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Abstract— Increasing urban mobility requirements demand
efficient transportation system strategies for both vehicular
and pedestrian movement. This study enhances the Decen-
tralized Graph-based Multi-Agent Reinforcement Learning
(DGMARL) approach, originally tailored for vehicular traffic
signal timing, to incorporate pedestrian traffic dynamics. The
improved algorithm considers crucial metrics such as Eco PI,
assesses vehicle fuel consumption by factoring in stops and
delays, and addresses pedestrian waiting time, crucial for
system efficiency while acknowledging driver waiting time
impact. Utilizing Digital Twin simulation along the MLK
Smart Corridor in Chattanooga, Tennessee, the algorithm’s
performance is compared for various pedestrian control sce-
narios. The results compare two signal timing optimization
strategy scenarios, 1) dynamic pedestrian signal management
with automated pedestrian traffic detection developed using
DGMARL algorithm, and 2) a real-world-based baseline actu-
ated signal timing plan with pedestrian recall that enforces a
pedestrian phase automatically every cycle. Findings indicate
substantial improvements in scenario 1 with DGMARL: a
28.29% enhancement in vehicle Eco PI, a 60.55% reduction
in pedestrian waiting time, and a 55.74% decrease in driver
stop delay, on average, compared to observations in scenario
2.

Index Terms— Intelligent Transportation Systems, Pedes-
trian Waiting Time, Traffic Signal Optimization, Fuel Con-
sumption, Graph Neural Network, Multi-agent A2C Rein-
forcement Learning, Digital Twin.

I. INTRODUCTION AND BACKGROUND

Urban areas grapple with traffic congestion, leading to
prolonged travel times, increased fuel consumption, and
environmental pollution [1]. Although existing studies, such
as [2], have explored traffic control, they predominantly
focus on vehicular traffic dynamics. Adapting signal control
strategies to evolving traffic patterns remains a persistent
challenge, despite potential solutions proposed in studies
like [3] and [4], which are often limited by computational
efficiency.

This manuscript has been partly authored by UT-Battelle, LLC, un-
der contract DE-AC05-00OR22725 with the US Department of En-
ergy (DOE). The publisher acknowledges the US government li-
cense to provide public access under the DOE Public Access Plan
(https://energy.gov/downloads/doe-public-access-plan).

To overcome these challenges, this study introduces a
novel approach that integrates dynamic pedestrian signal
management with automated pedestrian traffic detection
alongside vehicle traffic signal timing optimization. Lever-
aging a decentralized graph-based multi-agent reinforcement
learning algorithm (DGMARL) [5], [6] which optimizes
vehicle traffic signal timing and dynamic phase selection
in real-time, aiming to reduce not only vehicles’ Eco PI
which captures vehicle stops on fuel consumption and delay
impact [7], [8], but also pedestrian waiting time and driver
delays by considering both vehicular and pedestrian traffic.
Key features include efficient pedestrian arrival distribution
and observation, multi-agent reinforcement learning, and
seamless interaction with the Digital Twin.

Despite efforts at vehicular traffic optimization, adapting
signal control to dynamic traffic patterns remains challeng-
ing. Studies such as [9] and [10] often overlook environ-
mental impacts in signal timing optimization. Advancements
in Intelligent Transportation Systems (ITS) have been used
to develop decentralized signal control algorithms [11], that
integrate vehicle and pedestrian data, and there is progress
in RL-based optimization [12]. However, reaching the global
optimal solution considering multiple factors and constraints
across the entire network remains challenging. This study
bridges this gap by globally optimizing both vehicle and
pedestrian traffic signal timing through the DGMARL algo-
rithm by integrating automated pedestrian detection and a
dynamic signal timing plan. Furthermore, a comprehensive
analysis of pedestrian signal time allocation strategies, con-
sidering dynamic signal timing and fixed pedestrian recall,
is conducted.

II. OVERVIEW OF THE PROPOSED SYSTEM

This study presents a comprehensive approach to opti-
mizing signal timing for both vehicles and pedestrians by
integrating pedestrian and vehicular traffic demand. Building
upon our previous work [5], [6], the Reinforcement Learning
(RL) methodology is enhanced to incorporate pedestrian
traffic state alongside vehicular traffic state, enabling global
optimization of vehicle and pedestrian traffic signal timing
in a decentralized distributed environment. This extended



DGMARL algorithm considers parameters such as vehicular
and pedestrian traffic demand to reduce pedestrian and driver
waiting times.

