DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof. Reference herein to any social initiative (including but not
limited to Diversity, Equity, and Inclusion (DEI); Community Benefits
Plans (CBP); Justice 40; etc.) is made by the Author independent of
any current requirement by the United States Government and does
not constitute or imply endorsement, recommendation, or support by
the United States Government or any agency thereof.

ORNL/TM- 2025/3753
PUB ID 229735

Prompt Phrase Ordering Using Large
Language Models in HPC: Evaluating
Prompt Sensitivity

Noah Thomason
Hilda B. Klasky

August 2024

%OAK RIDGE

National Laboratory

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via OSTI.GOV.

Website www.osti.gov

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

National Technical Information Service
5285 Port Royal Road

Springfield, VA 22161

Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639

Fax 703-605-6900

E-mail info@ntis.gov

Website http://classic.ntis.gov/

Reports are available to US Department of Energy (DOE) employees, DOE contractors, Energy
Technology Data Exchange representatives, and International Nuclear Information System
representatives from the following source:

Office of Scientific and Technical Information
PO Box 62

Oak Ridge, TN 37831

Telephone 865-576-8401

Fax 865-576-5728

E-mail reports@osti.gov

Website https://www.osti.gov/

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

http://www.osti.gov/
http://classic.ntis.gov/
https://www.osti.gov/

ORNL/TM- 2025/3753

Computational Sciences & Engineering Division

PROMPT PHRASE ORDERING USING LARGE LANGUAGE
MODELS IN HPC: EVALUATING PROMPT SENSITIVITY

Noah Tomasson
Hilda B. Klasky

August 2024

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831

managed by
UT-BATTELLE LLC

for the
US DEPARTMENT OF ENERGY
under contract DE-AC05-000R22725

CONTENTS

CONTENT S ettt ettt ettt et et e et e ent et e e st enseaseeas e s e em e et e eseensanseeatenseeseensesseeneensesseensenseennenes il
F N 21 2N o TSRS 1
L. INTRODUCTIONoicoiteiieciiestieiteeiteteerttesteesteesstesbeasbeesseesseessaesssessseasseessaesseesssssssessseassesnsesssessssessss 1
2. EXPERIMENTS ...ttt ettt et e et et et e e st et e eseenteseeseanseeseensenseeneensenees 2
2.1 HPC ATCRItECIUIE......viiiiie e ciee ettt et e et e et e e st e e tbeesabeeestaeesbeeessaeesseesssaeessseesssenns 2

2.2 Complete Prompt Permutation............cceerveriieriieeiieeiiesieeseesee e ere e e seeeseaesenessseesseeseessnesnnes 3
2.2.1 Data and MEthOASccceeviieiieiiieiieieeeeste sttt ee e esaesaesse e e e seessaesssesnseensaensaens 3

2.2.2 RESUILS .ueitieiiiciectte ettt ettt ettt e st e v e e b e et e e e tae s tbeetbeeabe e be e be e tbesebeerbeereeraens 5

2.3 Template Prompt Permutationcccvevieriieriieniieeiiesieeseesee et eseesieesieeseaesenesnseessaesseessnensnes 7
2.3.1 Data and MEthOScccveviieiieiiieiieiieterte sttt e s saesbe e be e seesseesssesnseensaensaens 7

20302 RESUILS .uiitieitiiiie ettt ettt ettt et e st e e tb e e b e e te e e taestbeetbeeabeenbe e ba e abeatbeerbeebeeraens 8

3 DISCUSSION ..eeeutieitteeeiteeeteeesiteeeteeestteeseseeetaeeassaeassaeesssaeassseassssasssaeassseesssaeassssesssasassesensseesssesssseessenans 11
4. LAIMIEALIONS .euteetietreseieseteeteesteesteesteessteasseasseesseesseesssesssessseasseesseessassssesssessseassesssesssessseesssesnsessennsenssaens 12
S FULUIE WOTK .ottt et e e et e e sta e et eeestaeestbeeesseeessseesssaeesseesssaeensseesssenans 12
0. CONCIUSION ...euiiiiiiiieiieeette ettt ee et e ettt e et eestte e e bt eetbeeesseeessseessaeassseessseessseeesssaessseeensseesssaenssseenssenans 13
7. ACKNOWIEAZIMENLSccviiiiiieiieiieiieciiecte sttt ettt e teestesebesbeesbeessaessaesssessseesseenseessaessaessnesssennsennns 14
T S 53 (53 1 Lot F PSSP 15
9. Appendix A. GSMEK Task PrOmPLS.......cccuiiviiiiiiiiiieiieiie e eie ettt et et st e eereereeveesteesvaesanesrveesveenns 17
10. Appendix B Summarization Task Prompts.........c.cceecereieeiiiiniieriierieniesesieeieee e see e sene e 17

