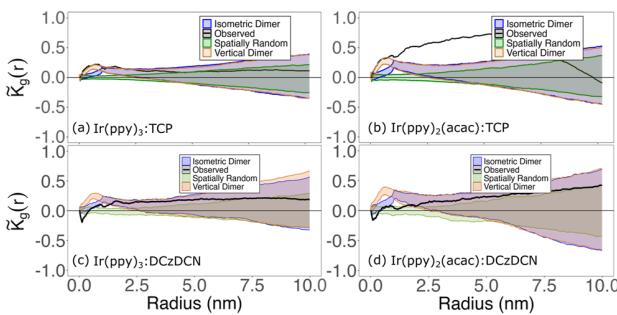
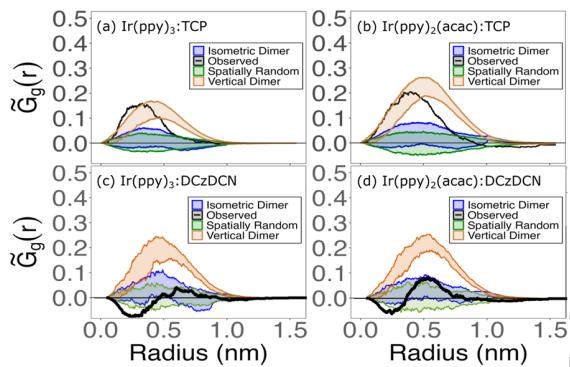



FIG. 7. (a) HAADF-STEM images and (b) extracted coordinates for 10 vol. % Ir(ppy)₃, (c) HAADF-STEM images and (d) extracted coordinates for Ir(ppy)₂(acac), all in a TCP host.


PPA are provided in the [supplementary material](#) (Figs. S4 and S5). Similar results are displayed for the Ir(ppy)₂(acac) system doped in TCP host, in images (c) and (d). A visual inspection of Figs. 7(a) and 7(b) suggests that the Ir(ppy)₃ molecules are relatively evenly dispersed across the field, while there is a long-range density variation for Ir(ppy)₂(acac) in Figs. 7(c) and 7(d).

Analysis of the guest locations is performed by applying Ripley's K- ([Fig. 8](#)) and G-function ([Fig. 9](#)) based spatial-statistics⁴¹⁻⁴⁴ to the experimentally observed point patterns. For Ir(ppy)₃ and Ir(ppy)₂(acac) doped in the non-polar host TCP, K-function analyses are presented in Figs. 8(a) and 8(b), respectively (additional analyses are provided in Figs. S5-S7 of the [supplementary material](#)). Ripley's K-function is a measure of the number of like-points within each evaluation radius r (Ir-cores, in this case). To understand these data, we simulate 3D patterns of guest molecules on a simulated random close packed (RCP) lattice of appropriate thickness, collapse the data into 2D, and perform the same point-pattern analysis. We subtract the mean of 100 simulations of random dispersions of guest identities on the RCP lattice to create $\hat{K}_g(r)$. We plot the 95% acceptance intervals in [Fig. 8](#) for the random simulation (tan band); randomly dispersed data are expected to fall within this band 95% of the time. When the experimental data are positive and above the acceptance interval band, this suggests that there is a significant degree of clustering occurring at that analysis radius.

The G-function is the cumulative distribution of the distance from each guest Ir-core to the nearest guest core, providing complementary details on short-range clustering (e.g., providing a strong signal for guest dimers). $\hat{G}_g(r)$ (shown in [Fig. 9](#)) is similarly calculated from $G_g(r)$ by subtracting the median of the random relabeling simulations at each r , and a deviation above the envelopes indicates that the molecules are more closely spaced than would be expected for a spatially random dispersion.

364
365
366 **FIG. 8.** Ripley's K-function analysis of 10 vol. % guest doping for (a) $\text{Ir}(\text{ppy})_3$ in TCP, (b) $\text{Ir}(\text{ppy})_2(\text{acac})$ in TCP, (c) $\text{Ir}(\text{ppy})_3$ in DCzDCN, and (d) $\text{Ir}(\text{ppy})_2(\text{acac})$ in DCzDCN.

367
368
369 **FIG. 9.** Ripley's G-function analysis of 10 vol. % guest doping for (a) $\text{Ir}(\text{ppy})_3$ in TCP, (b) $\text{Ir}(\text{ppy})_2(\text{acac})$ in TCP, (c) $\text{Ir}(\text{ppy})_3$ in DCzDCN, and (d) $\text{Ir}(\text{ppy})_2(\text{acac})$ in DCzDCN.

370 Acceptance interval envelopes for $\tilde{K}_g(r)$ and $\tilde{G}_g(r)$ for simulated point patterns of randomly oriented dimers and preferentially 371 vertically oriented dimers are also provided in Figs. 8 and 9, respectively, to provide additional possible point patterns of the samples. 372 For $\tilde{K}_g(r)$ analysis of $\text{Ir}(\text{ppy})_3$ in Fig. 8(a), the experimental data 373 fall within the acceptance band for the vertical dimer model across 374 the entire radius range. Additional sensitivity to the short-range 375 ordering for $\tilde{G}_g(r)$ analysis of $\text{Ir}(\text{ppy})_3$ in Fig. 9(a) suggests that the 376 typical spacing for nearest neighbors is even closer than would be 377 expected for the vertical dimers that are modeled by our RCP lattice. 378 The molecular shapes and molecular dynamics of stacking is 379 not accounted for in these statistical models, but given the qualitative 380 agreement to the models and that many dimers and short chains 381 are visually present in the data, no additional simulations are 382 provided here. Additional details on this analysis will be provided in a 383 separate publication.⁴⁵

384 The $\tilde{K}_g(r)$ analysis of $\text{Ir}(\text{ppy})_2(\text{acac})$ in Fig. 8(b) is slightly 385 more complicated. The increase at radius values below 1 nm is again 386 consistent with vertical dimers, but the peak at roughly 2.5–5 nm 387 is indicative of long-range clustering behavior with domains of 388 roughly twice the radius value of the peak,^{43,46} in qualitative agreement 389 with the data shown in Fig. 9(b). The $\tilde{G}_g(r)$ analysis in Fig. 9(b)

