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String instability mitigation of adaptive cruise control without

modifying control laws: Trajectory shaper and parameter estimation”

Vehicle automation technologies enable vehicles to be equipped with adaptive
cruise control (ACC) systems, which relieve highway driving fatigue. However,
recent studies have shown that the current ACC systems on commercially-
available vehicles are string-unstable (i.e., exacerbate shockwave propagation and
congestion). To achieve string stability, most existing studies seek to directly
modify the control algorithms of ACC systems. Alternatively, this study proposes
a trajectory shaper (TS)-based method, which only modifies the trajectory
information (i.e., position and speed measured by sensors) of the predecessor
vehicle, so that the ego vehicle driven by a string-unstable ACC system leverages
the modified trajectory information to achieve string stability. To devise this TS-
based method, the batch-optimisation and extended Kalman filter methods are
applied to estimate the parameters of an ACC system in an offline-online fashion.
The conditions of persistent excitation and observability-identifiability are
analysed to determine the sufficient conditions for obtaining accurate parameters
of an ACC system. The proposed TS-based method is cost-effective during
implementation, as they avoid modifying existing ACC control algorithms (which
entails complex analysis of ACC control systems and parameter tuning). The
effectiveness of the proposed TS-based method is validated through numerical
experiments. The results suggest that they can achieve desired string stability

without modifying existing ACC control algorithms.
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Introduction

Due to the rapid advances in vehicle automation technologies, adaptive cruise control
(ACC) systems are now widely installed on commercially-available vehicles around the
world. As illustrated in the purple box of Figure 1, an ACC system consists of a high-
level planner (HP) and a low-level controller (LC) (Zhou et al., 2022b; Naus et al., 2010).
The HP uses the sensor-measured trajectory information (i.e., position, speed) of the
predecessor vehicle to plan the desired trajectory (e.g., acceleration or speed in future
time steps) so that the desired car-following (CF) control performance (e.g., tracking,
collision avoidance, comfort, fuel economy, etc.) can be achieved for the ego vehicle. The
LC determines the appropriate gas/brake command to be sent to the vehicle actuators (i.e.,
engine, transmission, brake system), so that the planned acceleration/speed can be
executed on the ego vehicle plant. As a critical component of an Advanced Driver
Assistance System (ADAS), the ACC system can alleviate drivers’ fatigue and enhance
safety and comfort in the driving task. However, recent studies suggest that the ACC
systems available on commercially-available vehicles are string-unstable (Li et al., 2021;
Makridis et al., 2021), indicating that vehicles driven by ACC systems will amplify speed
fluctuations originating from the downstream traffic, which can amplify traffic
oscillations and lead to undesired stop-and-go waves.

To guarantee string stability for dampening speed fluctuations and mitigating
traffic oscillations, the most intuitive approach is to modify the ACC control algorithms
(i.e., tuning parameters of HP and LC, or even revising the control algorithms). Several
studies have investigated the design of HP to achieve string stability. For instance,
proportional-derivative (PD) type linear planner and its variants have been studied
extensively (Gong, Zhou, and Peeta, 2019; Zhou et al., 2020; Zhou and Ahn, 2019).

Model predictive controller (MPC) type planners have also been investigated to



incorporate  constraints  related to safety, speed limit, and desired
acceleration/deceleration limit (Gong, Shen, and Du, 2016; Wang et al., 2019; Zhou,
Wang, and Ahn, 2019). The proportional-integral-derivative (PID) control (Zhou et al.,
2022b), feedback linearization control (FLC) (Lu and Shladover, 2018), and loop shaping
control (Shladover, 2009) techniques have been studied in the LC to minimize the
tracking error for realizing the planned string-stable trajectory. However, directly
modifying the algorithms of an existing ACC system to achieve string stability suffers
from the following three challenges. First, the performance of the LC can also
significantly impact string stability (Zhou et al., 2022b), which has been neglected in most
studies. The HP and LC impact each other during ACC operations; the trajectory planning
in the HP addresses the imperfect execution from the LC, while the LC counteracts the
variations in planned trajectory from the HP. Hence, their interactions induce complex
correlations that makes string stability analysis even more difficult (typically entails
numerous trial-and-error attempts). Second, the control algorithms of vehicle engine,
transmission, and brake system are determined by the original equipment manufacturers
(OEMSs) (components in the dash-line box in Figure 1). As these are proprietary
information of the OEMs, it is difficult to access these control algorithms (in the factory
powertrain control unit) and the corresponding actuator dynamics. Moreover, retrofitting
the actuator response typically entails extensive experiments to construct look-up tables
and fit empirical functions, which is laborious and time-consuming. If the vehicle actuator
dynamics are not accurately modelled or are unknown, how the ego vehicle responds to
the LC given the real-world disturbances (e.g., air drag, rolling resistance, road grade,
etc.) and measurement noise during ACC operations (as shown in Figure 1) cannot be
robustly predicted. The challenges in explicitly modeling the actuator dynamics would

substantially degrade the tracking performance of the LC, which compromises string



stability. Third, as the autonomous vehicle industry is shifting from rule-based control
methods (i.e., control decisions with explicit derivations and closed-form expressions) to
end-to-end learning-based control methods (i.e., directly mapping sensor measurements
to the control decision without modularizing HP and LC) (Zhou et al., 2022a), the
complexity and intractability of deep neural networks substantially increase the effort and
cost to tune and revise existing ACC control algorithms. Hence, based on these three
challenges, directly tuning and revising the existing ACC control algorithm in a
commercially-available vehicle to achieve string stability can be rather expensive,
difficult and laborious.
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Figure 1. Ego vehicle control by ACC: gasoline vehicle uses engine; electric vehicle
uses electric motor; hybrid vehicle uses both engine and electric motor

To circumvent the need to directly modify the existing algorithms of an ACC
system and achieve string stability in a cost-effective manner, this study proposes
trajectory shaper (TS)-based method which only modifies the sensor-measured trajectory
information (i.e., position, speed signal) of the predecessor vehicle before it is used by
the ACC system of the ego vehicle, as shown in Figure 2(a). The proposed TS-based

method leverages the fact that the trajectory information of the predecessor vehicle



influences the trajectory of the ego vehicle. Specifically, the trajectory information of the
predecessor vehicle can impact the CF behaviour of the ego vehicle. For instance, the
predecessor vehicle can adjust its speed to achieve desired spacing between itself and the
ego vehicle, which will reduce the speed variations of the ego vehicle. The design of the
TS is inspired by the input shaping approach (Singh and Singhose, 2002; Singhose,
Seering, and Singer, 1996) applied to attenuate residual vibrations of mechanical systems
(e.g., cranes, robot manipulators). During operations, the TS functions as a signal filtering
plug-in in the autonomous driving perception module, processes the trajectory
information of the predecessor vehicle, and removes its undesired characteristics that will
induce string-unstable CF behaviour from an ACC system. The TS also shares a similar
rationale with cyberattacks, while exercising totally opposite objectives. Both TS and
cyber attacker seeks to vary the information used by vehicle control systems to alter the
vehicle trajectories. However, the TS seeks to improve the performance of a suboptimal
ACC to benefit the traffic flow, while a cyber attacker seeks to deteriorate vehicle
controllers to perturb the traffic and reduce safety.

To ensure desired string stability performance of the TS-based method, only two
parameters of an ACC system need to be accurately identified from historical trajectories:
() natural frequency, and (ii) damping ratio. Estimating these two parameters can be
significantly easier than identifying complicated vehicle actuator dynamics (for revising
existing control algorithms). The natural frequency corresponds to the speed oscillation
characteristics (i.e., the changing rate and period of speed overshoot/undershoot) of an
ACC system after encountering speed perturbations from downstream traffic. The
damping ratio describes the capability of an ACC system to alleviate speed fluctuations
to achieve string stability (i.e., the measure of oscillation attenuation). The two parameters

provide a direct interpretation for the string stability property of an ACC system without



the need to know the exact control architecture or algorithms. The magnitude of
maximum overshoot/undershoot and the decaying/amplifying characteristics of speed
fluctuations can be computed based on natural frequency and damping ratio, which
enables the control strategies to mitigate the corresponding speed fluctuations and
overshoot/undershoot. Thereby, given a string-unstable ACC system, if these two
parameters are accurately estimated, a vanilla trajectory shaper (VTS) can be
implemented to alleviate string-unstable CF behaviour. However, the estimated natural
frequency and damping ratio may not be accurate because the trajectory data obtained
from real-world measurements: (i) can be noisy due to the measurement noise of onboard
sensors, and (ii) may not be informative enough to exhibit the CF characteristics of an
ACC system comprehensively (e.g., the trajectory in the free-flow traffic condition cannot
provide any characteristics related to string stability). Hence, we enhance the robustness
of TS design by formulating a robust trajectory shaper (RTS) using a nonlinear program.
The RTS can handle different oscillatory speed patterns covering a range of natural
frequencies and damping ratios to achieve string stability, which appreciably mitigates
the negative impacts of inaccurately estimated parameters. In this study, we first
formulate the VTS to explain the fundamental concepts of the TS-based method, and then
formulate the RTS for more reliable real-world application. The merits of the TS-based
method are twofold. It entails a simple formulation and straightforward implementation
(i.e., it can be added to an existing ACC system as a plug-in block, and only entails
estimating two parameters rather than the complex vehicle actuator dynamics). Of critical
practical importance, it circumvents the need to modify the existing ACC control

algorithms within the vehicle.