il

ABSTRACT

Large language models (LLMs) have demonstrated effective performance in domain-specific tasks, often
requiring a well-designed prompt to guide their responses. However, optimizing the right prompt is
challenging due to prompt sensitivity—the phenomenon where small changes in the prompt can lead to
significant variations in performance. In this study, we evaluate prompt performance by examining all
permutations of independent phrases to investigate prompt sensitivity and robustness. We used two
datasets: the GSM8Kk dataset, which assesses mathematical reasoning, and a custom template prompt for
summarizing database metadata. Our goal was to evaluate the performance across all permutations of a
sequence of prompt phrases. The study was conducted using the llama3-instruct- 7B model hosted on
Ollama, with computations parallelized in a high-performance computing environment. By comparing the
average index of phrases in the best and worst-performing prompts, we found that the order of
independent phrases within a prompt significantly impacts LLM performance. Additionally, we used
Hamming distance to assess changes between phrase orderings, concluding that prompt modifications can
dramatically affect scores, often by almost random chance. These findings support existing research on
prompt sensitivity. We discuss the challenges of prompt optimization, noting that altering phrases in a
successful prompt does not always result in another successful prompt.

Index Terms—prompt engineering, prompt sensitivity, prompt ordering, prompt optimization, large
language models, LLM performance, HPC, Hamming distance

1. INTRODUCTION

Large language models (LLMs) have demonstrated impressive performance across multiple domains.
Prompt engineering is a valuable method for enhancing LLM effectiveness after training by providing
additional input context for the model to draw inferences from [22]. While certain approaches, such as
fine-tuning or retraining a model with different data, can improve LLM performance, these methods are
often infeasible— particularly when using a closed-source model via an Application Programming
Interface (API) service—and can also be computationally expensive. Prompt engineering can help ‘guide’
the model through a specific task. Several prompting paradigms have been tested, with some of the more
widespread techniques including zero-shot vs. few-shot prompting [3], role-prompting [25], and chain of
thought prompting [24]. Typically, these techniques are employed by a human to craft an optimal prompt
for a given task.

Creating the perfect prompt can be challenging, time consuming, and resource-intensive for humans. To
address this, work has been done to develop automatic prompt optimizers [18][11]. Some methods
involve optimizing the prompt in discrete word space, as seen in [27] and [16], while others, like soft
prompts, focus on optimizing the prompt within the underlying LLM embedding space, such as [26] and
[7]. Although the latter can use gradients, it is often difficult or impossible to perform optimization on a
closed-source model using their provided APIs. Additionally, projecting the optimized embedding into a
human-readable sentence presents challenges in terms of coherency and performance preservation [1], so
soft prompts are typically left in the embedding space. Discrete prompts, however, do not share this
problem and can be directly optimized in a manner similar to human manual optimization.

However, optimizing a prompt in discrete space is often challenging for both machines and humans,
frequently requiring extensive computation and time. One reason for this difficulty is the phenomenon
known as ’prompt sensitivity,” where a model’s prompt can be highly sensitive to small, unintuitive
changes in human natural language [19]. These unexpected and hard-to-quantify changes make it difficult
to predict how a certain modification will affect the prompt, or whether it will do so consistently. Small
aspects of the prompt, such as capitalization, spaces, and delimiters, can significantly alter performance

on a task [20]. Additionally, synonyms, different grammatical tenses, and the order of exemplars in few-
shot prompting paradigms can further impact performance [9].

Additionally, we found that most studies investigating ordering focus solely on the maximum difference
in performance to conclude that order matters, which may overlook patterns in how this variation occurs.
There is a need for more studies that investigate the effects of phrase ordering within the prompt, with a
focus on understanding how the sequence of phrases within the prompt impacts performance. Therefore,
in this study, we conducted two experiments to examine prompt ordering in two different domains. We:

1) Examine the ordering of a set of prompt phrases by generating all possible permutations, as well
as permutations of subsets, in a mathematical reasoning task.

2) Examine the ordering of a set of instructions provided to an LLM for a summarization task by
generating all possible permutations of the instructions based on a template prompt.

3) For both experiments, investigate if the position of a specific phrase in a prompt matter as well as
how certain changes to the prompt affect the difference in performance (i.e., the prompt’s
sensitivity).

Moreover, one of the large problems of testing the ordering of a prompt is that it can be computationally
expensive, as if we test all possible permutations of a list of elements in a prompt, it scales by a factorial
amount. While this is not a problem if we use a closed-source API and pay larger fees, this can be an
issue when using open-source APIs. Thus, we additionally introduce an easy-to-use high-performance
computing layout to test LLM inference. We include an easy to setup and open-source script that
demonstrates the concept with our experiments.

2. EXPERIMENTS

2.1 HPC ARCHITECTURE

In our study, we used local LLM models hosted on a high- performance computing architecture,
specifically the Frontier [15] supercomputer at Oak Ridge National Laboratory. A brief overview of the
architecture of the Frontier supercomputer is that it includes 8 functional Graphics Processing Units
(GPUs), organized as 4 Advanced Micro Devices (AMD) MI250x with 2 Graphics Compute Dies
(GCDs) each. As these are AMD GPUs, we used the Radeon Open Compute platform (ROCm) 5.7.1 and
ROCm 6.0.0 [17] for communication to the GPU. We used a llama3-instruct-7B [21] model hosted on
Ollama [14] for all experiments.