390 supports that many of the guests exist in vertical dimer configurations. 391 In aggregate, these data suggest that $\text{Ir}(\text{ppy})_2(\text{acac})$, with its significantly 392 lower PDM, can diffuse over many nanometers before finding a local 393 minimum and being buried by additional impinging molecules, while $\text{Ir}(\text{ppy})_3$ has a shorter surface diffusion 394 length. Again, additional details on this analysis will be provided in 395 a separate publication.⁴⁵

396 This finding of more aggregation in $\text{Ir}(\text{ppy})_2(\text{acac})$ compared to $\text{Ir}(\text{ppy})_3$ in a TCP host is in agreement with the relevant 397 PL measurements of Figs. 1–5, which would be consistent with 398 higher aggregation-based quenching values for $\text{Ir}(\text{ppy})_2(\text{acac})$. In 399 addition, these microscopic analyses uncover a tendency for both 400 dopant systems to form vertically oriented dimers or stacks. The 401 reasons behind the observed behavior are further explored through the 402 analysis of simulated model morphologies in Sec. IV.

C. Effect of a polar host: Photoluminescence properties

403 To investigate the effect of host polarity, we employed a polar 404 host DCzDCN, with a PDM of 4.1 D,^{25,26} but similar in mass and 405 geometry to the non-polar host TCP. The overall PLQY in Fig. 1 406 starts lower for both guests in DCzDCN relative to TCP hosts, 407 presumably due to the lower triplet confinement energy, but the rate 408 at which it decreases with concentration is less, particularly in the 409 case of $\text{Ir}(\text{ppy})_2(\text{acac})$. Similar to the non-polar host (TCP) systems 410 [Figs. 3(a) and 3(b)], the dependence of exciton decay rate 411 k_{obs} on temperature for $\text{Ir}(\text{ppy})_3$ and $\text{Ir}(\text{ppy})_2(\text{acac})$ in the polar 412 host (DCzDCN), shown in Figs. 3(c) and 3(d), exhibits two distinct 413 exponential regions. The initial increase in k_{obs} with temperature, 414 similarly attributed to the thermal excitation of triplet excitons to 415 the highest, most emissive triplet sub-state, has a similar activation 416 energy, $E_3 \approx 12$ meV (Fig. 4), in the polar host (DCzDCN) 417 systems as in the non-polar host (TCP) systems. A further temperature 418 increase leads to exciton transfer to the non-emissive fourth 419 state associated with excimer formation on aggregates.^{27,34} This 420 thermally activated process also exhibits a similar activation energy 421 ($E_4 \approx 120$ meV) in DCzDCN systems as in TCP systems. Similar to 422 the non-polar host (TCP) systems, this second region gets more 423 pronounced with increasing guest concentration because of increased 424 aggregate formation. A close look at the TD k_{obs} data in Fig. 3, how- 425 ever, shows that this second activation to the non-emissive state is 426 less pronounced in DCzDCN systems [Figs. 3(c) and 3(d)] relative to 427 corresponding TCP systems [Figs. 3(a) and 3(b)]. This observation 428 is further explored in Fig. 5.

429 As discussed in Sec. III A, Fig. 5 shows the extracted exciton 430 decay rates k_3 and αk_4 from the TD k_{obs} data in Fig. 3 using 431 the model in Eq. (5). The radiative decay rates k_3 , associated with 432 guest monomer emission, remain nominally constant across the 433 studied range of emitter concentrations in the two host systems, 434 indicating that monomers of the two guest emitters [i.e., $\text{Ir}(\text{ppy})_3$ 435 and $\text{Ir}(\text{ppy})_2(\text{acac})$] have a similar emissive rate and changing host 436 PDM does not affect monomer emissive properties. Meanwhile, as 437 discussed for TCP systems, the PL quenching rate, corresponding to 438 the product αk_4 , increases with increasing doping concentration and 439 rises much faster for $\text{Ir}(\text{ppy})_2(\text{acac})$ relative to $\text{Ir}(\text{ppy})_3$ systems, 440 which was attributed to more aggregation in $\text{Ir}(\text{ppy})_2(\text{acac})$ relative 441 to $\text{Ir}(\text{ppy})_3$. Now looking at both guest dopants in the polar host 442

448 material DCzDCN (closed symbols and dotted lines), we observe an
449 overall shift to lower magnitudes for αk_4 , relative to the non-polar
450 host systems (open symbols and dashed lines). This suggests that
451 there is reduced aggregation for both guest molecules when doped
452 in the polar host DCzDCN as compared to the non-polar TCP.

453 In summary, PL quenching is reduced for both studied guest
454 dopants, $\text{Ir}(\text{ppy})_3$ and $\text{Ir}(\text{ppy})_2(\text{acac})$, when doped in the polar
455 host DCzDCN compared to when doped in the non-polar host
456 TCP. We attribute this to a reduced degree of guest aggregation
457 in the polar DCzDCN systems, a conclusion supported by direct
458 microscopic analysis, employing HAADF-STEM measurements and
459 spatial-statistics based point pattern analysis (PPA) on thin films
460 of the two guests doped in both host systems in Figs. 8 and 9 and
461 discussed below.

