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ABSTRACT 

Large language models (LLMs) have demonstrated effective performance in domain-specific tasks, often 
requiring a well-designed prompt to guide their responses. However, optimizing the right prompt is 
challenging due to prompt sensitivity—the phenomenon where small changes in the prompt can lead to 
significant variations in performance. In this study, we evaluate prompt performance by examining all 
permutations of independent phrases to investigate prompt sensitivity and robustness. We used two 
datasets: the GSM8k dataset, which assesses mathematical reasoning, and a custom template prompt for 
summarizing database metadata. Our goal was to evaluate the performance across all permutations of a 
sequence of prompt phrases. The study was conducted using the llama3-instruct- 7B model hosted on 
Ollama, with computations parallelized in a high-performance computing environment. By comparing the 
average index of phrases in the best and worst-performing prompts, we found that the order of 
independent phrases within a prompt significantly impacts LLM performance. Additionally, we used 
Hamming distance to assess changes between phrase orderings, concluding that prompt modifications can 
dramatically affect scores, often by almost random chance. These findings support existing research on 
prompt sensitivity. We discuss the challenges of prompt optimization, noting that altering phrases in a 
successful prompt does not always result in another successful prompt. 
 
Index Terms—prompt engineering, prompt sensitivity, prompt ordering, prompt optimization, large 
language models, LLM performance, HPC, Hamming distance 

1. INTRODUCTION  

Large language models (LLMs) have demonstrated impressive performance across multiple domains. 
Prompt engineering is a valuable method for enhancing LLM effectiveness after training by providing 
additional input context for the model to draw inferences from [22]. While certain approaches, such as 
fine-tuning or retraining a model with different data, can improve LLM performance, these methods are 
often infeasible— particularly when using a closed-source model via an Application Programming 
Interface (API) service—and can also be computationally expensive. Prompt engineering can help ‘guide’ 
the model through a specific task. Several prompting paradigms have been tested, with some of the more 
widespread techniques including zero-shot vs. few-shot prompting [3], role-prompting [25], and chain of 
thought prompting [24]. Typically, these techniques are employed by a human to craft an optimal prompt 
for a given task. 
 
Creating the perfect prompt can be challenging, time consuming, and resource-intensive for humans. To 
address this, work has been done to develop automatic prompt optimizers [18][11]. Some methods 
involve optimizing the prompt in discrete word space, as seen in [27] and [16], while others, like soft 
prompts, focus on optimizing the prompt within the underlying LLM embedding space, such as [26] and 
[7]. Although the latter can use gradients, it is often difficult or impossible to perform optimization on a 
closed-source model using their provided APIs. Additionally, projecting the optimized embedding into a 
human-readable sentence presents challenges in terms of coherency and performance preservation [1], so 
soft prompts are typically left in the embedding space. Discrete prompts, however, do not share this 
problem and can be directly optimized in a manner similar to human manual optimization.  
 
However, optimizing a prompt in discrete space is often challenging for both machines and humans, 
frequently requiring extensive computation and time. One reason for this difficulty is the phenomenon 
known as ’prompt sensitivity,’ where a model’s prompt can be highly sensitive to small, unintuitive 
changes in human natural language [19]. These unexpected and hard-to-quantify changes make it difficult 
to predict how a certain modification will affect the prompt, or whether it will do so consistently. Small 
aspects of the prompt, such as capitalization, spaces, and delimiters, can significantly alter performance 
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on a task [20]. Additionally, synonyms, different grammatical tenses, and the order of exemplars in few-
shot prompting paradigms can further impact performance [9]. 
 
Additionally, we found that most studies investigating ordering focus solely on the maximum difference 
in performance to conclude that order matters, which may overlook patterns in how this variation occurs. 
There is a need for more studies that investigate the effects of phrase ordering within the prompt, with a 
focus on understanding how the sequence of phrases within the prompt impacts performance. Therefore, 
in this study, we conducted two experiments to examine prompt ordering in two different domains. We: 
 

1) Examine the ordering of a set of prompt phrases by generating all possible permutations, as well 
as permutations of subsets, in a mathematical reasoning task. 