To explore simple parallelism, the data for evaluation was split among N nodes, which would
theoretically asymptotically decrease runtime by around 1/N. The data was additionally split among 8
different Ollama servers within a node, one for each GPU. The general architecture is visualized in Fig. 1.

To set up the Ollama server, we needed to compile a custom binary without a Compute Unified Device
Architecture (CUDA)-checking function that causes a segfault on load. This was patched in version
0.1.45. For working parallel servers, we also needed to compile a binary that fixes a bug that sets the
wrong GPU IDs when automatically scanning for available GPUs, which was patched in version 0.3.1.
We additionally include a patch in our code for the latter bug, as this was only fixed recently. We
ultimately used version 0.3.1 for our experiments. Moreover, we needed to compile the GNU Compiler
Collection (gcc) version 13 and create a module file to use on High-Performance Computing (HPC)
architecture, but further testing indicates that this seems to have been patched out, or a one-off error.

The reasoning for using Ollama was that it is an easily usable server with built-in model-pulling and API
features. We believe this improves experimental accessibility while still allowing for the use of multiple
models and model parameters.

1 1
O Ollama O
t N1
® iy ®|v-
o/

\O
fﬁnal
output

N

Figure 1. Architecture diagram of the HPC inference setup. (a) Intra-node setup, showing Ollama servers and
Python inference and communication (upper half of the image). (b) Inter-node setup, enabling direct
scalability (lower half of the image).

node

uniform
split

data
O
(PN | [

2.2 COMPLETE PROMPT PERMUTATION
2.2.1 Data and Methods

In our first experiment, we used a dataset containing question-answer (QA) tasks with various question
and answer pairs. Specifically, we utilized the GSM8k dataset [5], a collection of grade-school
mathematical word problems designed to test the mathematical reasoning of large language models
(LLMs). Each problem includes a question used to generate an LLM response and a corresponding
answer used to compare against the LLM’s response.

To evaluate prompt sensitivity, we create permutations of a set of n prompt phrases combined with an
empty location to insert the question. Each prompt phrase is typically a sentence, although it can be any
other type of string. Formally, we define the set as

S = {pl; p2; LY ;pn} U {q}; (1)
where p; represents the prompt phrases and ¢ is the question.

We then generate all k-permutations of S for 0 < k< n + 1, filtering out those permutations that do not
contain the question, as these do not represent a valid format for the task.

.}‘ LLM
@

compare

l
IF

Figure 2. Architecture diagram of the GSM Complete Prompt Permutation experiment. (a) Generation of all
prompt permutations (upper half of the image). (b) Evaluation of each permutation across GSM8k (lower
half of the image).

The total number of valid prompt permutations can be directly calculated using the following equation:
f() =X P(n+1,i) = P(n,)] 2
where P (n, i) denotes the number of permutations of i elements from a set of n elements.

In our experiment, we use f(4) = 261. The specific four prompt phrases we used, along with their
respective reference sources, are provided in Appendix A.

Each of the permutations is then tested against the entirety of the GSM8k testing database of length 1319
to create an average accuracy score. When a permutation is tested, the empty location for the question is
filled in with a question from GSMS8k, an LLM response is generated, and then the response is compared
against the ground-truth corresponding answer included in GSMS8k. In our study, we compared the LLM-
generated answer to the ground truth using a simple string comparison to check if the shortened answer
string is in the LLM-generated answer. We note that this is a possible limitation, as it is possible that this
can give a false positive. For example, the LLM could generate the number 24 in its reasoning chain but
incorrectly answer 8. The current validation, given that the answer is 24, would count this as correct. In
practice, this seems to be rare but should be noted. The average accuracy of a permutation across all
question- answer pairs in GSM8k then corresponds to the accuracy of that specific permutation. The full
architecture is visualized in Fig. 2.

To investigate if the order of the phrases in the prompt really mattered, we plotted each phrase’s average
position in a permutation for the 20 best and worst performing prompts in Fig. 3. As we are creating
permutations of varying lengths here, we decided to normalize this index to improve comparability by
remapping the space of the index to the set [0, 1], where 0 represents the very beginning of the list and 1
represents the end of the list. The top 20 best and worst 20 prompts, sorted by their score on the task, were
then plotted against each other to see if they had a noticeable difference. If the prompt permutations were
assigned random scores, we would expect the average prompt position to be at the exact center, at 0.5.
This is because there are an equal number of elements in a list of permutations of a set for each position,
and so for any random sample of the population, it is expected that there is a roughly equal number of
elements in each position (thus the average being the middle, 0.5). Therefore, we can say that a prompt
phrase with an average position significantly different from 0.5 "prefers” to be closer to the beginning or
end of the sentence for the respective category, as higher or lower scores tend to be assigned to the
permutation when the position is higher or lower. In other words, the position of a phrase in a prompt can
influence its performance, and certain phrases might "prefer" to be closer to the beginning or end of the
sentence to achieve better results.