462 D. Effect of a polar host: HAADF-STEM analysis

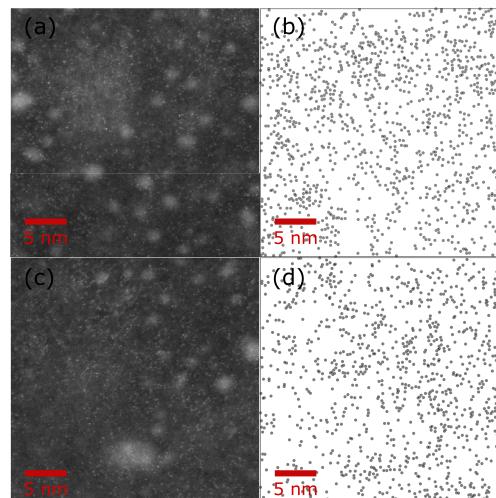
463 In Fig. 10, we present the HAADF-STEM experimental results
464 and extract guest locations for 10 vol. % $\text{Ir}(\text{ppy})_3$ [(a) and (b)] and
465 $\text{Ir}(\text{ppy})_2(\text{acac})$ [(c) and (d)] doped in the polar host DCzDCN.
466 A comparative analysis of the spatial distributions of the two guests
467 in the non-polar and polar hosts using the Ripley's K-function, in
468 Fig. 8, shows that the polar host DCzDCN [(c) and (d)] significantly
469 reduces the aggregation of both $\text{Ir}(\text{ppy})_2(\text{acac})$ and $\text{Ir}(\text{ppy})_3$, relative
470 to when doped into TCP [(a) and (b)]. The K-function analysis
471 reveals a nuanced view of how spatial relationships evolve across
472 different scales. At shorter distances ($r < 1 \text{ nm}$), the function's
473 deviation below the envelope of a random distribution for both
474 $\text{Ir}(\text{ppy})_2(\text{acac})$ and $\text{Ir}(\text{ppy})_3$ in DCzDCN suggests pronounced
475 guest inhibition, likely due to the polar DCzDCN host strongly inter-
476 acting with the guest molecules. This inhibition is in contrast to the
477 observed aggregation for both guests in the non-polar host TCP,
478 where both $\text{Ir}(\text{ppy})_3$ and $\text{Ir}(\text{ppy})_2(\text{acac})$ guest molecules tend to
479 fall within the vertical dimer envelopes. More HAADF-STEM and
480 spatial point-pattern analyses for DCzDCN systems are provided in
481 Figs. S6 and S7 of the [supplementary material](#).

482 Furthermore, the transition to larger radii ($r > 1 \text{ nm}$) in the
483 K-function underscores a critical shift toward less deviation from the
484 random point distribution of the polar host DCzDCN compared to
485 TCP, particularly for $\text{Ir}(\text{ppy})_2(\text{acac})$. This observation suggests that
486 the polar host environment disrupts the propensity for large-scale
487 aggregation, promoting a more well-dispersed dopant distribution.
488 Such a distribution is crucial for minimizing guest-guest interactions,
489 which, as established, play a pivotal role in concentration
490 quenching phenomena. The decreased aggregation and enhanced
491 dispersion in the polar host directly correlate with the improved
492 PLQY, as seen in Fig. 1, and performance metrics observed in TD-
493 TRPL analyses of Fig. 5, confirming the beneficial impact of host
494 material polarity on PhOLED efficiency.

495 Through a detailed examination of these spatial patterns, this
496 analysis not only complements the photophysical insights from
497 PLQY and TD-TRPL studies but also enriches our understand-
498 ing of the fundamental mechanisms governing dopant distribution
499 and interaction within PhOLED systems. The ability of the polar
500 host DCzDCN to mitigate aggregation and promote guest inhibition
501 at short distances emerges as a key factor in optimizing PhOLED
502 design and performance.

IV. MORPHOLOGY SIMULATION

A. Ising model for aggregation


505 Here, we employ analysis of model morphologies simulated
506 based on the kinetic Monte Carlo (KMC) and Ising clustering
507 model, explain the observed results, and elucidate on how a larger
508 dopant molecule permanent-dipole moment leads to the formation
509 of small aggregates and the observed vertical stacking. The foun-
510 dational framework for developing model morphologies for small
511 molecule blends was initially introduced by Peumans *et al.*⁴⁷ draw-
512 ing inspiration from the Kawasaki spin-exchange Ising model.⁴⁸
513 Subsequently, Watkins *et al.*⁴⁹ simplified and adapted this concept
514 to KMC simulations.

515 In our methodology, molecules are conceptualized as structure-
516 less points on a cubic grid, with predefined interaction energies.
517 While acknowledging its limitations, this approach enables simula-
518 tions of device-scale systems that are still unfeasible with techniques
519 such as molecular dynamics.

520 The Ising clustering model entails generating a three-
521 dimensional cubic lattice, with host or guest sites randomly assigned
522 based on a specified host-guest ratio. Periodic boundary conditions
523 are imposed in the x and y directions, while hard boundaries are
524 enforced in the z-direction to mimic a thin film. The standard Ising
525 Hamiltonian is employed to compute the energy of site i ,

$$e_i = -\frac{J_{\text{Host},\text{Guest}}}{2(d_{ij}/a)} \sum_j (\delta_{t_i,t_j} - 1). \quad (8)$$

527 Here, a represents the lattice constant, δ_{t_i,t_j} is the Kronecker
528 delta, and t_i and t_j signify the types of molecules occupying sites i
529 and j , respectively, with a separation of distance d_{ij} . The parameter
530 $J_{\text{Host},\text{Guest}}$ denotes the interaction energy, reflecting the difference

531 **FIG. 10.** (a) HAADF-STEM images and (b) extracted coordinates for
532 10 vol. % $\text{Ir}(\text{ppy})_3$, (c) HAADF-STEM images and (d) extracted coordinates for
533 $\text{Ir}(\text{ppy})_2(\text{acac})$, all in a DCzDCN host.

534 between host–host ($J_{\text{H–H}}$) or guest–guest interaction energy ($J_{\text{G–G}}$)
 535 and host–guest interaction energy ($J_{\text{H–G}}$),

536
$$J_{\text{Host}} = J_{\text{H–H}} - J_{\text{H–G}}, \quad (9)$$

537
$$J_{\text{Guest}} = J_{\text{G–G}} - J_{\text{H–G}}. \quad (10)$$

538 Following lattice generation, the aggregation process is simulated
 539 by allowing the system's energy to relax over a series of
 540 iterations, i.e., Monte Carlo steps (MCS). The aggregation process
 541 involves swapping nearest-neighbor sites, where two adjacent sites
 542 with different types are randomly selected from the lattice. The
 543 total energy change of the system resulting from swapping the sites,
 544 denoted $\Delta\epsilon$, is computed and utilized to calculate the probability of
 545 the swapping event,

546
$$P(\Delta\epsilon) = \frac{e^{-\Delta\epsilon/(k_B T)}}{1 + e^{-\Delta\epsilon/(k_B T)}}. \quad (11)$$

547 To simulate aggregation in organic light-emitting diodes
 548 (OLEDs), we employed an open-source simulation tool named
 549 Ising-OPV, developed by Heiber and Dhinojwala.⁵⁰ Originally
 550 designed for generating bulk-heterojunction (BHJ) morphologies in
 551 organic photovoltaics, we tailored the code to produce model mor-
 552 phologies for surface diffusion dominated physical vapor-deposition
 553 (PVD).

