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String instability mitigation of adaptive cruise control without 

modifying control laws: Trajectory shaper and parameter estimation* 

Vehicle automation technologies enable vehicles to be equipped with adaptive 

cruise control (ACC) systems, which relieve highway driving fatigue. However, 

recent studies have shown that the current ACC systems on commercially-

available vehicles are string-unstable (i.e., exacerbate shockwave propagation and 

congestion). To achieve string stability, most existing studies seek to directly 

modify the control algorithms of ACC systems. Alternatively, this study proposes 

a trajectory shaper (TS)-based method, which only modifies the trajectory 

information (i.e., position and speed measured by sensors) of the predecessor 

vehicle, so that the ego vehicle driven by a string-unstable ACC system leverages 

the modified trajectory information to achieve string stability. To devise this TS-

based method, the batch-optimisation and extended Kalman filter methods are 

applied to estimate the parameters of an ACC system in an offline-online fashion. 

The conditions of persistent excitation and observability-identifiability are 

analysed to determine the sufficient conditions for obtaining accurate parameters 

of an ACC system. The proposed TS-based method is cost-effective during 

implementation, as they avoid modifying existing ACC control algorithms (which 

entails complex analysis of ACC control systems and parameter tuning). The 

effectiveness of the proposed TS-based method is validated through numerical 

experiments. The results suggest that they can achieve desired string stability 

without modifying existing ACC control algorithms. 
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Introduction 

Due to the rapid advances in vehicle automation technologies, adaptive cruise control 

(ACC) systems are now widely installed on commercially-available vehicles around the 

world. As illustrated in the purple box of Figure 1, an ACC system consists of a high-

level planner (HP) and a low-level controller (LC) (Zhou et al., 2022b; Naus et al., 2010). 

The HP uses the sensor-measured trajectory information (i.e., position, speed) of the 

predecessor vehicle to plan the desired trajectory (e.g., acceleration or speed in future 

time steps) so that the desired car-following (CF) control performance (e.g., tracking, 

collision avoidance, comfort, fuel economy, etc.) can be achieved for the ego vehicle. The 

LC determines the appropriate gas/brake command to be sent to the vehicle actuators (i.e., 

engine, transmission, brake system), so that the planned acceleration/speed can be 

executed on the ego vehicle plant. As a critical component of an Advanced Driver 

Assistance System (ADAS), the ACC system can alleviate drivers’ fatigue and enhance 

safety and comfort in the driving task. However, recent studies suggest that the ACC 

systems available on commercially-available vehicles are string-unstable (Li et al., 2021; 

Makridis et al., 2021), indicating that vehicles driven by ACC systems will amplify speed 

fluctuations originating from the downstream traffic, which can amplify traffic 

oscillations and lead to undesired stop-and-go waves.  

To guarantee string stability for dampening speed fluctuations and mitigating 

traffic oscillations, the most intuitive approach is to modify the ACC control algorithms 

(i.e., tuning parameters of HP and LC, or even revising the control algorithms). Several 

studies have investigated the design of HP to achieve string stability. For instance, 

proportional-derivative (PD) type linear planner and its variants have been studied 

extensively (Gong, Zhou, and Peeta, 2019; Zhou et al., 2020; Zhou and Ahn, 2019). 

Model predictive controller (MPC) type planners have also been investigated to 



incorporate constraints related to safety, speed limit, and desired 

acceleration/deceleration limit (Gong, Shen, and Du, 2016; Wang et al., 2019; Zhou, 

Wang, and Ahn, 2019). The proportional-integral-derivative (PID) control (Zhou et al., 

2022b), feedback linearization control (FLC) (Lu and Shladover, 2018), and loop shaping 

control (Shladover, 2009) techniques have been studied in the LC to minimize the 

tracking error for realizing the planned string-stable trajectory. However, directly 

modifying the algorithms of an existing ACC system to achieve string stability suffers 

from the following three challenges. First, the performance of the LC can also 

significantly impact string stability (Zhou et al., 2022b), which has been neglected in most 

studies. The HP and LC impact each other during ACC operations; the trajectory planning 

in the HP addresses the imperfect execution from the LC, while the LC counteracts the 

variations in planned trajectory from the HP. Hence, their interactions induce complex 

correlations that makes string stability analysis even more difficult (typically entails 

numerous trial-and-error attempts). Second, the control algorithms of vehicle engine, 

transmission, and brake system are determined by the original equipment manufacturers 

(OEMs) (components in the dash-line box in Figure 1). As these are proprietary 

information of the OEMs, it is difficult to access these control algorithms (in the factory 

powertrain control unit) and the corresponding actuator dynamics. Moreover, retrofitting 

the actuator response typically entails extensive experiments to construct look-up tables 

and fit empirical functions, which is laborious and time-consuming. If the vehicle actuator 

dynamics are not accurately modelled or are unknown, how the ego vehicle responds to 

the LC given the real-world disturbances (e.g., air drag, rolling resistance, road grade, 

etc.) and measurement noise during ACC operations (as shown in Figure 1) cannot be 

robustly predicted. The challenges in explicitly modeling the actuator dynamics would 

substantially degrade the tracking performance of the LC, which compromises string 



stability. Third, as the autonomous vehicle industry is shifting from rule-based control 

methods (i.e., control decisions with explicit derivations and closed-form expressions) to 

end-to-end learning-based control methods (i.e., directly mapping sensor measurements 

to the control decision without modularizing HP and LC) (Zhou et al., 2022a), the 

complexity and intractability of deep neural networks substantially increase the effort and 

cost to tune and revise existing ACC control algorithms. Hence, based on these three 

challenges, directly tuning and revising the existing ACC control algorithm in a 

commercially-available vehicle to achieve string stability can be rather expensive, 

difficult and laborious. 

 
Figure 1. Ego vehicle control by ACC: gasoline vehicle uses engine; electric vehicle 

uses electric motor; hybrid vehicle uses both engine and electric motor  

To circumvent the need to directly modify the existing algorithms of an ACC 

system and achieve string stability in a cost-effective manner, this study proposes 

trajectory shaper (TS)-based method which only modifies the sensor-measured trajectory 

information (i.e., position, speed signal) of the predecessor vehicle before it is used by 

the ACC system of the ego vehicle, as shown in Figure 2(a). The proposed TS-based 

method leverages the fact that the trajectory information of the predecessor vehicle 



influences the trajectory of the ego vehicle. Specifically, the trajectory information of the 

predecessor vehicle can impact the CF behaviour of the ego vehicle. For instance, the 

predecessor vehicle can adjust its speed to achieve desired spacing between itself and the 

ego vehicle, which will reduce the speed variations of the ego vehicle. The design of the 

TS is inspired by the input shaping approach (Singh and Singhose, 2002; Singhose, 

Seering, and Singer, 1996) applied to attenuate residual vibrations of mechanical systems 

(e.g., cranes, robot manipulators). During operations, the TS functions as a signal filtering 

plug-in in the autonomous driving perception module, processes the trajectory 

information of the predecessor vehicle, and removes its undesired characteristics that will 

induce string-unstable CF behaviour from an ACC system. The TS also shares a similar 

rationale with cyberattacks, while exercising totally opposite objectives. Both TS and 

cyber attacker seeks to vary the information used by vehicle control systems to alter the 

vehicle trajectories. However, the TS seeks to improve the performance of a suboptimal 

ACC to benefit the traffic flow, while a cyber attacker seeks to deteriorate vehicle 

controllers to perturb the traffic and reduce safety. 

To ensure desired string stability performance of the TS-based method, only two 

parameters of an ACC system need to be accurately identified from historical trajectories: 

(i) natural frequency, and (ii) damping ratio. Estimating these two parameters can be 

significantly easier than identifying complicated vehicle actuator dynamics (for revising 

existing control algorithms). The natural frequency corresponds to the speed oscillation 

characteristics (i.e., the changing rate and period of speed overshoot/undershoot) of an 

ACC system after encountering speed perturbations from downstream traffic. The 

damping ratio describes the capability of an ACC system to alleviate speed fluctuations 

to achieve string stability (i.e., the measure of oscillation attenuation). The two parameters 

provide a direct interpretation for the string stability property of an ACC system without 



the need to know the exact control architecture or algorithms. The magnitude of 

maximum overshoot/undershoot and the decaying/amplifying characteristics of speed 

fluctuations can be computed based on natural frequency and damping ratio, which 

enables the control strategies to mitigate the corresponding speed fluctuations and 

overshoot/undershoot. Thereby, given a string-unstable ACC system, if these two 

parameters are accurately estimated, a vanilla trajectory shaper (VTS) can be 

implemented to alleviate string-unstable CF behaviour. However, the estimated natural 

frequency and damping ratio may not be accurate because the trajectory data obtained 

from real-world measurements: (i) can be noisy due to the measurement noise of onboard 

sensors, and (ii) may not be informative enough to exhibit the CF characteristics of an 

ACC system comprehensively (e.g., the trajectory in the free-flow traffic condition cannot 

provide any characteristics related to string stability). Hence, we enhance the robustness 

of TS design by formulating a robust trajectory shaper (RTS) using a nonlinear program. 

The RTS can handle different oscillatory speed patterns covering a range of natural 

frequencies and damping ratios to achieve string stability, which appreciably mitigates 

the negative impacts of inaccurately estimated parameters. In this study, we first 

formulate the VTS to explain the fundamental concepts of the TS-based method, and then 

formulate the RTS for more reliable real-world application. The merits of the TS-based 

method are twofold. It entails a simple formulation and straightforward implementation 

(i.e., it can be added to an existing ACC system as a plug-in block, and only entails 

estimating two parameters rather than the complex vehicle actuator dynamics). Of critical 

practical importance, it circumvents the need to modify the existing ACC control 

algorithms within the vehicle. 



