
Using a Large Language Model as a Building Block to Generate Usable
Validation and Verification Suite for OpenMP

SWAROOP POPHALE, Oak Ridge National Laboratory, United States

WAEL ELWASIF, Oak Ridge National Laboratory, United States

DAVID E. BERNHOLDT, Oak Ridge National Laboratory, United States

In the HPC area, both hardware and software move quickly. Often new hardware is developed and deployed, the corresponding
software stack, including compilers and other tools, are under active development while leading edge software developers are working
to port and tune their applications, all at the same time. While the software ecosystem is in flux, one of the key challenges for users
is obtaining insight into the state of implementation of key features in the programming languages and models their applications
are using – whether they have been implemented, and whether the implementation conforms to the specification, especially for
newly implemented features (less tested by widespread use). OpenMP is one of the most prominent shared memory programming
models used for on-node programming in HPC. With the shift towards accelerators (such as GPUs and FPGAs) and heterogeneous
programming OpenMP features are getting more complex. It is natural to ask whether generative AI approaches, and large language
models (LLMs) in particular, can help in producing validation and verification test suites to allow users better and faster insights
into the availability and correctness of OpenMP features of interest. In this work, we explore the use of ChatGPT-4 to generate a
suite of tests for OpenMP features. We have chosen a set of directives and clauses, a total of 78 combinations, which first appeared
in OpenMP 3.0 (released in May 2008) but are also relevant for accelerators. We prompted ChatGPT to generate tests in the C and
Fortran languages, for both host (CPU) and device (accelerator). On the Summit super-computer using the GNU implementation, we
found that, of the 78 generated tests 67 C tests and 43 Fortran tests compiled successfully and fewer than those executed to completion.
On further analysis we show that not all generated tests are valid. We document the process, results, and provide detailed analysis
regarding the quality of tests generated. With the aim of providing input to a production quality validation and verification suite, we
manually implement the corrections required to make the tests valid according to the current OpenMP specification. We quantify this
effort as small, medium, or large, and record the lines of code changed to correct the invalid tests. With the corrected tests we validate
recent implementations from HPE, AMD, and GNU on the Frontier supercomputer. Our experiment and subsequent analysis show
that although LLMs are capable of producing HPC specific codes, they are limited by their understanding of the deeper semantics and
restrictions of a programming models such as OpenMP. Unsurprisingly more commonly used features have better support, while some
OpenMP 3.0 directives such as sections and tasking are not universally supported on accelerators. We demonstrate that successful
compilation and execution to completion are inadequate metrics for evaluating generated code and that, at this time, commodity

Authors’ addresses: Swaroop Pophale, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States, pophaless@ornl.gov; Wael Elwasif, Oak
Ridge National Laboratory, Oak Ridge, Tennessee, United States, elwasifwr@ornl.gov; David E. Bernholdt, Oak Ridge National Laboratory, Oak Ridge,
Tennessee, United States, bernholdtde@ornl.gov@ornl.gov.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE).
The US government retains and the publisher, by accepting the work for publication, acknowledges that the US government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the submitted manuscript version of this work, or allow others to do so, for US
government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access
Plan (https://energy.gov/doe-public-access-plan).

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0001-8544-6367
HTTPS://ORCID.ORG/0000-0003-0554-1036
HTTPS://ORCID.ORG/0000-0001-7874-3064
https://orcid.org/0000-0001-8544-6367
https://orcid.org/0000-0003-0554-1036
https://orcid.org/0000-0001-7874-3064
https://energy.gov/doe-public-access-plan

2 Swaroop Pophale, Wael Elwasif, and David E. Bernholdt

LLMs require expert intervention for code verification. This points to gaps in the training data that is currently available for HPC. We
demonstrate that with "small" effort 37% of generated invalid C tests and 63% of generated invalid Fortran tests could be corrected.
This improves productivity of test generation as we circumvent writing from scratch and the common programming errors associated
with it.

CCS Concepts: • Software and its engineering→ Software prototyping.

ACM Reference Format:
Swaroop Pophale, Wael Elwasif, and David E. Bernholdt. 2024. Using a Large Language Model as a Building Block to Generate Usable
Validation and Verification Suite for OpenMP . In Proceedings of HPC Asia 2025. ACM, New York, NY, USA, 17 pages.

1 INTRODUCTION

OpenMP [27] is one of the most popular choices for portable shared memory programming in high performance
computing (HPC). Frequently used with distributed programming libraries like MPI [19] or partitioned global address
space (PGAS) programming models, OpenMP can distribute work, synchronization, transfer data, and recently, offload
computations to other compute devices. The first official specification of OpenMP was released in 1997 and only targeted
Fortran. A separate C/C++ specification followed later in October 1998. OpenMP specification 2.5 was released in
2005 as the first version that combines C/C++ and Fortran in the same document. The early versions of the OpenMP
specification exclusively targeted a shared memory fork/join parallel programming model, where a group of threads
form a parallel region that can be used to share work (e.g. loop iterations) across available hardware execution units (e.g.
cores in a multi-core CPU). The execution model was extended to support explicit tasks in version 3.0 (released in 2008),
with support for task dependency (allowing the formation of complex task graphs) added in version 4.0 [25], released in
2013. Version 4.0 also included the earliest OpenMP support for offloaded execution on separate devices (accelerators),
as a result of the emerging use of GPUs in HPC. Support for offloading was greatly enhanced in OpenMP version 4.5
(released in 2015) [26], and the more recent 5.X releases, culminating in the current release (OpenMP 5.2), released in
2021 [27].

As OpenMP’s feature set increases so does the complexity of implementations and the need to verify their correctness.
Few open-source validation suites exist that are not tied to a particular compiler or development framework [6, 13, 18]. A
few that are or have been popular in the HPC community include: the OpenMP Validation and Verification Suite [8, 22],
OvO [2], the Barcelona OpenMP Tasks Suite (BOTS) [9], and the OpenMP 3.0 test-suite [3, 4]. Apart from the first two,
most of these test suites are not maintained nor updated consistently. Another gap in testing we noticed was that after
the device offload model was introduced in OpenMP Specification 4.0 [25] no open-source test suite has made the effort
to cover older features in the context of device offload. The closest open-source effort is the OpenMP Validation and
Verification Suite [22], which was originally developed under the Exascale Computation Project (ECP) SOLLVE project,
which also targets newer directives introduced in OpenMP (4.5 and beyond). Although such efforts are invaluable
for the community, vendors, and major computing facilities, the gap in testing older OpenMP features with newer
offloading concepts opens a whole new avenue of potentially harmful undiscovered bugs that can hinder application
development and lead to expensive discovery and debug cycles.