The DGMARL model from previous work optimizes
signal timing by considering vehicular traffic and enforcing
mandatory constraints such as minimum green serving time
with walk plus flashing ”don’t walk” time regardless of
pedestrian traffic demand, and yellow and red clearance time.
This study extends the DGMARL model to incorporate auto-
mated pedestrian traffic detection and a dynamic pedestrian
signal phase. The proposed DGMARL-based signal timing
plan optimizes both pedestrian and vehicular traffic signal
timing according to their respective demands. To assess
the benefits of the extended DGMARL algorithm, a com-
prehensive comparison is conducted between DGMARL-
based signal timing and traditional actuated signal tim-
ing with pedestrian recall. Performance evaluation includes
vehicles’ Eco PI , pedestrian waiting time, and drivers’
waiting time across the scenarios: 1) Baseline model using
real-time signal timing configuration, including pedestrian
recall. 2) Automated pedestrian traffic detection and acti-
vating pedestrian and vehicle signal phases based on the
traffic demand. 3) Dynamically adjust the pedestrian signal
phase timing based on pedestrian traffic demand. 4) The
effectiveness of automated pedestrian traffic detection and
dynamic pedestrian signal timing, along with push buttons
is evaluated. To analyze the system, theoretical modeling

Fig. 1. MLK Smart Corridor network layout in PTV-Vissim [5], [6]

is combined with empirical data using an offline Digital
Twin (DT) simulation model developed with PTV Vissim
[13]. This model represents the 2-mile MLK Smart Corridor
in Chattanooga, Tennessee, with 11 signalized intersections
and bidirectional traffic flows. The developed DT model is
driven using real-time traffic volume, turn count, and Signal
Phasing and Timing (SPaT) data. While an online version
of the DT emulates field signal indications using SPaT data,
the offline version (utilized in this study) employs traffic
signal timing plans provided by the City of Chattanooga.
Data from cameras and zone-detection devices deployed
along the corridor informs the model. The DT facilitates the
simulation and analysis of various scenarios, offering insight
into the optimization process and its impacts on vehicular
and pedestrian traffic. Figure 1 illustrates the developed DT
model, depicting the MLK Corridor traffic network’s realistic
intersection geometry.

III. ARCHITECTURE OF THE PROPOSED SYSTEM

In the original DGMARL framework [5], [6], Advantage
Actor-Critic (A2C) reinforcement learning agents are de-
ployed at individual intersections. The framework has been
extended to incorporate pedestrian traffic state, pedestrian
and driver waiting time, along with other crucial traffic
state features, such as vehicle presence time in the detector.
Agents exchange this information with neighboring agents
to collaboratively gather data and determine optimal policies
for controlling traffic signals. DGMARL can handle hetero-
geneous data from various sources, ensuring comprehensive
awareness of traffic dynamics. This study utilizes DGMARL
to optimize both vehicular and pedestrian signal timing,
improving the performance and sustainability of the traffic
system. Figure 2 shows the architecture of the proposed

Fig. 2. Architecture of the proposed model

model. The traffic environment is represented as a bi-
directional graph G(V, E), where V consists of intersections
modeled as A2C RL agents, and E comprises roads or
links connecting these intersections. Each link ei,j ∈ E
connects the intersections i and j. The intersections have
various static features, including approach links, signal con-
trollers, signal phases, detectors, lane numbers, uncontrolled
approaching links, and neighboring intersections Ni ⊂ V .
Signal controllers at each intersection are linked to a set
of signal phases ϕi, each associated with specific static
features, such as signal lists, minimum mandatory green
serving time, yellow time, red clearance time, pedestrian
walk, and flashing “don’t walk” time [5], [6].