Feedback loop for correcting tracking error
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Figure 2. Description of proposed strategies

As the proposed TS-based method builds upon the damping ratio and the natural
frequency of an ACC system, the estimation of these two parameters is crucial for real-
world implementation. To achieve desired accuracy of parameter estimation, the batch-
optimisation and extended Kalman filter (EKF) methods are incorporated to devise an
offline-online parameter estimation method. The batch-optimisation method solves a
nonlinear least-squares problem to determine the optimal parameters that minimize the
difference between the ground-truth and estimated spacings, using the historical
trajectory data. It is implemented in an offline fashion, due to the heavy computational
burden involving numerous historical trajectories. The estimated parameters from the
batch-optimisation method are then applied as the initial condition to initialize the online
parameter estimation. In the online parameter estimation process, the EKF uses the real-
time measurement information (e.g., position and speed of predecessor and ego vehicles)
to iteratively update the estimated parameters of a CF model, by minimizing the
difference between ground-truth measurement information and the measurement

information computed using the estimated parameters. Then, the estimated parameters



will be utilized to compute the corresponding damping ratio and natural frequency. The
offline-online parameter estimation method automates the implementation of TS-based
method in real-world operations. As shown in Figure 2(b), the offline-online parameter
estimation and the TS-based method forms a closed iterative loop. The TS-based method
provides historical trajectories (e.g., data from prior operations) to consistently update the
estimated parameter, while the updated estimated parameters are used in TS-based
method so that the TS is computed based on accurate ACC car-following behaviour to
enhance string stability and safety. This also enables cost-effective operations using the
proposed method, and precludes human intervention and empirical efforts in the
implementation of TS.

Remarkably, in the parameter estimation process, besides the parameter
estimation method, the characteristics of the trajectory (i.e., position, speed) of the
predecessor vehicle and the measurement information also exert great influence on the
accuracy. Three conditions are sufficient to obtain an accurate estimation of parameters:
(i) the trajectory of the predecessor vehicle needs to satisfy the persistent excitation
condition (which manifests if certain trajectory data is capable of exciting a dynamical
system to display all dynamic characteristics, e.g., magnitudes of overshoot/undershoot,
convergence to steady state) (Ljung, 1999); (ii) the trajectory of the predecessor vehicle
needs to include scenarios of maximum operating speed (reaching to speed limit) and
stop-and-go movements; (iii) the measurement information needs to enable the
observability-identifiability property of the CF dynamical system (i.e., involving CF
model dynamics and the measurement information evolution). The observability-
identifiability property indicates that all states and parameters of a dynamical system can
be computed using attainable measurement information. These conditions can be difficult

to satisfy in real-world operations, as the traffic condition may not be able to generate the



aforementioned scenarios. Besides, during daily driving, drivers may adjust the vehicle
powertrain control modes (e.g., eco and sport) and ACC headway settings, which would
alter the damping ratio and natural frequency of the ACC system. Hence, fixed estimated
parameters cannot reflect the dynamics of an ACC system accurately, and will further
degrade the string stability performance of TS. The proposed offline-online parameter
estimation method can address these two issues. Specifically, the EKF will periodically
update the estimated parameters based on real-time measurements, which consistently
improves the accuracy of parameter estimation, and enables the TS-based method to
factor time-varying dynamics during ACC operations. This also improves the reliability
and safety of TS-based method.

The contributions of this study are threefold. First, we illustrate the impacts of the
predecessor vehicle trajectory on the string stability of an ACC system. Second, the
proposed TS-based method can achieve string-stable CF behaviour without modifying
the control algorithms in the HP and the LC of a string-unstable ACC system, which
offers a cost-effective alternative to improve existing ACC systems. That is, we can
circumvent intrusive modifications of OEM control laws in existing vehicles by using
plug-in blocks for signal processing. Third, we rigorously articulate the sufficient
conditions for identifying the accurate parameters of an ACC system. Based on the
sufficient conditions, we further propose an offline-online parameter estimation method
to automate the real-world implementation of TS-based method, which enhances its
reliability and reduce operational costs.

The remainder of the paper is organized as follows. The next section introduces
the formulation of the TS-based method. The offline-online parameter estimation method
and the sufficient conditions for identifying accurate parameters are articulated in the

section thereafter. The next section validates the proposed TS-based method and offline-



online parameter estimation method using numerical experiments. Last, concluding

comments and future directions are provided.

Trajectory Shaper Design

This section first formulates an ACC system to characterize it as a second-order
dynamical system. Next, TS-based method is developed based on the CF dynamics and

string stability analysis of an ACC system.

ACC Formulation

For tractable analysis, we consider the point-mass type vehicle dynamics, which is a
common assumption in string stability-related ACC studies ( Gong, Shen, and Du, 2016).

Thus, the vehicle motion of the ego vehicle is described as follows:
Dego () = Vego(t) (1)
Vego () = Qego(t) 2)
WHEre pego(t), Vego(t), and aeg,(t) are the position, speed, and acceleration of the ego
vehicle controlled by ACC, respectively.

The ego vehicle uses onboard sensors (e.g., radar, camera, etc.) to obtain trajectory
information of the immediate predecessor vehicle to implement the ACC.
Correspondingly, we use a frequently-used constant time headway linear model (CTH-
linear) (Gong, Zhou, and Peeta, 2019; Zhou et al., 2020) to describe the ACC system,
whose control decision (i.e., vehicle acceleration) is as follows:

ego (1) = kpep (8) + kye, (0) ®3)
where agg,(t) is derived as the control decision of ACC system. e, (t) = pprea(t) —
Pego (t) — hego(t) is the spacing error, and e, (t) = Vpreq(t) — Vego(t) is the speed

tracking error. ppreq(t) and vprq(t) are the position and speed of the immediate



predecessor vehicle, respectively. k,, is the proportional control gain for correcting the
spacing error, k,, is the derivative control gain for correcting the speed tracking error, and

h is the desired time headway to be maintained.

String Stability and Speed Damping

An ACC system can be interpreted as a second-order dynamical system (Haidekker,
2020), as the control decision (i.e., acceleration) is the second-order derivative of the
vehicle position. Correspondingly, in the Laplace domain, the string stability transfer
function (SSTF) (Feng et al., 2019) can be expressed as:

Zego(s) 3 ky,s + k,
Epred()  s2+ (kph +ky)s + k,

I'(s) = 4)

where Eeg,(s) and Epq(s) are the positions of the ego and predecessor vehicles in the

Laplace domain, respectively. s = jw is the Laplace operator, j = v/—1 is the indicator
of complex number, and w is the angular frequency. The SSTF quantifies how the ego
vehicle states vary given the stimulation from the predecessor vehicle.