2.2.2 Results

From Fig. 3, we can see that both the locations of the prompts: “SOLUTION” and “Take a deep breath...”
are statistically the same as the expected value, so we can conclude that these prompt phrases do not
prefer to be closer to the beginning or end of the sentence on average. However, the longer phrase starting
with “Let’s first understand. . . ” appears to perform slightly better closer to the end of the sentence and
worse at the beginning. This could be because the LLM prefers a coherent sentence at the end of the
prompt instead of being interrupted by another short phrase or single word. On the other hand, ”Let’s
think step by step” seems to perform better at the beginning. This could be because it serves as an
introductory phrase that then gets into the longer, more descriptive phrases. The place to insert the
question seems to perform both better and worse at the beginning of the sentence. This seems abnormal,
but it could be because there are two different clusters of data exhibiting different properties. This points
to the content of the phrases after the question being important in determining a prompt’s performance.

We then investigated the relationship between the length of the permutation in terms of the number of
phrases and its performance. As we take k-permutations of S for multiple values of k, we are able to
compare the different lengths generated. From Fig. 4, we can see that as the permutation length increases,
the average accuracy decreases, and the standard deviation gets larger. We note that there is a greater
population in a specific k-permutation as & increases, but this should cause a smaller standard deviation.
This could be indicative of the ordering of the prompt phrases becoming more unstable as the length of
the prompt phrases increases, where the prompt is more sensitive to the order of its contents and the

relations between them. There is a greater chance of conflicts between two components as the system of
prompts becomes more complex.

1.0

0.8 1

I T T
JEEEE R

Normalized Index

0.2 1

0.0 T T T

o & S S &
& «° & & S
< ~ N2 & 5
Ny d N
o~ & & R
& R &
& " ,{_‘2
e® o N
«8" & o
e &
h

Figure 3. Phrase index for the 20 best and worst performing prompts. Dark orange represents the average of
the 20 best performing prompts, while light orange represents the average of the worst performing prompts.
The red horizontal dotted line indicates the expected value if performance were random. Error bars
represent the standard error of the mean.

0.825 A

0.800 1
0.775
0.750 \

0.725 A

Accuracy

0.700 A

0.675 A

0.650 A

0 1 2 3 4
Permutation Length

Figure 4. Average prompt accuracy compared to the number of phrases contained in the prompt
permutation. The number 0 represents no prompt added to the question. Error bars are the standard
deviation.

The GitLab repository for this study is found at: Complete Prompt Permutation Code; or directly via
https://code.ornl.gov/summer_2024/prompt_engineering/ complete-prompt-permutation.

https://code.ornl.gov/summer_2024/prompt_engineering/complete-prompt-permutation
https://code.ornl.gov/summer_2024/prompt_engineering/complete-prompt-permutation
https://code.ornl.gov/summer_2024/prompt_engineering/complete-prompt-permutation

2.3 TEMPLATE PROMPT PERMUTATION
2.3.1 Data and Methods

In our second experiment, we evaluated the LLM on a summarization task. Fig 5 illustrates the
architecture of the Database Summarization Template Permutation experiment which consists of three
key components. (a) In the upper right of the image, all permutations of instructions are generated. (b) In
the upper left, these permutations are used by a Large Language Model (LLM) to generate summaries
based on the provided template. (c) Finally, the generated summaries are evaluated by the LLM using
four specific metrics, depicted in the lower part of the image. This flow outlines the process of generating
and evaluating summaries across different permutations to analyze performance variations.

For the data, we created a custom dataset of database names of length 5. We additionally included six
instructions given to the LLM to generate summarized text regarding features of the database name in
question. Every permutation of these six instructions was generated, giving us a total of 6! = 720 prompts
to test against all database names. We used a prompt template that a specific database name and
permutation of six numbered instructions are inserted into. Samples of the prompts and templates are
found in Appendix B. Each permutation of instructions was then tested for each database and
subsequently given a score of how good the summary is. The scoring mechanism consisted of asking an
LLM to score a summary, as in [10]. The LLM, according to another prompt template, was asked to rank
the summary in a category as an integer from a start to an end, for example, 1 to 5. In our study, we used
templates based on a modified version of templates used in [9] taken from [13] that was based on our
specific task and included the work ”Likert-scale,” which tended to increase variability of scores and had
been found to increase LLM understanding of the scale [19]. The categories scored included relevance,
fluency, consistency, and coherence. Each category was tested 100 times to improve granularity and
consistency in response. For each permutation, all database names were tested, and then all scores were
averaged into a single score for each category for the permutation. After evaluation, the scores were then
normalized from their original Likert score, for example, between 1 and 5, to a score between 0 and 1.
These scores, therefore, form a score vector as shown in Equation 3 for each permutation of instructions.

These scores, therefore, form a score vector as shown in Equation 3 for each permutation of instructions.

where x; € [0,1] 3)

>
I

database e

template)— [LLM

permutation et

relevance —— — X

fluency —— — X
consistency — — X
coherence —— —X,

(norm)
Figure 5. Architecture of the Database Summarization Template Permutation Experiment. (a) Generation of
all permutations of instructions (upper right). (b) LLM generation with template (upper left). (c) Evaluating
the generated summary with an LLM on the four listed metrics (lower part).