554 B. Physical vapor-deposition algorithm

555 In systems made by PVD, similar to OLED films, molec-
 556 ular aggregation is primarily governed by rapid surface diffusion,
 557 rather than relaxation within the bulk of the material.^{10–12} To sim-
 558 ulate these PVD systems more accurately, we have made specific
 559 alterations to the BHJ algorithm, which typically emphasizes bulk
 560 relaxation in aggregation.

561 The BHJ algorithm models molecular aggregation by randomly
 562 selecting and swapping two adjacent sites within a 3D lattice to
 563 reduce the system's energy. However, in our modified PVD algo-
 564 rithm, only the molecules in the surface layer are allowed to swap
 565 positions, while those in the lower layers are fixed. This process is
 566 repeated for a certain number of iterations, given by the number of
 567 MCS before locking the surface and adding a new layer of molecules

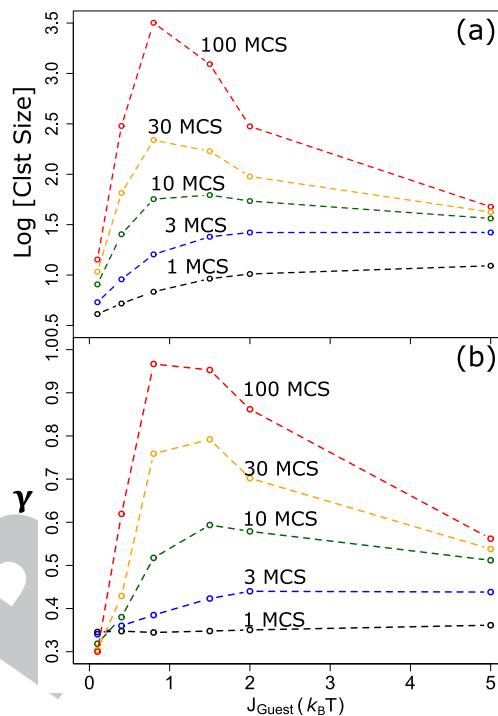


FIG. 12. Morphology analysis for a 10% guest–host ratio system with a fixed $J_{\text{Host}} = 0.4k_B T$. (a) Cluster size and (b) verticality of cluster measured by parameter γ .

569
570

571 and repeating. This layer-by-layer approach, starting from the bot-
 572 tom layer and moving upward, replicates the restricted diffusion of
 573 molecules in the bulk of thin films while letting the surface relax.
 574 Example model morphologies created using the PVD algorithm are
 575 illustrated in Fig. 11, with further analysis in Fig. 12.

576 Figure 12(a) shows how the size of molecular clusters, resulting
 577 from guest molecule aggregation, varies with the interaction energy
 578 between guest molecules (J_{Guest}) and the number of MCS. The num-
 579 ber of MCS is related to the time allowed for surface molecules to
 580 diffuse before being fixed in a metastable state by newly deposited
 581 molecules. Experimentally, this time is inversely proportional to the

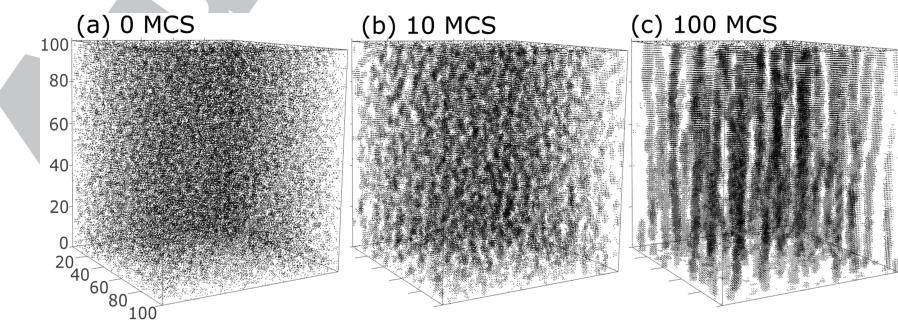


FIG. 11. Model morphologies of a binary host–guest system produced with the PVD model with $J_{\text{Host}} = 0.4k_B T$ and $J_{\text{Guest}} = 1.5k_B T$ at different MCS.

582

568

583 deposition rate. Several studies of PVD organic semiconductors have
584 indicated that a lower deposition rate allows for further equilibration
585 at the surface toward preferred structures.^{13,20,51,52} Our simulations
586 similarly show that the cluster size increases with a higher number
587 of MCS. In our experiments, deposition rates were kept at 1 Å s⁻¹.
588 Assuming the effective diameter of each molecule being 1 nm means
589 that each molecule has 10 s to diffuse before being covered by incom-
590 ing molecules. While we do not know the exact number of MCS steps
591 this correlates with, the deposition rate is many orders of magni-
592 tude greater than molecular vibrations, suggesting that we should be
593 considering larger values of MCS.

594 For MCS values greater than 10, the relationship between
595 the cluster size and J_{Guest} displays a non-monotonic pattern. Ini-
596 tially, the cluster size increases with J_{Guest} until a critical threshold
597 ($J_{\text{Guest}} \approx 1k_B T$), beyond which, further increases in J_{Guest} reduce
598 the cluster size. The PDM of Ir(ppy)₃ and Ir(ppy)₂(acac), at
599 6.26 and 1.81 D respectively, correspond to dipole–dipole (i.e., Kees-
600 som) interaction energies of roughly 204 and 47 meV,²⁴ which are
601 added to the other existing intermolecular forces. These energies are
602 ~8.1 $k_B T$ and 1.9 $k_B T$ at room temperature. Ir(ppy)₂(acac), with its
603 lower dipole–dipole interaction energy, is just to the right of the peak
604 of the curves in Fig. 12, while Ir(ppy)₃ is well off of the right side of
605 the graph, suggesting a mechanism for why Ir(ppy)₂(acac) forms
606 larger aggregates than Ir(ppy)₃.