String stability indicates that once a predecessor vehicle deviates from the
equilibrium (i.e., desired spacing and speed) due to a speed perturbation, the speed
perturbation will not be amplified by the ego vehicle. This study applies the [, string
stability criterion as it can be linked to the frequency domain analysis (which is analogous
to the TS-based method), provides a direct constraint on speed fluctuations, and enables
elegant mathematical analysis. The [, string stability states that the I, norm of the speed

deviation of the ego vehicle is smaller than that of its predecessor vehicle:
9230 © = Boll,, < [7preat® = o, ®)
where 7, indicates the operating speed at equilibrium. Correspondingly, for the control

design of an ACC system, this phenomenon can be interpreted as: the impulse response



of ego vehicle is bounded by that of its predecessor vehicle. This corresponds to the H,

norm of the SSTF (4) being no greater than one:

ITGw)llz,, = suplljw)| <1 (6)

where ||-]|4,, denotes the maximum magnitude over the frequency range [0, ). Equation

(6) can be satisfied through the following inequality (Feng et al., 2019; Naus et al., 2010):

<1 7

2

H Jkyw + ky
j(kph + kv)a) + (kp — a)z)

which is equivalent to the following condition after arithmetic simplification:

kph? 4+ 2k,(k,h —1) <0 (8)
The string stability condition in Equation (8) can ensure that the impulse-type speed
perturbation (e.g., sudden braking followed by acceleration, or sudden acceleration
followed by braking) will be dampened. The impulse-type speed perturbation frequently
appears in real-world driving. However, for a step-function type speed perturbation (e.g.,
speed suddenly increasing/decreasing to another setpoint), a further constraint on
controller parameters is required. Specifically, given a step-function type speed
perturbation, the phenomenon of overshoot/undershoot of a second-order dynamical
system corresponds to string-unstable CF behavior of the ACC system. The
overshoot/undershoot indicates that the speed fluctuation of ego vehicle exceeds the
speed variation of its predecessor vehicle. Thereby, the objective of achieving string
stability under a step-function type speed perturbation is equivalent to avoiding
overshoot/undershoot of the second-order dynamical system in Equations (3) and (4).
The SSTF in Equation (4) can then be equivalently rewritten as a second-order dynamical
system (Haidekker, 2020) as follows:

Y(s)  (2{wy — wih)s + wj
U(s)  s2+2{wys + w?

©)



where Y (s) is the output of the system (e.g., trajectory of ego vehicle), and U(s) is the
input of the system (e.g., trajectory of predecessor vehicle). w, € R* is the natural
frequency that corresponds to the oscillatory speed patterns of the system (e.g., speed
fluctuations, overshoots/undershoots). ¢ € R* is the damping ratio, which describes the
capability of attenuating oscillatory speed patterns (i.e., suppressing speed fluctuations
and attenuating oscillating movements). To eliminate overshoot/undershoot of a second-
order dynamical system, and ensure string stability, the damping ratio should satisfy
(Haidekker, 2020):

(=1 (10)
A system with ¢ = 1 is called critically damped, while a system with { > 1 is called over-
damped. Both critically damped and over-damped systems can guarantee that no
overshoot/undershoot will occur, but an over-damped system will converge to the desired
setpoint at a slower pace. A system with 0 < ¢ < 1 is labeled as under-damped, which
will exhibit string-unstable CF behavior given a step-function type speed perturbation.

From Equations (3) and (4), we have the following equalities:

kphtk,

2%,

wo = \ﬁ (11b)

Thus, to guarantee string stability under step-function type speed perturbation, we require

(11a)

the following constraint on the ACC parameters to avoid under-damped situations:

(kph + k)" — 4k, = 0 (12)
Consequently, to dampen both impulse-type and step-function type speed perturbations
from the trajectory of the predecessor vehicle, the string stability condition should involve
Equations (8) and (12). As illustrated in Figure 3, with time headway set as h = 1, the

red dotted line is the boundary of the string stability condition in Equation (8), below



(above) which the region is string-unstable (stable). The black solid curve indicates the
critically-damped condition, with the blue area below being under-damped and the white
area above it being over-damped. Thus, the string stability region for dampening both
impulse-type and step-function type speed perturbations is the white area above the
yellow dashed curve (which satisfies Equations (8) and (12)). In real-world operations,
an ACC system satisfying conditions in Equations (8) and (12) will produce damped

speed profiles and alleviate speed fluctuations compared to the predecessor vehicle.
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Figure 3. Regions of string stability and over/under-damped system

Vanilla Trajectory Shaper

The VTS design is based on the zero vibration shaper (ZVS) method which is designed
to attenuate the residual vibration of an mechanical vibration system (Haidekker, 2020).
The core idea of ZVS is to appropriately design two sequential impulses to negate residual
vibrations, as shown in Figure 4(a). The first impulse A, induces a vibrating response
(solid curves), while the second impulse A, induces another vibrating response (dashed
curves). By sequentially applying impulses A, and A, to the mechanical vibration system,

the vibrations induced from these two impulses will cancel each other to achieve a



vibration-free response. The residual vibrations are analogous to the speed fluctuations
of an ACC system (as both the mechanical vibration system and the ACC system can be
described using the second-order dynamical system model in Equation (9)). Thereby, the
core idea of the VTS is the same as that of ZVS. Specifically, the VTS applies impulses
A; and A, to convolute with the speed information of the predecessor vehicle so that the
speed variations of the predecessor vehicle are appropriately altered (see the green dashed
line in Figure 4(b). The first impulse brings the speed information to an intermediate
setpoint for the ego vehicle to respond. Next, when the ego vehicle is about to overshoot,
the second impulse drives the speed information to the original speed level, which ensures
that the ego vehicle converges to the speed of the predecessor vehicle without overshoot

(as illustrated by the blue dotted curve and green solid curve in Figure 3(b)).
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(b) Mechanism for eliminating speed overshoot from ego vehicle
Figure 4. Mechanism of ZVS and VTS
For a vibrating second-order dynamical system, the performance index of
vibration attenuation is defined as the residual vibration percentage under the impact of

n impulses (Zhao et al., 2016):

V(wo, {) = e~ @08t /S(wp, {)? + C(wp, {)? (13)
where S(wo,§) = X, Aje@oStisin(woy/1 — 2t;), C(wy, Q) =

n L Aje®@osti cos(wo\/l——fzti), A; and t; are the magnitude and occurrence time of
impulse i, respectively. The residual vibration percentage measures the vibrations
(fluctuations) after applying n impulses to the second-order dynamical system (9).
Correspondingly, for the ZVS, to eliminate residual vibrations of a mechanical vibration
system using two sequential impulses (i.e., V = 0,n = 2), we need to solve the following
set of equations:

S(we, () =0 (14a)

C(wo,¢) =0 (14b)

2
Z A =1 (14c)
i=1

where Equations (14a) and (14b) seek to push the residual vibration percentage to zero,
and Equation (14c) ensures that the system response can still converge to the original
reference. The variable t, is the time stamp at which the ZVS is initialized (e.g., t; = 0).
After solving Equation (14), we obtain the magnitudes and time stamps (time when an

impulse is applied) of the impulse sequence as follows:

{m
ev1-¢?
Al = —— (15a)

{m
1+ eV1-¢?




s

—wo T-¢2 (15c)

Using the same idea and similar procedures, the VTS applies two sequential

t2=t1+

impulses to modify the original trajectory information of the predecessor vehicle so that
the shaped trajectory induces no overshoot/undershoot from the ego vehicle (which
ensures its string stability). Correspondingly, by convoluting the impulse sequence with

the original position py.q and speed vy,.q Of the predecessor vehicle, the shaped speed

and position in VTS can be expressed as:

shaped
Ppreg (t) = Alppred(t - t1) + Azppred(t - tz) (16&)
shaped
Upreg (t) = Alvpred(t - tl) + szpred(t - tz) (16b)
Then, p;}rl:ged and v;}r‘jged will replace the original sensor measurements pyyeq and Vpreq

in Equation (3) to implement the ACC system. Note that convolution (16) introduces the
delay effect, enforcing an ACC to be more dependent on the predecessor vehicle’s past
trajectories. This can further induce a slower convergence to the desired speed and
spacing than by following the original trajectory. The delay effect becomes more obvious
with longer impulse sequence, making a shorter impulse sequence more ideal for efficient
car-following operations. Moreover, as the VTS assumes ACC parameters have been
accurately estimate, two impulses (n = 2) are applied to minimize the delay of ACC
response and enhance traffic efficiency.

Considering the performance of the VTS can degrade under inaccurately

identified parameters, the next subsection addresses this aspect by introducing the RTS.

Robust Trajectory Shaper

In real-world applications, the perfect identification of w, and ¢ of an ACC system can



be difficult due to noisy, or even inaccurately measured trajectory information. The VTS
implemented using inaccurate w, and ¢ will generate an erroneous shaped trajectory,
degrading the performance of attenuating speed fluctuations. Thus, robustness should be
incorporated into TS to counteract the string-unstable ACC system factoring a range of
w, and ¢. Specifically, instead of requiring the residual vibration percentage at a specific
w, and ¢ to be zero, the RTS adapts the idea of specified insensitivity shaper (Singh and
Singhose, 2002; Zhao et al., 2016) to ensure that the residual vibration percentage over a
span of w, and ¢ (which include the actual w, and ¢ corresponding to traffic oscillations)
is less than a specified tolerance level.

