

DOE/PC/93066--T8

QUARTERLY TECHNICAL PROGRESS REPORT
(October-December, 1995)

RECEIVED

JUL 08 1996

OSTI

CONTRACT TITLE:MÖSSBAUER SPECTROSCOPY STUDIES OF
IRON-CATALYSTS USED IN FISCHER-
TROPSCH (FT) PROCESSES**Contract Number:**

DE-AC22-93PC93066

University of Kentucky, Lexington, KY

Contract Date:

Jan 12, 1994

Anticipated Completion Date:

Jan 11, 1997

Government Award:

\$ 64679.00 (for 1995)

Program Manager:Dr. Gary J. Stiegel
U.S. DOE, PETC, Pittsburgh**Principal Investigators:**Prof. Gerald P. Huffman, (PI)
Dr. K.R.P.M.Rao, (Co-PI)**Contracting Officer's
Representative (COR)**Dr. Richard T. Tischer
U.S. DOE, PETC, Pittsburgh**Reporting Period:**

October 1, 1995 - December 31, 1995

Objectives:

To carry out Mössbauer spectroscopy study of Iron-based catalysts used in FT synthesis to identify iron phases present and correlate with water gas shift and FT activities.

RECEIVED
USDOE/PETC
96 MAY - 6 AM 9: 00
COMPUTER & ASSISTANCE DIV.

MASTER

QUARTERLY TECHNICAL PROGRESS REPORT
(October-December, 1995)

RECEIVED

JUL 08 1996

OSTI

CONTRACT TITLE:

MÖSSBAUER SPECTROSCOPY STUDIES OF
IRON-CATALYSTS USED IN FISCHER-
TROPSCH (FT) PROCESSES

Contract Number:

DE-AC22-93PC93066

University of Kentucky, Lexington, KY

Contract Date:

Jan 12, 1994

Anticipated Completion Date:

Jan 11, 1997

Government Award:

\$ 64679.00 (for 1995)

Program Manager:

Dr. Gary J. Stiegel
U.S. DOE, PETC, Pittsburgh

Principal Investigators:

Prof. Gerald P. Huffman, (PI)
Dr. K.R.P.M.Rao, (Co-PI)Contracting Officer's:
Representative (COR)Dr. Richard T. Tischer
U.S. DOE, PETC, Pittsburgh

Reporting Period:

October 1, 1995 - December 31, 1995

Objectives:

To carry out Mössbauer spectroscopy study of Iron-based catalysts used in FT synthesis to identify iron phases present and correlate with water gas shift and FT activities.

RECEIVED
96 MAY - 6 AM 9: 00
USDOE/PETC
ACQUISITION & ASSISTANCE DIV.

MASTER

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

MÖSSBAUER SPECTROSCOPY STUDIES:

The U.S. Department of Energy has currently a program to develop Fischer-Tropsch catalysts which are active at low H₂/CO ratio of 0.7. Dr. Burtron Davis of University of Kentucky has been developing Fischer-Tropsch catalysts which are active at a low H₂/CO ratio. It is of interest to find out any relationships that may exist between the iron phases that are produced during activation and FT synthesis and the activity of the catalysts.

Mössbauer spectroscopy investigations were carried out on 16 iron-based catalysts during the period under review. Mössbauer measurements on two of the samples were also carried out at 13.5°K. The composition of one set of the catalysts studied consists of 100Fe/3.6Si/0.71K (all atomic % relative to Fe). Activation was carried out in syngas at a low pressure of 1 atm to investigate the effect of low pressure activation as compared to high pressure activation. The composition of a second set of catalysts consisted of 100Fe/3.6Si/2.6Cu/0.71K (all atomic % relative to Fe) and activation was carried out in syngas at a relatively high pressure of 12 atm. The composition of a third set of catalysts consisted of 100Fe/4.4Si/2.6Cu/1.0K (all atomic % relative to Fe) and activation was carried out in H₂ at 1 atm. In all the cases the temperature was kept at 270°C and space velocity at 3.3nL/hr-g(Fe) for 24hrs. Fischer-Tropsch (FT) synthesis was carried out at 13 atm at 270°C, 3.4nL/hr-g(Fe) syngas/g-Fe/ hrs

These samples were provided by Dr. Burtron Davis, University of Kentucky.

RESULTS:

The phase distributions observed are shown in Tables I, II and III respectively for the catalysts activated in syngas at (i) low pressure of 1 atm and (ii) high pressure of 12 atm and for the catalysts activated in H₂ at 1 atm.