 

(a) ACC setup with TS 

 

(b) Automated workflow of proposed strategies 

Figure 2. Description of proposed strategies 

As the proposed TS-based method builds upon the damping ratio and the natural 

frequency of an ACC system, the estimation of these two parameters is crucial for real-

world implementation. To achieve desired accuracy of parameter estimation, the batch-

optimisation and extended Kalman filter (EKF) methods are incorporated to devise an 

offline-online parameter estimation method. The batch-optimisation method solves a 

nonlinear least-squares problem to determine the optimal parameters that minimize the 

difference between the ground-truth and estimated spacings, using the historical 

trajectory data. It is implemented in an offline fashion, due to the heavy computational 

burden involving numerous historical trajectories. The estimated parameters from the 

batch-optimisation method are then applied as the initial condition to initialize the online 

parameter estimation. In the online parameter estimation process, the EKF uses the real-

time measurement information (e.g., position and speed of predecessor and ego vehicles) 

to iteratively update the estimated parameters of a CF model, by minimizing the 

difference between ground-truth measurement information and the measurement 

information computed using the estimated parameters. Then, the estimated parameters 



will be utilized to compute the corresponding damping ratio and natural frequency. The 

offline-online parameter estimation method automates the implementation of TS-based 

method in real-world operations. As shown in Figure 2(b), the offline-online parameter 

estimation and the TS-based method forms a closed iterative loop. The TS-based method 

provides historical trajectories (e.g., data from prior operations) to consistently update the 

estimated parameter, while the updated estimated parameters are used in TS-based 

method so that the TS is computed based on accurate ACC car-following behaviour to 

enhance string stability and safety. This also enables cost-effective operations using the 

proposed method, and precludes human intervention and empirical efforts in the 

implementation of TS. 

Remarkably, in the parameter estimation process, besides the parameter 

estimation method, the characteristics of the trajectory (i.e., position, speed) of the 

predecessor vehicle and the measurement information also exert great influence on the 

accuracy. Three conditions are sufficient to obtain an accurate estimation of parameters: 

(i) the trajectory of the predecessor vehicle needs to satisfy the persistent excitation 

condition (which manifests if certain trajectory data is capable of exciting a dynamical 

system to display all dynamic characteristics, e.g., magnitudes of overshoot/undershoot, 

convergence to steady state) (Ljung, 1999); (ii) the trajectory of the predecessor vehicle 

needs to include scenarios of maximum operating speed (reaching to speed limit) and 

stop-and-go movements; (iii) the measurement information needs to enable the 

observability-identifiability property of the CF dynamical system (i.e., involving CF 

model dynamics and the measurement information evolution). The observability-

identifiability property indicates that all states and parameters of a dynamical system can 

be computed using attainable measurement information. These conditions can be difficult 

to satisfy in real-world operations, as the traffic condition may not be able to generate the 



aforementioned scenarios. Besides, during daily driving, drivers may adjust the vehicle 

powertrain control modes (e.g., eco and sport) and ACC headway settings, which would 

alter the damping ratio and natural frequency of the ACC system. Hence, fixed estimated 

parameters cannot reflect the dynamics of an ACC system accurately, and will further 

degrade the string stability performance of TS. The proposed offline-online parameter 

estimation method can address these two issues. Specifically, the EKF will periodically 

update the estimated parameters based on real-time measurements, which consistently 

improves the accuracy of parameter estimation, and enables the TS-based method to 

factor time-varying dynamics during ACC operations. This also improves the reliability 

and safety of TS-based method. 

The contributions of this study are threefold. First, we illustrate the impacts of the 

predecessor vehicle trajectory on the string stability of an ACC system. Second, the 

proposed TS-based method can achieve string-stable CF behaviour without modifying 

the control algorithms in the HP and the LC of a string-unstable ACC system, which 

offers a cost-effective alternative to improve existing ACC systems. That is, we can 

circumvent intrusive modifications of OEM control laws in existing vehicles by using 

plug-in blocks for signal processing. Third, we rigorously articulate the sufficient 

conditions for identifying the accurate parameters of an ACC system. Based on the 

sufficient conditions, we further propose an offline-online parameter estimation method 

to automate the real-world implementation of TS-based method, which enhances its 

reliability and reduce operational costs.  

The remainder of the paper is organized as follows. The next section introduces 

the formulation of the TS-based method. The offline-online parameter estimation method 

and the sufficient conditions for identifying accurate parameters are articulated in the 

section thereafter. The next section validates the proposed TS-based method and offline-



online parameter estimation method using numerical experiments. Last, concluding 

comments and future directions are provided. 

Trajectory Shaper Design 

This section first formulates an ACC system to characterize it as a second-order 

dynamical system. Next, TS-based method is developed based on the CF dynamics and 

string stability analysis of an ACC system. 

ACC Formulation 

For tractable analysis, we consider the point-mass type vehicle dynamics, which is a 

common assumption in string stability-related ACC studies ( Gong, Shen, and Du, 2016). 

Thus, the vehicle motion of the ego vehicle is described as follows: 

where 𝑝ego(𝑡), 𝑣ego(𝑡), and 𝑎ego(𝑡) are the position, speed, and acceleration of the ego 

vehicle controlled by ACC, respectively. 

The ego vehicle uses onboard sensors (e.g., radar, camera, etc.) to obtain trajectory 

information of the immediate predecessor vehicle to implement the ACC. 

Correspondingly, we use a frequently-used constant time headway linear model (CTH-

linear) (Gong, Zhou, and Peeta, 2019; Zhou et al., 2020) to describe the ACC system, 

whose control decision (i.e., vehicle acceleration) is as follows: 

where 𝑎ego(𝑡) is derived as the control decision of ACC system. 𝑒𝑝(𝑡) = 𝑝pred(𝑡) −

𝑝ego(𝑡) − ℎ𝑣ego(𝑡) is the spacing error, and 𝑒𝑣(𝑡) = 𝑣pred(𝑡) − 𝑣ego(𝑡) is the speed 

tracking error. 𝑝pred(𝑡) and 𝑣pred(𝑡) are the position and speed of the immediate 

𝑝̇ego(𝑡) = 𝑣ego(𝑡) (1) 

𝑣̇ego(𝑡) = 𝑎ego(𝑡) (2) 

𝑎ego(𝑡) = 𝑘𝑝𝑒𝑝(𝑡) + 𝑘𝑣𝑒𝑣(𝑡) (3) 



predecessor vehicle, respectively. 𝑘𝑝 is the proportional control gain for correcting the 

spacing error, 𝑘𝑣 is the derivative control gain for correcting the speed tracking error, and 

ℎ is the desired time headway to be maintained.  

String Stability and Speed Damping 

An ACC system can be interpreted as a second-order dynamical system (Haidekker, 

2020), as the control decision (i.e., acceleration) is the second-order derivative of the 

vehicle position. Correspondingly, in the Laplace domain, the string stability transfer 

function (SSTF) (Feng et al., 2019) can be expressed as: 

where Ξego(𝑠) and Ξpred(𝑠) are the positions of the ego and predecessor vehicles in the 

Laplace domain, respectively. 𝑠 = 𝑗𝜔 is the Laplace operator, 𝑗 = √−1 is the indicator 

of complex number, and 𝜔 is the angular frequency. The SSTF quantifies how the ego 

vehicle states vary given the stimulation from the predecessor vehicle. 

String stability indicates that once a predecessor vehicle deviates from the 

equilibrium (i.e., desired spacing and speed) due to a speed perturbation, the speed 

perturbation will not be amplified by the ego vehicle. This study applies the 𝑙2 string 

stability criterion as it can be linked to the frequency domain analysis (which is analogous 

to the TS-based method), provides a direct constraint on speed fluctuations, and enables 

elegant mathematical analysis. The 𝑙2 string stability states that the 𝑙2 norm of the speed 

deviation of the ego vehicle is smaller than that of its predecessor vehicle:  

where 𝑣̅0 indicates the operating speed at equilibrium. Correspondingly, for the control 

design of an ACC system, this phenomenon can be interpreted as: the impulse response 

Γ(𝑠) =
Ξego(𝑠)

Ξpred(𝑠)
=

𝑘𝑣𝑠 + 𝑘𝑝

𝑠2 + (𝑘𝑝ℎ + 𝑘𝑣)𝑠 + 𝑘𝑝

 (4) 

‖𝑣𝑒𝑔𝑜(𝑡) − 𝑣̅0‖𝑙2
≤ ‖𝑣𝑝𝑟𝑒𝑑(𝑡) − 𝑣̅0‖𝑙2

 (5) 



of ego vehicle is bounded by that of its predecessor vehicle. This corresponds to the 𝐻∞ 

norm of the SSTF (4) being no greater than one: 

where ‖∙‖ℋ∞
 denotes the maximum magnitude over the frequency range [0,∞). Equation 

(6) can be satisfied through the following inequality (Feng et al., 2019; Naus et al., 2010): 

which is equivalent to the following condition after arithmetic simplification: 

The string stability condition in Equation (8) can ensure that the impulse-type speed 

perturbation (e.g., sudden braking followed by acceleration, or sudden acceleration 

followed by braking) will be dampened. The impulse-type speed perturbation frequently 

appears in real-world driving. However, for a step-function type speed perturbation (e.g., 

speed suddenly increasing/decreasing to another setpoint), a further constraint on 

controller parameters is required. Specifically, given a step-function type speed 

perturbation, the phenomenon of overshoot/undershoot of a second-order dynamical 

system corresponds to string-unstable CF behavior of the ACC system. The 

overshoot/undershoot indicates that the speed fluctuation of ego vehicle exceeds the 

speed variation of its predecessor vehicle. Thereby, the objective of achieving string 

stability under a step-function type speed perturbation is equivalent to avoiding 

overshoot/undershoot of the second-order dynamical system in Equations (3) and (4). 

The SSTF in Equation (4) can then be equivalently rewritten as a second-order dynamical 

system (Haidekker, 2020) as follows: 

‖Γ(𝑗𝜔)‖ℋ∞
= sup

𝜔
|Γ(𝑗𝜔)| ≤ 1 (6) 

‖
𝑗𝑘𝑣𝜔 + 𝑘𝑝

𝑗(𝑘𝑝ℎ + 𝑘𝑣)𝜔 + (𝑘𝑝 − 𝜔2)
‖

2

≤ 1 (7) 

𝑘𝑝
2ℎ2 + 2𝑘𝑝(𝑘𝑣ℎ − 1) ≤ 0 (8) 

𝑌(𝑠)

𝑈(𝑠)
=

(2𝜁𝜔0 − 𝜔0
2ℎ)𝑠 + 𝜔0

2

𝑠2 + 2𝜁𝜔0𝑠 + 𝜔0
2  (9) 



where 𝑌(𝑠) is the output of the system (e.g., trajectory of ego vehicle), and 𝑈(𝑠) is the 

input of the system (e.g., trajectory of predecessor vehicle). 𝜔0 ∈ ℝ+ is the natural 

frequency that corresponds to the oscillatory speed patterns of the system (e.g., speed 

fluctuations, overshoots/undershoots). 𝜁 ∈ ℝ+ is the damping ratio, which describes the 

capability of attenuating oscillatory speed patterns (i.e., suppressing speed fluctuations 

and attenuating oscillating movements). To eliminate overshoot/undershoot of a second-

order dynamical system, and ensure string stability, the damping ratio should satisfy 

(Haidekker, 2020): 

A system with 𝜁 = 1 is called critically damped, while a system with 𝜁 > 1 is called over-

damped. Both critically damped and over-damped systems can guarantee that no 

overshoot/undershoot will occur, but an over-damped system will converge to the desired 

setpoint at a slower pace. A system with 0 < 𝜁 < 1 is labeled as under-damped, which 

will exhibit string-unstable CF behavior given a step-function type speed perturbation. 