Considering a longer impulse sequence can trigger more relaxed and smoother
response to attain more margin for robustness, the RTS incorporates three impulses (n =
3). Then, defining the set of natural frequencies and damping ratios that can induce string-
unstable CF behaviour as Q and W, respectively, we have the following nonlinear program

to obtain the RTS (i.e., solving for the magnitudes and time stamps of 3 impulses):

PR e S (17a)
S.t. tiv1— t; =>0i=1,..,2 (l?b)
4,>0i=1,..3 (17¢)
3
Z A =1 (17d)
i=1
V(o) ) < Vit 0} €Q,J €W (17¢)

The objective function in Equation (17a) aims to minimize the time stamp of the
last impulse so that the delay effect introduced by convolution is minimized. Equation
(17b) states that the time stamp of an impulse occurring later should be greater than the
time stamp of an impulse occurring earlier. Equation (17c¢) requires the magnitudes of

impulses to be positive, which reduces the variations in the shaped trajectory. Equation



(17d) ensures that the shaped trajectory can maintain the same magnitude as the original
trajectory, so that the ACC system can produce a desired CF behaviour with respect to
the original trajectory. Equation (17e) bounds the residual vibration percentage to below
the tolerance level V,,, for all natural frequencies in set Q and all damping ratios in set V.
The impulse sequence of RTS can be efficiently computed using nonlinear solvers. This
study applies the “active set” algorithm embedded in MATLAB ‘fmincon’ function to
solve the nonlinear program in Equation (17). Correspondingly, the shaped speed and

position of the predecessor vehicle in the RTS can be expressed as:

;}rl:ged(t) Z Al Ppred (t ) (18&)
Vhren () = z A Vprea(t — t) (18b)
pred pred

The comparison of robustness between VTS and RTS is illustrated in Figure 5,
where given a damping ratio ¢, the RTS dampens the speed oscillations (i.e., enforces
V(w, () < Vo) covering a much wider frequency range compared to the VTS.

Remark 1: The sets of natural frequencies Q and damping ratios ¥ can be
constructed by analysing historical data. Specifically, the variations and bounds of w,
and ¢ during the ACC operations can be obtained using parameter estimation methods
(e.g., EKF discussed in next section) which provide a set of values of w, and ¢ that will
influence string stability. It is also worth noting that requiring excessively large sets of

w, and ¢ can overdamp speed fluctuations, jeopardizing ACC tracking performance.
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Figure 5. Comparison of VTS and RTS

Parameter Estimation of ACC System

The parameter estimation underpins and automates the real-world implementation of the
TS-based method. Though the RTS can handle inaccurately identified parameters, its
performance improves with accurately identified parameters (as seen in Figure 4). In this
section, we discuss the sufficient condition for obtaining accurately estimated parameters
of a CF dynamical system, and introduce the proposed offline-online parameter
estimation method to enable real-world implementation of the TS-based method.

To obtain accurate parameters, the CF dynamical system of the ego vehicle needs
to possess the observability-identifiability property (i.e., being able to estimate all the
vehicle states and parameters given the sensor measurements), while the input signal (i.e.,
speed of predecessor vehicle) should satisfy the persistent excitation condition (Ljung,
1999) and include desired operating speed and stop-and-go movements (Zhou et al.,
2024). Only if this property and the excitation condition are satisfied, the CF operations
can fully unveil the CF dynamics of the ego vehicle and ensure that the estimated
parameters converge to ground-truth values. Accurately estimated parameters will aid the

string stability performance of the TS-based method. Next, we articulate the



observability-identifiability property of a CF dynamical system, based on which we

discuss the significance of the predecessor vehicle trajectories in parameter estimation.

Observability-identifiability of a car-following dynamical system
This subsection starts with the formulation of the CF dynamical system. We first define
the state vector of the ego vehicle as x(t) = [Ap(t), vego(t)]T, and its augmented state
vector as %(t) = [x(t),8]", where Ap(t) and v(t) denote the spacing with respect to the
predecessor vehicle and the speed of the ego vehicle, respectively, and 8 € R™¢ denotes
the parameters of the ego vehicle. Then, the CF dynamical system of the ego vehicle can
be formulated as follows:

X(t) = F(x(0),u(®)) (19a)

y(®) = g(%(®),u®)) (19b)
where F(%(6),u(®)) = [v(t), a(t), Ona]T describes the state evolution of the CF
dynamical system, 0,, is a ng-dimensional zero vector. u(t) is the speed of the
predecessor vehicle, which can be interpreted as the input signal of the CF dynamical
system. g(f(t), u(t)) describes the sensor measurement signal y(t) (e.g., position, speed
of ego vehicle measured by sensors) based on augmented states %(t) and input signal
u(t). A CF dynamical system describes the vehicle state evolution and the sensor
measurement information of the ego vehicle during the ACC operation.

Next, based on the formulation of the CF dynamical system, we introduce the
definition and sufficient conditions for observability, and connect it to the identifiability
of a CF dynamical system to obtain unique parameter estimation results.

Definition 1 (Observability). A system with an initial state x, is observable if and
only if the value of the initial state can be determined from the system measurement signal

y(t) through the time interval ¢, < ¢ < t; (Astrém and Murray, 2010).



Correspondingly, we define the observability matrix 0(x) € R™**™x as follows:

d
gﬂt)
0 .
gﬂt)

Ox)=| a |, (20)
&}"(t)

9]
527 @)

The observability matrix O(x) links the variations of measurement signal to the
states, which will be used to validate the observability in the following theorem.

Theorem 1. A dynamical system is (locally) observable in the neighborhood of
X, if and only if the observability matrix O(x,) has a rank of n,. (Khalil, 2002).

Theorem 1 implies that if a CF dynamical system is observable, all vehicle states
can be estimated based on the measurement signal y(t). This is important for the
implementation of vehicle control, as not all vehicle states can be directly measured. The
observability property enables us to track the variations of all states using only feasible
sensor measurements. Next, we introduce the definition of identifiability to obtain a
unique estimated parameter .

Definition 2 (Identifiability). A CF dynamical system given by Equation (19) is
locally identifiable if for any 6 there exists a neighborhood V' (6*) where the following
bijection holds (Villaverde et al., 2019):

y(t,0)=y(t0) & §=06" (21)

In the differential geometry framework (Villaverde et al., 2019), the observability-
identifiability is an augmented observability property, where the augmented state vector
% =[x, 0] replaces the state vector x in Equation (20) and uses ¥ to compute the

observability-identifiability matrix O (%). The following theorem articulates the condition



for ensuring the observability-identifiability property, based on which all the states and
parameters can be obtained using the measurement signal y(t).

Theorem 2. A dynamical system is locally observable and locally identifiable in
a
=Y
J .
=Y

the neighborhood of X, if the observability-identifiability matrix 0(x) = ij}(t)
0%

|y ()
has a rank of n,, + ngy at X, (Wang et al., 2022).
In addition, with an input signal u(t) (e.g., speed of predecessor vehicle) in CF
dynamical systems, the condition for observability-identifiability property is as follows:
Theorem 3. A dynamical system is locally observable-identifiable in a
neighborhood of X, if the observability-identifiability —matrix O(X) =

= g((0), u(t))

% (Lfg(f(t),u(t))>
i~ (L%g(i(t), u(t))) has a rank of n,. + ng (Villaverde et al., 2019).

= (1 9(x®, u(t))),

OL} 1g(x(t) u(t))

Note that Leg(%(0),u®)) = f(x@®),u®) +

w LT g(EOuD) ; N d
3, HIEOMO) ()60, and  Lyg(2(6), u(®)) = 220D £(5(1), u(0)) +
=0 Mu(t) U+1) are the Lie-derivatives corresponding to the augmented states

of the ego vehicle. The Lie-derivatives describe how the variation in measurement signal
depends on the variations in augmented state X(t) and input signal u(t), which can be
used to investigate whether the variations in augmented state X(t) can be interpreted from
the variation in measurement signal. The property of observability-identifiability of a CF

system indicates the feasibility of obtaining all vehicle states and CF parameters using



available sensor measurements. This is important for the TS-based method, as we need
the estimated CF parameters based on sensor measurements to design the TS in real-world
operations.

With speed as the measurement information, an ACC system based on CTH-linear
CF dynamical system is locally observable-identifiable except at the CF equilibrium
(voh, vy), Where v, is the desired operating speed. This elaborates that the trajectory
corresponding to equilibrium driving cannot ensure accurate parameter estimation, which
leads to the following analysis and requirements on the trajectory of the predecessor

vehicle to enable observability-identifiability.

Persistent excitation condition of trajectory data

In addition to the observability-identifiability property of the CF dynamical system, the
trajectory of the predecessor vehicle also plays an important role in parameter estimation.
In this subsection, we first introduce the concept of persistent excitation, and then relate
it to the trajectory of the predecessor vehicle for parameter estimation. The persistent
excitation condition indicates that an input signal (e.g., the trajectory of the predecessor
vehicle) used for parameter estimation is informative enough (e.g., displays sufficient
speed fluctuations to trigger the ego vehicle to produce trajectories that can unleash all
the CF characteristics) to obtain a unique and optimal estimation solution. It is formulated
through the following definition.