The methodology in this study leverages real-time data
on vehicle traffic state, along with a random distribu-
tion of pedestrian volume, to calculate pedestrian waiting
times at signalized intersections. These data are utilized
to construct a bi-directional graph environment for the RL
agent’s interactions [5], [6]. Within this environment, the
RL agent explores diverse signal timing and pedestrian
recall configurations, closely observing their effects on both
vehicle flow and pedestrian movement. Through continuous
learning from these interactions, the RL agent enhances its
decision-making abilities, progressively converging towards
an optimized signal timing for both vehicular and pedestrian
traffic that minimizes vehicles’ Eco PI performance and
reduces pedestrian and driver waiting times. Eco PI is the
fuel consumption impact related to vehicle stops and stop
delays. The reward function is designed to incentivize the RL



agent to prioritize efficient vehicle flow, reducing Eco PI
and driver waiting time while minimizing pedestrian waiting
time. The agent aims to maximize cumulative rewards by
identifying signal timing configurations that balance vehicle
and pedestrian needs. Multiple simulations, covering various
traffic scenarios, are conducted in offline DT using real-
world data. RL agents are trained on these models to
optimize signal timings compared to fixed signal timing
strategies.

IV. THE PROPOSED RL-BASED METHOD

The traffic signal control problem is formulated as a
Markov Decision Process (MDP), denoted as (S,A, p, r),
where S represents the state space, A denotes the action
space, and r signifies the reward associated with an action.
The goal is to find the optimal policy p, maximizing cu-
mulative discounted rewards. To enhance learning efficiency
and informed decision-making, neighboring agents exchange
observations through message passing, allowing for broader
insights into traffic conditions and more effective action
selections, thereby improving signal timing optimization.

A. State Space

As an extension of our preliminary work [5], [6], the
state of the global traffic network at time t is redefined and
upgraded as follows:

St = {si,t}|V|
i=1 = ⟨ΥTF

i,t ,ΨTS
i,t ⟩ (1)

where {si,t} is the state of the intersection i at time t which
is the heterogeneous observation of traffic states from all
approaches, and V is the set of intersections in the road
network,

ΥTF
i,t = ⟨ ⟨δV T

l,i,t, δ
PV
l,i,t⟩

Kϕ,i

l=1 ⟩Fi

ϕ=1 (2)

and

ΨTS
i,t = ⟨ϕS

i,t, ϕD
i,t, ϕPS

i,t , ϕMinG
i,t , ϕMaxG

i,t ⟩. (3)

In Equation (2), Fi represents the number of phases at
intersection i, and Kϕ,i denotes the number of approaching
links at phase ϕi. Each observation for an approaching link l
in phase ϕi includes vehicle traffic state δV T

l,i,t which includes
vehicle presence time in the detector zone, average waiting
time, average delay, average speed, and pedestrian volume
δPV
l,i,t.

In Equation (3), variables like ϕS
i,t, ϕ

D
i,t, and ϕPS

i,t denote
the current phase status, duration, and pedestrian serving
status. ϕMinG

i,t indicates fulfillment of minimum green time
or pedestrian serving in the current phase, while ϕMaxG

i,t

signals if the current phase duration has reached the maxi-
mum green serving time. Pedestrian recall activation prompts
monitoring of the maximum green serving time, allowing
vehicles priority until this limit is reached, after which
pedestrians are served based on traffic conditions.

B. Action Space

The action of an agent at intersection ai,t is defined as
either 0 or 1. When ai,t = 0, the current signal phase
is maintained. When ai,t = 1, it indicates a transition to
the next phase, governed by minimum green time to ensure
safety and efficiency. The revised action formulation is:

a′i,t =


ai,t, if (ϕMinG

i,t ∥ ϕMinPW
i,t )

1, if (ϕMaxG
i,t & ϕPR

i,t )

0, otherwise
(4)

Where ϕMinG
i,t indicates the minimum green time has been

served. If the current phase is non-pedestrian and pedestrian
recall ϕPR

i,t is enabled, the minimum green time serves as the
pedestrian serving time ϕMinPW

i,t . If ai,t = 1, the action is
evaluated against the minimum green time constraint based
on the phase duration ϕD

i,t. If the constraint is met, the
final action is a′i,t = 1, and the agent selects the phase
with the highest traffic demand based on both pedestrians
waiting time and vehicles’ presence time. Before switching
the next phase to green, the yellow and red clearance timings
are served. If ai,t = 0, the agent refrains from action. In
pedestrian crossing phases, the agent forces the final action
to be a′i,t = 1 and switches to the non-pedestrian phase as
ϕMaxG
i,t approaches, ensuring pedestrian safety. Pedestrian

serving time ϕEPW
i is estimated based on pedestrian traffic

demand,

ϕMinPW
i,t = ϕMinSW

i + ϕMinFDW
i + ϕEPW

i (5)

where ϕMinSW
i is minimum solid walk time, ϕMinFDW

i is
flashing don’t walk time, and ϕEPW

i is,

ϕEPW
i = ϕMinFDW

i ∗Ni,t,ped (6)

where Ni,t,ped is the number of pedestrians waiting. This
dynamic approach prioritizes both vehicular and pedestrian
traffic, reducing waiting times and enhancing signal timing
efficiency.