From Equations (3) and (4), we have the following equalities: 

Thus, to guarantee string stability under step-function type speed perturbation, we require 

the following constraint on the ACC parameters to avoid under-damped situations: 

Consequently, to dampen both impulse-type and step-function type speed perturbations 

from the trajectory of the predecessor vehicle, the string stability condition should involve 

Equations (8) and (12). As illustrated in Figure 3, with time headway set as ℎ = 1, the 

red dotted line is the boundary of the string stability condition in Equation (8), below 

𝜁 ≥ 1 (10) 

𝜁 =
𝑘𝑝ℎ + 𝑘𝑣

2√𝑘𝑝

 (11a) 

𝜔0 = √𝑘𝑝 (11b) 

(𝑘𝑝ℎ + 𝑘𝑣)
2
− 4𝑘𝑝 ≥ 0 (12) 



(above) which the region is string-unstable (stable). The black solid curve indicates the 

critically-damped condition, with the blue area below being under-damped and the white 

area above it being over-damped. Thus, the string stability region for dampening both 

impulse-type and step-function type speed perturbations is the white area above the 

yellow dashed curve (which satisfies Equations (8) and (12)). In real-world operations, 

an ACC system satisfying conditions in Equations (8) and (12) will produce damped 

speed profiles and alleviate speed fluctuations compared to the predecessor vehicle. 

 

Figure 3. Regions of string stability and over/under-damped system 

Vanilla Trajectory Shaper 

The VTS design is based on the zero vibration shaper (ZVS) method which is designed 

to attenuate the residual vibration of an mechanical vibration system (Haidekker, 2020). 

The core idea of ZVS is to appropriately design two sequential impulses to negate residual 

vibrations, as shown in Figure 4(a). The first impulse 𝐴1 induces a vibrating response 

(solid curves), while the second impulse 𝐴2 induces another vibrating response (dashed 

curves). By sequentially applying impulses 𝐴1 and 𝐴2 to the mechanical vibration system, 

the vibrations induced from these two impulses will cancel each other to achieve a 



vibration-free response. The residual vibrations are analogous to the speed fluctuations 

of an ACC system (as both the mechanical vibration system and the ACC system can be 

described using the second-order dynamical system model in Equation (9)). Thereby, the 

core idea of the VTS is the same as that of ZVS. Specifically, the VTS applies impulses 

𝐴1 and 𝐴2 to convolute with the speed information of the predecessor vehicle so that the 

speed variations of the predecessor vehicle are appropriately altered (see the green dashed 

line in Figure 4(b). The first impulse brings the speed information to an intermediate 

setpoint for the ego vehicle to respond. Next, when the ego vehicle is about to overshoot, 

the second impulse drives the speed information to the original speed level, which ensures 

that the ego vehicle converges to the speed of the predecessor vehicle without overshoot 

(as illustrated by the blue dotted curve and green solid curve in Figure 3(b)). 

 

(a) Mechanism for eliminating residual vibrations 

 



(b) Mechanism for eliminating speed overshoot from ego vehicle 

Figure 4. Mechanism of ZVS and VTS 

For a vibrating second-order dynamical system, the performance index of 

vibration attenuation is defined as the residual vibration percentage under the impact of 

𝑛 impulses (Zhao et al., 2016): 

where 𝑆(𝜔0, 𝜁) = ∑ 𝐴𝑖𝑒
𝜔0𝜁𝑡𝑖 sin(𝜔0√1 − 𝜁2𝑡𝑖)

𝑛
𝑖=1 , 𝐶(𝜔0, 𝜁) =

∑ 𝐴𝑖𝑒
𝜔0𝜁𝑡𝑖 cos(𝜔0√1 − 𝜁2𝑡𝑖)

𝑛
𝑖=1 , 𝐴𝑖 and 𝑡𝑖 are the magnitude and occurrence time of 

impulse 𝑖, respectively. The residual vibration percentage measures the vibrations 

(fluctuations) after applying 𝑛 impulses to the second-order dynamical system (9). 

Correspondingly, for the ZVS, to eliminate residual vibrations of a mechanical vibration 

system using two sequential impulses (i.e., 𝑉 = 0, 𝑛 = 2), we need to solve the following 

set of equations: 

where Equations (14a) and (14b) seek to push the residual vibration percentage to zero, 

and Equation (14c) ensures that the system response can still converge to the original 

reference. The variable 𝑡1 is the time stamp at which the ZVS is initialized (e.g., 𝑡1 = 0). 

After solving Equation (14), we obtain the magnitudes and time stamps (time when an 

impulse is applied) of the impulse sequence as follows: 

𝑉(𝜔0, 𝜁) = 𝑒−𝜔0𝜁𝑡𝑛√𝑆(𝜔0, 𝜁)2 + 𝐶(𝜔0, 𝜁)2 (13) 

𝑆(𝜔0, 𝜁) = 0 (14a) 

𝐶(𝜔0, 𝜁) = 0 (14b) 

∑ 𝐴𝑖

2

𝑖=1
= 1 (14c) 

𝐴1 =
𝑒

𝜁𝜋

√1−𝜁2

1 + 𝑒

𝜁𝜋

√1−𝜁2

 (15a) 



Using the same idea and similar procedures, the VTS applies two sequential 

impulses to modify the original trajectory information of the predecessor vehicle so that 

the shaped trajectory induces no overshoot/undershoot from the ego vehicle (which 

ensures its string stability). Correspondingly, by convoluting the impulse sequence with 

the original position 𝑝pred and speed 𝑣pred of the predecessor vehicle, the shaped speed 

and position in VTS can be expressed as: 

Then, 𝑝pred
shaped

 and 𝑣pred
shaped

 will replace the original sensor measurements 𝑝pred and 𝑣pred 

in Equation (3) to implement the ACC system. Note that convolution (16) introduces the 

delay effect, enforcing an ACC to be more dependent on the predecessor vehicle’s past 

trajectories. This can further induce a slower convergence to the desired speed and 

spacing than by following the original trajectory. The delay effect becomes more obvious 

with longer impulse sequence, making a shorter impulse sequence more ideal for efficient 

car-following operations. Moreover, as the VTS assumes ACC parameters have been 

accurately estimate, two impulses (𝑛 = 2) are applied to minimize the delay of ACC 

response and enhance traffic efficiency. 

 Considering the performance of the VTS can degrade under inaccurately 

identified parameters, the next subsection addresses this aspect by introducing the RTS. 

Robust Trajectory Shaper 

In real-world applications, the perfect identification of 𝜔0 and 𝜁 of an ACC system can 

𝐴2 = 1 − 𝐴1 (15b) 

𝑡2 = 𝑡1 +
𝜋

𝜔0√1 − 𝜁2
 (15c) 

𝑝pred
shaped(𝑡) = 𝐴1𝑝pred(𝑡 − 𝑡1) + 𝐴2𝑝pred(𝑡 − 𝑡2) (16a) 

𝑣pred
shaped(𝑡) = 𝐴1𝑣pred(𝑡 − 𝑡1) + 𝐴2𝑣pred(𝑡 − 𝑡2) (16b) 



be difficult due to noisy, or even inaccurately measured trajectory information. The VTS 

implemented using inaccurate 𝜔0 and 𝜁 will generate an erroneous shaped trajectory, 

degrading the performance of attenuating speed fluctuations. Thus, robustness should be 

incorporated into TS to counteract the string-unstable ACC system factoring a range of 

𝜔0 and 𝜁. Specifically, instead of requiring the residual vibration percentage at a specific 

𝜔0 and 𝜁 to be zero, the RTS adapts the idea of specified insensitivity shaper (Singh and 

Singhose, 2002; Zhao et al., 2016) to ensure that the residual vibration percentage over a 

span of 𝜔0 and 𝜁 (which include the actual 𝜔0 and 𝜁 corresponding to traffic oscillations) 

is less than a specified tolerance level.  

Considering a longer impulse sequence can trigger more relaxed and smoother 

response to attain more margin for robustness, the RTS incorporates three impulses (𝑛 =

3). Then, defining the set of natural frequencies and damping ratios that can induce string-

unstable CF behaviour as Ω and Ψ, respectively, we have the following nonlinear program 

to obtain the RTS (i.e., solving for the magnitudes and time stamps of 3 impulses): 

The objective function in Equation (17a) aims to minimize the time stamp of the 

last impulse so that the delay effect introduced by convolution is minimized. Equation 

(17b) states that the time stamp of an impulse occurring later should be greater than the 

time stamp of an impulse occurring earlier. Equation (17c) requires the magnitudes of 

impulses to be positive, which reduces the variations in the shaped trajectory. Equation 

min
𝐴1,…,  𝐴3, 𝑡1,…, 𝑡3

𝑡3 (17a) 

s.t.  𝑡𝑖+1 − 𝑡𝑖 ≥ 0, 𝑖 = 1,… ,2 (17b) 

𝐴𝑖 ≥ 0, 𝑖 = 1,… ,3 (17c) 

∑ 𝐴𝑖

3

𝑖=1
= 1 (17d) 

𝑉(𝜔0
𝑗
,  𝜁𝑗) ≤ 𝑉tol, 𝜔0

𝑗
∈ Ω, 𝜁𝑗 ∈ Ψ (17e) 



(17d) ensures that the shaped trajectory can maintain the same magnitude as the original 

trajectory, so that the ACC system can produce a desired CF behaviour with respect to 

the original trajectory. Equation (17e) bounds the residual vibration percentage to below 

the tolerance level 𝑉tol for all natural frequencies in set Ω and all damping ratios in set Ψ. 

The impulse sequence of RTS can be efficiently computed using nonlinear solvers. This 

study applies the “active set” algorithm embedded in MATLAB ‘fmincon’ function to 

solve the nonlinear program in Equation (17). Correspondingly, the shaped speed and 

position of the predecessor vehicle in the RTS can be expressed as: 

The comparison of robustness between VTS and RTS is illustrated in Figure 5, 

where given a damping ratio 𝜁, the RTS dampens the speed oscillations (i.e., enforces 

𝑉(𝜔, 𝜁) ≤ 𝑉tol) covering a much wider frequency range compared to the VTS. 