— | output

2.3.2 Results

The score vectors were plotted in 4-D space in Fig. 6. We can see that there is no separate clustering; thus
there is not a similarly performing group of prompts. Additionally, most of the values are consistent in all
categories, and values outside of the central area, when having a larger value in one category, often has a
lower value in another category. This could mean that, when trying to optimize a prompt for a specific
objective, like maximizing fluency, it often loses generalizability across all categories.

Similarly to GSM8k, we plotted the phrase index in the 100 best and worst prompts in Fig. 7. Although
we did not use permutations of varying lengths, it was not necessary to normalize the phrase index;
however, we did so for consistency. Since the individual prompt phrases were rather long, we used
shortened phrases for readability, with the long versions provided in Appendix B.

We observed that the order of phrases did not matter for 3 out of 6 phrases, with notable differences
found for ’incoming ref,’ ’studies,” *year,” and ’info.” Year’ and ’studies’ performed better at the end of
the prompt, while ’incoming ref” and ’info’ performed better at the beginning. Thus, we demonstrated
that the seemingly random variation in order is somewhat predictable. We hypothesize that this pattern
is due to the generation of additional context for the model; placing *incoming references’ and general
’information’ at the beginning provides the model with a more conducive environment during its initial
generation. Later, when the model addresses more specific, shorter questions (such as the year of the study)
or more inferential questions (such as what types of studies can use the database), it is better prepared. However,
the average index of each prompt phrase remained centered around 0.5, indicating that the tendency of a phrase
to prefer the beginning or end of a prompt is generally weak; this effect is only noticeable across a large number
of prompts. Next, to compare how the difference in a prompt can affect the change in score, we first introduce
the concept of a hamming distance between two prompts. Since these prompt lists are of a set length, with an
“alphabet” of prompts, we can generate a hamming distance between two prompts by counting the number of
differences in phrases between two prompts. Notice that a hamming distance of 1 is impossible since every
prompt in the alphabet must be an element of the prompt. Thus, if one phrase changes, another must swap with
it. To quantify the change in score between two prompts, we simply calculate the Euclidean distance between

score vectors. All combinations of two different prompts were generated, excluding the reflexive duplicates, to
generate a dataset of hamming distance and Euclidean distance pairs. We then plot them to understand the

relation between these variables.

0.76
0.80
0.78 ¢
g
0768 0.74
=
o
0.74 ©
0.72 g
072 ¢
>
1]
0.82 =
0.80
0.78 7o
-
0.76 g
.9
0.7408
& 0.68

048 g5z

0.56
fluency

060 o4

Figure 6. Score vector distribution. The x-axis is fluency, the y-axis consistency, the z-axis coherence, and the
fourth color-dimension is relevance, with brighter values corresponding to positive values.

1.0

0.8

0.2

0.0 -

Nermalized Index
o o
= (=]
=
o :
3 »
=
T
—

Figure 7. Phrase index in 100 best and worst performing prompts. Dark blue represents average of 100 best
performing prompts, light blue represents average of worst performing prompts. Red horizontal dotted line
is the expected value given that the performance is random. Error bars are standard error of mean.

0.02400 4
0.02375
0.02350 4

0.02325 I

0.02300 4

Score Vector Distance

0.02275

0.02250

0.02225 |

0.02200 1
2 3 4 5 6
Hamming Distance

Figure 8. We compared the average score vector distance to the hamming distance. The x-axis is the hamming
distance between two permutations, and the y-axis is the score vector distance. Error bars are the standard
error of the mean.

12.0% A

10.0%

8.0% A

Frequency

6.0% 1

4.0%

2.0%

0.0% -
0.00 0.02 0.04 0.06 0.08 0.10
Score Vector Distance

Figure 9. Normalized histogram of score vector distance comparing two categories of hamming distance. The
x-axis is the score vector distance, and the y-axis is the percent frequency within the category. Light red
represents the distribution with a hamming distance of 2 and 3. Light blue represents the distribution with a
hamming distance of 4, 5, and 6. The purple represents the distribution overlap.

We first plot the hamming distance compared to average score vector distance, along with error bars of
standard error in Fig. 8. We see that there is a clear positive relationship between hamming distance and
score vector distance. The relationship appears to be slightly curved at the beginning, increasing a certain
amount at first before slowing down slightly. This is generally what we expect and want, as when
optimizing a prompt, if there is a well-performing prompt, it would be beneficial if a specific size change
to the prompt corresponded to a predictable effect in score, so the prompt can be optimized with the
predictable magnitudes of changes.

10

However, a different pattern emerges when we plot the distributions of the underlying averages. In Fig. 9,
we present two frequency histograms comparing Hamming distances of 2-3 (low) with those of 4-6
(high). We did not create six separate distributions, as that would be difficult to interpret, but the same
trend applies. The distributions overlap significantly, with only a small shift observed for larger Hamming
distances. When comparing the actual means in Fig. 8, we observe that the range of the means occupies only
a small portion of the distribution. This suggests that, while the general trend of greater differences in
prompts leading to greater differences in scores holds true, in practice, making a small tweak to a prompt
has nearly the same chance of significantly altering the score as completely changing the order.