Definition 3. A signal is persistently exciting of order n if the following limit

exists:
1 N
Ry (1) = Jlim N Elu(®u(t —1)] (22)

t=1

and the following matrix C,, is positive definite (Ljung, 1999).



Ru(o) Ru(l) Ru(n - 1)
Cn — Ru(:_l) Ru:(o) Ru(n'_ 2) (23)

R(1-1) R (2-m) ~ R,(0)

In particular, the condition of persistent excitation in Equations (22) and (23) is
equivalent to the following theorem in frequency domain.

Theorem 4. In the frequency domain, a signal satisfying persistent excitation of
order n has a power spectrum with nonzero values at n frequencies in the interval (—m, )
(Ljung, 1999).

The property of persistent excitation illustrates the capability of an input signal to
obtain unique and accurate parameters through the parameter estimation process. Based
on this, the following theorem states the conditions for identifying (i.e., obtaining accurate
parameters) a linear dynamical system (e.g., CF dynamical system which uses linear CF
model to describe the state evolution).

Theorem 5. To identify an nth order linear dynamical system, the input signal
needs to be at least persistently exciting of order 2n (Ljung, 1999).

As a linear CF dynamical system is a second-order linear dynamical system,
theorems 4 and 5 suggest that the trajectory of the predecessor vehicle is persistently
exciting of at least order 4 (i.e., having a power spectrum with at least 4 nonzero values
in the interval (—m, )).

Note that the analysis so far in this subsection is only sufficient for parameter
estimation of linear systems, which cannot address characteristics of nonlinear CF
dynamical systems (e.g., the state evolution is governed by intelligent driver model,
optimal velocity model, Gipps’ model, etc.). Hence, we identify two additional essential
characteristics of the predecessor vehicle trajectory to enable accurate parameter
estimation for nonlinear CF dynamical systems; they are: (i) stop-and-go movements, and

(ii) operations at the desired maximum speed (e.g., speed limit). This is because the



nonlinearity causes significant impacts when a vehicle operates in stop-and-go
movements and at the speed limit; specifically, they unveil certain safety-related
characteristics in nonlinear CF dynamical systems that cannot be fully uncovered through
trajectories satisfying only theorem 5.

The following proposition describes the sufficient conditions to accurately
identify the parameters of a nonlinear CF dynamical system.

Proposition 1. To accurately identify the parameters of a CF dynamical system,
the trajectory of the predecessor vehicle needs to satisfy the following conditions:

(1) the CF dynamical system is locally observable-identifiable;

(i1) the trajectory of the predecessor vehicle is persistently exciting of at least order
four,

(ii1) the trajectory of the predecessor vehicle contains scenarios of stop-and-go
movements and operations at the speed limit.

Note that the conditions in Proposition 1 may be difficult to realize in real-world
driving scenarios, especially under insufficient data. Hence, next, we propose an offline-
online parameter estimation method to alleviate the negative impact of the predecessor
vehicle trajectory on estimated parameters, and correspondingly guarantee desired

performance of the TS-based method.

Offline-online parameter estimation method

The proposed offline-online parameter estimation method is illustrated in Figure 6. The
parameter estimation starts from offline parameter estimation (as shown in the red solid
box at the left bottom of Figure 6), where the batch-optimisation method uses a CF model
(e.g., CTH-linear model in this study) and the historical trajectories of ego vehicle and its

predecessor vehicle to estimate parameters 8,. These estimated parameters 8, are used



as initial conditions (baseline) to initialize the online parameter estimation. Based on 8,
an extended Kalman filter (EKF) uses the real-time trajectory measurements of the ego
vehicle and its predecessor vehicle to perform the online parameter estimation iteratively
(as shown in the blue dashed box in Figure 6). The trajectory used in the online parameter
estimation is a discrete time series (measured by onboard sensors), and the online
parameter estimation is performed at each time step t of the trajectory (i.e., each data
point). In the online parameter estimation, we first specify a time interval T (i.e., a specific
number of time steps) for updating the estimated parameters. This is because the
estimated parameters will be used to update TS, and frequently updating the TS can
reduce the control performance (e.g., by increasing speed fluctuations). In addition, after
every time interval T (note that in Figure 6, t%T computes the residue of t/T'), the newly
estimated parameters @ are also compared to the estimated parameters 8, in the previous
EKF iteration. If the difference ||, — 8|| is greater than a threshold e, then the estimated
parameter & will be used to update the TS, and 8, is replaced by 8. Otherwise, TS will
not be updated, and 8 will be assigned to 8, for the next EKF iteration. This operation
also aims to avoid frequent updates of TS and ensures smooth ACC operations. The TS
is then implemented on the ACC system for operations. The vehicle trajectories collected
from ACC operations are used in future EKF iterations.

Online estimation
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Figure 6. Offline-online parameter estimation

Note that a set of CF models can be parallelly applied in the offline-online
parameter estimation process, so that the estimated parameters corresponding to the best
accuracy (i.e., RMSE between the estimated and ground-truth trajectories is the smallest)
can be selected for the TS-based method. Next, we describe the details of offline and

online parameter estimation processes.

Offline parameter estimation

The batch-optimisation method aims to optimise the CF parameters 8 to minimize the
root mean square error (RMSE) between the simulated spacing s(é, t) and the ground-

truth spacing 5(t) in the data. The RMSE of spacing is applied as the objective due to its
capability for achieving high accuracy in the CF model calibration (Kesting and Treiber,

2008). The optimisation problem is formulated as:

. 1 [ Thist _ 2 24
m@m Thist-];) (s(t) —s(t)) dt (24a)
s.t. $(t) = u(t) — Vego (x, 0, t) (24b)

Vego(%,0,8) = f(x,0,1) (24c)

where 5(t) is the ground-truth spacing data, and u(t) is the speed of the predecessor
vehicle. Ty;s; IS the total length of the trajectory in the dataset. Equation (24b) states that
the dynamics of spacing are equal to the speed difference between the ego vehicle and its
predecessor. Equation (24c) indicates that the acceleration of the ego vehicle is factorized
by a function f which can be any CF model (e.g., CTH-linear model, model predictive
control, deep reinforcement learning-based method, etc.). Thus, the offline parameter
estimation is an optimisation problem constrained by a CF dynamical system in Equations

(24b) and (24c). Note that Equation (24a) can be nonlinear and nonconvex, which is



solved using the “interior point” algorithm many times with random initial values to
improve solution optimality (Wang et al., 2022).

The offline parameter estimation uses the historical trajectories to compute the
estimated parameter 8,. 8, may be inaccurate for estimating the CF behaviour of an ACC
system in real-world operations, because: (i) the historical trajectories may not satisfy
Proposition 1; (ii) the batch-optimisation method may provide suboptimal solution which
Is not accurate; and (iii) the CF behaviour of an ACC system may vary during real-world
operation (e.g., drivers may switch control modes in different traffic conditions), which
cannot be accurately estimated using a fixed 8,. Thus, online parameter estimation, which
consistently updates the estimated parameters of an ACC system, is proposed next to

improve the accuracy of estimated parameters during ACC operation.

Online parameter estimation

The Extended Kalman Filter (EKF) is applied to enable the online parameter estimation
using real-time measurements. The EKF aims to minimize the trace of the error
covariance matrix at each time step of the trajectory so that the uncertainty in parameter

estimation is minimized, as follows:
. ~ AT
min trace (E[(6-0)(0-0)"]) (25)
To implement the EKF, we discretize the CF dynamical system with time step dt,

and the corresponding dynamics of vehicle states and parameters at time step k are as

follows:



Pk
X = |V | = F(Xg-1, Ug—1,0k-1)
Ok
(26a)
Xp—q1 + vk—ldt + O.Sakdtz + Wg-11
= Vk-1 + akdt + Wk—l,Z
Ingek—l + Wg-13
Vi = Gie(Xi, U, Ok) = vy + 1y (26D)

where wy_;; and wy_;, are the uncertainties in position and speed dynamics,
respectively. wy_, 3 is the process noise in the evolution of the CF dynamical system.
a, = f(xr—1,Ur—1,05—1) describes the acceleration variations of the ego vehicle.