Remark 1: The sets of natural frequencies Ω and damping ratios Ψ can be 

constructed by analysing historical data. Specifically, the variations and bounds of 𝜔0 

and 𝜁 during the ACC operations can be obtained using parameter estimation methods 

(e.g., EKF discussed in next section) which provide a set of values of 𝜔0 and 𝜁 that will 

influence string stability. It is also worth noting that requiring excessively large sets of 

𝜔0 and 𝜁 can overdamp speed fluctuations, jeopardizing ACC tracking performance. 

𝑝pred
shaped(𝑡) = ∑ 𝐴𝑖

3

𝑖=1
𝑝pred(𝑡 − 𝑡𝑖) (18a) 

𝑣pred
shaped(𝑡) = ∑ 𝐴𝑖

3

𝑖=1
𝑣pred(𝑡 − 𝑡𝑖) (18b) 



 

Figure 5. Comparison of VTS and RTS 

Parameter Estimation of ACC System 

The parameter estimation underpins and automates the real-world implementation of the 

TS-based method. Though the RTS can handle inaccurately identified parameters, its 

performance improves with accurately identified parameters (as seen in Figure 4). In this 

section, we discuss the sufficient condition for obtaining accurately estimated parameters 

of a CF dynamical system, and introduce the proposed offline-online parameter 

estimation method to enable real-world implementation of the TS-based method. 

To obtain accurate parameters, the CF dynamical system of the ego vehicle needs 

to possess the observability-identifiability property (i.e., being able to estimate all the 

vehicle states and parameters given the sensor measurements), while the input signal (i.e., 

speed of predecessor vehicle) should satisfy the persistent excitation condition (Ljung, 

1999) and include desired operating speed and stop-and-go movements (Zhou et al., 

2024). Only if this property and the excitation condition are satisfied, the CF operations 

can fully unveil the CF dynamics of the ego vehicle and ensure that the estimated 

parameters converge to ground-truth values. Accurately estimated parameters will aid the 

string stability performance of the TS-based method. Next, we articulate the 



observability-identifiability property of a CF dynamical system, based on which we 

discuss the significance of the predecessor vehicle trajectories in parameter estimation. 

Observability-identifiability of a car-following dynamical system 

This subsection starts with the formulation of the CF dynamical system. We first define 

the state vector of the ego vehicle as 𝑥(𝑡) = [Δ𝑝(𝑡), 𝑣ego(𝑡)]
⊺
, and its augmented state 

vector as 𝑥̃(𝑡) = [𝑥(𝑡), 𝜃]⊺, where Δ𝑝(𝑡) and 𝑣(𝑡) denote the spacing with respect to the 

predecessor vehicle and the speed of the ego vehicle, respectively, and  𝜃 ∈ ℝ𝑛𝜃  denotes 

the parameters of the ego vehicle. Then, the CF dynamical system of the ego vehicle can 

be formulated as follows: 

where 𝐹(𝑥̃(𝑡), 𝑢(𝑡)) = [𝑣(𝑡), 𝑎(𝑡), 0𝑛𝜃
]
⊺
 describes the state evolution of the CF 

dynamical system, 0𝑛𝜃
 is a 𝑛𝜃-dimensional zero vector. 𝑢(𝑡) is the speed of the 

predecessor vehicle, which can be interpreted as the input signal of the CF dynamical 

system. 𝑔(𝑥̃(𝑡), 𝑢(𝑡)) describes the sensor measurement signal 𝑦(𝑡) (e.g., position, speed 

of ego vehicle measured by sensors) based on augmented states 𝑥̃(𝑡) and input signal 

𝑢(𝑡).  A CF dynamical system describes the vehicle state evolution and the sensor 

measurement information of the ego vehicle during the ACC operation. 

Next, based on the formulation of the CF dynamical system, we introduce the 

definition and sufficient conditions for observability, and connect it to the identifiability 

of a CF dynamical system to obtain unique parameter estimation results. 

Definition 1 (Observability). A system with an initial state 𝑥0 is observable if and 

only if the value of the initial state can be determined from the system measurement signal 

𝑦(𝑡) through the time interval 𝑡0 < 𝑡 < 𝑡𝑓 (Åström and Murray, 2010). 

𝑥̇̃(𝑡) = 𝐹(𝑥̃(𝑡), 𝑢(𝑡)) (19a) 

𝑦(𝑡) = 𝑔(𝑥̃(𝑡), 𝑢(𝑡)) (19b) 



Correspondingly, we define the observability matrix 𝒪(𝑥) ∈ ℝ𝑛𝑥×𝑛𝑥 as follows: 

The observability matrix 𝒪(𝑥) links the variations of measurement signal to the 

states, which will be used to validate the observability in the following theorem. 

Theorem 1. A dynamical system is (locally) observable in the neighborhood of 

𝑥0 if and only if the observability matrix 𝒪(𝑥0) has a rank of 𝑛𝑥 (Khalil, 2002). 

Theorem 1 implies that if a CF dynamical system is observable, all vehicle states 

can be estimated based on the measurement signal 𝑦(𝑡). This is important for the 

implementation of vehicle control, as not all vehicle states can be directly measured. The 

observability property enables us to track the variations of all states using only feasible 

sensor measurements. Next, we introduce the definition of identifiability to obtain a 

unique estimated parameter 𝜃. 

Definition 2 (Identifiability). A CF dynamical system given by Equation (19) is 

locally identifiable if for any 𝜃∗ there exists a neighborhood 𝒩(𝜃∗) where the following 

bijection holds (Villaverde et al., 2019): 

In the differential geometry framework (Villaverde et al., 2019), the observability-

identifiability is an augmented observability property, where the augmented state vector 

𝑥̃ = [𝑥, 𝜃]⊺ replaces the state vector 𝑥 in Equation (20) and uses 𝑥̃ to compute the 

observability-identifiability matrix 𝒪(𝑥̃). The following theorem articulates the condition 

𝒪(𝑥) =

[
 
 
 
 
 
 
 
 

𝜕

𝜕𝑥
𝑦(𝑡)

𝜕

𝜕𝑥
𝑦̇(𝑡)

𝜕

𝜕𝑥
𝑦̈(𝑡)

⋮
𝜕

𝜕𝑥
𝑦𝑛𝑥−1(𝑡)]

 
 
 
 
 
 
 
 

 (20) 

𝑦(𝑡, 𝜃) = 𝑦(𝑡, 𝜃∗)  ⟺ 𝜃 = 𝜃∗ (21) 



for ensuring the observability-identifiability property, based on which all the states and 

parameters can be obtained using the measurement signal 𝑦(𝑡). 

Theorem 2. A dynamical system is locally observable and locally identifiable in 

the neighborhood of 𝑥̃0, if the observability-identifiability matrix 𝒪(𝑥̃) =

[
 
 
 
 
 
 

𝜕

𝜕𝑥̃
𝑦(𝑡)

𝜕

𝜕𝑥̃
𝑦̇(𝑡)

𝜕

𝜕𝑥̃
𝑦̈(𝑡)

⋮
𝜕

𝜕𝑥̃
𝑦𝑛𝑥̃−1(𝑡)]

 
 
 
 
 
 

 

has a rank of 𝑛𝑥 + 𝑛𝜃 at 𝑥̃0 (Wang et al., 2022). 

In addition, with an input signal 𝑢(𝑡) (e.g., speed of predecessor vehicle) in CF 

dynamical systems, the condition for observability-identifiability property is as follows: 

Theorem 3. A dynamical system is locally observable-identifiable in a 

neighborhood of 𝑥̃0, if the observability-identifiability matrix 𝒪(𝑥̃) =

[
 
 
 
 
 
 
 

𝜕

𝜕𝑥̃
𝑔(𝑥̃(𝑡), 𝑢(𝑡))

𝜕

𝜕𝑥̃
(𝐿𝑓𝑔(𝑥̃(𝑡), 𝑢(𝑡)))

𝜕

𝜕𝑥̃
(𝐿𝑓

2𝑔(𝑥̃(𝑡), 𝑢(𝑡)))

⋮
𝜕

𝜕𝑥̃
(𝐿𝑓

𝑛𝑥̃−1
𝑔(𝑥̃(𝑡), 𝑢(𝑡)))]

 
 
 
 
 
 
 

 has a rank of 𝑛𝑥 + 𝑛𝜃 (Villaverde et al., 2019). 

Note that 𝐿𝑓
𝑖 𝑔(𝑥̃(𝑡), 𝑢(𝑡)) =

𝜕𝐿𝑓
𝑖−1𝑔(𝑥̃(𝑡),𝑢(𝑡))

𝜕𝑥̃
𝑓(𝑥̃(𝑡), 𝑢(𝑡)) +

∑
𝜕𝐿𝑓

𝑖−1𝑔(𝑥̃(𝑡),𝑢(𝑡))

𝜕𝑢
𝑢(𝑡)(𝑗+1)∞

𝑗=0 , and 𝐿𝑓𝑔(𝑥̃(𝑡), 𝑢(𝑡)) =
𝜕𝑔(𝑥̃(𝑡),𝑢(𝑡))

𝜕𝑥̃
𝑓(𝑥̃(𝑡), 𝑢(𝑡)) +

∑
𝜕𝑔(𝑥̃(𝑡),𝑢(𝑡))

𝜕𝑢
𝑢(𝑡)(𝑗+1)∞

𝑗=0  are the Lie-derivatives corresponding to the augmented states 

of the ego vehicle. The Lie-derivatives describe how the variation in measurement signal 

depends on the variations in augmented state 𝑥̃(𝑡) and input signal 𝑢(𝑡), which can be 

used to investigate whether the variations in augmented state 𝑥̃(𝑡) can be interpreted from 

the variation in measurement signal. The property of observability-identifiability of a CF 

system indicates the feasibility of obtaining all vehicle states and CF parameters using 



available sensor measurements. This is important for the TS-based method, as we need 

the estimated CF parameters based on sensor measurements to design the TS in real-world 

operations. 

With speed as the measurement information, an ACC system based on CTH-linear 

CF dynamical system is locally observable-identifiable except at the CF equilibrium 

(𝑣0ℎ, 𝑣0), where 𝑣0 is the desired operating speed. This elaborates that the trajectory 

corresponding to equilibrium driving cannot ensure accurate parameter estimation, which 

leads to the following analysis and requirements on the trajectory of the predecessor 

vehicle to enable observability-identifiability. 