C. Reward Function

The reward function balances vehicular and pedestrian
traffic needs using the vehicle Eco PI metric to assess
performance, considering stops and delays based on the fuel
consumption model in [7], [8]. Stops are counted when
vehicles halt while approaching the intersection, and stop
delay is the time vehicles spend stationary in the queue.
Additionally, the reward function includes pedestrian and
driver waiting times. Pedestrian waiting time is the sum of
the differences between each pedestrian’s arrival time and
their waiting time to cross, while driver delays mirror vehicle
delays.

The immediate reward ri,t for each traffic movement at
intersection i is computed using the following equations:

ri,t = −

[
α ∗ δEco PI

i,t + β ∗ δDD
i,t + (1− α− β) ∗ δPWT

i,t

δEco PI
i,t + δDD

i,t + δPWT
i,t

]
(7)



where (α, β) ∈ [0, 1] weights the significance of vehicle
waiting, driver waiting, and pedestrian waiting timings,
which ensures a balanced focus on both vehicular and pedes-
trian movements by normalizing the reward components.
And δEco PI

i,t is vehicles Eco PI , δDD
i,t is vehicle driver

delay, which is the vehicle stop delay δSD
i,t , and δPWT

i,t is
pedestrian waiting time. This study uses α = 0.4, β = 0.3
to prioritize reducing vehicle delays while accounting for
pedestrian waiting times. The reward function normalizes the
contributions of pedestrian, driver, and vehicle waiting times
proportionally. In addition, vehicle Eco PI is calculated as

δEco PI
i,t =

Li∑
l=1

δSD
i,l,t + (δSK

i,l,t ∗ δNS
i,l,t) (8)

where δSD
i,l,t is the stop delays that occurred in link li, δNS

i,l,t is
the number of stops, and δSK

i,l,t is the stop penalty penalized
for every stop [14], [15]. The pedestrian waiting time is
calculated as,

δPWT
i,t =

Li∑
l=1

[

Ni,l,ped∑
n=1

(ti,l − tpedi,l,n)], (9)

where Ni,l,ped is the number of pedestrians waiting, ti,l is
the time that pedestrians are allowed to cross the street,
and tpedi,l,n is the n-th pedestrian’s arrival time. The opti-
mization of each agent’s policy, represented by i, intends to
maximize the global long-term return E[Rπ

0 ], where Rπ
i,t =∑

τT γτ−tri,t denotes the return at time t, with γ being the
discount factor. By incorporating pedestrian and driver wait-
ing time into the reward function, the study seeks to achieve
a more comprehensive and balanced optimization approach
that considers both vehicular and pedestrian performance in
signal timing decisions.

D. The Proposed RL Algorithm

The algorithm 1 outlines signal timing optimization with
vehicles and pedestrian states, using reinforcement learning
for an optimal policy. It dynamically adapts signal timing
based on real-time vehicular and distributed pedestrian traffic
to enhance traffic flow efficiency and pedestrian safety.

In this environment, each intersection hosts an A2C
reinforcement learning agent, denoted as i. At each time
step t, agent i observes vehicular state features, including
vehicle presence time in the detector, current signal state
through offline DT data collection, and pedestrian arrivals
through random distribution. It collaborates with neighboring
agents Ni via message passing to exchange and receive their
states. Agent i processes its updated state s′i,t using actor
and critic neural networks to derive the optimal policy πi

and control the signal phase ϕi. Agent i validates actions
against physical constraints. If the phase is non-pedestrian-
crosswalk, the minimum serving time is set as the estimated
pedestrian walk time ϕEPW

i ; otherwise, it uses the phase’s
configured minimum green time. No actions are applied back
to the offline DT if the agent stays in the current green phase.
Otherwise, agent i selects a phase ϕj with higher upcoming
traffic demand and applies the signal phase change action

Algorithm 1 Signal timing optimization with vehicles and
pedestrian state using A2C reinforcement learning
Ensure: Initialize graph G(V, E), agent i ∈ V , link li ∈ E ,

physical constraints ic.
Ensure: Initial signal timing for the intersection i, minimum

green time ϕMinG
i,t , yellow time ϕy

i,t, red clearance time
ϕr
i,t, maximum green time ϕMaxG

i,t , pedestrian minimum
solid walk time ϕMinSW

i , and flashing don’t walk time
ϕMinFDW
i .