For parameter estimation, if all vehicle states (i.e., speed, acceleration) are
measured, then the focus is only on the evolution of parameters 8, of the CF dynamical
system. We define W and R as the covariance matrices of the disturbance in the parameter
dynamics (i.e., wy 3) and the measurement noise (i.e., n;), respectively. The EKF for
parameter estimation is illustrated in the following algorithm. The EKF starts by
initializing the initial state x, (the vehicle state at the time step when EKEF is activated),
the initial value of estimated parameter 8, (obtained from the offline batch optimisation),
and the error covariance matrix P, (the variance of parameter estimation error). Then, the
EKF is executed for Ep iterations (Ep is also the total number of time steps of the
trajectory data).

As shown in Algorithm 1, the iterative process starts with the prediction step
where we assume the parameters are fixed during the current iteration to obtain the
predicted parameter 9k(_) (as shown in line 4 of Algorithm 1). This mitigates abrupt
changes in predicted parameters and improves accuracy. Next, the prediction error
covariance matrix of ék(_) is computed in line 5 of Algorithm 1, where ¢,_; =

OF (Xpg—1.Ug—1,0k—-1) | ~
90,1 Or—1=0r_1

= I,,, is an ny-dimensional identity matrix which describes



how ék(_) vary with the estimated parameters 8,,_, from the previous time step. J,, =

OF (Xg—1,Ug—1,0k—1) | R
OWpg_1 Ok-1=0k-1

= I, is a ng-dimensional unit vector which describes how

predicted parameters are impacted by wy_;. Py -y indicates the inaccuracy of @k(_),

which is used to improve the estimation accuracy in the following steps. In line 6 of
Algorithm 1, we minimize the trace of the prediction error covariance matrix (Equation

095 (X1 Ui, 0k)

(25)) to obtain the Kalman gain, where H, = 5
k

|9k=§k(_) is a vector which

shows how gy (xx, ug, 6;) is influenced by the predicted parameter ék(_). Then, the

Kalman gain is used to update the estimated parameter 8, in line 7 of Algorithm 1, where
we correct the error between real-time measurement information y, (obtained through
onboard sensors) and the estimated measurement information computed by
gk(xk,uk, ék(_)) (following Equation (26b),). The last step is to compute the estimation

. . o . 99 (Xt
error covariance matrix Py, (in line 8 of Algorithm 1), where J,, = % loy=81, =
. B}

1. P, indicates the uncertainty of the estimated parameters and is used in the next iteration

to further improve the estimation accuracy.

Algorithm 1: EKF for Online Parameter Estimation

1 InpUt: Ep, Xky Vi Uk g(xk'ukfek)! Wv R! d)kv Hkvjwv]n
2: Initialize xy, 8y, Py, k = 0

3: for k=1:Ep do

B

Predicted parameters: By(_y = I,,, 01

5: Prediction error covariance matrix: Py(_y = ¢y—1Pe_1di_1 + JWwW/,

@

Kalman gain: Ky, = Py Hy(HiPr(_yHy +]nR]TTl)—1



7: Updated estimation of parameters: 8, = By + Kj (yk —
gk(ka Uy, ék(—)))
8:  Estimation error covariance matrix: Py = Py(—y — Pj(yHy (HiPy(—yHy, +

-1
JnRI%) HiPre

9: end for

Remark 3: The EKF computes the estimated parameter at each time step of the
vehicle trajectory, which can capture the time-varying CF behaviour of an ACC system
and significantly improve the estimation accuracy. The accurately estimated parameters
then enable reliable retrofitted CF behaviour of an ACC, which further ensures TS-based
method can appropriately modify the sensor measurements and enhances safety. In
addition, when implementing the TS-based method in the real world, frequently updating
the TS based on the estimated parameters at each time step can induce additional speed
fluctuations and compromise the control performance. Thus, recalling the discussion
from Figure 6, we include the parameter updating time interval T and a threshold € to

avoid unnecessary updates of TS in real-world operations.

Numerical experiments

Parameter estimation performance

We first explore the sufficient conditions for obtaining accurate parameters, and then
illustrate the performance of the proposed offline-online parameter estimation method.
The parameter estimation method applied here is the EKF in Algorithm 1. The parameter

setting of EKF is as follows: W = 0.011,,,, R = 0.01, and Py = I,.



Validation of sufficient conditions for accurate parameter estimation

First, a vehicle trajectory obtained from the processed NGSIM dataset (Montanino and
Punzo, 2015) is applied to the predecessor vehicle to perform parameter estimation of the
ego vehicle driven by the CTH-linear model with predetermined parameters. The
trajectory from this dataset is repeated three times (as shown in Figure 7(a)) to provide
more data points for parameter estimation. Figure 7(b) shows that the NGSIM trajectory
only has 2 distinct peaks (we neglect the peaks with extremely small values, as they are
induced by numerical errors and will not influence the performance of parameter
estimation) in the frequency range [—m, ], which indicates that this trajectory is
persistently exciting of order 2. Thus, it is not sufficient to accurately identify the
parameters of the CTH-linear model according to Theorem 4, because a CF dynamical
system is a second-order dynamical system and requires the trajectory of the predecessor
vehicle to be at least persistently exciting of order 4. This is validated in Figure 8(a),
where the estimated parameters diverge from the ground-truth values with large error
covariances (red shaded areas).

Next, a summation of sinusoids-type speed profile is considered, which sums up
4 sinusoidal signals with different angular frequencies and phase shifts: vy eq(t) = 17 +
6sin(0.1(t — 15)) + 5sin(0.07(t — 10)) — 2.5in(0.05t) + 5sin(0.01(t + 10)), as
shown in Figure 7(c). Correspondingly, Figure 7(d) shows that this type of trajectory has
8 distinct peaks (again, neglecting the peaks with extremely small values) in the frequency
range [—m, ], which indicates this summation of sinusoids-type speed profile is
persistently exciting of order 4. Correspondingly, it is sufficient to accurately identify the
parameters of the CTH-linear model (i.e., Figure 8(b) illustrates that all parameters

converge to the ground-truth values).



The summation of sinusoids-type trajectory is applied to estimate the parameters
of the nonlinear intelligent driver’s model (IDM) (Treiber, Hennecke, and Helbing, 2000)
with predetermined parameters. As shown in Figure 9(a), the estimated parameters fail to
converge to the ground-truth values steadily, because the nonlinearity of IDM requires
more properties of the trajectory of the predecessor vehicle to be factored. Thus, we
include the characteristics of: (i) reaching to maximum operating speed, and (ii) stop-and-
go movements in vpreq(t), to uncover the nonlinearity of the IDM during the parameter
estimation process. Correspondingly, Figure 9(b) illustrates that with these augmented
features in the trajectory of the processor vehicle, the estimated parameters converge to
the ground-truth values. This validates the sufficient conditions stated in Proposition 1
for obtaining accurate parameters.

Note that the repeated patterns in Figures 7(a) and 7(c) do not indicate three cycles
of identical trajectory are required when collecting real-world trajectories. They simply
indicate the reuse of a segment of historical trajectory data three times, which aims to
show that the predecessor vehicle trajectory with insufficient persistent excitation order
will not lead to convergence when fitting the CTH-linear model, even with abundant data
points (e.g., the lead trajectory in Figure 7(a) with three repetitions). The lead trajectory
with a persistently exciting order of no less than four will guarantee convergence (e.g.,
the lead trajectory in Figure 7(c) enables convergence in less than one cycle). In real-
world operations, if convergence is not reached, we can reuse the most recent trajectory
data satisfying Proposition 1 to facilitate convergence. Meanwhile, online streaming
trajectory data should also be consistently incorporated in parameter estimation to capture

the time-varying CF characteristics.
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Figure 7. Trajectories of predecessor vehicle and corresponding power spectrums
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Figure 9. Parameter estimation of the IDM

Performance of offline-online parameter estimation method

This experiment uses real-world driving data to demonstrate the performance of the
proposed offline-online parameter estimation method. CF trajectory data from a
commercially available electric vehicle, collected on the State Highway 113 near
Cartersville, GA, is used here. The ego vehicle (i.e., the commercially available vehicle)
follows a human-driven predecessor vehicle (leader) which manually creates speed
fluctuations to simulate the stop-and-go traffic condition. The ego vehicle (follower) is
driven by the commercial ACC system. As shown in Figure 10, the ego vehicle
experiences multiple acceleration/deceleration movements on the highway (i.e., green
indicates high speeds, yellow indicates medium speeds, and red indicates complete stops).
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Figure 10. Car-following experiment

In the proposed offline-online parameter estimation method, the offline parameter
estimation is devised using the batch-optimisation method on a 10-min trajectory. Then,
the online parameter estimation is implemented on another 537-second trajectory. We set

T = 10s, and € = 0.05. We then compare the proposed offline-online parameter



estimation method with the commonly used offline parameter estimation method (i.e.,
batch-optimisation method), and the EKF-based online parameter estimation (which
starts with a random initial value and yields the estimated parameters at each time step),
using the 537-second trajectory as the real-time measurement information. This 537-
second trajectory will then be used for testing the performance of VTS and RTS.