Persistent excitation condition of trajectory data 

In addition to the observability-identifiability property of the CF dynamical system, the 

trajectory of the predecessor vehicle also plays an important role in parameter estimation. 

In this subsection, we first introduce the concept of persistent excitation, and then relate 

it to the trajectory of the predecessor vehicle for parameter estimation. The persistent 

excitation condition indicates that an input signal (e.g., the trajectory of the predecessor 

vehicle) used for parameter estimation is informative enough (e.g., displays sufficient 

speed fluctuations to trigger the ego vehicle to produce trajectories that can unleash all 

the CF characteristics) to obtain a unique and optimal estimation solution. It is formulated 

through the following definition. 

Definition 3. A signal is persistently exciting of order 𝑛 if the following limit 

exists: 

and the following matrix 𝐶𝑛 is positive definite (Ljung, 1999). 

𝑅𝑢(𝜏) = lim
𝑁→∞

1

𝑁
∑ 𝔼[𝑢(𝑡)𝑢(𝑡 − 𝜏)]

𝑁

𝑡=1
 (22) 



In particular, the condition of persistent excitation in Equations (22) and (23) is 

equivalent to the following theorem in frequency domain. 

Theorem 4. In the frequency domain, a signal satisfying persistent excitation of 

order 𝑛 has a power spectrum with nonzero values at 𝑛 frequencies in the interval (−𝜋, 𝜋) 

(Ljung, 1999). 

The property of persistent excitation illustrates the capability of an input signal to 

obtain unique and accurate parameters through the parameter estimation process. Based 

on this, the following theorem states the conditions for identifying (i.e., obtaining accurate 

parameters) a linear dynamical system (e.g., CF dynamical system which uses linear CF 

model to describe the state evolution). 

Theorem 5. To identify an 𝑛th order linear dynamical system, the input signal 

needs to be at least persistently exciting of order 2𝑛 (Ljung, 1999). 

As a linear CF dynamical system is a second-order linear dynamical system, 

theorems 4 and 5 suggest that the trajectory of the predecessor vehicle is persistently 

exciting of at least order 4 (i.e., having a power spectrum with at least 4 nonzero values 

in the interval (−𝜋, 𝜋)). 

Note that the analysis so far in this subsection is only sufficient for parameter 

estimation of linear systems, which cannot address characteristics of nonlinear CF 

dynamical systems (e.g., the state evolution is governed by intelligent driver model, 

optimal velocity model, Gipps’ model, etc.). Hence, we identify two additional essential 

characteristics of the predecessor vehicle trajectory to enable accurate parameter 

estimation for nonlinear CF dynamical systems; they are: (i) stop-and-go movements, and 

(ii) operations at the desired maximum speed (e.g., speed limit). This is because the 

𝐶𝑛 = [

𝑅𝑢(0) 𝑅𝑢(1) ⋯ 𝑅𝑢(𝑛 − 1)

𝑅𝑢(−1) 𝑅𝑢(0) ⋯ 𝑅𝑢(𝑛 − 2)
⋮ ⋮ ⋱ ⋮

𝑅𝑢(1 − 𝑛) 𝑅𝑢(2 − 𝑛) ⋯ 𝑅𝑢(0)

] (23) 



nonlinearity causes significant impacts when a vehicle operates in stop-and-go 

movements and at the speed limit; specifically, they unveil certain safety-related 

characteristics in nonlinear CF dynamical systems that cannot be fully uncovered through 

trajectories satisfying only theorem 5. 

The following proposition describes the sufficient conditions to accurately 

identify the parameters of a nonlinear CF dynamical system. 

Proposition 1. To accurately identify the parameters of a CF dynamical system, 

the trajectory of the predecessor vehicle needs to satisfy the following conditions: 

(i) the CF dynamical system is locally observable-identifiable; 

(ii) the trajectory of the predecessor vehicle is persistently exciting of at least order 

four; 

(iii) the trajectory of the predecessor vehicle contains scenarios of stop-and-go 

movements and operations at the speed limit. 

Note that the conditions in Proposition 1 may be difficult to realize in real-world 

driving scenarios, especially under insufficient data. Hence, next, we propose an offline-

online parameter estimation method to alleviate the negative impact of the predecessor 

vehicle trajectory on estimated parameters, and correspondingly guarantee desired 

performance of the TS-based method. 

Offline-online parameter estimation method 

The proposed offline-online parameter estimation method is illustrated in Figure 6. The 

parameter estimation starts from offline parameter estimation (as shown in the red solid 

box at the left bottom of Figure 6), where the batch-optimisation method uses a CF model 

(e.g., CTH-linear model in this study) and the historical trajectories of ego vehicle and its 

predecessor vehicle to estimate parameters 𝜃0. These estimated parameters 𝜃0 are used 



as initial conditions (baseline) to initialize the online parameter estimation. Based on 𝜃0, 

an extended Kalman filter (EKF) uses the real-time trajectory measurements of the ego 

vehicle and its predecessor vehicle to perform the online parameter estimation iteratively 

(as shown in the blue dashed box in Figure 6). The trajectory used in the online parameter 

estimation is a discrete time series (measured by onboard sensors), and the online 

parameter estimation is performed at each time step 𝑡 of the trajectory (i.e., each data 

point). In the online parameter estimation, we first specify a time interval 𝑇 (i.e., a specific 

number of time steps) for updating the estimated parameters. This is because the 

estimated parameters will be used to update TS, and frequently updating the TS can 

reduce the control performance (e.g., by increasing speed fluctuations). In addition, after 

every time interval 𝑇 (note that in Figure 6, 𝑡%𝑇 computes the residue of 𝑡/𝑇), the newly 

estimated parameters 𝜃 are also compared to the estimated parameters 𝜃0 in the previous 

EKF iteration. If the difference ‖𝜃0 − 𝜃‖ is greater than a threshold 𝜖, then the estimated 

parameter 𝜃 will be used to update the TS, and 𝜃0 is replaced by 𝜃. Otherwise, TS will 

not be updated, and 𝜃 will be assigned to 𝜃0 for the next EKF iteration. This operation 

also aims to avoid frequent updates of TS and ensures smooth ACC operations. The TS 

is then implemented on the ACC system for operations. The vehicle trajectories collected 

from ACC operations are used in future EKF iterations. 

 



Figure 6. Offline-online parameter estimation 

Note that a set of CF models can be parallelly applied in the offline-online 

parameter estimation process, so that the estimated parameters corresponding to the best 

accuracy (i.e., RMSE between the estimated and ground-truth trajectories is the smallest) 

can be selected for the TS-based method. Next, we describe the details of offline and 

online parameter estimation processes. 

Offline parameter estimation 

The batch-optimisation method aims to optimise the CF parameters 𝜃 to minimize the 

root mean square error (RMSE) between the simulated spacing 𝑠(𝜃, 𝑡) and the ground-

truth spacing 𝑠̅(𝑡) in the data. The RMSE of spacing is applied as the objective due to its 

capability for achieving high accuracy in the CF model calibration (Kesting and Treiber, 

2008). The optimisation problem is formulated as: 

where 𝑠̅(𝑡) is the ground-truth spacing data, and 𝑢(𝑡) is the speed of the predecessor 

vehicle. Τhist is the total length of the trajectory in the dataset. Equation (24b) states that 

the dynamics of spacing are equal to the speed difference between the ego vehicle and its 

predecessor. Equation (24c) indicates that the acceleration of the ego vehicle is factorized 

by a function 𝑓 which can be any CF model (e.g., CTH-linear model, model predictive 

control, deep reinforcement learning-based method, etc.). Thus, the offline parameter 

estimation is an optimisation problem constrained by a CF dynamical system in Equations 

(24b) and (24c). Note that Equation (24a) can be nonlinear and nonconvex, which is 

min
𝜃̂

√
1

Τhist
∫ (𝑠(𝑡) − 𝑠̅(𝑡))

2
Τhist

0

dt (24a) 

                      s.t.  𝑠̇(𝑡) = 𝑢(𝑡) − 𝑣𝑒𝑔𝑜(𝑥, 𝜃, 𝑡) (24b) 

𝑣̇𝑒𝑔𝑜(𝑥, 𝜃, 𝑡) = 𝑓(𝑥, 𝜃, 𝑡) (24c) 



solved using the “interior point” algorithm many times with random initial values to 

improve solution optimality (Wang et al., 2022). 

The offline parameter estimation uses the historical trajectories to compute the 

estimated parameter 𝜃0. 𝜃0 may be inaccurate for estimating the CF behaviour of an ACC 

system in real-world operations, because: (i) the historical trajectories may not satisfy 

Proposition 1; (ii) the batch-optimisation method may provide suboptimal solution which 

is not accurate; and (iii) the CF behaviour of an ACC system may vary during real-world 

operation (e.g., drivers may switch control modes in different traffic conditions), which 

cannot be accurately estimated using a fixed 𝜃0. Thus, online parameter estimation, which 

consistently updates the estimated parameters of an ACC system, is proposed next to 

improve the accuracy of estimated parameters during ACC operation. 

Online parameter estimation 

The Extended Kalman Filter (EKF) is applied to enable the online parameter estimation 

using real-time measurements. The EKF aims to minimize the trace of the error 

covariance matrix at each time step of the trajectory so that the uncertainty in parameter 

estimation is minimized, as follows: 

To implement the EKF, we discretize the CF dynamical system with time step 𝑑𝑡, 

and the corresponding dynamics of vehicle states and parameters at time step 𝑘 are as 

follows: 

min
𝜃̂

trace (𝔼 [(𝜃 − 𝜃)(𝜃 − 𝜃)
⊺
]) (25) 



where 𝑤𝑘−1,1 and 𝑤𝑘−1,2 are the uncertainties in position and speed dynamics, 

respectively. 𝑤𝑘−1,3 is the process noise in the evolution of the CF dynamical system. 

𝑎𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝜃𝑘−1) describes the acceleration variations of the ego vehicle.  

For parameter estimation, if all vehicle states (i.e., speed, acceleration) are 

measured, then the focus is only on the evolution of parameters 𝜃𝑘 of the CF dynamical 

system. We define 𝑊 and 𝑅 as the covariance matrices of the disturbance in the parameter 

dynamics (i.e., 𝑤𝑘,3) and the measurement noise (i.e., 𝑛𝑘), respectively. The EKF for 

parameter estimation is illustrated in the following algorithm. The EKF starts by 

initializing the initial state 𝑥0 (the vehicle state at the time step when EKF is activated), 

the initial value of estimated parameter 𝜃0 (obtained from the offline batch optimisation), 

and the error covariance matrix 𝑃0 (the variance of parameter estimation error). Then, the 

EKF is executed for 𝐸P iterations (𝐸P is also the total number of time steps of the 

trajectory data).  