Large-language models (LLMs) have proved very useful in generating contextually relevant text and natural language
understanding. Recently LLMs have been adapted to assist in software development by generating code snippets,
explaining existing code, and even providing debugging help [12, 23, 29, 36]. This is especially useful for work like
Manuscript submitted to ACM

Using a Large Language Model as a Building Block to Generate Usable Validation and Verification Suite for OpenMP3

automating mundane coding tasks or interactively providing suggestions. Many researchers are currently exploring the
limits and ways of harnessing their immense potential for code generation for HPC.

In this paper, we explore the use of a commodity LLM (ChatGPT-4) to generate tests for OpenMP features as a means
of augmenting and filling in gaps in the available vendor- and implementation-agnostic test suites. We look particularly
at tests for OpenMP 3.0 features in conjunction with offloading, which have been valid since OpenMP 4.0. These cases
were chosen expecting that more code representing OpenMP 3.0 and 4.0 features and capabilities would have been
present in the LLM training data than more recent OpenMP features. The paper achieves the following objectives:

• Demonstrates step-by-step process of generating OpenMP accelerator tests using LLMs
• Quality analysis of generated code using OpenMP specification as our guide, including manual interventions
needed to get to usable code

• Provide insights into changes and improvements required to the generated production-grade validation and
verification suite for OpenMP 3.0 features in conjunction with offloading.

• Evaluation of multiple OpenMP implementations using the corrected tests.

2 BACKGROUND

2.1 OpenMP

OpenMP is a widely used API that supports multi-platform shared memory multiprocessing programming for C, C++,
and Fortran languages. Through the use of straightforward compiler directives and runtime functions, it provides a
simple and flexible interface for developing parallel applications on multi-core processors. OpenMP provides efficient
utilization of multiple CPU cores and, more recently, “accelerator” devices such as GPUs and FPGAs. It includes directives
for work-sharing and synchronization, and environment variables, which help optimize performance and scalability on
a variety of platforms. The latest official OpenMP 5.2 specification [27] released in November 2021 added important
features such as metadirectives, assumption directives, nothing directive, error directives, allocators construct, and
dispatch construct. This work focuses on features of the OpenMP 3.0 [24] specification (released in 2008), which were
extended to support accelerator devices in OpenMP 4.0 [25] (released in 2013).

2.2 LLM

There are many publicly available LLMs that specialize in specific functionality. To list a few, there is the GPT series
by OpenAI [23], Large Language Model Meta AI (LLaMA) by Meta [31], Bidirectional Encoder Representations from
Transformers (BERT) [7] and Text-To-Text Transfer Transformer (T5) [30] by Google, GPT-Neo [10] and GPT-J [33] by
EleutherAI, BLOOM by BigScience [35], Claude by Anthropic [1], Command R by Cohere [5], and Alpaca by Stanford
University [32]. Each of these LLMs was developed by training specialized neural networks using pre-processed and
cleaned data. We choose ChatGPT-4 for our generation of OpenMP tests, as GPT has demonstrated ease of use, advanced
language generation and understanding capabilities, and is known for successfully handling a broad range of tasks. It
has also shown better OpenMP code generation in previously published works [20].

2.3 Prompt Engineering

Prompt engineering is the practice of designing, refining and optimizing input keywords to effectively guide an LLM
in generating the desired output. With the availability of LLMs researchers began by experimenting with how slight
changes in phrasing affected model outputs. As currently practiced, prompt engineering involves crafting specific text

Manuscript submitted to ACM

4 Swaroop Pophale, Wael Elwasif, and David E. Bernholdt

Prompts

<keyword1>
ChatGPT

Analyze
Output

Add or
Modify

keywords

<keyword1> connector <keyword2>

Generate New
Prompt

iteration1

iteration2

iterationn

Fig. 1. Prompt Specialization Feedback Loop

inputs or tokens that lead to contextually accurate, relevant, and correct responses from an LLM. Prompt engineering
has become a key skill in working with large language models and is of significant consequence. With the capability for
interactive refinement, an LLM can successfully achieve more complex tasks by the step-by-step approach of guiding
the LLM via domain- and objective-specific prompts.

3 CODE GENERATION

We use the few-shot approach for test generation. The objective was to generate self-validating independent tests for
OpenMP 3.0 directives with computation offloaded to device using the target directive. Focus was laid on key tokens.
Since the functionality of the directives does not change from C to C++, we only generated tests for C and Fortran. Our
initial approach was a very general prompt using the token generate and offloading tests for all OpenMP 3.0 features.
The response was a python script for plugging in directive and clause combinations to generate a combination of tests.
Unfortunately, the script did not account for the different semantics of the directives, restrictions on the clauses, nor did
it correctly encode the required data transfers to the device. We had to further specialize our prompts to get meaningful
responses.

The iterative design process is shown in Figure 1. We used a feedback mechanism to iteratively refine our prompts.
With every iteration the prompts are made more specific based on the response from ChatGPT. The prompts that
worked best were explicit, expressive prompts that mentioned the programming language, directive, clause, and the
tokens offloading support and testing with the appropriate propositions joining them.

ChatGPT generated both C and Fortran tests for the same prompt. With the final prompt “Create an OpenMP 4.5

offloading test for C and Fortran-90 for the <omp directive> directive, with the <omp clause>

clause” with the 19 directives with different clause combinations as shown in Table 1, we were successful in generating
78 distinct tests for OpenMP 3.0 with offloading support.

4 EVALUATION

As discussed in Section 3, 78 distinct tests were generated for a specific directive and clause combination. All tests had
the correct header files included; including <omp.h> (even where OpenMP function calls were not used). Our approach
was to first try to compile these tests on the Summit supercomputer (POWER9 CPU with NVIDIA V100 GPU) at the
Manuscript submitted to ACM

Using a Large Language Model as a Building Block to Generate Usable Validation and Verification Suite for OpenMP5

Table 1. List of OpenMP directives and their clauses for which tests were successfully generated. The term standalone denotes the
directive being used without modifying clauses. Tests for a total of 78 combinations were successfully generated.