2) Examine the ordering of a set of instructions provided to an LLM for a summarization task by 
generating all possible permutations of the instructions based on a template prompt. 

3) For both experiments, investigate if the position of a specific phrase in a prompt matter as well as 
how certain changes to the prompt affect the difference in performance (i.e., the prompt’s 
sensitivity). 

 
Moreover, one of the large problems of testing the ordering of a prompt is that it can be computationally 
expensive, as if we test all possible permutations of a list of elements in a prompt, it scales by a factorial 
amount. While this is not a problem if we use a closed-source API and pay larger fees, this can be an 
issue when using open-source APIs. Thus, we additionally introduce an easy-to-use high-performance 
computing layout to test LLM inference. We include an easy to setup and open-source script that 
demonstrates the concept with our experiments. 
 

2. EXPERIMENTS 

2.1 HPC ARCHITECTURE 

  
In our study, we used local LLM models hosted on a high- performance computing architecture, 
specifically the Frontier [15] supercomputer at Oak Ridge National Laboratory. A brief overview of the 
architecture of the Frontier supercomputer is that it includes 8 functional Graphics Processing Units 
(GPUs), organized as 4 Advanced Micro Devices (AMD) MI250x with 2 Graphics Compute Dies 
(GCDs) each. As these are AMD GPUs, we used the Radeon Open Compute platform (ROCm) 5.7.1 and 
ROCm 6.0.0 [17] for communication to the GPU. We used a llama3-instruct-7B [21] model hosted on 
Ollama [14] for all experiments. 
 
To explore simple parallelism, the data for evaluation was split among N nodes, which would 
theoretically asymptotically decrease runtime by around 1/N. The data was additionally split among 8 
different Ollama servers within a node, one for each GPU. The general architecture is visualized in Fig. 1. 
 
To set up the Ollama server, we needed to compile a custom binary without a Compute Unified Device 
Architecture (CUDA)-checking function that causes a segfault on load. This was patched in version 
0.1.45. For working parallel servers, we also needed to compile a binary that fixes a bug that sets the 
wrong GPU IDs when automatically scanning for available GPUs, which was patched in version 0.3.1. 
We additionally include a patch in our code for the latter bug, as this was only fixed recently. We 
ultimately used version 0.3.1 for our experiments. Moreover, we needed to compile the GNU Compiler 
Collection (gcc) version 13 and create a module file to use on High-Performance Computing (HPC) 
architecture, but further testing indicates that this seems to have been patched out, or a one-off error. 
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The reasoning for using Ollama was that it is an easily usable server with built-in model-pulling and API 
features. We believe this improves experimental accessibility while still allowing for the use of multiple 
models and model parameters. 
 

 
 

Figure 1. Architecture diagram of the HPC inference setup. (a) Intra-node setup, showing Ollama servers and 
Python inference and communication (upper half of the image). (b) Inter-node setup, enabling direct 

scalability (lower half of the image). 

 

2.2 COMPLETE PROMPT PERMUTATION 

2.2.1 Data and Methods 

In our first experiment, we used a dataset containing question-answer (QA) tasks with various question 
and answer pairs. Specifically, we utilized the GSM8k dataset [5], a collection of grade-school 
mathematical word problems designed to test the mathematical reasoning of large language models 
(LLMs). Each problem includes a question used to generate an LLM response and a corresponding 
answer used to compare against the LLM’s response. 

 
To evaluate prompt sensitivity, we create permutations of a set of n prompt phrases combined with an 
empty location to insert the question. Each prompt phrase is typically a sentence, although it can be any 
other type of string. Formally, we define the set as 
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S = {p1, p2, . . . , pn} ∪ {q}, (1) 
 
where pi represents the prompt phrases and q is the question.  
 
We then generate all k-permutations of S for 0 ≤ k ≤ n + 1, filtering out those permutations that do not 
contain the question, as these do not represent a valid format for the task. 
 

 
 

Figure 2. Architecture diagram of the GSM Complete Prompt Permutation experiment. (a) Generation of all 
prompt permutations (upper half of the image). (b) Evaluation of each permutation across GSM8k (lower 

half of the image). 