As shown in Algorithm 1, the iterative process starts with the prediction step 

where we assume the parameters are fixed during the current iteration to obtain the 

predicted parameter 𝜃𝑘(−) (as shown in line 4 of Algorithm 1). This mitigates abrupt 

changes in predicted parameters and improves accuracy. Next, the prediction error 

covariance matrix of 𝜃𝑘(−) is computed in line 5 of Algorithm 1, where 𝜙𝑘−1 =

𝜕𝐹(𝑥𝑘−1,𝑢𝑘−1,𝜃𝑘−1)

𝜕𝜃𝑘−1
|𝜃𝑘−1=𝜃̂𝑘−1

= 𝐼𝑛𝜃
 is an 𝑛𝜃-dimensional identity matrix which describes 

𝑥̃𝑘 = [

𝑝𝑘

𝑣𝑘

𝜃𝑘

] = 𝐹(𝑥𝑘−1, 𝑢𝑘−1, 𝜃𝑘−1)

= [

𝑥𝑘−1 + 𝑣𝑘−1𝑑𝑡 + 0.5𝑎𝑘𝑑𝑡2 + 𝑤𝑘−1,1

𝑣𝑘−1 + 𝑎𝑘𝑑𝑡 + 𝑤𝑘−1,2

𝐼𝑛𝜃
𝜃𝑘−1 + 𝑤𝑘−1,3

] 

(26a) 

𝑦𝑘 = 𝑔𝑘(𝑥𝑘, 𝑢𝑘 , 𝜃𝑘)  = 𝑣𝑘 + 𝑛𝑘 (26b) 



how 𝜃𝑘(−) vary with the estimated parameters 𝜃𝑘−1 from the previous time step. 𝐽𝑤 =

𝜕𝐹(𝑥𝑘−1,𝑢𝑘−1,𝜃𝑘−1)

𝜕𝑤𝑘−1
|𝜃𝑘−1=𝜃̂𝑘−1

= 𝕀𝑛𝜃
 is a 𝑛𝜃-dimensional unit vector which describes how 

predicted parameters are impacted by 𝑤𝑘−1. 𝑃𝑘(−) indicates the inaccuracy of 𝜃𝑘(−), 

which is used to improve the estimation accuracy in the following steps. In line 6 of 

Algorithm 1, we minimize the trace of the prediction error covariance matrix (Equation 

(25)) to obtain the Kalman gain, where 𝐻𝑘 =
𝜕𝑔𝑘(𝑥𝑘,𝑢𝑘,𝜃𝑘)

𝜕𝜃𝑘
|𝜃𝑘=𝜃̂𝑘(−)

 is a vector which 

shows how 𝑔𝑘(𝑥𝑘 , 𝑢𝑘 , 𝜃𝑘) is influenced by the predicted parameter 𝜃𝑘(−). Then, the 

Kalman gain is used to update the estimated parameter 𝜃𝑘 in line 7 of Algorithm 1, where 

we correct the error between real-time measurement information 𝑦𝑘 (obtained through 

onboard sensors) and the estimated measurement information computed by 

𝑔𝑘(𝑥𝑘, 𝑢𝑘 , 𝜃𝑘(−)) (following Equation (26b),). The last step is to compute the estimation 

error covariance matrix 𝑃𝑘 (in line 8 of Algorithm 1), where 𝐽𝑛 =
𝜕𝑔(𝑥𝑘,𝑢𝑘,𝜃𝑘)

𝜕𝑛𝑘
|𝜃𝑘=𝜃̂𝑘(−)

=

1. 𝑃𝑘 indicates the uncertainty of the estimated parameters and is used in the next iteration 

to further improve the estimation accuracy. 

Algorithm 1: EKF for Online Parameter Estimation 

1: Input: 𝐸P, 𝑥𝑘, 𝑦𝑘, 𝑢𝑘, 𝑔(𝑥𝑘, 𝑢𝑘 , 𝜃𝑘), 𝑊, 𝑅, 𝜙𝑘, 𝐻𝑘, 𝐽𝑤, 𝐽𝑛 

2: Initialize 𝑥0, 𝜃0, 𝑃0, 𝑘 = 0 

3: for  𝑘 = 1: 𝐸P do 

4:  Predicted parameters: 𝜃𝑘(−) = 𝐼𝑛𝜃
𝜃𝑘−1 

5:  Prediction error covariance matrix: 𝑃𝑘(−) = 𝜙𝑘−1𝑃𝑘−1𝜙𝑘−1
⊺ + 𝐽𝑤𝑊𝐽𝑤

⊺  

6:  Kalman gain: 𝐾𝑘 = 𝑃𝑘(−)𝐻𝑘
⊺(𝐻𝑘𝑃𝑘(−)𝐻𝑘

⊺ + 𝐽𝑛𝑅𝐽𝑛
⊺ )

−1
 



7:  Updated estimation of parameters: 𝜃𝑘 = 𝜃𝑘(−) + 𝐾𝑘 (𝑦𝑘 −

𝑔𝑘(𝑥𝑘, 𝑢𝑘 , 𝜃𝑘(−))) 

8:  Estimation error covariance matrix: 𝑃𝑘 = 𝑃𝑘(−) − 𝑃𝑘(−)𝐻𝑘
⊺(𝐻𝑘𝑃𝑘(−)𝐻𝑘

⊺ +

𝐽𝑛𝑅𝐽𝑛
⊺ )

−1
𝐻𝑘𝑃𝑘(−) 

9: end for 

 

 Remark 3: The EKF computes the estimated parameter at each time step of the 

vehicle trajectory, which can capture the time-varying CF behaviour of an ACC system 

and significantly improve the estimation accuracy. The accurately estimated parameters 

then enable reliable retrofitted CF behaviour of an ACC, which further ensures TS-based 

method can appropriately modify the sensor measurements and enhances safety. In 

addition, when implementing the TS-based method in the real world, frequently updating 

the TS based on the estimated parameters at each time step can induce additional speed 

fluctuations and compromise the control performance. Thus, recalling the discussion 

from Figure 6, we include the parameter updating time interval 𝑇 and a threshold 𝜖 to 

avoid unnecessary updates of TS in real-world operations. 

Numerical experiments 

Parameter estimation performance 

We first explore the sufficient conditions for obtaining accurate parameters, and then 

illustrate the performance of the proposed offline-online parameter estimation method. 

The parameter estimation method applied here is the EKF in Algorithm 1. The parameter 

setting of EKF is as follows: 𝑊 = 0.01𝐼𝑛𝜃
, 𝑅 = 0.01, and 𝑃0 = 𝐼𝑛𝜃

. 



Validation of sufficient conditions for accurate parameter estimation 

First, a vehicle trajectory obtained from the processed NGSIM dataset (Montanino and 

Punzo, 2015) is applied to the predecessor vehicle to perform parameter estimation of the 

ego vehicle driven by the CTH-linear model with predetermined parameters. The 

trajectory from this dataset is repeated three times (as shown in Figure 7(a)) to provide 

more data points for parameter estimation. Figure 7(b) shows that the NGSIM trajectory 

only has 2 distinct peaks (we neglect the peaks with extremely small values, as they are 

induced by numerical errors and will not influence the performance of parameter 

estimation) in the frequency range [−𝜋, 𝜋], which indicates that this trajectory is 

persistently exciting of order 2. Thus, it is not sufficient to accurately identify the 

parameters of the CTH-linear model according to Theorem 4, because a CF dynamical 

system is a second-order dynamical system and requires the trajectory of the predecessor 

vehicle to be at least persistently exciting of order 4. This is validated in Figure 8(a), 

where the estimated parameters diverge from the ground-truth values with large error 

covariances (red shaded areas). 

Next, a summation of sinusoids-type speed profile is considered, which sums up 

4 sinusoidal signals with different angular frequencies and phase shifts: 𝑣pred(𝑡) = 17 +

6 sin(0.1(𝑡 − 15)) + 5 sin(0.07(𝑡 − 10)) − 2.5 sin(0.05𝑡) + 5 sin(0.01(𝑡 + 10)), as 

shown in Figure 7(c). Correspondingly, Figure 7(d) shows that this type of trajectory has 

8 distinct peaks (again, neglecting the peaks with extremely small values) in the frequency 

range [−𝜋, 𝜋], which indicates this summation of sinusoids-type speed profile is 

persistently exciting of order 4. Correspondingly, it is sufficient to accurately identify the 

parameters of the CTH-linear model (i.e., Figure 8(b) illustrates that all parameters 

converge to the ground-truth values). 



The summation of sinusoids-type trajectory is applied to estimate the parameters 

of the nonlinear intelligent driver’s model (IDM) (Treiber, Hennecke, and Helbing, 2000) 

with predetermined parameters. As shown in Figure 9(a), the estimated parameters fail to 

converge to the ground-truth values steadily, because the nonlinearity of IDM requires 

more properties of the trajectory of the predecessor vehicle to be factored. Thus, we 

include the characteristics of: (i) reaching to maximum operating speed, and (ii) stop-and-

go movements in 𝑣pred(𝑡), to uncover the nonlinearity of the IDM during the parameter 

estimation process. Correspondingly, Figure 9(b) illustrates that with these augmented 

features in the trajectory of the processor vehicle, the estimated parameters converge to 

the ground-truth values. This validates the sufficient conditions stated in Proposition 1 

for obtaining accurate parameters. 

Note that the repeated patterns in Figures 7(a) and 7(c) do not indicate three cycles 

of identical trajectory are required when collecting real-world trajectories. They simply 

indicate the reuse of a segment of historical trajectory data three times, which aims to 

show that the predecessor vehicle trajectory with insufficient persistent excitation order 

will not lead to convergence when fitting the CTH-linear model, even with abundant data 

points (e.g., the lead trajectory in Figure 7(a) with three repetitions). The lead trajectory 

with a persistently exciting order of no less than four will guarantee convergence (e.g., 

the lead trajectory in Figure 7(c) enables convergence in less than one cycle). In real-

world operations, if convergence is not reached, we can reuse the most recent trajectory 

data satisfying Proposition 1 to facilitate convergence. Meanwhile, online streaming 

trajectory data should also be consistently incorporated in parameter estimation to capture 

the time-varying CF characteristics. 