OpenMP DIRECTIVE CLAUSES
atomic capture, read, update, write
barrier standalone
cancel parallel, sections, taskgroup
cancellation standalone
critical name
declare reduction initializer
declare simd aligned, linear, simdlen, uniform
flush standalone
for collapse, private, firstprivate, lastprivate, nowait, ordered, schedule
master standalone
ordered standalone
parallel copyin, default, firstprivate, if, num_threads, private, shared, reduction
parallel for collapse, copyin, default, firstprivate, if, nowait, num_threads, ordered, private, reduction,

schedule, shared
parallel sections copyin, default, firstprivate, if, nowait, num_threads, private, shared, reduction
sections standalone, nowait, num_threads, private, firstprivate, lastprivate, reduction, shared
single copyprivate, firstprivate, nowait, private
task default, depend, final, firstprivate, if, mergable, priority, private, shared, untied
taskgroup reduction
taskwait standalone
taskyield standalone

Table 2. Initial assessment of tests generated by ChatGPT using the GNU compilers.

Language
Number of C Fortran
Generated tests 78 78
Successfully compiled tests 67 (86%) 43 (54%)
Executed to completion on host 64 (82%) 43 (54%)
Executed to completion on device 60 (78%) 43 (54%)

Oak Ridge Leadership Facility (OLCF). We chose the GNU compiler for this step as it has mature and stable support for
this platform, along with good OpenMP feature support for both C and Fortran.

4.1 Quality of Generated Tests

4.1.1 Compile and Execution Time Results. We used the GNU GCC compiler (development version 13.2.1) enabled for
device offload on the Summit super-computer for evaluating the generated tests. Out of the box we had 67 and 43 tests
compile successfully for C and Fortran respectively as shown in Table 2.

As shown Table 3, the most common reason for compilation failure for C tests were OpenMP specification violations
while for Fortran it was language errors. We discuss some interesting cases here which shed light on the limitations of
LLMs to grasp programming model and language semantics. For example, for the test for the parallel for directive
with the copyin clause, the LLM generated the code listed in Listing 1. One obvious error is that shared_var is used
in the threadprivate directive before it is declared. This is easily fixed by moving the declaration in line 2 to before

Manuscript submitted to ACM

6 Swaroop Pophale, Wael Elwasif, and David E. Bernholdt

Table 3. High-level classification of errors encountered. Errors occurred at either during compilation or execution. Compile-time
errors are attributed to either non-compliance with the OpenMP specification or with the base language specification (C or Fortran).
Execution-time errors are due to lack of support for certain offload features, errors in semantics and race conditions in generated code.

Error Error Language
Category Sub-Category C Fortran
Compile-time OpenMP non-compliance 10 11

Base language non-compliance 0 24
Execution-time Test failure 10 4

Memory failure 2 39

1 #pragma omp threadprivate(shared_var)

2 int shared_var;

3

4 int main() {

5 /* intializarions of variables */

6

7 // Initialize shared variable and results array

8 shared_var = 42;

9 for (i = 0; i < n; i++) {

10 results[i] = -1;

11 }

12

13 // Offload computation to target device

14 #pragma omp target map(tofrom: results)

15 {

16 #pragma omp parallel for copyin(shared_var)

17 for (i = 0; i < n; i++) {

18 results[i] = shared_var + i;

19 }

20 }

Listing 1. Main body of the offlading test for parallel for directive with the copyin clause generated by ChatGPT

its use in line 1. The more important issue is the clashing semantics of the copyin clause and target construct. The
copyin clause is used to copy the value of the threadprivate variable shared_var from the primary thread to all other
threads executing the parallel region. According to the OpenMP specification accessing a threadprivate variable
in the target region leads to unspecified behavior. The model could not infer these restrictions and incorrectly used
the threadprivate variable shared_var in the target region. The correction in this case is to remove the offloading
(line 14) from the mix as it clearly leads to non-compliant code which may not be portable or have reproducible output.
Similar errors were observed in other tests that involved the copyin clause and all of them were corrected in a similar
manner. Another common set of errors in C tests were in the case of the default clause. When the default clause is
used to determine the implicit data-sharing attributes of variables referenced in the construct. With default(none)

the data-sharing attributes of all the variables referenced in the enclosing construct have to be specified.
The generated Fortran tests exhibited a number of base language errors. Several tests include a declaration of a

Fortran variable variable within a DO loop, as shown in the listing 2. Although such a declaration is valid in the C
language and would be considered a private variable according to the OpenMP specification, it is not allowed in
Fortran. This error is corrected by moving the declaration of private_var to the declarations part at the top of the
Fortran test, and explicitly adding the variable private_var to the list of items in the clause private in addition to the
variable i.
Manuscript submitted to ACM

Using a Large Language Model as a Building Block to Generate Usable Validation and Verification Suite for OpenMP7

1 !$omp target map(tofrom: results1 , results2)

2 !$omp parallel sections private(i)

3 !$omp section

4 do i = 1, n

5 integer :: private_var

6 private_var = (i - 1) * 2

7 results1(i) = private_var

8 end do

Listing 2. Incorrect Fortran variable declaration in test for sections private OpenMP construct

1 program offload_test

2 ! ommitted code

3 do i = 0, n-1

4 expected_result = expected_result + i

5 end do

6

7 ! Declare a subroutine to perform a task

8 subroutine perform_task(id, shared_var)

9 integer , intent(in) :: id

10 integer , intent(inout) :: shared_var

11 !$omp task shared(shared_var)

12 print *, 'Task ', id, ' is executing '

13 !$omp atomic

14 shared_var = shared_var + id

15 !$omp end task

16 end subroutine perform_task

17

Listing 3. Incorrect Fortran subroutine definition in generated tests

Table 4. Status of tests after fixing trivial compile-time errors. Percentages are relative to the originally-generated 78 tests. Note that
successful execution does not imply anything about the validity of the test.

Language
Number of tests C Fortran
Compiled and executed to completion on host 73 (94%) 60 (77%)
Compiled and executed to completion on device 72 (92%) 60 (77%)

Another common error in generated Fortran tests involved the placement of subroutines inside the main program
scope as shown in Listing 3. Such a construction is valid in the C language, where Fortran requires the subroutine to be
either declared outside the main program scope, or inside the contains block of the program or module.

Table 4 summarizes the results obtained after trivial compile-time errors in the generated tests were corrected. More
than 92% of C-language and and 77% of Fortran tests were able to compile and run after minor fixes. Note that successful
execution does not imply that the tests generated are valid OpenMP codes.

