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ABSTRACT

Safety Performance Functions (SPFs) are mathematical models that establish relationships
between the frequency of various crash types and site-specific characteristics, serving as essential
tools for traffic safety analysis and roadway design. Traditional SPFs, however, often overlook the
temporal fluctuations in traffic flow (such as peak-hour surges) and directional imbalances
between opposing traffic streams. These traffic patterns can exacerbate congestion, disrupt driver
behavior, and create unexpected conflict points, potentially leading to increased crash frequencies
and more severe accidents. In light of this gap, this study aims to explore the potential of
incorporating K-factors (representing peak-hour traffic proportions) and D-factors (reflecting the
imbalance of directional traffic) into the development of SPFs to assess whether these factors can
effectively represent the impact of temporal and spatial traffic distribution on roadway safety.
Using crash data from Pennsylvania urban-suburban collector roadways, it is found that the D-
factor plays a significant role in predicting the frequency of total crashes, fatal + injury crashes,
and angle crashes, with positive coefficient signs indicating that higher directional imbalances
correspond to increased crash risks. Similarly, the K-factor emerges as a critical predictor for fatal
+ injury crashes and rear-end crashes, with negative coefficients suggesting that a more
pronounced traffic peak is associated with a reduction in expected crash frequencies. These results
highlight the importance of accounting for uneven traffic distribution in both time and direction
when developing SPFs, offering deeper insights into crash patterns and supporting more effective
safety interventions and roadway designs.

INTRODUCTION

Traffic safety is a critical concern in transportation and is typically evaluated through crash
frequency and severity. Crash frequency refers to the number of crashes occurring within a specific
time period or location, while crash severity categorizes the crashes based on the level of damage
or injury sustained, such as property damage only, minor injuries, major injuries, or fatalities (C.
Wang et al., 2018).
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Safety Performance Functions (SPFs) are mathematical models that establish relationships
between the frequency of various crash types and site-specific characteristics, serving as essential
tools for traffic safety analysis and roadway design. Common types of SPFs include Poisson,
Negative Binomial, and Zero-Inflated models, which account for the discrete nature of crash data
and over-dispersion issues (Abdel-Aty & Radwan, 2000; Dong et al., 2014; Lord & Mannering,
2010; Mannering & Bhat, 2014; Poch & Mannering, 1996). Traditional SPFs, however, often
overlook the temporal fluctuations in traffic flow (such as peak-hour surges) and directional
imbalances between opposing traffic streams. These traffic patterns can exacerbate congestion,
disrupt driver behavior, and create unexpected conflict points, potentially leading to increased
crash frequencies and more severe accidents.

In light of this gap, this paper aims to explore the potential of incorporating K-factors
(representing peak-hour traffic proportions) and D-factors (reflecting the imbalance of directional
traffic) into the development of SPFs to assess whether these factors can effectively represent the
impact of temporal and spatial traffic distribution on roadway safety. Using crash data from
Pennsylvania urban-suburban collector roadways, it is found that the D-factor plays a significant
role in predicting the frequency of total crashes, fatal + injury crashes, and angle crashes, with
positive coefficient signs indicating that higher directional imbalances correspond to increased
crash risks. Similarly, the K-factor emerges as a critical predictor for fatal + injury crashes and
rear-end crashes, with negative coefficients suggesting that a more pronounced traffic peak is
associated with a reduction in expected crash frequencies. These results highlight the importance
of accounting for uneven traffic distribution in both time and direction when developing SPFs,
offering deeper insights into crash patterns and supporting more effective safety interventions and
roadway designs.

The remainder of this paper is organized as follows. First, we gave a brief literature on
Safety Performance Functions (SPFs). Then, the methodology in this paper is discussed in detail.
Next, we describe the data used for modeling the crash frequencies in the paper. This is followed
by the results of SPFs. Finally, some discussion and concluding remarks are provided.

LITERATURE REVIEW

Safety Performance Functions (SPFs)

Safety Performance Functions (SPFs) are statistical models widely used in traffic safety
analysis to predict the expected number of crashes at specific locations under given traffic and
roadway conditions (Srinivasan et al., 2013). They serve as essential tools in identifying high-risk
sites, evaluating countermeasures, and informing transportation planning.

The Highway Safety Manual (Highway Safety Manual 2010) outlines three different ways
in which SPFs can be used by jurisdictions to make better safety decisions, including network
screening, before-and-after studies, and economic evaluation of safety interventions. In network
screening, SPFs identify sites with potential for safety improvement by comparing observed crash
frequencies with expected values (Tegge et al., 2010). In before-and-after studies, SPFs facilitate
the evaluation of safety treatments by estimating the counterfactual crash counts had no
intervention occurred (Lyon et al., 2005). Finally, economic evaluations often integrate SPFs with
cost-benefit analyses to prioritize investments in safety measures (Zarei et al., 2022).



Statistical Modeling of SPFs

SPFs are based on statistical models of relating crash frequencies to roadway and driver
characteristics. Currently, the two most widely used statistical models are lognormal regression
and loglinear regression models.

Lognormal regression models are used when the distribution of data is skewed
(Gustavsson, 2015). This model proves to be especially effective when the data is inherently non-
negative and the mean is relatively large. This type of distribution is common with intersections
that have high volumes, such as at a signalized control (Bauer et al., 2000).