The GitLab repository for this study is found at: Template Prompt Permutation; ordirectly via
https://code.ornl.gov/summer_2024/prompt_engineering/ template-prompt-permutation.

3. DISCUSSION

We largely found in our study that the position of each prompt phrase matters for task performance, the
performance of the prompt decreases as you add phrases, and optimizing for a specific ordering is
difficult. This is consistent with literature on other findings on prompt sensitivity. Certain modifications
to the prompt like capitalization and spacing can have an significant effect on an LLM response [20]. In
[4], the order of logical premises presented to the LLM changes its overall accuracy, where ideally it
should not, as logical premises are order agnostic.

Our study additionally has implications for general prompt engineering. We recommend keeping prompts
short in order to minimize how much ordering matters, and possibly trying to minimize having
relationally independent phrases within the prompt, as this can introduce an area of optimization that is
needed. When relationally independent phrases are introduced, we recommend keeping in mind that
phrases that generate context and other usable information for later phrases are key for an initial attempt
at optimization.

There have been methods, such as those proposed by [27], [8], and [6], that can automatically optimize an
initial prompt using a training set for the problem at hand to test the performance of the prompt. The
primary improvement in these methods is achieved through continuously mutating the prompt over many
iterations, with a focus on maximizing a performance score while exploring different prompting
strategies.

However, the challenge with discrete prompting is the assumption that similar prompts will yield similar
performance. If a prompt performs poorly, the algorithm typically moves on, ignoring similar variations.
This approach becomes problematic when a poorly performing prompt could actually perform better with
slight modifications. The algorithm might dismiss the entire class of similar prompts after a single poor
result, potentially missing out on better-performing variants. While this risk is low, it becomes a more
significant concern as the optimization process continues over a larger number of prompts.

There is no easy solution to this issue besides testing additional reorderings of prompts, which can
increase both computation time and energy consumption. We suggest that future research focus on
developing a robust and energy- efficient system to address this challenge.

Our results also have implications for prompt security. Small perturbations can significantly impact LLM
output, which poses risks for systems that depend on robustness. If an attacker gains access to a prompt
and is able to append something to it, they could decrease the model’s accuracy or alter its behavior
entirely. Examples of this so-called prompt hacking’ can be seen in [19].

11

https://code.ornl.gov/summer_2024/prompt_engineering/template-prompt-permutation
https://code.ornl.gov/summer_2024/prompt_engineering/template-prompt-permutation

4. LIMITATIONS

Despite our findings, there are some limitations in this study that should be disclosed.

For the summarization-based task, we used an LLM-based evaluation. However, some studies, such as
[23], have found this approach to be unreliable. If we continue using an LLM- based evaluation strategy,
it might be preferable to use an architecture like G-Eval [12], which employs a Chain-of- Thought (CoT)
methodology to improve scoring, rather than relying solely on prompts.

Additionally, we used a small dataset of database names for the summarization experiment and tested
only one set of prompt phrases. We also used just one model, 1lama3-instruct- 7B, for inference and did
not experiment with changing any of the hyperparameters. As a result, we do not know how model size or
different models might affect the experiments.

5. FUTURE WORK

In addition to addressing the limitations mentioned above, there are several future directions for this
research. Regarding HPC improvements, the parallelization could be enhanced in terms of speed or
redundancy. In our study, we attempted to set the OLLAMA_NUM_PARALLEL parameter in Ollama to
a value greater than 1, but this did not significantly decrease the runtime.

Future work could also focus on reducing the current parallel bottleneck, which we believe may be related
to server response times. During our experiments, we observed that a 50ms inference time did not achieve
the theoretical maximum of 20 inferences per second, suggesting that something within the Ollama server
or the intermediary code between requests is slowing down the process.

There is also potential for improving the system’s fit with the Frontier supercomputer. Specific GPU
binding closest to hardware cores was not used due to issues with Ollama, so everything was done
manually. Addressing this issue could increase runtime efficiency by better aligning the architecture with
the hardware.

Additionally, we aim to increase confidence in the claim that prompt sensitivity is correlated with prompt
length and to determine if this correlation holds across different examples, tasks, and scenarios.
Strengthening this claim could lead to advancements in both automatic prompt optimization and human-
driven prompt engineering.

Our testing procedures could also be expanded to cover a wider range of domains with greater variability.
Furthermore, these methods could be integrated into different prompt optimization workflows to reduce
the number of permutations generated and tested. However, our current methods are too computationally
expensive for widespread application testing.

12

6. CONCLUSION

Our study underscores the significant impact of prompt phrasing and order on the performance of LLMs.
We found that small modifications to prompts can lead to substantial variations in outcomes, supporting
existing research on prompt sensitivity. This highlights the challenges of optimizing prompts, particularly
when adding phrases or altering their order. Our findings also reveal limitations in current prompt
optimization methods, which may overlook potential improvements in similar prompts. Future research
should address these limitations, explore more robust and energy-efficient optimization strategies, and
enhance parallelization in high- performance computing environments. Additionally, examining prompt
sensitivity across diverse domains and scenarios could provide deeper insights into effective prompt
engineering. Understanding the security implications of prompt sensitivity is also crucial, especially in
sensitive applications like healthcare. These advancements are essential for improving LLM reliability
and application efficiency.