4.1.2 Invalid Tests. Not all of the generated tests, even those that compiled and executed to completion, were valid
OpenMP tests. Table 5 gives the distribution of valid vs. invalid tests generated, based on inspection of each test.
While most related works stop at this stage declaring one or another LLM as the “winner,” for generating a greater
number executable tests, we want to do an in depth qualitative analysis of the generated code to evaluate its usability.
Since our objective for this work is to generate useful OpenMP offloading tests for 3.0 features that are both thorough

Manuscript submitted to ACM

8 Swaroop Pophale, Wael Elwasif, and David E. Bernholdt

Table 5. Number of valid tests according to base language and OpenMP Specification

Number of valid tests Number of invalid tests
C 37 (47%) 41 (53%)
Fortran 35 (45%) 43 (55%)

Incorrect use
of OpenMP

directive
37%

Incorrect use
of OpenMP

clause
29%

OpenMP
semantics

ignored
26%

Programming
Error

8%

(a) Invalid test categorization for C tests generated.

Incorrect use
of OpenMP

directive
12%

Incorrect use
of OpenMP

clause
9%

OpenMP
semantics

ignored
43%

Programming
Error
36%

(b) Invalid test categorization for Fortran tests generated.

Fig. 2. Distribution of Invalid tests per category

and compliant with the OpenMP specification, we analyze each test file to see if the code adheres to the OpenMP
specification and the restrictions within.

To avoid being overly critical towards the generated tests we consider a test to be valid even if it checks for single
aspects of the OpenMP directive or clause correctly. For example, for the the firstprivate clause; the requirement
is that the variable is privatized and that it is assigned the value of the original list item. Even if one of these aspects
is checked by the generated test exercising the firstprivate clause, we count it as valid. For the invalid tests we
sorted them by the principle reason for their incorrectness. One aspect of which is discussed in Sec. 4.1 where the use
of target directive conflicts with the semantics of the OpenMP 3.0 feature (include all tests that exercise the copyin
clause). Although more than one error was found in majority of the invalid offloading tests, we have classified them into
four broad categories namely; (1) incorrect use of OpenMP directive, (2) incorrect use of OpenMP clause, (3) OpenMP
semantics ignored, or (4) programming error. The distribution for the C and Fortran tests generated is shown in Figures
2a and 2b respectively. Due to space constraints we will discuss the categories along with a few illustrative examples, as
observed in the generated tests.

• Incorrect use of OpenMP directive. Overall, 37% C and 12% Fortran invalid tests fell in this category. In some
tests, like those checking the ordering of threads using the ordered directive, the result was not dependent
on the effect of the directive. In another test exercising atomic directive with the capture clause the atomic

Manuscript submitted to ACM

Using a Large Language Model as a Building Block to Generate Usable Validation and Verification Suite for OpenMP9

1 // Offload computation to target device

2 #pragma omp target map(tofrom: results)

3 {

4 #pragma omp parallel for schedule(static , 2)

5 for (i = 0; i < n; i++) {

6 results[i] = i * 2;

7 }

8 }

Listing 4. Main body of the offlading test for for directive with the schedule clause generated by ChatGPT

operation read from distinct array indices to a private variable that do not need protection. The code would have
worked as expected even without the use of the atomic directive.

• Incorrect use of OpenMP clause. An interesting example in this category is the test generated for the parallel
directive with if clause. Here the generated test did not check if parallelismwas achieved based on the conditional
evaluated in the if clause. Another example is the test generated for the for directive with the schedule clause.
The schedule clause specifies how collapsed iterations of a worksharing-loop construct are divided into chunks
and distributed among threads of an OpenMP team of threads. OpenMP allows for five kinds of schedules; auto,
dynamic, guided, runtime, and static. The generated test shown in Listing 4 uses the static schedule with a
chunk size of two. This means that each OpenMP thread executes two consecutive iterations in a round-robin
manner till the iteration space is covered by the executing threads. The test does not check if the static schedule
was honored by the executing threads, as it does not capture the information regarding the thread number that
executes the iteration.

• OpenMP semantics ignored. Critical errors in this category include tests in combination with default clause
and tests with sections directive. The default clause determines the implicitly determined data-sharing
attributes of variables that are referenced in the construct. The data-sharing-attribute that the default clause can
specify is either firstprivate, private, shared or none. Though most of these are self explanatory, particular
attention must be given when data-sharing-attribute none is specified as it implies that the data-sharing attribute
of the variables used inside the construct are not implicitly determined and hence they must be explicitly
specified. Generated tests that used data-sharing-attribute none failed to include explicit data-sharing-attribute for
the variables used. The tests generated for OpenMP sections directive, which as been around since OpenMP 3.0,
had a recurring pattern of error unrelated to offloading to device. In the generated tests the iterators were shared
across different section structured blocks within the same sections directive. This causes a race condition and
the values computed in the section are undefined.

• Programming error. This category includes generated tests that contain base language errors (mainly observed
in the Fortran programs) and errors in setting the "pass" flag. These form a very small part of the invalid
test spectrum. For example, the tests exercising ordered directive the relies on visual inspection of the print
statements and not the pass flag (which is always set to true). These could lead to larger number of false-positives
if not corrected.

4.2 Correcting Invalid Tests

We tried to fix all the above mentioned errors that do not require a complete rewrite of the test code. We identified four
tests that could not be fixed without a complete rewrite. Depending on the complexity of the changes required to make
the corrections we roughly characterize the effort as small, medium or large, similar to the “t-shirt sizing” approach

Manuscript submitted to ACM

10 Swaroop Pophale, Wael Elwasif, and David E. Bernholdt

sometimes used in work estimation for software development. These categories do not necessarily correspond to
number of lines of code (LOC) changed, which we also record, and may be different depending on the level of OpenMP
expertise. Here we present a few interesting cases, one each from the levels of effort, from among the C and Fortran
tests that we were able to successfully fix to make them meaningful and valid. The exhaustive list of corrected tests is
shown in Table 6 with the level of effort to make the corrections.

Listing 5 shows the main offloading kernel of the generated test for barrier directive. There are two conceptual
errors in this test (1) the for construct has the OpenMP worksharing property which has an implicit barrier at exit
unless the nowait clause is applied and (2) the checks are done inside the target region, but the value of the pass_flag
is not propagated back to the host after the offloading kernel completes execution on the device. Since the pass_flag is a
scalar variable in the C language, the default behavior is as if is firstprivate and only persists during the duration of
the offloaded kernel. Due to this the generated test runs to completion but always reports Failed when executed even
when other errors are corrected. When these issues were fixed (as shown in Listing 6) by adding a nowait clause to the
for construct on line 8, and adding the pass_flag with a tofrom modifier to the map directive, the code reliably tests
the barrier directive. We classified the effort required for correcting this test as small and the corresponding LOC
changed is 14.