607 This phenomenon is a function of the complex interplay
608 between van der Waals intermolecular interactions and molec-
609 ular surface diffusion. An increase in intermolecular interaction
610 energy (e.g., due to the addition of permanent dipole–permanent
611 dipole based Keesom forces) enhances the attraction between guest
612 molecules, thereby promoting the formation of guest aggregates.
613 However, a larger dipole moment leads to stronger intermolec-
614 ular interactions, both Keesom-like interactions between two guest
615 molecules and Debye-like interactions between the guest and non-
616 polar host molecules. Such interactions between surface molecules
617 and the fixed bulk create a higher kinetic diffusion barrier, which
618 slows surface diffusion. This is in qualitative agreement with our
619 PL and HAADF-STEM data and previous experimental studies in
620 organic molecular glasses, which suggest that strong intermolecular
621 interactions slow down surface diffusion.^{53,54}

622 Another interesting aspect of these morphologies is the for-
623 mation of vertical clusters, as observed in the examples presented
624 in Figs. 11(b) and 11(c). We assess cluster verticality through a
625 parameter γ defined as

$$\gamma = \frac{S_z^2}{S_x^2 + S_y^2 + S_z^2}. \quad (12)$$

626 Here, S_x^2 , S_y^2 , and S_z^2 represent the standard deviation in the positions
627 of sites in the x, y, and z directions within a cluster, respectively.
628 For an isotropic cluster, where all three directions are equally dis-
629 tributed, γ equals 1/3. In the case of a cluster with a preferred
630 horizontal orientation, where S_x^2 and S_y^2 are large while S_z^2 is small,
631 γ is less than 1/3. Finally, for clusters with a vertical orientation,
632 where S_z^2 is larger than S_x^2 and S_y^2 , γ is greater than 1/3.

633 The results in Fig. 12(b) demonstrate that clusters produced
634 by the PVD algorithm exhibit a vertical orientation and are qual-
635 itatively consistent with our experimental findings of vertical clusters
636 obtained through HAADF-STEM methods. Similar to cluster size

637 trends, cluster verticality also increases with the number of MCS and
638 reaches a critical point $J_{\text{Guest}} \approx 1k_B T$, beyond which an increase in
639 J_{Guest} leads to reduced verticality.
640

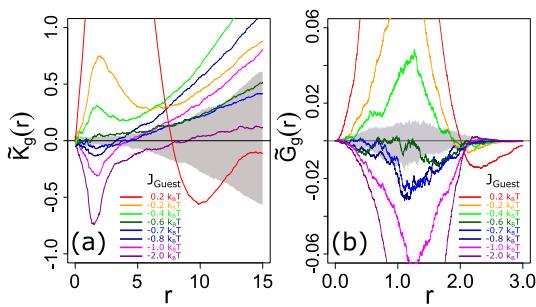
641 The tendency for vertical stacking in these clusters is attributed
642 to the dominant role of surface diffusion in aggregation, while bulk
643 relaxation is restricted. Essentially, incoming guest molecules in
644 the surface layer undergo diffusion due to thermal energy, moving
645 across the surface until they find low-energy states. This occurs when
646 they bind to polar molecules located in the bulk of the film. Such a
647 binding process preferentially leads to vertical stacking of the guest
648 molecules as observed in these simulations and HAADF-STEM
649 results. In summary, we conclude that the clustering of polar guest
650 molecules in a non-polar host is not thermodynamically controlled,
651 but kinetically limited.
652

653 In PVD systems, aggregation is primarily driven by the surface
654 diffusion of impinging molecules,^{10–12} with the surface diffusivity
655 that exhibits an Arrhenius behavior,
656

$$D_S = D_0 e^{-E_{\text{diff}}/k_B T}, \quad (13)$$

657 where D_0 is a diffusion coefficient and E_{diff} is the kinetic barrier to
658 surface diffusion. E_{diff} is proportional to the adsorbed atom's binding
659 energy.
660

661 The reduced guest aggregation in DCzDCN systems can be
662 understood to originate from the high-polarity host material foster-
663 ing stronger Keesom and Debye electrostatic binding interactions
664 with adsorbed polar molecules, elevating their kinetic barrier for
665 surface diffusion (E_{diff}). This hampers the diffusivity of adsorbed
666 molecules on the surface (D_S), leading to a reduction in aggrega-
667 tion. They are dependent on the host's permanent dipole moment as
668 shown in the following equations:
669


$$U_{\text{dd}} = -2\mu_1\mu_2/r^3, \quad (14)$$

$$U_{\text{di}} = -4\alpha_2\mu_1^2/r^6. \quad (15)$$

670 These interactions, by altering the energy landscape that the
671 molecules on the surface experience, directly influence the rate and
672 extent of aggregation through modified surface diffusion dynamics.
673

674 While reduced surface diffusion accounts for diminished
675 aggregation, the observed effect of inhibition at small distances
676 is specifically analyzed through simulations. Ising KMC simula-
677 tions with a PVD algorithm provide insights into this inhibition
678 effect. In the Ising model, the interaction energies driving phase
679 segregation— J_{Host} and J_{Guest} —are calculated by subtracting the
680 host–guest interaction energy ($J_{\text{H–G}}$) from the host–host ($J_{\text{H–H}}$) and
681 guest–guest ($J_{\text{G–G}}$) interaction energies, as shown in Eqs. (9) and
682 (10), respectively.
683

684 To conduct our simulations, we model scenarios where the
685 guest molecule remains constant, maintaining a steady $J_{\text{G–G}}$, while
686 varying the host to increase both $J_{\text{H–H}}$ and $J_{\text{H–G}}$, but keeping their
687 difference, J_{Host} , constant at 0.6 $k_B T$. This setup leads to a constant
688 J_{Host} with varying J_{Guest} interaction energies. In Fig. 13, the K- and
689 G-function analyses of guest distribution in model morphologies,
690 containing 10% guest concentration and simulated over 30 MCS,
691 demonstrate the conditions under which guest molecule inhibition
692 occurs. Specifically, inhibition begins when $J_{\text{H–G}}$ not only exceeds
693 $J_{\text{G–G}}$ but also when the condition $(J_{\text{H–G}} - J_{\text{G–G}}) > (J_{\text{H–H}} - J_{\text{H–G}})$
694

692 **FIG. 13.** Ripley's (a) K - and (b) G -function analyses of simulated model
693 morphologies of 10% guest doping with a fixed $J_{\text{Host}} = 0.6 k_B T$ and varying J_{Guest} .