 
 
The total number of valid prompt permutations can be directly calculated using the following equation: 
 

𝑓𝑓(𝑛𝑛) = ∑ [𝑃𝑃(𝑛𝑛 + 1, 𝑖𝑖) − 𝑃𝑃(𝑛𝑛, 𝑖𝑖)]𝑛𝑛+1
𝑖𝑖=0     (2) 

 
where P (n, i) denotes the number of permutations of i  elements from a set of n elements. 
 
In our experiment, we use f (4) = 261. The specific four prompt phrases we used, along with their 
respective reference sources, are provided in Appendix A. 
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Each of the permutations is then tested against the entirety of the GSM8k testing database of length 1319 
to create an average accuracy score. When a permutation is tested, the empty location for the question is 
filled in with a question from GSM8k, an LLM response is generated, and then the response is compared 
against the ground-truth corresponding answer included in GSM8k. In our study, we compared the LLM-
generated answer to the ground truth using a simple string comparison to check if the shortened answer 
string is in the LLM-generated answer. We note that this is a possible limitation, as it is possible that this 
can give a false positive. For example, the LLM could generate the number 24 in its reasoning chain but 
incorrectly answer 8. The current validation, given that the answer is 24, would count this as correct. In 
practice, this seems to be rare but should be noted. The average accuracy of a permutation across all 
question- answer pairs in GSM8k then corresponds to the accuracy of that specific permutation. The full 
architecture is visualized in Fig. 2. 
 
To investigate if the order of the phrases in the prompt really mattered, we plotted each phrase’s average 
position in a permutation for the 20 best and worst performing prompts in Fig. 3. As we are creating 
permutations of varying lengths here, we decided to normalize this index to improve comparability by 
remapping the space of the index to the set [0, 1], where 0 represents the very beginning of the list and 1 
represents the end of the list. The top 20 best and worst 20 prompts, sorted by their score on the task, were 
then plotted against each other to see if they had a noticeable difference. If the prompt permutations were 
assigned random scores, we would expect the average prompt position to be at the exact center, at 0.5. 
This is because there are an equal number of elements in a list of permutations of a set for each position, 
and so for any random sample of the population, it is expected that there is a roughly equal number of 
elements in each position (thus the average being the middle, 0.5). Therefore, we can say that a prompt 
phrase with an average position significantly different from 0.5 ”prefers” to be closer to the beginning or 
end of the sentence for the respective category, as higher or lower scores tend to be assigned to the 
permutation when the position is higher or lower. In other words, the position of a phrase in a prompt can 
influence its performance, and certain phrases might "prefer" to be closer to the beginning or end of the 
sentence to achieve better results. 
 

2.2.2 Results 

From Fig. 3, we can see that both the locations of the prompts: “SOLUTION” and “Take a deep breath...” 
are statistically the same as the expected value, so we can conclude that these prompt phrases do not 
prefer to be closer to the beginning or end of the sentence on average. However, the longer phrase starting 
with “Let’s first understand. . . ” appears to perform slightly better closer to the end of the sentence and 
worse at the beginning. This could be because the LLM prefers a coherent sentence at the end of the 
prompt instead of being interrupted by another short phrase or single word. On the other hand, ”Let’s 
think step by step” seems to perform better at the beginning. This could be because it serves as an 
introductory phrase that then gets into the longer, more descriptive phrases. The place to insert the 
question seems to perform both better and worse at the beginning of the sentence. This seems abnormal, 
but it could be because there are two different clusters of data exhibiting different properties. This points 
to the content of the phrases after the question being important in determining a prompt’s performance. 

 
We then investigated the relationship between the length of the permutation in terms of the number of 
phrases and its performance. As we take k-permutations of S for multiple values of k, we are able to 
compare the different lengths generated. From Fig. 4, we can see that as the permutation length increases, 
the average accuracy decreases, and the standard deviation gets larger. We note that there is a greater 
population in a specific k-permutation as k increases, but this should cause a smaller standard deviation. 
This could be indicative of the ordering of the prompt phrases becoming more unstable as the length of 
the prompt phrases increases, where the prompt is more sensitive to the order of its contents and the 
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relations between them. There is a greater chance of conflicts between two components as the system of 
prompts becomes more complex. 