Listing 7 shows the main offloading kernel of the generated test for the combined parallel for directive with the
if clause. If the expression in the if clause evaluates to false, then the number of threads executing the parallel region
is set to one. Hence, even when num_threads is set to greater than one, the if clause determines if the the parallel
region will be executed by multiple threads. The generated test code does not check if, in fact, the value of the condition
had any effect and reports success if the array results is updated correctly. We correct this invalid test by updating the
value stored in the results array such that is reflects the number of threads executing the parallel region. The corrected
test checks for both values of the if clause (true and false) and only reports Test Passed if both scenarios work as per
the OpenMP specification. We classified the effort required for correcting this test as medium and the corresponding
LOC changed is 33.

A more complicated test case is presented in Listings 9 and 10. The sections directive allows for a number of
unrelated structured block sequences delimited using the section construct to be executed concurrently by threads in
the team. The cancel directive can be used to activate cancellation (i.e. abort the execution) of the innermost enclosing
parallel region of the type specified by cancel-directive-name, which is sections, in this test as shown on line 12
of Listing 9. All threads that belong to the team executing the parallel region check for active cancellation only at
cancellation points, which only occur at OpenMP barriers, a cancel region, or an explicit cancellation point. The
generated test is missing any cancellation point construct, so threads that do not encounter the omp section construct
on line 8 have no place where they check whether the execution of the sections parallel region has ben canceled.

The corrected code in Listing 10 shows the correct use of the cancel directive for sections. While one thread cancels
the sections (in line 14) all other threads in the parallel region check the status of cancellation at the cancellation
point (line 20) and record the cancellation of the sections. Other non-trivial errors in the generated code are (1)
shared iterator i which causes race and undefined results, and (2) values of results1 and results2 are checked for updates
or lack thereof on the host which violates OpenMP semantics, as the array results1will have unspecified value because it
is not assigned in the lexically last section enclosed by the sections directive. Effort required for this test is classified
as large due to the complexity of semantics even when only 30 LOC were changed during the corrections.

Manuscript submitted to ACM

Using a Large Language Model as a Building Block to Generate Usable Validation and Verification Suite for OpenMP11

Table 6. Effort and lines of code (LOC) change for corrected C and Fortran tests

Effort Corrected tests LOC change for C LOC change for Fortran

small

test_atomic_capture n/a 6
test_atomic_read n/a 4
test_barrier 14 4
test_cancel_taskgroup 32 21
test_cancellation_point 26 24
test_critical_name n/a 21
test_declare_reduction_initializer n/a 4
test_declare_simd_aligned n/a 32
test_declare_simd_linear n/a 18
test_declare_simd_simdlen n/a 17
test_declare_simd_uniform n/a 18
test_master 7 7
test_parallel_default 4 n/a
test_parallel_firstprivate 14 n/a
test_parallel_for_default 2 n/a
test_parallel_for_nowait n/a 6
test_parallel_sections_default 2 n/a
test_parallel_sections_nowait 13 6
test_parallel_sections_num_threads 15 8
test_parallel_sections_reduction 5 10
test_sections_nowait 2 6
test_sections_private n/a 5
test_sections_reduction 2 n/a
test_single_private n/a 8
test_single_copyprivate 2 n/a
test_task_default n/a 23
test_task_final n/a 20
test_task_firstprivate n/a 19
test_task_if n/a 29
test_task_mergable n/a 19
test_task_priority n/a 19
test_task_private 12 n/a
test_task_shared n/a 21
test_taskyield n/a 19

medium

test_for_ordered 28 15
test_ordered 19 17
test_parallel_for_if 33 34
test_parallel_for_num_threads 17 15
test_parallel_for_ordered 4 10
test_parallel_for_private 12 12
test_parallel_for_schedule 14 24
test_parallel_sections_if 5 5
test_task_untied 39 23
test_taskwait 29 19

large

test_cancel_parallel 26 9
test_cancel_sections 46 31
test_for_private 18 4
test_for_schedule 30 29
test_parallel_if 8 16
test_task_depend 21 26

Manuscript submitted to ACM

12 Swaroop Pophale, Wael Elwasif, and David E. Bernholdt

1 // Offload computation to target device

2 #pragma omp target map(tofrom: results)

3 {

4 #pragma omp parallel shared(results)

5 {

6 // initalize and get thread id and

num_threads

7 #pragma omp for

8 for (i = 0; i < n; i++) {

9 results[i] = id;

10 }

11 #pragma omp barrier

12 // Check if all elements have been

updated correctly

13 ...

14 }

15 }

16 // Check value of pass_flag to report test

Passed or Failed

Listing 5. Generated offloading test for barrier directive

1 // Offload computation to target device

2 #pragma omp target map(tofrom: results , pass_flag)

3 {

4 #pragma omp parallel shared(results , pass_flag)

5 {

6 // initalize and get thread id and

num_threads

7 #pragma omp for schedule(static , 1) nowait

8 for (i = 0; i < n; i++) {

9 results[i] = id;

10 }

11 #pragma omp barrier

12 // Check if all elements have been updated

correctly

13 ...

14 }

15 }

16 // Check value of pass_flag to report test Passed

or Failed

Listing 6. Corrected offloading test for barrier directive

1 // Offload computation to target device

2 #pragma omp target map(tofrom: results)

3 {

4 #pragma omp parallel for if(condition)

5 for (i = 0; i < n; i++) {

6 results[i] = i * 2;

7 }

8 }

9 // Check results

10 for (i = 0; i < n; i++) {

11 ...

12 }

13

14

15

16

Listing 7. Generated offloading kernel for parallel
for combined directive with if clause

1 for(condition = 0; condition < 2; condition ++){

2 // Offload computation to target device

3 #pragma omp target map(tofrom: results)

4 {

5 #pragma omp parallel for if(condition)

num_threads (4)

6 for (i = 0; i < n; i++) {

7 results[i] = omp_get_num_threads ();

8 }

9 }

10 // Check results

11 if(! condition){

12 ...

13 } else {

14 ...

15 }//end -else

16 }//end -for

Listing 8. Corrected offloading kernel for parallel for combined
directive with if clause

4.3 Using the Tests to Evaluate OpenMP Implementations on Frontier

Of the 78 generated tests we could correct 74 tests (95%). During the correctness checks we found that 3 of the 74 tests
use the copyin clause (discussed in 4.1.1) and thus cannot be offloaded due to conflicting semantics. They are relevant
only in the host-only mode and are not included in the results for offloading tests shown in Figure 3. They are included
in the host-only results presented in Figure 4.