694 is satisfied. Such a condition implies a preference for host molecules
695 to bind to guest molecules over the latter aggregating among
696 themselves, due to the larger $J_{\text{H-G}}$ compared to $J_{\text{G-G}}$. This dynamic
697 effectively inhibits close-range aggregation of guest molecules.

698 The K -function analyses validate the inhibition effect by illustrating
699 how, under circumstances where $J_{\text{H-G}}$ is significantly greater
700 than $J_{\text{G-G}}$ ($J_{\text{Guest}} < 0$), there is a pronounced preference for host
701 molecules to associate with guest molecules. This preference inhibits
702 the aggregation of guest molecules when they are in close proximity,
703 confirming the detailed dynamics behind the observed inhibition
704 at small distances within the simulated vapor-deposited
705 systems.

706 In real system, these interaction energies ($J_{\text{G-G}}$, $J_{\text{H-H}}$, $J_{\text{H-G}}$) are
707 of van der Waals nature, Keesom and Debye, as defined in Eqs. (14)
708 and (15). Depending on host and guest molecular shape and size,
709 the separation r between dipoles will play a crucial role in determining
710 the relative magnitude of interaction energies between different
711 species; hence, it is possible to have host-guest interactions being
712 larger than guest-guest interaction energies, particularly when the
713 geometry of these two molecules is considered.

714 V. CONCLUSION

715 In conclusion, this study presents insights into how the PDM
716 of guest and host molecules impacts the aggregation behavior
717 and PL properties of PhOLEDs. By analyzing two Ir(III)-based
718 phosphorescent dopants, $\text{Ir}(\text{ppy})_3$ and $\text{Ir}(\text{ppy})_2(\text{acac})$, in non-
719 polar (TCP) and polar (DCzDCN) hosts, several key findings were
720 observed.

721 Guest molecules with a higher PDM, such as $\text{Ir}(\text{ppy})_3$, exhibited
722 less aggregation and lower concentration quenching compared
723 to those with a lower PDM, such as $\text{Ir}(\text{ppy})_2(\text{acac})$. This reduced
724 aggregation leads to higher PLQY and better efficiency in PhOLED
725 emissive layers. Simulations revealed that a larger PDM increases
726 intermolecular interactions, which inhibit surface diffusion and
727 consequently reduce aggregation.

728 Both guest molecules tested show significantly reduced aggregation
729 when doped into the polar host (DCzDCN) compared to the
730 non-polar host (TCP). This reduction in aggregation was observed
731 through both PL and HAADF-STEM analyses. The polar host

732 material (DCzDCN) led to lower quenching rates and higher PLQY
733 for both guest molecules. The additional intermolecular interactions
734 between the polar host and guest molecules create a higher kinetic
735 barrier for surface diffusion, which reduces guest aggregation and
736 improves the overall performance of the PhOLEDs.

737 The KMC simulations using the Ising model and a modified
738 PVD algorithm supported the experimental data. These simulations
739 demonstrated that higher PDMs in both guest and host molecules
740 lead to smaller and more vertically oriented aggregates. The polar
741 host environment disrupts large-scale aggregation by promoting a
742 well-dispersed dopant distribution, thereby minimizing guest-guest
743 interactions and concentration quenching phenomena.

744 In summary, we show that using higher PDM guest and host
745 molecules is an effective technique for reducing aggregation and
746 enhancing the efficiency of PhOLED materials and that this can be
747 measured using spatial statistics based analyses of HAADF-STEM
748 and PL.

749 SUPPLEMENTARY MATERIAL

750 See the [supplementary material](#) for the photoluminescence data
751 that were analyzed herein and additional HAADF-STEM images of
752 each system analyzed, along with the spatial statistical analysis of
753 each image.

754 ACKNOWLEDGMENTS

755 Theory development and analysis was supported by the
756 U.S. Department of Energy, Office of Science, Basic Energy Sciences
757 under Award No. DE-SC0018021. Device fabrication, TRPL
758 measurement capabilities, and our high-performance computing
759 node were funded by Universal Display Corporation (UDC). The
760 HAADF-STEM portion of this research was supported by the Center
761 for Nanophase Materials Sciences (CNMS), which is a U.S.
762 Department of Energy, Office of Science User Facility at Oak Ridge
763 National Laboratory.

764 AUTHOR DECLARATIONS

765 Conflict of Interest

766 The authors have no conflicts to disclose.

767 Author Contributions

768 **Paul Niyonkuru:** Conceptualization (equal); Data curation (lead);
769 Formal analysis (equal); Investigation (equal); Methodology (equal);
770 Writing – original draft (lead). **Roland Bennett:** Data curation
771 (supporting); Formal analysis (equal); Investigation (supporting);
772 Methodology (supporting); Writing – original draft (supporting).
773 **Michael J. Zachman:** Data curation (supporting); Formal analy-
774 sis (supporting); Resources (supporting); Writing – original draft
775 (supporting). **Jeremy D. Zimmerman:** Conceptualization (equal);
776 Formal analysis (equal); Funding acquisition (lead); Methodology
777 (equal); Project administration (lead); Resources (lead); Supervision
778 (lead); Writing – review & editing (lead).

779 DATA AVAILABILITY

780 The data that support the findings of this study are available
781 from the corresponding author upon reasonable request.

782 REFERENCES

783 1 M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, "Highly efficient phosphorescent emission from organic electroluminescent devices," *Nature* **395**, 151 (1998).

784 2 A. C. Jacko, B. J. Powell, and R. H. McKenzie, "Sensitivity of the photophysical properties of organometallic complexes to small chemical changes," *J. Chem. Phys.* **133**, 124314 (2010).

785 3 Y. Ma, H. Zhang, J. Shen, and C. Che, "Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes," *Synth. Met.* **94**, 245–248 (1998).

786 4 H. Yersin and W. J. Finkenzeller, *Triplet Emitters for Organic Light-Emitting Diodes: Basic Properties* (■, 2008), ISBN: 9783527405947.

787 5 A. J. Browne, A. Krajewska, and A. S. Gibbs, "Quantum materials with strong spin-orbit coupling: Challenges and opportunities for materials chemists," *J. Mater. Chem. C* **9**, 11640–11654 (2021).