Table 1 lists the RMSEs of the proposed offline-online parameter estimation
method, the offline batch-optimisation method, and the EKF-based online parameter
estimation. The offline-online parameter estimation method achieves the smallest RMSE
among the three methods, indicating a capability for enabling the desired accuracy. In
addition, Figure 11 illustrates that the speed of the estimated follower (blue dash curve,
computed using CTH-linear model with estimated parameters) overlaps with that of the
ground-truth follower (light blue solid curve, obtained from experimental data), which
further reinforces the effectiveness of the offline-online parameter estimation method.
Figure 10 also shows that the commercial ACC system is string-unstable, as it amplifies

the speed fluctuations from its predecessor vehicle.

Table 1. Comparison of different parameter estimation methods

Parameter estimation Offline-online Batch-
EKF
method method optimisation

RMSE 0.0318m/s 0.5155m/s 0.3071m/s
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Figure 11. Vehicle speed profiles

Next, three CF models are compared in the implementation of the offline-online
parameter estimation method: IDM, optimal velocity model (OVM) (Nakano, 1999) and
CTH-linear model. Table 2 illustrates the performance of parameter estimation based on
the different CF models. The CTH-linear model achieves the highest accuracy, followed
by IDM, and then OVM. This is due to the potential linear CF behaviour of the
commercial ACC system, which makes CTH-linear a more accurate behaviour estimator
compared to the nonlinear OVM and IDM. In addition, the nonlinearity of OVM and IDM
can create more complex non-convexity in model calibration, which yields a locally
optimal solution with low accuracy. Correspondingly, more trajectory data and advanced
optimisation algorithms should be incorporated to calibrate nonlinear models to achieve
higher accuracy. Thus, the CTH-linear is selected to describe the CF behaviour of the
commercial ACC system to determine its natural frequency and damping ratio. Next, the
estimated CTH-linear model of the commercial ACC system is used to validate the

performance of VTS and RTS.

Table 2. Comparison of different CF models in retrofitting commercial ACC system



CF model CTH-linear IDM OoVvVM

RMSE 0.0318m/s 0.3218m/s 0.3296m/s

CF performance of TS-based method

Comparison of VTS and RTS using trapezoidal-type trajectory

Here, a four-vehicle platoon is used to analyse the performance of the TS-based method.
The predecessor vehicle conducts a trapezoidal-type speed profile to simulate a typical
congested traffic environment with abrupt acceleration (2m/s?) and deceleration (-2m/s?).
Three followers are controlled using a string-unstable CTH-linear model (by setting
parameters in the string-unstable region in Figure 3).

As shown in Figure 12(a), the speed fluctuations are enlarged upstream in the
platoon due to the string instability of CTH-linear model. In this case, if w, and ¢ are
accurately identified, the VTS can effectively mitigate the string instability of the three

followers, as shown in Figure 12(b) where the followers smoothly converge to the leader

speed levels without enlarging fluctuations.
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Figure 12. Performance of VTS with accurate parameters in time-based cycles



If w, and ¢ are not accurately identified, the VTS cannot achieve the desired
performance in dampening the speed fluctuations (note the overshoots/undershoots in
Figure 13(a)). By contrast, the extra robustness in the formulation of RTS enables it to
effectively dampen the speed fluctuation even with inaccurate parameters (as shown in

the smooth convergence in Figure 13(b)).
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Figure 13. Comparison of VTS and RTS with inaccurate parameters

The nonlinearities arising in an ACC system can also limit the effectiveness of the
VTS. Figures 14(a)-(d) illustrate that the VTS fails to mitigate the overshoots/undershoots
from a string-unstable IDM, while effectively attenuating those from a string-unstable
OVM. This is because the strong nonlinearity of IDM makes the fixed values of w, and
¢ insufficient to characterize its dynamics (time-varying values may be necessary to
describe the IDM), but OVM’s mild nonlinearity enables the fixed values of w, and ¢ to
capture its dynamics. By contrast, as the RTS factors uncertainty, it can address the time-
varying parameters induced by the nonlinearity in an ACC system. As illustrated in Figure

14(e), the RTS dampens undesired overshoots/undershoots from the string-unstable IDM.
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Comparison of VTS and RTS using real-world driving trajectory

The CF behaviour of the commercial ACC system is retrofitted using the CTH-linear
model with parameters estimated using the offline-online parameter estimation method.
The natural frequency and damping ratio of the commercial ACC system are computed
using the estimated parameters of CTH-linear model. Then, the VTS and the RTS are
implemented to alleviate the string instability of the commercial ACC system. Figures
15(a) and (b) illustrate that both VTS and RTS can alleviate the string instability of the
commercial ACC system: the speed fluctuations are attenuated at every hump.
Correspondingly, the comparison of the speed fluctuations at every hump illustrates that
the RTS achieves better string stability performance (i.e., less speed fluctuations) than the
VTS (especially at around 300s when the VTS amplifies the overshoot). This is as
expected due to estimation error occurring because the trajectory information may not be
sufficiently informative to estimate accurate natural frequency and damping ratio. The
potential nonlinearity in the commercial ACC system also leads to time-varying values
of w, and ¢, which can deviate from the estimated values. Then, the VTS is implemented
with potentially inaccurate parameters, which will degrade its string stability performance
(see Figure 5). By contrast, the RTS factors multiple natural frequencies and damping
ratios that can cause string-unstable CF behaviour, which enables it to achieve desired
robustness and better string stability performance. The performance of VTS and RTS
under the batch-optimisation method is shown in Figures 15(c) and (d), respectively,
where the inaccurately identified parameters degrade the string stability performance of
both VTS and RTS, especially that of VTS. This further illustrates the need for the

proposed offline-online parameter estimation method to implement the TS-based method.
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(c) Commercial ACC system with VTS implemented upon batch-optimisation parameter

estimation
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Figure 15. Performance of RTS and VTS using real-world CF data

Quantitative analysis of CF performance

This section statistically illustrates the CF performance of TS-based method. Specifically,
1341 lead vehicle trajectories extracted from the processed NGSIM dataset (Montanino
and Punzo, 2015) are applied to the motion of the lead vehicle. A follower vehicle is
controlled by either the original ACC (string-unstable CTH-linear model) or the ACC
with VTS. The control parameters of the original ACC are: k; = 0.9, k, = 0.15, h =1,
Amax = 3M/S?, anin = —6mM/s2. The statistical significance level is set as 0.05.

Table 3 lists the mean values and the standard deviations (in parentheses) of
average time headway across all time steps, speed standard deviation (STD), minimum
time-to-collision (TTC), and maximum acceleration/deceleration of the follower vehicle.
Negative TTCs and TTCs exceeding 10 seconds are dropped as they produce no
meaningful implications on safety. With VTS, the average speed STD and maximum

acceleration/deceleration are smaller than those of the original ACC, illustrating



improved traffic smoothness and comfort. The VTS can lead to increased average time
headway and reduced minimum TTC. However, the minimum TTC still stays close to the
satisfactory 5-second collision-avoidance value (Horst and Hogema, 1994), indicating no
collision risks in stop-and-go traffic. The one-way ANOVA is then conducted. The large
F-stats and p-values smaller than the significance level (0.05) validate the statistical
significance of the results.

Table 3. Comparison of CF performance metrics

ACC ACC with VTS F-stats p-value
Average time 1.221 1.487
127.425 <0.0001
headway (s) (0.858) (0.099)
Average STD of 1.325 1.101
110.967 <0.0001
speeds (m/s) (0.611) (0.476)
Average minimum
5415 (1.611)  4.459 (1.031) 517.079 <0.0001
TTC (s)
Average maximum
1.023 (0.347)  0.891 (0.302) 76.848 <0.0001
acceleration (m/s?)
Average maximum
-2.075 (1.669) -0.892 (0.370) 641.699 <0.0001

deceleration (m/s?)

Impacts of TS market penetration rate

This section illustrates the impact of TS market penetration rate (MPR) on traffic flow by
applying the 1341 lead vehicle trajectories from the processed NGSIM dataset
(Montanino and Punzo, 2015). Ten follower vehicles controlled by either the original
ACC (string-unstable CTH-linear model) or the ACC with VTS are incorporated to

simulate the propagation of traffic congestion. The control parameters of the original



ACC are: k;, = 0.9, k, = 0.1, h = 1.2. The simulation rollouts are conducted 100 times
for each lead vehicle trajectory under different TS MPRs.