13

7. ACKNOWLEDGMENTS

This research was supported in part by an appointment to the Oak Ridge National Laboratory Pathways to
Computing Internship Program, sponsored by the U.S. Department of Energy and administered by the
Oak Ridge Institute for Science and Education. This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-
ACO05-000R22725.

And supported by Low-dose Understanding, Cellular Insights, and Molecular Discoveries program was
supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental
Research, under Contract UT-Battelle, LLC- ERKPA71

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-000R22725
with the US Department of Energy (DOE). The US government retains and the publisher, by accepting
the article for publication, acknowledges that the US government retains a nonexclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for US government purposes. DOE will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan (https://www.energy.gov/doe-public-
access-plan).

14

http://www.energy.gov/doe-public-

—

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

]

8. REFERENCES

L. Bailey, G. Ahdritz, A. Kleiman, S. Swaroop, F. Doshi-Velez, and W. Pan, “Soft prompting
might be a bug, not a feature,” 2023.

S. Barrit, N. Torcida, A. Mazeraud, S. Boulogne, J. Benoit, T. Carette, T. Carron, B. Delsaut, E.
Diab, H. Kermorvant et al., “Neura: a specialized large language model solution in neurology,”
medRxiv, pp. 2024-02, 2024.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in neural
information processing systems, vol. 33, pp. 1877-1901, 2020.

X. Chen, R. A. Chi, X. Wang, and D. Zhou, “Premise order matters in reasoning with large
language models,” arXiv preprint arXiv:2402.08939, 2024.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,
R. Nakano et al., “Training verifiers to solve math word problems,” arXiv preprint
arXiv:2110.14168, 2021.

C. Fernando, D. Banarse, H. Michalewski, S. Osindero, and T. Rockta“schel, “Promptbreeder: Self-
referential self-improvement via prompt evolution,” arXiv preprint arXiv:2309.16797, 2023.

Y. Gu, X. Han, Z. Liu, and M. Huang, “Ppt: Pre-trained prompt tuning for few-shot learning,”
arXiv preprint arXiv:2109.04332, 2021.

Q. Guo, R. Wang, J. Guo, B. Li, K. Song, X. Tan, G. Liu, J. Bian, and Y. Yang, “Connecting large
language models with evolutionary algorithms yields powerful prompt optimizers,” arXiv preprint
arXiv:2309.08532, 2023.

A. Leidinger, R. Van Rooij, and E. Shutova, “The language of prompt- ing: What linguistic
properties make a prompt successful?” arXiv preprint arXiv:2311.01967, 2023.

(101Y.-T. Lin and Y.-N. Chen, “Llm-eval: Unified multi-dimensional automatic evaluation for open-

domain conversations with large language models,” arXiv preprint arXiv:2305.13711, 2023.

(1P, Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre- train, prompt, and predict: A

systematic survey of prompting methods in natural language processing,” ACM Computing
Surveys, vol. 55, no. 9, pp. 1-35, 2023.

121Y. Liu, D. Iter, Y. Xu, S. Wang, R. Xu, and C. Zhu, “G-eval: Nlg evaluation using gpt-4 with better

human alignment,” arXiv preprint arXiv:2303.16634, 2023.

[13]Microsoft, “Promptflow GitHub repository,” https://github.com/

microsoft/promptflow/tree/main/examples/flows/, 2024, [Online; accessed July 2024].

[14]Ollama, “Ollama GitHub repository,” https://github.com/ollama/ollama, 2024, [Online; accessed

July 2024].

15

https://github.com/microsoft/promptflow/tree/main/examples/flows/
https://github.com/microsoft/promptflow/tree/main/examples/flows/
https://github.com/ollama/ollama

[15]ORNL, “Frontier Specs,” https://www.olcf.ornl.gov/frontier/, 2024, [On- line; accessed July 2024].

6]R. Pryzant, D. Iter, J. Li, Y. T. Lee, C. Zhu, and M. Zeng, “Automatic prompt optimization with”
gradient descent” and beam search,” arXiv preprint arXiv:2305.03495, 2023.

[171A. ROCm, “AMD ROCm Software GitHub repository,” https://github. com/ROCm/ROCm, 2024,
[Online; accessed July 20241].

[18]A. Sabbatella, A. Ponti, I. Giordani, A. Candelieri, and F. Archetti, “Prompt optimization in large
language models,” Mathematics, vol. 12, no. 6, p. 929, 2024.

[191S. Schulhoff, M. Ilie, N. Balepur, K. Kahadze, A. Liu, C. Si, Y. Li, A. Gupta, H. Han, S. Schulhoff
et al., “The prompt report: A systematic survey of prompting techniques,” arXiv preprint
arXiv:2406.06608, 2024.