The Mössbauer results indicate that the activation of the catalysts in syngas at a low pressure of 1 atm gives rise to the formation of 41% of chi-carbide, χ -Fe₃C₂ (in addition to magnetite and superparamagnetic oxide) during activation period as compared to zero carbide observed when the catalyst was activated in syngas at a high pressure of 12 atm. Activation in H₂ results in the formation of iron metal during activation and epsilon' carbide, ϵ -Fe_{2.2}C during FT synthesis period.

It is significant to note that activation in syngas at low pressure of 1 atm leads to the formation of chi-carbide while activation at high pressure of 12 atm does not lead to the formation of any chi-carbide. Earlier studies (DOE Contractors Review meeting, August 1995, Pittsburgh) have shown that the presence of chi-carbide is conducive for good FT conversion and further, that the carbides formed during activation give rise to good FT activity. In the present case, one would expect good FT activity for the catalysts activated in syngas at low pressure as compared to the catalysts activated at a higher pressure. The (H₂+CO) conversion of the catalyst activated at 1 atm was found to be 82% while the conversion of the catalyst activated at 12 atm was only about 50% consistent with the general trends observed earlier. Although the FT activity of syngas activated (at 1 atm) catalyst is 82% (H₂+CO) conversion at the beginning of the FT run, later it gets deactivated with time to about 69%. The amount of chi-carbide formed at the end of 24hr

syngas activation was 41% and it decreased to 20% after 384hrs of FT run.

The low temperature measurement has indicated that the Spm phase observed at room temperature consists of an iron oxide and not any carbide phase.

Summary of Technical Progress:

During the period under review only the scheduled Task 2 was carried out.

Mössbauer spectroscopy measurements on 16 iron catalysts received from Dr. Burtron Davis, University of Kentucky were carried out. The catalysts were subjected to Mössbauer measurements as received without any cleaning of any wax coating present on the surface of the catalysts. Low temperature measurement was made on two of the samples to identify the nature of the superparamagnetic phase.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Table I

Pretreatment Carried out at Low Pressure (1 atm)

Conditions of activation and FT synthesis are given below:

Catalyst: 100Fe/3.6Si/0.71K (atomic % relative to Fe)

Activation conditions: 270°C, 1 atm, H₂/CO=0.7, S.V.=3.4 nL/hr/g(Fe), 24 hrs

Synthesis conditions: 270°C, 13 atm, H₂/CO=0.7, S.V.=3.4 nL/hr/g(Fe)

Sample	κ -Fe ₃ C ₂	Fe ₃ O ₄	Spm phase	% (H ₂ +CO) conversion*
Activated for 24 hrs	41	32	27	---
FT run TOS=24hrs	36	40	24	82.0
FT run TOS=48hrs	31	47	22	83.0
FT run TOS=95hrs	33	48	19	79.0
FT run TOS=218hrs	26	50	24	75.0
FT run TOS=384hrs	20	60	20	69.0

* Catalyst preparation and FT synthesis was carried out at CAER, UK

Table II

Pretreatment Carried out at High Pressure (12 atm)

Conditions of activation and FT synthesis are given below:

Catalyst: 100Fe/3.6Si/2.6Cu/0.71K (atomic % relative to Fe)

Activation conditions: 270°C, 12 atm, H₂/CO=0.7, S. V.=3.4 nL/hr/g(Fe), 24 hrs

Synthesis conditions: 270°C, 13 atm, H₂/CO=0.7, S. V.=3.4 nL/hr/g(Fe)

Sample	χ -Fe ₃ C ₂	Fe ₃ O ₄	Spm phase	% (Hz+CO) conversion *
FT run for 4.33 hrs	--	81	19	26.0
FT run TOS=21 hrs	--	90	10	26.0
FT run TOS=45 hrs	--	86	14	32.0
FT run TOS=113.7 hrs	15	82	3	43.0
FT run TOS=214.5 hrs	20	76	4	51.0

Table III

Conditions of activation and FT synthesis are given below:

100Fe/4.4Si/2.6Cu/1.0K (atomic ratio relative to Fe)

Activation in H_2 at $220^\circ C$, 1atm, 2000cc/min, 24h

Synthesis conditions: $270^\circ C$, 13atm, 3.4nL/hr-g(Fe), $H_2/CO=0.7$

Catalyst	Spm-phase	Fe_3O_4	Fe-metal	ϵ - Fe_3C_2	%Conv. (H_2+CO)
RJO-189A 2hr, 15min Pre-treatment	80	20	--	--	--
RJO-189B 4hr 25min Pre-treatment	42	58	--	--	--
RJO-189C 12h 24min Pretreatment	18	72	10	--	--
RJO-189D 26hr 30min Pre-treatment	11	65	24	--	--
RJO-189E TOS=3h synthesis	8	62	4	26	76