 

                       (a) NGSIM speed profile                           (b) Power spectrum of NGSIM speed 

 

       (c) Summation of sinusoids-type speed          (d) Power spectrum of summation of sinusoids 

Figure 7. Trajectories of predecessor vehicle and corresponding power spectrums 

 

(a) The trajectory of predecessor vehicle does not satisfy the PE condition 



 

(b) The trajectory of predecessor satisfies the PE condition 

Figure 8. Parameter estimation of CTH-linear model 

 
(a) The trajectory of predecessor vehicle satisfies the PE condition but does not include stop-

and-go movements and maximum operating speed 

 



 (b) The trajectory of predecessor vehicle satisfies the PE condition and includes stop-and-go 

movements and maximum operating speed 

Figure 9. Parameter estimation of the IDM 

Performance of offline-online parameter estimation method 

This experiment uses real-world driving data to demonstrate the performance of the 

proposed offline-online parameter estimation method. CF trajectory data from a 

commercially available electric vehicle, collected on the State Highway 113 near 

Cartersville, GA, is used here. The ego vehicle (i.e., the commercially available vehicle) 

follows a human-driven predecessor vehicle (leader) which manually creates speed 

fluctuations to simulate the stop-and-go traffic condition. The ego vehicle (follower) is 

driven by the commercial ACC system. As shown in Figure 10, the ego vehicle 

experiences multiple acceleration/deceleration movements on the highway (i.e., green 

indicates high speeds, yellow indicates medium speeds, and red indicates complete stops). 

 

Figure 10. Car-following experiment 

In the proposed offline-online parameter estimation method, the offline parameter 

estimation is devised using the batch-optimisation method on a 10-min trajectory. Then, 

the online parameter estimation is implemented on another 537-second trajectory. We set 

𝑇 = 10𝑠, and 𝜖 = 0.05. We then compare the proposed offline-online parameter 



estimation method with the commonly used offline parameter estimation method (i.e., 

batch-optimisation method), and the EKF-based online parameter estimation (which 

starts with a random initial value and yields the estimated parameters at each time step), 

using the 537-second trajectory as the real-time measurement information. This 537-

second trajectory will then be used for testing the performance of VTS and RTS. 

Table 1 lists the RMSEs of the proposed offline-online parameter estimation 

method, the offline batch-optimisation method, and the EKF-based online parameter 

estimation. The offline-online parameter estimation method achieves the smallest RMSE 

among the three methods, indicating a capability for enabling the desired accuracy. In 

addition, Figure 11 illustrates that the speed of the estimated follower (blue dash curve, 

computed using CTH-linear model with estimated parameters) overlaps with that of the 

ground-truth follower (light blue solid curve, obtained from experimental data), which 

further reinforces the effectiveness of the offline-online parameter estimation method. 

Figure 10 also shows that the commercial ACC system is string-unstable, as it amplifies 

the speed fluctuations from its predecessor vehicle. 

Table 1. Comparison of different parameter estimation methods 

Parameter estimation 

method 

Offline-online 

method 

Batch-

optimisation 

EKF 

RMSE 0.0318m/s 0.5155m/s 0.3071m/s 

 



 

Figure 11. Vehicle speed profiles 

Next, three CF models are compared in the implementation of the offline-online 

parameter estimation method: IDM, optimal velocity model (OVM) (Nakano, 1999) and 

CTH-linear model. Table 2 illustrates the performance of parameter estimation based on 

the different CF models. The CTH-linear model achieves the highest accuracy, followed 

by IDM, and then OVM. This is due to the potential linear CF behaviour of the 

commercial ACC system, which makes CTH-linear a more accurate behaviour estimator 

compared to the nonlinear OVM and IDM. In addition, the nonlinearity of OVM and IDM 

can create more complex non-convexity in model calibration, which yields a locally 

optimal solution with low accuracy. Correspondingly, more trajectory data and advanced 

optimisation algorithms should be incorporated to calibrate nonlinear models to achieve 

higher accuracy. Thus, the CTH-linear is selected to describe the CF behaviour of the 

commercial ACC system to determine its natural frequency and damping ratio. Next, the 

estimated CTH-linear model of the commercial ACC system is used to validate the 

performance of VTS and RTS. 

Table 2. Comparison of different CF models in retrofitting commercial ACC system 



CF model CTH-linear IDM OVM 

RMSE 0.0318m/s 0.3218m/s 0.3296m/s 

CF performance of TS-based method 

Comparison of VTS and RTS using trapezoidal-type trajectory 

Here, a four-vehicle platoon is used to analyse the performance of the TS-based method. 

The predecessor vehicle conducts a trapezoidal-type speed profile to simulate a typical 

congested traffic environment with abrupt acceleration (2m/s2) and deceleration (-2m/s2). 

Three followers are controlled using a string-unstable CTH-linear model (by setting 

parameters in the string-unstable region in Figure 3). 

As shown in Figure 12(a), the speed fluctuations are enlarged upstream in the 

platoon due to the string instability of CTH-linear model. In this case, if 𝜔0 and 𝜁 are 

accurately identified, the VTS can effectively mitigate the string instability of the three 

followers, as shown in Figure 12(b) where the followers smoothly converge to the leader 

speed levels without enlarging fluctuations. 

 

         (a) String-unstable CTH-linear model          (b) String-unstable CTH-linear model with VTS 

Figure 12. Performance of VTS with accurate parameters in time-based cycles 



If 𝜔0 and 𝜁 are not accurately identified, the VTS cannot achieve the desired 

performance in dampening the speed fluctuations (note the overshoots/undershoots in 

Figure 13(a)). By contrast, the extra robustness in the formulation of RTS enables it to 

effectively dampen the speed fluctuation even with inaccurate parameters (as shown in 

the smooth convergence in Figure 13(b)). 

 

(a) String-unstable CTH-linear model with VTS   (b) String-unstable CTH-linear model with RTS 

Figure 13. Comparison of VTS and RTS with inaccurate parameters 

The nonlinearities arising in an ACC system can also limit the effectiveness of the 

VTS. Figures 14(a)-(d) illustrate that the VTS fails to mitigate the overshoots/undershoots 

from a string-unstable IDM, while effectively attenuating those from a string-unstable 

OVM. This is because the strong nonlinearity of IDM makes the fixed values of 𝜔0 and 

𝜁 insufficient to characterize its dynamics (time-varying values may be necessary to 

describe the IDM), but OVM’s mild nonlinearity enables the fixed values of 𝜔0 and 𝜁 to 

capture its dynamics. By contrast, as the RTS factors uncertainty, it can address the time-

varying parameters induced by the nonlinearity in an ACC system. As illustrated in Figure 

14(e), the RTS dampens undesired overshoots/undershoots from the string-unstable IDM. 



 

                        (a) String-unstable IDM                             (b) String-unstable IDM with VTS 

 

                  (c) String-unstable OVM                            (d) String-unstable OVM with VTS 

 

(e) String-unstable IDM with RTS 

Figure 14. Comparison of VTS/RTS under IDM and OVM 



Comparison of VTS and RTS using real-world driving trajectory 

The CF behaviour of the commercial ACC system is retrofitted using the CTH-linear 

model with parameters estimated using the offline-online parameter estimation method. 

The natural frequency and damping ratio of the commercial ACC system are computed 

using the estimated parameters of CTH-linear model. Then, the VTS and the RTS are 

implemented to alleviate the string instability of the commercial ACC system. Figures 

15(a) and (b) illustrate that both VTS and RTS can alleviate the string instability of the 

commercial ACC system: the speed fluctuations are attenuated at every hump. 

Correspondingly, the comparison of the speed fluctuations at every hump illustrates that 

the RTS achieves better string stability performance (i.e., less speed fluctuations) than the 

VTS (especially at around 300s when the VTS amplifies the overshoot). This is as 

expected due to estimation error occurring because the trajectory information may not be 

sufficiently informative to estimate accurate natural frequency and damping ratio. The 

potential nonlinearity in the commercial ACC system also leads to time-varying values 

of 𝜔0 and 𝜁, which can deviate from the estimated values. Then, the VTS is implemented 

with potentially inaccurate parameters, which will degrade its string stability performance 

(see Figure 5). By contrast, the RTS factors multiple natural frequencies and damping 

ratios that can cause string-unstable CF behaviour, which enables it to achieve desired 

robustness and better string stability performance. The performance of VTS and RTS 

under the batch-optimisation method is shown in Figures 15(c) and (d), respectively, 

where the inaccurately identified parameters degrade the string stability performance of 

both VTS and RTS, especially that of VTS. This further illustrates the need for the 

proposed offline-online parameter estimation method to implement the TS-based method. 



 

(a) Commercial ACC system with VTS implemented upon offline-online parameter estimation 

 

(b) Commercial ACC system with RTS implemented upon offline-online parameter estimation 

 



(c) Commercial ACC system with VTS implemented upon batch-optimisation parameter 

estimation 

 

(d) Commercial ACC system with RTS implemented upon batch-optimisation parameter 

estimation 

Figure 15. Performance of RTS and VTS using real-world CF data 

Quantitative analysis of CF performance 

This section statistically illustrates the CF performance of TS-based method. Specifically, 

1341 lead vehicle trajectories extracted from the processed NGSIM dataset (Montanino 

and Punzo, 2015) are applied to the motion of the lead vehicle. A follower vehicle is 

controlled by either the original ACC (string-unstable CTH-linear model) or the ACC 

with VTS. The control parameters of the original ACC are: 𝑘𝑠 = 0.9, 𝑘𝑣 = 0.15, ℎ = 1, 

𝑎max = 3m/s2, 𝑎min = −6m/s2. The statistical significance level is set as 0.05. 

Table 3 lists the mean values and the standard deviations (in parentheses) of 

average time headway across all time steps, speed standard deviation (STD), minimum 

time-to-collision (TTC), and maximum acceleration/deceleration of the follower vehicle. 

Negative TTCs and TTCs exceeding 10 seconds are dropped as they produce no 

meaningful implications on safety. With VTS, the average speed STD and maximum 

acceleration/deceleration are smaller than those of the original ACC, illustrating 



improved traffic smoothness and comfort. The VTS can lead to increased average time 

headway and reduced minimum TTC. However, the minimum TTC still stays close to the 

satisfactory 5-second collision-avoidance value (Horst and Hogema, 1994), indicating no 

collision risks in stop-and-go traffic. The one-way ANOVA is then conducted. The large 

F-stats and p-values smaller than the significance level (0.05) validate the statistical 

significance of the results. 