788 6 B. J. Powell, "Conservation laws, radiative decay rates, and excited state localization in organometallic complexes with strong spin-orbit coupling," *Sci. Rep.* **5**, 10815 (2015).

789 7 S. Reineke, G. Schwartz, K. Walzer, M. Falke, and K. Leo, "Highly phosphorescent organic mixed films: The effect of aggregation on triplet-triplet annihilation," *Appl. Phys. Lett.* **94**, 163305 (2009).

790 8 Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, and C. Adachi, "100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films," *Appl. Phys. Lett.* **86**, 071104 (2005).

791 9 Y. Kawamura, J. Brooks, J. J. Brown, H. Sasabe, and C. Adachi, "Intermolecular interaction and a concentration-quenching mechanism of phosphorescent Ir(III) complexes in a solid film," *Phys. Rev. Lett.* **96**, 017404 (2006).

792 10 C. W. Brian and L. Yu, "Surface self-diffusion of organic glasses," *J. Phys. Chem. A* **117**, 13303 (2013).

793 11 C. R. Daley, Z. Fakhraai, M. D. Ediger, and J. A. Forrest, "Comparing surface and bulk flow of a molecular glass former," *Soft Matter* **8**, 2206–2212 (2012).

794 12 Y. Zhang and Z. Fakhraai, "Decoupling of surface diffusion and relaxation dynamics of molecular glasses," *Proc. Natl. Acad. Sci. U. S. A.* **114**, 4915–4919 (2017).

795 13 K. Bagchi and M. D. Ediger, "Controlling structure and properties of vapor-deposited glasses of organic semiconductors: Recent advances and challenges," *J. Phys. Chem. Lett.* **11**, 6935–6945 (2020).

796 14 M. D. Ediger, J. De Pablo, and L. Yu, "Anisotropic vapor-deposited glasses: Hybrid organic solids," *Acc. Chem. Res.* **52**, 407–414 (2019).

797 15 M. B. Jaskot, "Linking morphology to electronic properties in small-molecular organic semiconductors," ■■■ (■).

798 16 F. Tenopala-Carmona, O. S. Lee, E. Crovini, A. M. Neferu, C. Murawski, Y. Olivier, E. Zysman-Colman, and M. C. Gather, "Identification of the key parameters for horizontal transition dipole orientation in fluorescent and TADF organic light-emitting diodes," *Adv. Mater.* **33**, 2100677 (2021).

799 17 K. L. Kearns, S. F. Swallen, M. D. Ediger, T. Wu, and L. Yu, "Influence of substrate temperature on the stability of glasses prepared by vapor deposition," *J. Chem. Phys.* **127**, 154702 (2007).

800 18 Y. Z. Chua, M. Ahrenberg, M. Tyliński, M. D. Ediger, and C. Schick, "How much time is needed to form a kinetically stable glass? AC calorimetric study of vapor-deposited glasses of ethylcyclohexane," *J. Chem. Phys.* **142**, 054506 (2015).

801 19 K. L. Kearns, P. Krzyskowski, and Z. Devereaux, "Using deposition rate to increase the thermal and kinetic stability of vapor-deposited hole transport layer glasses via a simple sublimation apparatus," *J. Chem. Phys.* **146**, 203328 (2017).

802 20 C. Bishop, Y. Li, M. F. Toney, L. Yu, and M. D. Ediger, "Molecular orientation for vapor-deposited organic glasses follows rate-temperature superposition: The case of posaconazole," *J. Phys. Chem. B* **124**, 2505–2513 (2020).

803 21 Y. Chen, Z. Chen, M. Tyliński, M. D. Ediger, and L. Yu, "Effect of molecular size and hydrogen bonding on three surface-facilitated processes in molecular glasses: Surface diffusion, surface crystal growth, and formation of stable glasses by vapor deposition," *J. Chem. Phys.* **150**, 024502 (2019).

804 22 A. Laventure, A. Gujral, O. Lebel, C. Pellerin, and M. D. Ediger, "Influence of hydrogen bonding on the kinetic stability of vapor-deposited glasses of triazine derivatives," *J. Phys. Chem. B* **121**, 2350–2358 (2017).

805 23 Y. Chen, M. Zhu, A. Laventure, O. Lebel, M. D. Ediger, and L. Yu, "Influence of hydrogen bonding on the surface diffusion of molecular glasses: Comparison of three triazines," *J. Phys. Chem. B* **121**, 7221–7227 (2017).

806 24 Y. H. Kim, T. H. Han, C. Lee, Y. H. Kim, Y. Yang, and T. W. Lee, "Molecular-scale strategies to achieve high efficiency and low efficiency roll-off in simplified solution-processed organic light-emitting diodes," *Adv. Funct. Mater.* **30**, 2005292 (2020).

807 25 R. Ranecki, B. Baumann, S. Lach, and C. Ziegler, "Self-assembly of the chiral donor-acceptor molecule DCzDCN on Cu(100)," *ACS Appl. Mater. Interfaces* **16**, 9108 (2024).

808 26 Y. J. Cho, K. S. Yook, and J. Y. Lee, "A universal host material for high external quantum efficiency close to 25% and long lifetime in green fluorescent and phosphorescent OLEDs," *Adv. Mater.* **26**, 4050–4055 (2014).

809 27 T. Tsuibo and N. Aljaroudi, "Energy transfer between Ir(ppy)₃ molecules in neat film and concentration quenching of phosphorescence," *Opt. Mater.* **30**, 1375–1381 (2008).

810 28 J. Kalinowski, W. Stämpor, M. Cocchi, D. Virgili, V. Fattori, and P. Di Marco, "Triplet energy exchange between fluorescent and phosphorescent organic molecules in a solid state matrix," *Chem. Phys.* **297**, 39–48 (2004).

811 29 E. B. Namdas, A. Ruseckas, I. D. Samuel, S. C. Lo, and P. L. Burn, "Photophysics of *fac*-tris(2-phenylpyridine) iridium(III) cored electroluminescent dendrimers in solution and films," *J. Phys. Chem. B* **108**, 1570–1577 (2004).

812 30 S. Reineke, T. C. Rosenow, B. Lüssem, and K. Leo, "Improved high-brightness efficiency of phosphorescent organic LEDs comprising emitter molecules with small permanent dipole moments," *Adv. Mater.* **22**, 3189–3193 (2010).