Figure 16 shows the mean values of average time headway across all time steps,
speed STD, minimum TTC, and maximum acceleration/deceleration across all follower
vehicles over the 100 rollouts. The black error bars are the 95% confidence intervals.
Note that the negative TTC and TTC exceeding 10 seconds are dropped as they produce
no meaningful implications on safety. Figure 16(a) shows that the average time headway
increases with larger TS MPR, indicating more ACCs with TS-based method will induce
sparser traffic flow. Figure 16(b) shows that speed STD reduces with larger TS MPR,
illustrating that the TS-based method can create smoother speed profiles and alleviate the
propagation of traffic oscillations. Figures 16(c) and 16(d) show that the maximum
acceleration/deceleration decreases as TS MPR increases, implying that the TS-based
method can improve riding comfort. Figure 16(e) shows that the average TTC of the
platoon increases as TS MPR increases, indicating that the safety of a platoon can be
improved by ACCs with the TS-based method. This is because string stability achieved
by VTS enables vehicles away from the lead vehicle to experience significantly reduced
shockwave and speed fluctuations, which correspondingly increase the TTCs. The
increased TTCs dominate the reduced TTCs from the vehicles near the lead vehicle (i.e.,
the source of perturbation), leading to overall improved safety for the ACC platoon

(contrary to the reduced minimum TTC of an immediate follower in Table 3).
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Figure 16. CF performance under different TS MPRs

Insights from abrupt harsh braking event

This section illustrates the impact of abrupt harsh braking event on TS-based method. The
lead vehicle trajectory used here includes speed-varying operations and an abrupt harsh
braking event at around time step 775. The parameters of the original ACC (controlled
by string-unstable CTH-linear model) and VTS are: k, = 0.9, k,, = 0.15,and h = 1.2.
To enhance safety performance under the harsh braking event, an automatic
emergency braking (AEB) mechanism based on safe spacing (Zhu et al., 2020) is

incorporated into the ACC with VTS and the original ACC: aeg(t) =



shaped ,  Wwhere the safe

Amin, ppred (t) - pego (t) < dsafe and vpred(t) < vego(t)
Qego  (t), otherwise

Vego (t)? _"7pred(t)2

2laminl

spacing dgafe = is the distance traveled by the ego vehicle after it

decelerates to the speed of the predecessor vehicle with the maximum deceleration
amin = —8m/s?. Here, the AEB mechanism is assumed to be able to accurately capture
vehicle states and react promptly.

Figure 17 shows the speed profiles of five followers controlled by the original
ACC and the ACC with VTS, with and without AEB. It can be observed that adding the
AEB mechanism enables faster response to abrupt braking (i.e., faster varying speed
curves). The AEB alleviates the undershoot of the original ACC (as shown in Figures
17(a) and 17(b)) and does not jeopardize the string stability achieved by the VTS (as
shown in Figures 17(c) and 17(d)).

Table 4 shows the minimum TTC of the five followers under the different
controllers. For the first two followers, the ACC with VTS reduces the minimum TTC of
the original ACC. This is because string stability shrinks the transient spacings of vehicles
close to the source of perturbation (e.g., the location of the harsh braking event). The
value of minimum TTC is greater than the critical threshold of 1.4 seconds (Kusano and
Gabler, 2011), indicating no safety hazards under the harsh braking event. With AEB, the
minimum TTCs of VTS and the original ACC are both improved, and the minimum TTCs
of the first two followers controlled by the ACC with VTS are almost identical to those
of the original ACC. The results illustrate the need to incorporate an AEB mechanism
and relevant abnormality detection system to improve safety of the TS-based method
under emergency. Remarkably, the TTCs of the last three followers controlled by the
ACC with VTS are greater than those of the original ACC, indicating an improved safety

condition towards the tail of the platoon. Additionally, the average minimum TTC across



the platoon controlled by the ACC with VTS is also greater than that of the original ACC,
implying that string stability can improve safety for the overall platoon.

Next, we apply the time exposed TTC (TET) to measure the duration of time when
TTC is under a critical level of 3 seconds. TET is an aggregated measure to reflect safety
throughout the CF process (instead of instantaneous performance at each time step
described by TTC), where a smaller TET indicates a safer operation. Table 5 shows that
the TET of the original ACC displays an increasing trend upstream the platoon,
suggesting degraded safety from string instability. By contrast, the TET of ACC with
VTS decreases upstream the platoon, and the TET of each vehicle is smaller than that of
the original ACC. In addition, TET is substantially reduced when AEB is incorporated,
indicating the effectiveness of AEB in improving ACC safety performance. The results
validate that string stability can improve the overall safety of a platoon, while string
instability will trigger safety concerns (especially when platoon size increases).

In summary, the results show that string stability can improve safety for the
overall platoon under emergency. Meanwhile, as a string-stable follower close to the
source of perturbation can experience a shrunk transient spacing (recall Table 3), the
tolerance of system errors (i.e., maintaining safety under delays or abnormality of sensors
and actuators) may be jeopardized during ACC operations. Thus, it is necessary to
incorporate an AEB mechanism to enhance the safety of ACCs in case of extreme
situations. The level of string stability should be adjusted based on traffic conditions and

the location of the vehicle in a platoon to balance safety, efficiency, and stability.
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Table 4. Minimum time-to-collision
ACC with ACC with ACC with VTS
ACC
AEB VTS and AEB
Follower 1 1.833s 2.161s 1.693s 2.149s
Follower 2 2.334s 2.798s 2.319s 2.934s
Follower 3 2.460s 2.920s 2.719s 3.261s
Follower 4 2.515s 3.006s 3.073s 3.544s
Follower 5 2.536s 3.068s 3.395s 3.809s
Average 2.336s 2.791s 2.639s 3.139s




Table 5. Time exposed time-to-collision

ACC with ACC with ACC with VTS
ACC
AEB VTS and AEB
Follower 1 2.5 1.6s 2.2s 2.0s
Follower 2 2.8s 1.2s 2.1s 0.8s
Follower 3 3.1s 0.7s 1.6s 0s
Follower 4 3.2s 0s Os Os
Follower 5 3.3s 0s Os 0s
Average 2.98s 0.68s 1.18s 0.56s

Remark 2: In the architecture of a commercial ACC system, the AEB mechanism
is typically required as an extra functionality to enhance safety, as the ACC emphasizes
comfortable and smooth CF tasks, which cannot guarantee collision-free operations under
emergency. The same control architecture should be applied to the TS-based method, as

safety may be compromised in certain extreme cases.

Concluding Comments

This study proposes the TS-based method to modify the trajectory information of the
predecessor vehicle to mitigate string instability under ACC. The VTS is proposed as a
simple and straightforward shaper, but that it requires accurately identified parameters to
achieve desired string stability performance. When the parameters of an ACC system are
not accurately identified, its performance will degrade significantly. To address this, an
RTS is proposed, which uses a nonlinear program to factor multiple natural frequencies
and damping ratios to enhance robustness and maintain string stability under inaccurately
identified parameters. To maintain reliable and safe operations under the TS-based

method, the study develops an offline-online parameter estimation method, where the



batch-optimisation method is applied for the offline parameter estimation based on
historical trajectory data and the EKF then iteratively improves the offline-estimated
parameters using real-time measurements during ACC operations. It also explicitly
discusses the sufficient conditions for obtaining the accurate parameters of an ACC
system to devise the TS-based method.

The TS-based method can be implemented as a plug-in piggyback, entailing no
laborious modifications to existing ACC control algorithms and codebase compared to
developing new controllers. Thus, the corresponding computational complexity is also
low, enabling rapid prototyping and efficient real-time implementation. VTS and RTS
provide a cost-effective solution for automobile manufacturers, traffic-management
administrative agencies, and after-market ADAS users to smoothen vehicle trajectories
and mitigate traffic congestion.

The study insights suggest the following future research directions: (i) balancing
the trade-off between traffic efficiency and string stability performance in TS-based
method by developing more intelligent performance metrics and relaxing convolution
operations; (ii) managing safety and string stability under different traffic conditions (e.g.,
harsh braking, cut-in, etc.) by optimising location-dependent string stability levels and
incorporating proactive safety measures into the optimisation program; (iii) developing
more advanced RTS program with the minimization of variance and expected
performance metrics, while also factoring delayed and inaccurate measurements; (iv)
extending the TS to cooperative platooning and lane-change control which factors
trajectory information of multiple neighboring vehicles; and (v) conducting real-world
CF experiments using the open-source autonomous driving platform “Openpilot” to test

the proposed TS-based method.
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