Table 3. Comparison of CF performance metrics 

 ACC ACC with VTS F-stats p-value 

Average time 

headway (s) 

1.221 

(0.858) 

1.487 

(0.099) 

127.425 <0.0001 

Average STD of 

speeds (m/s) 

1.325 

(0.611) 

1.101 

(0.476) 

110.967 <0.0001 

Average minimum 

TTC (s) 

5.415 (1.611) 4.459 (1.031) 517.079 <0.0001 

Average maximum 

acceleration (m/s2) 

1.023 (0.347) 0.891 (0.302) 76.848 <0.0001 

Average maximum 

deceleration (m/s2) 

-2.075 (1.669) -0.892 (0.370) 641.699 <0.0001 

Impacts of TS market penetration rate 

This section illustrates the impact of TS market penetration rate (MPR) on traffic flow by 

applying the 1341 lead vehicle trajectories from the processed NGSIM dataset 

(Montanino and Punzo, 2015). Ten follower vehicles controlled by either the original 

ACC (string-unstable CTH-linear model) or the ACC with VTS are incorporated to 

simulate the propagation of traffic congestion. The control parameters of the original 



ACC are: 𝑘𝑠 = 0.9, 𝑘𝑣 = 0.1, ℎ = 1.2. The simulation rollouts are conducted 100 times 

for each lead vehicle trajectory under different TS MPRs. 

Figure 16 shows the mean values of average time headway across all time steps, 

speed STD, minimum TTC, and maximum acceleration/deceleration across all follower 

vehicles over the 100 rollouts. The black error bars are the 95% confidence intervals. 

Note that the negative TTC and TTC exceeding 10 seconds are dropped as they produce 

no meaningful implications on safety. Figure 16(a) shows that the average time headway 

increases with larger TS MPR, indicating more ACCs with TS-based method will induce 

sparser traffic flow. Figure 16(b) shows that speed STD reduces with larger TS MPR, 

illustrating that the TS-based method can create smoother speed profiles and alleviate the 

propagation of traffic oscillations. Figures 16(c) and 16(d) show that the maximum 

acceleration/deceleration decreases as TS MPR increases, implying that the TS-based 

method can improve riding comfort. Figure 16(e) shows that the average TTC of the 

platoon increases as TS MPR increases, indicating that the safety of a platoon can be 

improved by ACCs with the TS-based method. This is because string stability achieved 

by VTS enables vehicles away from the lead vehicle to experience significantly reduced 

shockwave and speed fluctuations, which correspondingly increase the TTCs. The 

increased TTCs dominate the reduced TTCs from the vehicles near the lead vehicle (i.e., 

the source of perturbation), leading to overall improved safety for the ACC platoon 

(contrary to the reduced minimum TTC of an immediate follower in Table 3). 

  



                (a) Average time headway                                  (b) Speed STD  

  

              (c) Maximum acceleration                              (d) Maximum deceleration 

 

(e) Minimum TTC 

Figure 16. CF performance under different TS MPRs 

Insights from abrupt harsh braking event 

This section illustrates the impact of abrupt harsh braking event on TS-based method. The 

lead vehicle trajectory used here includes speed-varying operations and an abrupt harsh 

braking event at around time step 775. The parameters of the original ACC (controlled 

by string-unstable CTH-linear model) and VTS are: 𝑘𝑠 = 0.9, 𝑘𝑣 = 0.15, and ℎ = 1.2.  

To enhance safety performance under the harsh braking event, an automatic 

emergency braking (AEB) mechanism based on safe spacing (Zhu et al., 2020) is 

incorporated into the ACC with VTS and the original ACC: 𝑎ego(𝑡) =



{
𝑎min, 𝑝pred(𝑡) − 𝑝ego(𝑡) ≤  𝑑safe and 𝑣pred(𝑡) ≤ 𝑣ego(𝑡)

𝑎ego
shaped(𝑡), otherwise

, where the safe 

spacing 𝑑safe =
𝑣ego(𝑡)2−𝑣pred(𝑡)2

2|𝑎min|
 is the distance traveled by the ego vehicle after it 

decelerates to the speed of the predecessor vehicle with the maximum deceleration 

𝑎min = −8m/s2. Here, the AEB mechanism is assumed to be able to accurately capture 

vehicle states and react promptly. 

Figure 17 shows the speed profiles of five followers controlled by the original 

ACC and the ACC with VTS, with and without AEB. It can be observed that adding the 

AEB mechanism enables faster response to abrupt braking (i.e., faster varying speed 

curves). The AEB alleviates the undershoot of the original ACC (as shown in Figures 

17(a) and 17(b)) and does not jeopardize the string stability achieved by the VTS (as 

shown in Figures 17(c) and 17(d)).  

Table 4 shows the minimum TTC of the five followers under the different 

controllers. For the first two followers, the ACC with VTS reduces the minimum TTC of 

the original ACC. This is because string stability shrinks the transient spacings of vehicles 

close to the source of perturbation (e.g., the location of the harsh braking event). The 

value of minimum TTC is greater than the critical threshold of 1.4 seconds (Kusano and 

Gabler, 2011), indicating no safety hazards under the harsh braking event. With AEB, the 

minimum TTCs of VTS and the original ACC are both improved, and the minimum TTCs 

of the first two followers controlled by the ACC with VTS are almost identical to those 

of the original ACC. The results illustrate the need to incorporate an AEB mechanism 

and relevant abnormality detection system to improve safety of the TS-based method 

under emergency. Remarkably, the TTCs of the last three followers controlled by the 

ACC with VTS are greater than those of the original ACC, indicating an improved safety 

condition towards the tail of the platoon. Additionally, the average minimum TTC across 



the platoon controlled by the ACC with VTS is also greater than that of the original ACC, 

implying that string stability can improve safety for the overall platoon. 

Next, we apply the time exposed TTC (TET) to measure the duration of time when 

TTC is under a critical level of 3 seconds. TET is an aggregated measure to reflect safety 

throughout the CF process (instead of instantaneous performance at each time step 

described by TTC), where a smaller TET indicates a safer operation. Table 5 shows that 

the TET of the original ACC displays an increasing trend upstream the platoon, 

suggesting degraded safety from string instability. By contrast, the TET of ACC with 

VTS decreases upstream the platoon, and the TET of each vehicle is smaller than that of 

the original ACC. In addition, TET is substantially reduced when AEB is incorporated, 

indicating the effectiveness of AEB in improving ACC safety performance. The results 

validate that string stability can improve the overall safety of a platoon, while string 

instability will trigger safety concerns (especially when platoon size increases).  

In summary, the results show that string stability can improve safety for the 

overall platoon under emergency. Meanwhile, as a string-stable follower close to the 

source of perturbation can experience a shrunk transient spacing (recall Table 3), the 

tolerance of system errors (i.e., maintaining safety under delays or abnormality of sensors 

and actuators) may be jeopardized during ACC operations. Thus, it is necessary to 

incorporate an AEB mechanism to enhance the safety of ACCs in case of extreme 

situations. The level of string stability should be adjusted based on traffic conditions and 

the location of the vehicle in a platoon to balance safety, efficiency, and stability. 



 

              (a) Original ACC without AEB                    (b) Original ACC with AEB 

 

                  (c) VTS without AEB                                     (d) VTS with AEB 

Figure 17. Speed profiles with and without emergency brake 

Table 4. Minimum time-to-collision 

 ACC 

ACC with 

AEB 

ACC with 

VTS 

ACC with VTS 

and AEB 

Follower 1 1.833s 2.161s 1.693s 2.149s 

Follower 2 2.334s 2.798s 2.319s 2.934s 

Follower 3 2.460s 2.920s 2.719s 3.261s 

Follower 4 2.515s 3.006s 3.073s 3.544s 

Follower 5 2.536s 3.068s 3.395s 3.809s 

Average 2.336s 2.791s 2.639s 3.139s 



Table 5. Time exposed time-to-collision 

 ACC 

ACC with 

AEB 

ACC with 

VTS 

ACC with VTS 

and AEB 

Follower 1 2.5s 1.6s 2.2s 2.0s 

Follower 2 2.8s 1.2s 2.1s 0.8s 

Follower 3 3.1s 0.7s 1.6s 0s 

Follower 4 3.2s 0s 0s 0s 

Follower 5 3.3s 0s 0s 0s 

Average 2.98s 0.68s 1.18s 0.56s 

Remark 2: In the architecture of a commercial ACC system, the AEB mechanism 

is typically required as an extra functionality to enhance safety, as the ACC emphasizes 

comfortable and smooth CF tasks, which cannot guarantee collision-free operations under 

emergency. The same control architecture should be applied to the TS-based method, as 

safety may be compromised in certain extreme cases. 

Concluding Comments 

This study proposes the TS-based method to modify the trajectory information of the 

predecessor vehicle to mitigate string instability under ACC. The VTS is proposed as a 

simple and straightforward shaper, but that it requires accurately identified parameters to 

achieve desired string stability performance. When the parameters of an ACC system are 

not accurately identified, its performance will degrade significantly. To address this, an 

RTS is proposed, which uses a nonlinear program to factor multiple natural frequencies 

and damping ratios to enhance robustness and maintain string stability under inaccurately 

identified parameters. To maintain reliable and safe operations under the TS-based 

method, the study develops an offline-online parameter estimation method, where the 



batch-optimisation method is applied for the offline parameter estimation based on 

historical trajectory data and the EKF then iteratively improves the offline-estimated 

parameters using real-time measurements during ACC operations. It also explicitly 

discusses the sufficient conditions for obtaining the accurate parameters of an ACC 

system to devise the TS-based method.  

The TS-based method can be implemented as a plug-in piggyback, entailing no 

laborious modifications to existing ACC control algorithms and codebase compared to 

developing new controllers. Thus, the corresponding computational complexity is also 

low, enabling rapid prototyping and efficient real-time implementation. VTS and RTS 

provide a cost-effective solution for automobile manufacturers, traffic-management 

administrative agencies, and after-market ADAS users to smoothen vehicle trajectories 

and mitigate traffic congestion.  

The study insights suggest the following future research directions: (i) balancing 

the trade-off between traffic efficiency and string stability performance in TS-based 

method by developing more intelligent performance metrics and relaxing convolution 

operations; (ii) managing safety and string stability under different traffic conditions (e.g., 

harsh braking, cut-in, etc.) by optimising location-dependent string stability levels and 

incorporating proactive safety measures into the optimisation program; (iii) developing 

more advanced RTS program with the minimization of variance and expected 

performance metrics, while also factoring delayed and inaccurate measurements; (iv) 

extending the TS to cooperative platooning and lane-change control which factors 

trajectory information of multiple neighboring vehicles; and (v) conducting real-world 

CF experiments using the open-source autonomous driving platform “Openpilot” to test 

the proposed TS-based method. 
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