 

 
Figure 3. Phrase index for the 20 best and worst performing prompts. Dark orange represents the average of 
the 20 best performing prompts, while light orange represents the average of the worst performing prompts. 

The red horizontal dotted line indicates the expected value if performance were random. Error bars 
represent the standard error of the mean. 

 
 
 

 
Figure 4. Average prompt accuracy compared to the number of phrases contained in the prompt 

permutation. The number 0 represents no prompt added to the question. Error bars are the standard 
deviation. 

 
 
The GitLab repository for this study is found at: Complete Prompt Permutation Code; or directly via 
https://code.ornl.gov/summer 2024/prompt engineering/ complete-prompt-permutation. 
 

 

https://code.ornl.gov/summer_2024/prompt_engineering/complete-prompt-permutation
https://code.ornl.gov/summer_2024/prompt_engineering/complete-prompt-permutation
https://code.ornl.gov/summer_2024/prompt_engineering/complete-prompt-permutation
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2.3 TEMPLATE PROMPT PERMUTATION 

2.3.1 Data and Methods 

In our second experiment, we evaluated the LLM on a summarization task. Fig 5 illustrates the 
architecture of the Database Summarization Template Permutation experiment which consists of three 
key components. (a) In the upper right of the image, all permutations of instructions are generated. (b) In 
the upper left, these permutations are used by a Large Language Model (LLM) to generate summaries 
based on the provided template. (c) Finally, the generated summaries are evaluated by the LLM using 
four specific metrics, depicted in the lower part of the image. This flow outlines the process of generating 
and evaluating summaries across different permutations to analyze performance variations. 

 
For the data, we created a custom dataset of database names of length 5. We additionally included six 
instructions given to the LLM to generate summarized text regarding features of the database name in 
question. Every permutation of these six instructions was generated, giving us a total of 6! = 720 prompts 
to test against all database names. We used a prompt template that a specific database name and 
permutation of six numbered instructions are inserted into. Samples of the prompts and templates are 
found in Appendix B. Each permutation of instructions was then tested for each database and 
subsequently given a score of how good the summary is. The scoring mechanism consisted of asking an 
LLM to score a summary, as in [10]. The LLM, according to another prompt template, was asked to rank 
the summary in a category as an integer from a start to an end, for example, 1 to 5. In our study, we used 
templates based on a modified version of templates used in [9] taken from [13] that was based on our 
specific task and included the work ”Likert-scale,” which tended to increase variability of scores and had 
been found to increase LLM understanding of the scale [19]. The categories scored included relevance, 
fluency, consistency, and coherence. Each category was tested 100 times to improve granularity and 
consistency in response. For each permutation, all database names were tested, and then all scores were 
averaged into a single score for each category for the permutation. After evaluation, the scores were then 
normalized from their original Likert score, for example, between 1 and 5, to a score between 0 and 1. 
These scores, therefore, form a score vector as shown in Equation 3 for each permutation of instructions. 
 
These scores, therefore, form a score vector as shown in Equation 3 for each permutation of instructions. 
 
 

𝑠̂𝑠 = �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

�𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒  𝑥𝑥𝑖𝑖 ∈ [0,1]     (3) 
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Figure 5. Architecture of the Database Summarization Template Permutation Experiment. (a) Generation of 
all permutations of instructions (upper right). (b) LLM generation with template (upper left). (c) Evaluating 

the generated summary with an LLM on the four listed metrics (lower part). 

 

2 . 3 . 2  Results 

The score vectors were plotted in 4-D space in Fig. 6. We can see that there is no separate clustering; thus 
there is not a similarly performing group of prompts. Additionally, most of the values are consistent in all 
categories, and values outside of the central area, when having a larger value in one category, often has a 
lower value in another category. This could mean that, when trying to optimize a prompt for a specific 
objective, like maximizing fluency, it often loses generalizability across all categories. 
 