1: For each episode with T simulation period, each agent
learns and optimizes the model parameter through multi-
threading with the following steps iterative.

2: Measure the pedestrian volume at intersection i and
include it in the state si,t along with the vehicular traffic
state.

3: Observe and perform message passing.
4: Obtain policy, action and value.
5: Evaluate action with constraints a′i,t = (ai,t|ic).
6: Take action a′i,t in offline DT if constraint evaluation is

success.
7: Calculate reward ri,t and observe new state s′i,t+1.
8: Store State and Reward in Replay buffer D.
9: Learn from experience if t >= sample batch size.

to the signal controller in offline DT. After applying the
action, agent i observes pedestrians’ waiting time pdi,wt and
vehicles’ Eco PI , estimating the current reward ri based on
the new traffic state si,t+1. The current reward and new state
are stored in the experience replay buffer. The agent learns
from this buffer to minimize critic loss L(ωi) and actor loss
Ĵ(θ) (lines 9-10). Agent i repeats these processes to identify
an optimal policy, improving vehicular traffic Eco PI and
pedestrian waiting time. This iterative learning allows for
dynamic signal timing adaptation, optimizing traffic flow
efficiency, and enhancing pedestrian safety during crossings.

In a distributed agent environment, each agent makes
context-specific decisions based on local observations and
information from neighboring agents. The convergence of an
optimal policy can vary among agents, leading to increased
learning efficiency. The distributed nature of the agents im-
proves overall learning performance, contributing to finding
improved signal timing strategies tailored to their specific
traffic conditions.

V. EXPERIMENTAL EVALUATION

This study evaluates different traffic signal timing strate-
gies using real-time vehicular and randomly distributed
pedestrian traffic data, comparing them to an actuated signal
timing plan with pedestrian recall. Scenarios include real-
time signal timing with pedestrian recall, automated pedes-
trian traffic detection, dynamic adjustment of pedestrian
signal phase timing based on demand, and assessment of
automated pedestrian traffic detection with dynamic signal
timing alongside push buttons. Additionally, monetary anal-
yses of fuel expenses and salary losses due to waiting times
are conducted.



A. Experiment Design

This study utilizes real-world data from the PM-peak
hour scenario of December 15, 2022, obtained from the
MLK Smart Corridor [16], [17]. The dataset encompasses
transportation and vehicular traffic data, along with randomly
distributed pedestrian data recorded every second. The pro-
posed model is trained with training comprising 15 episodes
for different scenarios, each episode consists of 3600-second
simulation steps and learning from 240 batch sizes of
experience replay. The model assigns coefficient values to
reward components: 0.4 for vehicle Eco PI , 0.3 for drivers’
waiting time, and 0.3 for pedestrian waiting time, with plans
for dynamic adjustment during future training. Comparisons
are made between the performance of DGMARL with both
pedestrian and vehicular traffic signal timing plans and
the baseline MLK Smart Corridor vehicle-actuated signal
timing plan. Additionally, push-button requests are randomly
generated with probabilities ranging from 0.25 to 0.75 to
analyze automated pedestrian traffic detection. By precisely
considering pedestrian arrivals, waiting times, and push-
button requests, DGMARL-based signal control systems
prioritize safer pedestrian crossings and improve vehicular
traffic flow. This holistic optimization approach enhances
traffic flow and promotes a safer road environment for all
users.