With the 71 correct offloading tests, we evaluate OpenMP implementations in AMD ROCm (version 17.0.0), HPE/Cray
CCE (17.0.0) and GNU GCC (13.2.1-dev) on Frontier super-computer (x86 CPU and AMD MI250X GPUs). Figure 3
shows the number of corrected tests that compiled without errors, ran to completion, passed the validation, and failed
validation using the AMD, CRAY and GNU compilers with offloading enabled and mandatory. For completeness, we
also compile and run the 71 tests above and the three tests relying on copyin in host-only mode. In this mode offloading
kernels are executed on the host and thus, among other things, does not require associated data transfers.
Manuscript submitted to ACM

Using a Large Language Model as a Building Block to Generate Usable Validation and Verification Suite for OpenMP13

1 // Set cancel flag to test cancellation

2 cancel = 1;

3 // Offload computation to target device

4 #pragma omp target map(tofrom: results1 ,

results2 , cancel)

5 {

6 #pragma omp parallel sections

7 {

8 #pragma omp section

9 {

10 for (i = 0; i < n; i++) {

11 if (cancel && i == 5) {

12 #pragma omp cancel sections

13 }

14 results1[i] = i * 2;

15 }

16 }

17

18 #pragma omp section

19 {

20 for (i = 0; i < n; i++) {

21 results2[i] = i * 3;

22 }

23 }

24 }

25 }

26 // Check value of results1 and results2

arrays on host

Listing 9. Generated offloading kernel for
cancellation directive used inside sections

1 // Set cancel flag to test cancellation

2 cancel = 1;

3 // Offload computation to target device

4 #pragma omp target map(tofrom: results) map(to:

cancel)

5 {

6 int i;

7 #pragma omp parallel private(i)

8 {

9 #pragma omp sections

10 {

11 #pragma omp section

12 {

13 if (cancel == 1) {

14 #pragma omp cancel sections

15 }

16 }

17 #pragma omp section

18 {

19 for (i = 0; i < n; i++) {

20 #pragma omp cancellation point sections

21 results[i] = i * 3;

22 }

23 }

24 }

25 }

26 }

27 // Check value of results array on host

Listing 10. Corrected offloading kernel for cancellation directive
used inside sections

46 46

28

18

68 67

61

6

71 70

65

5

N U M B E R O F T E S T S
C O M P I L E D

C O R R E C T L Y

N U M B E R O F T E S T S
E X E C U T E D T O
C O M P L E T I O N

N U M B E R O F T E S T S
P A S S E D

N U M B E R O F T E S T S
F A I L E D

C O R R E C T E D C T E S T S

CCE AMD GNU

(a) Testing OpenMP implementation for C using the cor-
rected C tests.

32 31 28

3

53 50

43

7

71 71

67

4

N U M B E R O F T E S T S
C O M P I L E D

C O R R E C T L Y

N U M B E R O F T E S T S
E X E C U T E D T O
C O M P L E T I O N

N U M B E R O F T E S T S
P A S S E D

N U M B E R O F T E S T S
F A I L E D

C O R R E C T E D F O R T R A N T E S T S

CCE AMD GNU

(b) Testing OpenMP implementation for Fortran using the
corrected Fortran tests

Fig. 3. Tests compiled and executed with offloading on device by setting OMP_TARGET_OFFLOAD to mandatory

Across the board the pass rate is much better for host execution. This is particularly noticeable for CCE where 93% of
the C and 82% of Fortran feature tests pass the validation on host compared to 39% C and Fortran on the device. For the
Cray CCE compiler, we observe that OpenMP cancellation, ordered, single, tasking and reduction tests produce
compilation errors when compiled for the device. The AMD OpenMP implementation (based on LLVM) has more

Manuscript submitted to ACM

14 Swaroop Pophale, Wael Elwasif, and David E. Bernholdt

73 72 69

3

71 71 70

1

74 74 72

2

N U M B E R O F T E S T S
C O M P I L E D

C O R R E C T L Y

N U M B E R O F T E S T S
E X E C U T E D T O
C O M P L E T I O N

N U M B E R O F T E S T S
P A S S E D

N U M B E R O F T E S T S
F A I L E D

C T E S T S

CCE AMD GNU

(a) Testing OpenMP implementation for C using the cor-
rected C tests.

74 74

61

13

72 71 68

3

74 74

70

4

N U M B E R O F T E S T S
C O M P I L E D

C O R R E C T L Y

N U M B E R O F T E S T S
E X E C U T E D T O
C O M P L E T I O N

N U M B E R O F T E S T S
P A S S E D

N U M B E R O F T E S T S
F A I L E D

F O R T R A N T E S T S

CCE AMD GNU

(b) Testing OpenMP implementation for Fortran using the
corrected Fortran tests

Fig. 4. Tests compiled and executed in host only mode by setting OMP_TARGET_OFFLOAD to disabled

uniform results for host and device execution with a few more failed validation tests for OpenMP cancellation, ordered
construct, and untied task. The best OpenMP conformance is seen in the results from GCC implementation of OpenMP
for both host (97% C and 95% Fortran) and device (92% C and 94% Fortran). These numbers are the current snapshot of
the implementation status of different implementations and are only intended to show the gaps in features available
and possible problems with incorrect implementations for older OpenMP features in combination with offloading. Since
these compilers are under active development, we hope to see more tests pass validation as time passes.

5 RELATEDWORK

The use of machine learning to aid in various aspects of code development has received a lot of attention over the last
decade. A systematic overview of such use is presented in [11], where the authors survey the landscape of machine
learning aided software development. Within the context of HPC, the utility of using LLMs to generate parallel
programming kernels is studied in [14], where the authors use GitHub Copilot to generate code for representative HPC
kernels (including AXPY, GEMV, GEMM, SpMV, Jacobi Stencil, and CG) using different programming languages and
models, and targeting both CPUs and accelerators. The use of LLMs for software testing was studied in [34] where
the authors surveyed 102 studies involving various aspects of software testing tasks and the potential and challenge
of using various LLM models to aid in testing. Using LLMs to aid in the generation of test suites for compilers was
studied in [21], where the authors investigate the use of different LLMs to generate a validation and verification test
suite that targets the OpenACC directive. In this work, the authors study the performance of state-of-the-art LLMs,
including open-source LLMs - Meta’s Codellama, Phind’s fine-tuned version of Codellama, Deepseek’s Deepseek Coder
and closed-source LLMs - OpenAI’s GPT-3.5-Turbo and GPT-4-Turbo when tasked to generate a testsuite for compilers
implementing the OpenACC offloading directives. Furthermore, the authors investigate fine tuning and various prompt
methods, concluding that for this particular task, the Deepseek-Coder-33b-Instruct LLM outperformed other models in
the study, followed by GPT-4-Turbo.