Similarly to GSM8k, we plotted the phrase index in the 100 best and worst prompts in Fig. 7. Although 
we did not use permutations of varying lengths, it was not necessary to normalize the phrase index; 
however, we did so for consistency. Since the individual prompt phrases were rather long, we used 
shortened phrases for readability, with the long versions provided in Appendix B. 
 
We observed that the order of phrases did not matter for 3 out of 6 phrases, with notable differences 
found for ’incoming ref,’ ’studies,’ ’year,’ and ’info.’ ’Year’ and ’studies’ performed better at the end of 
the prompt, while ’incoming ref’ and ’info’ performed better at the beginning. Thus, we demonstrated 
that the seemingly random variation in order is somewhat predictable. We hypothesize that this pattern 
is due to the generation of additional context for the model; placing ’incoming references’ and general 
’information’ at the beginning provides the model with a more conducive environment during its initial 
generation. Later, when the model addresses more specific, shorter questions (such as the year of the study) 
or more inferential questions (such as what types of studies can use the database), it is better prepared. However, 
the average index of each prompt phrase remained centered around 0.5, indicating that the tendency of a phrase 
to prefer the beginning or end of a prompt is generally weak; this effect is only noticeable across a large number 
of prompts. Next, to compare how the difference in a prompt can affect the change in score, we first introduce 
the concept of a hamming distance between two prompts. Since these prompt lists are of a set length, with an 
“alphabet” of prompts, we can generate a hamming distance between two prompts by counting the number of 
differences in phrases between two prompts. Notice that a hamming distance of 1 is impossible since every 
prompt in the alphabet must be an element of the prompt. Thus, if one phrase changes, another must swap with 
it. To quantify the change in score between two prompts, we simply calculate the Euclidean distance between 
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score vectors. All combinations of two different prompts were generated, excluding the reflexive duplicates, to 
generate a dataset of hamming distance and Euclidean distance pairs. We then plot them to understand the 
relation between these variables. 

 
Figure 6. Score vector distribution. The x-axis is fluency, the y-axis consistency, the z-axis coherence, and the 

fourth color-dimension is relevance, with brighter values corresponding to positive values. 

 

 
Figure 7. Phrase index in 100 best and worst performing prompts. Dark blue represents average of 100 best 
performing prompts, light blue represents average of worst performing prompts. Red horizontal dotted line 

is the expected value given that the performance is random. Error bars are standard error of mean. 
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Figure 8. We compared the average score vector distance to the hamming distance. The x-axis is the hamming 

distance between two permutations, and the y-axis is the score vector distance. Error bars are the standard 
error of the mean. 

 

 
Figure 9. Normalized histogram of score vector distance comparing two categories of hamming distance. The 

x-axis is the score vector distance, and the y-axis is the percent frequency within the category. Light red 
represents the distribution with a hamming distance of 2 and 3. Light blue represents the distribution with a 

hamming distance of 4, 5, and 6. The purple represents the distribution overlap. 

 

 
We first plot the hamming distance compared to average score vector distance, along with error bars of 
standard error in Fig. 8. We see that there is a clear positive relationship between hamming distance and 
score vector distance. The relationship appears to be slightly curved at the beginning, increasing a certain 
amount at first before slowing down slightly. This is generally what we expect and want, as when 
optimizing a prompt, if there is a well-performing prompt, it would be beneficial if a specific size change 
to the prompt corresponded to a predictable effect in score, so the prompt can be optimized with the 
predictable magnitudes of changes. 
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However, a different pattern emerges when we plot the distributions of the underlying averages. In Fig. 9, 
we present two frequency histograms comparing Hamming distances of 2-3 (low) with those of 4-6 
(high). We did not create six separate distributions, as that would be difficult to interpret, but the same 
trend applies. The distributions overlap significantly, with only a small shift observed for larger Hamming 
distances. When comparing the actual means in Fig. 8, we observe that the range of the means occupies only 
a small portion of the distribution. This suggests that, while the general trend of greater differences in 
prompts leading to greater differences in scores holds true, in practice, making a small tweak to a prompt 
has nearly the same chance of significantly altering the score as completely changing the order. 
The GitLab repository for this study is found at: Template Prompt Permutation; or directly via 
https://code.ornl.gov/summer 2024/prompt engineering/ template-prompt-permutation. 
 