The experimental setup utilized a real-world dataset col-
lected by the Department of Computer Science and Engi-
neering at the University of Tennessee, Chattanooga, USA
[16]. It includes data from a corridor connecting 11 intersec-
tions on the MLK Smart Corridor with bidirectional traffic in
multiple directions (East-West, West-East, North-South, and
South-North). The dataset includes intersection geometry,
traffic signal timing plans, camera and zone-detecting device
parameters, Signal Phase and Timing (SPaT) messages,
vehicle flow, speed, and vehicle presence time in the detector.
Each intersection features a diverse phase setup with dif-
ferent signal light configurations. The simulation model for
the 11 intersections on the MLK Smart Corridor in offline
DT follows network creation guidelines [18], [19]. It in-
corporates vehicular data from archived one-minute volume
counts at network entry edges for December 15, 2022, 10-
minute turn percentages at each intersection approach, and
signal timing plans from the city. Pedestrian data is randomly
generated based on the assumption of a 1% pedestrian
volume probability during the simulation at every second
for each intersection’s signal phase with pedestrian phase
crossing enabled.

B. Results and Discussion

In this experiment, the PM-peak hour model with a one-
hour simulation is used to perform the test runs. A total
of 458 pedestrians and 2825 vehicles were active on the
road, as shown in Table I, which presents the state of
traffic and the average serving times for pedestrians in both
the actuated and DGMARL scenarios. The observations
reveal that DGMARL with dynamic pedestrian signal timing
efficiently adjusts pedestrian serving times while adhering

to minimum serving time constraints. Figure 3 displays

TABLE I
OVERALL TRAFFIC AND SERVING STATE

Performance Measurement Value
Total no. of pedestrians arrived 458
Total no. of vehicles traveled 2825

Actuated: Avg. of peds. serving time 22.51s
DGMARL PedRecal: Avg. of peds. serving time 22.51s
DGMARL Automated: Avg. of peds serving time 21.84s

variations in vehicle Eco PI , stops, delay, and pedestrian
waiting time across different scenarios: actuated signal tim-
ing with pedestrian recall, automated detection with pedes-
trian recall, automated detection with dynamic estimated
pedestrian signal timing, and automated detection with push-
button timing. Results show that DGMARL combined with
automated detection and dynamic timing, including push-
button activation, improves vehicle Eco PI by 27.14%,
reduces delay by 58.72%, and decreases pedestrian waiting
time by 60.62% on average compared to both actuated signal
timing with pedestrian recall and DGMARL signal timing
with pedestrian recall. In DGMARL with pedestrian recall
scenarios, vehicle stops increase by 4.67% on average, com-
pared to only 0.97% with automated detection and dynamic
timing. Figure 4 shows that the DGMARL model, with auto-

Fig. 3. Automated pedestrian traffic detection with dynamic pedestrian
signal timing performance improvements compared to pedestrian recall.
PST - Pedestrian Serving Signal Time.

mated pedestrian traffic detection and dynamic signal timing,
adjusts pedestrian serving based on demand. This reduces
pedestrian waiting time by 60.55% compared to actuated
signal timing with pedestrian recall and by 49.46% compared
to DGMARL with pedestrian recall. Additionally, Figure
5 demonstrates that DGMARL, with automated pedestrian
traffic detection and dynamic signal timing, reduces Eco PI
by 28.29% and driver waiting time by 55.74% compared to
actuated signal timing with pedestrian recall. It also reduces
Eco PI by 9.08% and driver waiting time by 21.64%
compared to DGMARL with pedestrian recall.

Lastly, a monetary analysis, referencing 2022 Chattanooga
salary data from [20], is conducted to assess pedestrian and
driver waiting times’ impact on productivity. With actuated
signal timing, the average salary loss was 1.29%, decreasing
to 0.97% with DGMARL optimizing both vehicular and



Fig. 4. Pedestrian traffic, waiting time, and serving time comparison.

Fig. 5. Vehicles Eco PI and drivers waiting time comparison.

pedestrian traffic signal timing. Furthermore, referencing
2022 gas costs in Chattanooga, Tennessee, from [21], DG-
MARL signal timing reduced gas expenses by 24.51%
compared to actuated signal timing.

VI. CONCLUSION

In conclusion, this study explored automated pedestrian
traffic detection coupled with dynamic pedestrian serving
time, optimizing both pedestrian and vehicular traffic sig-
nal timings using Decentralized Graph-based Multi-Agent
Reinforcement Learning. The model significantly improved
traffic flow efficiency, reduced fuel consumption, enhanced
pedestrian safety, and minimized waiting times. The study
demonstrates that decentralized multi-agent models enable
effective traffic flow improvements by allowing agents to
adapt to changing traffic conditions. Future research will
involve testing the model with real-world pedestrian data.
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