Manuscript submitted to ACM

Using a Large Language Model as a Building Block to Generate Usable Validation and Verification Suite for OpenMP15

An evaluation of ChatGPT-3.5, specifically, for code generation [17] drew test problems primarily from the LeetCode
platform.1 The study used 728 test problems, targeting solution code generation in C, C++, Java, JavaScript, and Python.
In testing the effectiveness of using multiple rounds with ChatGPT to fix erroneous programs, they conclude that
ChatGPT has problems fixing “wrong answer” errors (as opposed to “wrong details” errors) because “(1) ChatGPT lacks
the ability to grasp logical details, and (2) ChatGPT lacks in dealing with problems that require complex reasoning.” On
the other hand, most (70%) of compilation errors can be successfully addressed through multi-round fixing, suggesting
that it might be useful to try multi-round fixing with the OpenMP test cases. They also found that the quality of
ChatGPT’s generated solutions was very different for test problems published before the cut-off date for the data used
to train this version of ChatGPT (2022-01-01) compared to those published after it (acceptance rates of 68% vs. 20%),
suggesting the value of having data in the training set directly connected to the problem posed. Note that in this paper,
we use ChatGPT-4, and utilize C and Fortran as the base languages for the OpenMP test cases.

Random test generation is a technique with broad applicability. Pankratov [28] illustrates this approach applied to
OpenMP, automatically generating programs testing the omp parallel for construct. Laguna et al. [15] have also
extended their Varity random random test generator to support a small set of OpenMP constructs in the generated
programs. Varity’s primary focus is on comparative testing for numerical (floating point) discrepancies between different
different compilers and/or different hardware platforms.

The Creal tool [16] produces C-language test code through a combination of random generation and functions
extracted from real-world code. The authors show that their approach finds compiler bugs which have not been
identified by other testing strategies, and characterize it as complementary to other testing approaches. One can imagine
this approach being extended to include OpenMP constructs in either the random code or the real-world functions.

6 CONCLUSION

In this work we explored the use of ChatGPT-4 as a building block to generate a suite of tests for OpenMP features. We
have chosen a set of directives and clauses, a total of 78 combinations, which first appeared in OpenMP 3.0 (released in
May 2008) but are also relevant for accelerators. We prompted ChatGPT to generate tests in the C and Fortran languages
for device (accelerator) offloading. We found that of the 78 generated tests 67 C tests and 43 Fortran tests compiled
successfully and fewer than those executed to completion. We demonstrate that successful compilation and execution to
completion are inadequate metrics for evaluating generated code and that, at this time, even commodity LLMs require
expert intervention for code verification. We provide detailed analysis regarding the quality of tests generated. We
improved on the usable generated tests (95%) by correcting all the errors. Our experiment successfully built a quality
validation suite. In doing so we have analyzed the key error categories that need special attention from users when
relying on LLMs for OpenMP code generation. Although general purpose LLMs can generate codes for specialized
programming model like OpenMP, manual intervention by experts is necessary to validate the generated codes. This
also points to (1) the need for specialized models geared towards HPC tasks which have a better understanding of the
semantics of different programming models, and (2) more training data (especially for cases identified in this paper), in
the form of correct code and coding practices, to be available for training LLMs. With "small" effort 37% of generated
invalid C tests and 63% of generated invalid Fortran tests could be corrected, which helps with programming productivity.
Overall, we could use 95% of the generated tests. With the corrected tests, we validate recent implementations from

1https://leetcode.com/

Manuscript submitted to ACM

https://leetcode.com/

16 Swaroop Pophale, Wael Elwasif, and David E. Bernholdt

HPE, AMD and GNU on the Frontier super-computer to show the missing/incorrect OpenMP feature implementations
provided by the different vendors.

ACKNOWLEDGMENTS

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725.

REFERENCES
[1] Anthropic. 2023. Claude: An Anthropic AI Assistant. https://www.anthropic.com/index/claude
[2] Thomas Applencourt. 2023. https://github.com/TApplencourt/OvO.
[3] Franck Cappello, Alejandro Duran, Haihang Jin, Sergi Mateo, Christian Terboven, and Stephen L Olivier. 2009. OpenMP 3.0 validation suite. In

Proceedings of the 5th International Workshop on OpenMP. Springer-Verlag, Berlin, Heidelberg, 153–166.
[4] Sunita Chandrasekaran et al. 2012. A benchmark-based evaluation of OpenMP 3.0 and 4.0 implementations. In International Workshop on OpenMP.

Springer, Berlin, Heidelberg, 60–72.
[5] Cohere. 2022. Cohere Command R: Retrieval-Augmented Generation. https://cohere.ai
[6] NVIDIA Corporation. 2023. NVIDIA OpenMP Validation Suite. https://developer.nvidia.com/openmp-validation-suite Accessed: 2024-08-15.
[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding. arXiv:1810.04805 [cs.CL] https://arxiv.org/abs/1810.04805
[8] Jose Monsalve Diaz, Swaroop Pophale, Kyle Friedline, Oscar Hernandez, David E Bernholdt, and Sunita Chandrasekaran. 2018. Evaluating Support

for OpenMP Offload Features. In Proceedings of the 47th International Conference on Parallel Processing Companion. ACM, New York, 31.
[9] Alejandro Duran, Christian Terboven, Dirk Schmidl, Sergi Mateo, and Lars Koesterke. 2009. The Barcelona OpenMP Tasks Suite. In Proceedings of

the 2009 International Conference on Parallel Processing. IEEE, Washington, DC, 124–131.
[10] EleutherAI. 2021. GPT-Neo: An Open-Source Autoregressive Language Model. https://github.com/EleutherAI/gpt-neo
[11] Enrique, Bappaditya Dey, Sandip Halder, Stefan De Gendt, and Wannes Meert. 2022. Code Generation Using Machine Learning: A Systematic