 

3. DISCUSSION 

We largely found in our study that the position of each prompt phrase matters for task performance, the 
performance of the prompt decreases as you add phrases, and optimizing for a specific ordering is 
difficult. This is consistent with literature on other findings on prompt sensitivity. Certain modifications 
to the prompt like capitalization and spacing can have an significant effect on an LLM response [20]. In 
[4], the order of logical premises presented to the LLM changes its overall accuracy, where ideally it 
should not, as logical premises are order agnostic. 
 
Our study additionally has implications for general prompt engineering. We recommend keeping prompts 
short in order to minimize how much ordering matters, and possibly trying to minimize having 
relationally independent phrases within the prompt, as this can introduce an area of optimization that is 
needed. When relationally independent phrases are introduced, we recommend keeping in mind that 
phrases that generate context and other usable information for later phrases are key for an initial attempt 
at optimization. 
 
There have been methods, such as those proposed by [27], [8], and [6], that can automatically optimize an 
initial prompt using a training set for the problem at hand to test the performance of the prompt. The 
primary improvement in these methods is achieved through continuously mutating the prompt over many 
iterations, with a focus on maximizing a performance score while exploring different prompting 
strategies. 
 
However, the challenge with discrete prompting is the assumption that similar prompts will yield similar 
performance. If a prompt performs poorly, the algorithm typically moves on, ignoring similar variations. 
This approach becomes problematic when a poorly performing prompt could actually perform better with 
slight modifications. The algorithm might dismiss the entire class of similar prompts after a single poor 
result, potentially missing out on better-performing variants. While this risk is low, it becomes a more 
significant concern as the optimization process continues over a larger number of prompts. 
 
There is no easy solution to this issue besides testing additional reorderings of prompts, which can 
increase both computation time and energy consumption. We suggest that future research focus on 
developing a robust and energy- efficient system to address this challenge. 
 
Our results also have implications for prompt security. Small perturbations can significantly impact LLM 
output, which poses risks for systems that depend on robustness. If an attacker gains access to a prompt 
and is able to append something to it, they could decrease the model’s accuracy or alter its behavior 
entirely. Examples of this so-called ’prompt hacking’ can be seen in [19]. 

https://code.ornl.gov/summer_2024/prompt_engineering/template-prompt-permutation
https://code.ornl.gov/summer_2024/prompt_engineering/template-prompt-permutation
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4. LIMITATIONS 

Despite our findings, there are some limitations in this study that should be disclosed. 
 
For the summarization-based task, we used an LLM-based evaluation. However, some studies, such as 
[23], have found this approach to be unreliable. If we continue using an LLM- based evaluation strategy, 
it might be preferable to use an architecture like G-Eval [12], which employs a Chain-of- Thought (CoT) 
methodology to improve scoring, rather than relying solely on prompts. 
 
Additionally, we used a small dataset of database names for the summarization experiment and tested 
only one set of prompt phrases. We also used just one model, llama3-instruct- 7B, for inference and did 
not experiment with changing any of the hyperparameters. As a result, we do not know how model size or 
different models might affect the experiments. 
 

5. FUTURE WORK 

In addition to addressing the limitations mentioned above, there are several future directions for this 
research. Regarding HPC improvements, the parallelization could be enhanced in terms of speed or 
redundancy. In our study, we attempted to set the OLLAMA NUM PARALLEL parameter in Ollama to 
a value greater than 1, but this did not significantly decrease the runtime. 
Future work could also focus on reducing the current parallel bottleneck, which we believe may be related 
to server response times. During our experiments, we observed that a 50ms inference time did not achieve 
the theoretical maximum of 20 inferences per second, suggesting that something within the Ollama server 
or the intermediary code between requests is slowing down the process. 
 
There is also potential for improving the system’s fit with the Frontier supercomputer. Specific GPU 
binding closest to hardware cores was not used due to issues with Ollama, so everything was done 
manually. Addressing this issue could increase runtime efficiency by better aligning the architecture with 
the hardware. 
 