20]M. Sclar, Y. Choi, Y. Tsvetkov, and A. Suhr, “Quantifying language models’ sensitivity to spurious
features in prompt design or: How i learned to start worrying about prompt formatting,” arXiv
preprint arXiv:2310.11324,2023.

211L. Team, “The Llama 3 Herd of Models,” https://ai.meta.com/research/ publications/the-llama-3-
herd-of-models/, 2024, [Online; accessed July 2024].

[22]S. Vatsal and H. Dubey, “A survey of prompt engineering methods in large language models for
different nlp tasks,” arXiv preprint arXiv:2407.12994, 2024.

231L. Wang, W. Xu, Y. Lan, Z. Hu, Y. Lan, R. K.-W. Lee, and E.-P. Lim, “Plan-and-solve prompting:
Improving zero-shot chain-of-thought reasoning by large language models,” arXiv preprint
arXiv:2305.04091, 2023.

241J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, Zhou ef al., “Chain-of-
thought prompting elicits reasoning in large language models,” Advances in neural information
processing systems, vol. 35, pp. 24 824-24 837, 2022.

251J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. Elnashar, J. Spencer-Smith, and D.
C. Schmidt, “A prompt pattern catalog to enhance prompt engineering with chatgpt,” arXiv preprint
arXiv:2302.11382, 2023.

261J. Wu, T. Yu, R. Wang, Z. Song, R. Zhang, H. Zhao, C. Lu, S. Li, and R. Henao, “Infoprompt:
Information-theoretic soft prompt tuning for natural language understanding,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

271S. Yang, H. Zhao, S. Zhu, G. Zhou, H. Xu, Y. Jia, and H. Zan, “Zhongjing: Enhancing the chinese
medical capabilities of large language model through expert feedback and real-world multi-turn
dialogue,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 17, 2024,
pp- 19 368-19 376.

16

https://www.olcf.ornl.gov/frontier/
https://github.com/ROCm/ROCm
https://github.com/ROCm/ROCm
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/

9. APPENDIX A. GSM8K TASK PROMPTS

TABLE 1
PROMPT PHRASES TO PERMUTE

Prompts™

Let’s think step by step. [24]

Let’s first understand the problem, extract relevant variables and their
corresponding numerals, and make a plan. Then, let’s carry out the
plan, calculate intermediate variables (pay attention to correct
numerical calculation and commonsense), solve the problem step by
step, and show the answer. [23]

SOLUTION” [0]

Take a deep breath and work on this problem step-by-step. [27]

{{ QUESTION }}¥

ACitation number at the end of the prompt is not included.
Bplace to insert the question of an entry in the GSMS8k dataset.

10. APPENDIX B SUMMARIZATION TASK PROMPTS

TABLE II DATABASE NAMES

Prompts

Congenital Heart Surgeon’s Society (CHSS)

The Kids’ Inpatient Database (KID)

The Nationwide Readmissions Database (NRD)

TABLE III
INSTRUCTIONS TO PERMUTE

Prompts Shorthand
Provide a brief overview of the information info
repository.

Who created the information repository, and | who/how
what methods were used to collect the data?

Publications that cite or reference the informa- | incoming ref
tion repository.

Websites or links related to the information urls
repository.

The year the information repository created. year

The types of research or studies that could | studies
be conducted using data from this information
repository.

TABLE IV
FINAL PROMPT FORMAT

Please provide details about the information repository named {{
DATABASE NAME }}. Specifically, we are looking for the fol-
lowing information: Summarize

{{ PERMUTATIONS }}

The output should include the NAME of the information repository,
{{ DATABASE_NAME }}, the purpose of the information reposi-
tory and answers to the instructions.

TABLE V
EVALUATION FORMAT EXAMPLE

You will be given one summary written about an information
repository.

Your task is to rate the summary on one metric.

Please make sure you read and understand these instructions care-
fully. Please keep this document open while reviewing, and refer to
it as needed.

Evaluation Criteria:

Relevance (1-5) - selection of important content from the source. The
summary should include only important information about the
database. Annotators were instructed to penalize summaries which
contained redundancies and excess information.

Evaluation Steps:

1. Read the summary and the source document carefully.

2. Compare the summary to the source document and identify the
main points of the source document.

3. Assess how well the summary covers the main points of the
source document, and how much irrelevant or redundant information
it contains.

4. Assign a relevance score on a Likert scale from 1 to 5.
Example:

Summary:

{{ Summary }}

Only respond with an evaluation number on a Likert scale from 1
to 5.

Evaluation Form (scores ONLY):

- Relevance:

	CONTENTS
	ABSTRACT
	1. INTRODUCTION
	2. EXPERIMENTS
	2.1 HPC Architecture
	2.2 Complete Prompt Permutation
	2.2.1 Data and Methods
	2.2.2 Results

	2.3 Template Prompt Permutation
	2.3.1 Data and Methods
	2.3.2 Results

	3. Discussion
	4. Limitations
	5. Future work
	6. Conclusion
	7. Acknowledgments
	8. References
	9. Appendix A. GSM8k Task Prompts
	10. Appendix B Summarization Task Prompts