Review. IEEE Access 10 (2022), 82434–82455. https://doi.org/10.1109/ACCESS.2022.3196347
[12] GitHub, Inc. 2021. GitHub Copilot. https://github.com/features/copilot Accessed: 2024-08-15.
[13] GNU Project. 2023. GNU OpenMP Validation Test Suite. https://gcc.gnu.org Accessed: 2024-08-15.
[14] William Godoy, Pedro Valero-Lara, Keita Teranishi, Prasanna Balaprakash, and Jeffrey Vetter. 2023. Evaluation of OpenAI Codex for HPC Parallel

Programming Models Kernel Generation. In Proceedings of the 52nd International Conference on Parallel Processing Workshops (Salt Lake City, UT,
USA) (ICPP Workshops ’23). Association for Computing Machinery, New York, NY, USA, 136–144. https://doi.org/10.1145/3605731.3605886

[15] Ignacio Laguna, Patrick Chapman, Konstantinos Parasyris, Giorgis Georgakoudis, and Cindy Rubio-González. 2024. Testing the Unknown: A
Framework for OpenMP Testing via Random Program Generation. arXiv:2410.09191 [cs.SE] https://arxiv.org/abs/2410.09191

[16] Shaohua Li, Theodoros Theodoridis, and Zhendong Su. 2024. Boosting Compiler Testing by Injecting Real-World Code. Proc. ACM Program. Lang. 8,
PLDI, Article 156 (June 2024), 23 pages. https://doi.org/10.1145/3656386

[17] Zhijie Liu, Yutian Tang, Xiapu Luo, Yuming Zhou, and Liang Feng Zhang. 2024. No Need to Lift a Finger Anymore? Assessing the Quality of Code
Generation by ChatGPT. IEEE Transactions on Software Engineering 50, 6 (2024), 1548–1584. https://doi.org/10.1109/TSE.2024.3392499

[18] LLVM Project. 2023. LLVM OpenMP Validation Suite. https://llvm.org Accessed: 2024-08-15.
[19] Message Passing Interface Forum. 2021. MPI: A Message-Passing Interface Standard Version 4.0. Message Passing Interface Forum. https://www.mpi-

forum.org/docs/mpi-4.0/mpi40-report.pdf
[20] Nikola Mišić and Ivan Dodović. 2024. An Assessment of Large Language Models for OpenMP-Based Code Parallelization: A User Perspective.

Journal of Big Data 11 (2024), 19. https://journalofbigdata.springeropen.com/articles/10.1186/s40537-024-01019-z Accessed: 2024-12-10.
[21] Christian Munley, Aaron Jarmusch, and Sunita Chandrasekaran. 2024. LLM4VV: Developing LLM-driven testsuite for compiler validation. Future

Generation Computer Systems 160 (2024), 1–13. https://doi.org/10.1016/j.future.2024.05.034
[22] Oak Ridge National Laboratory and University of Delaware. 2024. OpenMP Validation and Verification Suite. https://github.com/OpenMP-

Validation-and-Verification Accessed: 2024-08-15.
[23] OpenAI and Josh Achiam et al. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL] https://arxiv.org/abs/2303.08774
[24] OpenMP Architecture Review Board. 2008. OpenMP Application Program Interface Version 3.0. [Online]. Available: http://www.openmp.org/mp-

documents/spec30.pdf.
[25] OpenMP Architecture Review Board. 2013. OpenMP Application Programming Interface Version 4.0. https://www.openmp.org/specifications/

Accessed: 2024-08-15.
[26] OpenMP Architecture Review Board. 2018. OpenMP Application Programming Interface Version 4.5. https://www.openmp.org/specifications/

Accessed: 2024-08-15.

Manuscript submitted to ACM

https://www.anthropic.com/index/claude
https://github.com/TApplencourt/OvO
https://cohere.ai
https://developer.nvidia.com/openmp-validation-suite
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://github.com/EleutherAI/gpt-neo
https://doi.org/10.1109/ACCESS.2022.3196347
https://github.com/features/copilot
https://gcc.gnu.org
https://doi.org/10.1145/3605731.3605886
https://arxiv.org/abs/2410.09191
https://arxiv.org/abs/2410.09191
https://doi.org/10.1145/3656386
https://doi.org/10.1109/TSE.2024.3392499
https://llvm.org
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-024-01019-z
https://doi.org/10.1016/j.future.2024.05.034
https://github.com/OpenMP-Validation-and-Verification
https://github.com/OpenMP-Validation-and-Verification
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
https://www.openmp.org/specifications/
https://www.openmp.org/specifications/

Using a Large Language Model as a Building Block to Generate Usable Validation and Verification Suite for OpenMP17

[27] OpenMP Architecture Review Board. 2021. OpenMP Application Programming Interface Version 5.2. https://www.openmp.org/specifications/
Accessed: 2024-08-15.

[28] Pankratov, Svyatoslav. 2018. Automated test generation for optimizing compilers with OpenMP support. MATEC Web Conf. 210 (2018), 04014.
https://doi.org/10.1051/matecconf/201821004014

[29] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research 21, 140 (2020), 1–67.

[30] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2023. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs.LG] https://arxiv.org/abs/1910.10683

[31] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. 2023. LLaMA: Open and Efficient Foundation
Language Models. arXiv:2302.13971 [cs.CL] https://arxiv.org/abs/2302.13971

[32] Stanford University. 2023. Stanford Alpaca: An Instruction-following LLaMA Model. https://github.com/tatsu-lab/stanford_alpaca
[33] Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. https://github.com/kingoflolz/mesh-

transformer-jax
[34] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. 2024. Software Testing With Large Language Models: Survey,

Landscape, and Vision. IEEE Transactions on Software Engineering 50, 4 (2024), 911–936. https://doi.org/10.1109/TSE.2024.3368208
[35] BigScienceWorkshop and Teven Le Scao et al. 2023. BLOOM: A 176B-Parameter Open-Access Multilingual Language Model. arXiv:2211.05100 [cs.CL]

https://arxiv.org/abs/2211.05100
[36] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V Le. 2019. XLNet: Generalized autoregressive pretraining

for language understanding. In Advances in neural information processing systems. Curran Associates, Inc., Red Hook New York, 5753–5763.

Manuscript submitted to ACM

https://www.openmp.org/specifications/
https://doi.org/10.1051/matecconf/201821004014
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.1109/TSE.2024.3368208
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2211.05100

	Abstract
	1 Introduction
	2 Background
	2.1 OpenMP
	2.2 LLM
	2.3 Prompt Engineering

	3 Code Generation
	4 Evaluation
	4.1 Quality of Generated Tests
	4.2 Correcting Invalid Tests
	4.3 Using the Tests to Evaluate OpenMP Implementations on Frontier

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