813 31 Y. Li, W. Shan, M. J. Zachman, M. Wang, S. Hwang, H. Tabassum, J. Yang, X. Yang, S. Karakalos, Z. Feng, G. Wang, and G. Wu, "Atomically dispersed dual-metal site catalysts for enhanced CO₂ reduction: Mechanistic insight into active site structures," *Angew. Chem., Int. Ed.* **61**, e202205632 (2022).

814 32 A. Lighart, X. de Vries, L. Zhang, M. C. Pols, P. A. Bobbert, H. van Eersel, and R. Coehoorn, "Effect of triplet confinement on triplet-triplet annihilation in organic phosphorescent host-guest systems," *Adv. Funct. Mater.* **28**, 1804618 (2018).

815 33 B. D'Andrade and S. R. Forrest, "Formation of triplet excimers and dimers in amorphous organic thin films and light emitting devices," *Chem. Phys.* **286**, 321–335 (2003).

816 34 S. Takayasu, T. Suzuki, and K. Shinozaki, "Intermolecular interactions and aggregation of *fac*-tris(2-phenylpyridinato-*C*²,*N*)iridium(III) in nonpolar solvents," *J. Phys. Chem. B* **117**, 9449–9456 (2013).

817 35 L. Murphy, P. Brulatti, V. Fattori, M. Cocchi, and J. A. Williams, "Blueshifting the monomer and excimer phosphorescence of tridentate cyclometallated platinum(II) complexes for optimal white-light OLEDs," *Chem. Commun.* **48**, 5817–5819 (2012).

818 36 T. Kobayashi, N. Ide, N. Matsusue, and H. Naito, "Temperature dependence of photoluminescence lifetime and quantum efficiency in neat *fac*-Ir(ppy)₃ thin films," *Jpn. J. Appl. Phys.* **44**, 1966–1969 (2005).

819 37 T. Hobbeck and H. Yersin, "The triplet state of *fac*-Ir(ppy)₃," *Inorg. Chem.* **49**, 9290–9299 (2010).

820 38 A. Köhler and H. Bässler, "Triplet states in organic semiconductors," *Mater. Sci. Eng. R: Rep.* **66**, 71–109 (2009).

821 39 A. F. Rausch, M. E. Thompson, and H. Yersin, "Matrix effects on the triplet state of the OLED emitter Ir(4,6-dFppy)₂(pic) (Flrpic): Investigations by high-resolution optical spectroscopy," *Inorg. Chem.* **48**, 1928–1937 (2009).

822 40 K. Goushi, Y. Kawamura, H. Sasabe, and C. Adachi, "Unusual phosphorescence characteristics of Ir(ppy)₃ in a solid matrix at low temperatures," *Jpn. J. Appl. Phys.* **43**, L937 (2004).

823 41 A. Baddeley, E. Rubak, and R. Turner, *Spatial Point Patterns: Methodology and Applications with R*, Chapman & Hall/CRC Interdisciplinary Statistics (CRC Press, 2015), ISBN: 9781482210217, <https://books.google.com/books?id=rGbmCgAAQBAJ>.

903 ⁴²A. Proudian (2023). "RAPT: R for atom probe tomography," GitHub.
904 <https://github.com/aproudian2/rapt> 921

905 ⁴³G. B. Vincent, A. P. Proudian, and J. D. Zimmerman, "Three dimensional cluster 922
906 analysis for atom probe tomography using Ripley's K-function and machine 923
907 learning," *Ultramicroscopy* **220**, 113151 (2021). 924

908 ⁴⁴R. A. Bennett, A. P. Proudian, and J. D. Zimmerman, "Cluster characterization 925
909 in atom probe tomography: Machine learning using multiple summary functions," 926
910 *Ultramicroscopy* **247**, 113687 (2023). 927

911 ⁴⁵R. Bennett, P. Niyonkuru, M. J. Zachman, and J. D. Zimmerman, personal 928
912 communication (■ ■ ■). 929

913 ⁴⁶M. A. Kiskowski, J. F. Hancock, and A. K. Kenworthy, "On the use of Ripley's 930
914 K-function and its derivatives to analyze domain size," *Biophys. J.* **97**, 1095–1103 931
915 (2009). 932

916 ⁴⁷P. Peumans, S. Uchida, and S. R. Forrest, "Efficient bulk heterojunction photovoltaic 933
917 cells using small molecular-weight organic thin films," in *Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles* 934
918 from *Nature Publishing Group* (■, 2010), Vol. 425, pp. 94–98. 935

919 ⁴⁸K. Kawasaki, "Anomalous spin diffusion in ferromagnetic spin systems," *J. Phys. 936
920 Chem. Solids* **28**, 1277–1283 (1967). 936

921 P. K. Watkins, A. B. Walker, and G. L. Verschoor, "Dynamical Monte Carlo
922 modelling of organic solar cells: The dependence of internal quantum efficiency
923 on morphology," *Nano Lett.* **5**, 1814–1818 (2005). 924

924 M. C. Heiber and A. Dhinojwala, "Efficient generation of model bulk heterojunction 925
925 morphologies for organic photovoltaic device modeling," *Phys. Rev. Appl.* **2**, 014008 (2014). 926

926 A. R. Moore, G. Huang, S. Wolf, P. J. Walsh, Z. Fakhraai, and R. A. Riggleman, 927
927 "Effects of microstructure formation on the stability of vapor-deposited glasses," 928
928 *Proc. Natl. Acad. Sci. U. S. A.* **116**, 5937–5942 (2019). 929

929 M. Shibata, Y. Sakai, and D. Yokoyama, "Advantages and disadvantages of 930
930 vacuum-deposited and spin-coated amorphous organic semiconductor 931
931 films for organic light-emitting diodes," *J. Mater. Chem. C* **3**, 11178–11191 932
932 (2015). 933

933 Y. Chen, W. Zhang, and L. Yu, "Hydrogen bonding slows down surface 934
934 diffusion of molecular glasses," *J. Phys. Chem. B* **120**, 8007–8015 (2016). 935

935 S. Ruan, W. Zhang, Y. Sun, M. D. Ediger, and L. Yu, "Surface diffusion and 936
936 surface crystal growth of *tris*-naphthyl benzene glasses," *J. Chem. Phys.* **145**, 064503
936 (2016). 936