Additionally, we aim to increase confidence in the claim that prompt sensitivity is correlated with prompt 
length and to determine if this correlation holds across different examples, tasks, and scenarios. 
Strengthening this claim could lead to advancements in both automatic prompt optimization and human-
driven prompt engineering. 
 
Our testing procedures could also be expanded to cover a wider range of domains with greater variability. 
Furthermore, these methods could be integrated into different prompt optimization workflows to reduce 
the number of permutations generated and tested. However, our current methods are too computationally 
expensive for widespread application testing. 
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6. CONCLUSION 

Our study underscores the significant impact of prompt phrasing and order on the performance of LLMs. 
We found that small modifications to prompts can lead to substantial variations in outcomes, supporting 
existing research on prompt sensitivity. This highlights the challenges of optimizing prompts, particularly 
when adding phrases or altering their order. Our findings also reveal limitations in current prompt 
optimization methods, which may overlook potential improvements in similar prompts. Future research 
should address these limitations, explore more robust and energy-efficient optimization strategies, and 
enhance parallelization in high- performance computing environments. Additionally, examining prompt 
sensitivity across diverse domains and scenarios could provide deeper insights into effective prompt 
engineering. Understanding the security implications of prompt sensitivity is also crucial, especially in 
sensitive applications like healthcare. These advancements are essential for improving LLM reliability 
and application efficiency. 
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9. APPENDIX A. GSM8K TASK PROMPTS 

 

TABLE I 
PROMPT PHRASES TO PERMUTE 

 

Promptsa 

Let’s think step by step. [24] 
Let’s first understand the problem, extract relevant variables and their 
corresponding numerals, and make a plan. Then, let’s carry out the 
plan, calculate intermediate variables (pay attention to correct 
numerical calculation and commonsense), solve the problem step by 
step, and show the answer. [23] 
SOLUTION” [6] 
Take a deep breath and work on this problem step-by-step. [27] 
{{ QUESTION }}b 
aCitation number at the end of the prompt is not included. 
bPlace to insert the question of an entry in the GSM8k dataset. 

 

10. APPENDIX B SUMMARIZATION TASK PROMPTS 

TABLE II DATABASE NAMES 
 

Prompts 
Congenital Heart Surgeon’s Society (CHSS) 
The Kids’ Inpatient Database (KID) 
The Nationwide Readmissions Database (NRD) 

 

 

 

TABLE III 
INSTRUCTIONS TO  PERMUTE 

 

Prompts Shorthand 
Provide a brief overview of the information 
repository. 

info 

Who created the information repository, and 
what methods were used to collect the data? 

who/how 

Publications that cite or reference the informa- 
tion repository. 

incoming ref 

Websites or links related to the information 
repository. 

urls 

The year the information repository created. year 
The types of research or studies that could 
be conducted using data from this information 
repository. 

studies 

 

 

 

TABLE IV 
FINAL PROMPT FORMAT 

 

Please provide details about the information repository named {{ 
DATABASE NAME }}. Specifically, we are looking for the fol- 
lowing information: Summarize 
{{ PERMUTATIONS }} 

The output should include the NAME of the information repository, 
{{ DATABASE NAME }}, the purpose of the information reposi- 
tory and answers to the instructions. 



 

 

TABLE V 
EVALUATION FORMAT EXAMPLE 

 
You will be given one summary written about an information 
repository. 

Your task is to rate the summary on one metric. 

Please make sure you read and understand these instructions care- 
fully. Please keep this document open while reviewing, and refer to 
it as needed. 

Evaluation Criteria: 

Relevance (1-5) - selection of important content from the source. The 
summary should include only important information about the 
database. Annotators were instructed to penalize summaries which 
contained redundancies and excess information. 

Evaluation Steps: 

1. Read the summary and the source document carefully. 

2. Compare the summary to the source document and identify the 
main points of the source document. 

3. Assess how well the summary covers the main points of the 
source document, and how much irrelevant or redundant information 
it contains. 

4. Assign a relevance score on a Likert scale from 1 to 5. 

Example: 

Summary: 

{{ Summary }} 

Only respond with an evaluation number on a Likert scale from 1 
to 5. 

Evaluation Form (scores ONLY): 

- Relevance: 
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