A log-linear model is a mathematical function where the logarithm of the outcome is
expressed as a linear combination of the model's parameters. The two main types of loglinear
models are the Poisson model and negative binomial model. The Poisson distribution predicts the
probability of a specific number of events occurring over a given time, assuming events are
independent and occur with a known probability (Katti & Rao, 1968). The negative binomial
distribution extends this approach, addressing over-dispersion by allowing the variance to exceed
the mean (Ross & Preece, 1985). Past studies have found that crashes are better modeled using the
negative binomial distribution due to unaccounted variability in crash data (Park et al., 2010).

Variables in SPFs

Variables depicting roadway characteristics, driver behavior, climatic conditions, and
traffic data are often incorporated into SPF development. For modeling purposes, these variables
are categorized into two types: quantitative and categorical. Quantitative variables consist of
discrete or continuous values that describe specific conditions, characteristics, or parameters. In
previous studies, common quantitative variables used to develop SPFs for roadway segments
include (E. Donnell et al., 2014, 2016; Gooch et al., 2018; Montella & Imbriani, 2015; Srinivasan
etal., 2011, 2013; Tegge et al., 2010):

Average Annual Daily Traffic (AADT)
Segment length

Grade

Lane width

Median width

Number of lanes

Percent heavy vehicles

Radius of curvature

Number of curves

Number of intersections

Access point density

Segment length

Shoulder width

e Speed (85th percentile or posted speed)

The second type of variable used in developing SPFs is categorical variables, which are
non-numerical and provide a descriptive representation of specific conditions or scenarios. In
modeling, these variables are typically encoded as binary dummy variables to represent different



possible cases or states. Common categorical variables incorporated into SPFs include (E. Donnell
et al., 2014, 2016; Gooch et al., 2018; Montella & Imbriani, 2015; Srinivasan et al., 2011, 2013;
Tegge et al., 2010):

Roadside hazard rating

Functionality classification of the roadway

Aucxiliary lanes (passing lane/climbing lane/other auxiliary lane)
Terrain

Median type

Area type (rural/urban)

e Shoulder type

However, no variable in traditional SPFs explicitly accounts for temporal fluctuations in
traffic flow, such as peak-hour surges, or directional imbalances between opposing traffic streams.
These dynamic traffic patterns can intensify congestion, influence driver behavior, and create
unexpected conflict points, increasing the likelihood of crashes and the severity of accidents.

METHODOLOGY

Model Specification
Variable for temporal traffic unevenness

To evaluate the impact of temporal traffic volume unevenness on crash frequencies, K-
factor is employed as a measure of the variability in traffic distribution over time. Federal Highway
Administration defines K-factor as the proportion of Annual Average Daily Traffic (AADT)
occurring during the Design Hour, i.e. the hour in which the 30th highest hourly traffic flow of the
year takes place (Traffic Monitoring Guide 2013). It is used in design engineering for determining
the peak loading on a roadway design that might have similar traffic volumes. The calculation for
the K factor is given by the formula:

DHV
AADT (1)

K — factor =

where DHV is the design hourly volume (veh/hr) and AADT is the annual average daily
traffic (veh/day).

Variable for directional traffic imbalance

To analyze the impact of directional traffic volume imbalances on crash frequencies, the
D-factor is utilized as a key metric in this paper. D-factor is also referred to as the directional
distribution factor. It is the proportion of traffic traveling in the peak direction during a selected
hour, usually expressed as a percentage (Traffic Monitoring Guide 2013). It is calculated by
dividing the higher directional volume occurring in the 30th highest hour by the total roadway
volume for that hour. The calculation for the D factor is given by the formula:



DDHV
D — factor =— (2)

where DDHYV is higher directional design-hour volume (veh/hr).
Statistical model

Negative binomial regression is used to develop the roadway segment SPFs in this paper
to be consistent with the models developed in HSM (Highway Safety Manual 2010) . If K-factor
and D-factor are found to have significant effects on crash frequencies, the final SPF will be in the
form of:

A; = ePo x LB1 x AADTF2 x efsK+BaD+BsXs+BeXo+..4BnXy (3)

Where:

A; - expected number of crashes on roadway segment i;
Bo - regression coefficient for constant;

L - roadway segment length (miles);

AADT - average annual daily traffic (veh/day);

K - K-factor;

D - D-factor;

B - regression coefficient for segment length;

B> - regression coefficient for AADT;

B3 - regression coefficient for K-factor;

B4 - regression coefficient for D-factor;

Bs, ..., - regression coefficients for explanatory variables and
Xs,...X,, - other explanatory variables.

Total crash frequencies, the sum of fatal and injury crash frequencies, rear-end crash
frequencies, and angle crash frequencies are considered as the dependent variable (4;) respectively
in the model above. These categories allow for a comprehensive assessment of how temporal
traffic unevenness and directional traffic imbalance influence different levels of crash severity and
crash types.

Model Assessment
Statistical Significance of Variables

To determine whether the K-factor and D-factor are statistically significant, a z-test is
performed, which evaluates the difference between an observed value and the hypothesized value
in units of standard error. This involves calculating the p-value, which represents the probability
of observing an effect of the same magnitude or more extreme under the assumption that the null
hypothesis is true. The null hypothesis is rejected if the p-value is less than the predetermined
significance level, @. An a level of 0.05 is used in this paper.

Model Comparison

In this paper, the Akaike information criterion (AIC) is used as the criterion for model
selection among the models; the model with the lowest AIC is preferred. AIC is an estimator of
the relative quality of statistical models for a given set of data (Akaike, 2011). Given a collection
of models for the data, AIC estimates the quality of each model, relative to each of the other
models. Thus, AIC provides a means for model selection. In estimating the amount of information
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lost by a model, AIC deals with the trade-off between the goodness of fitness of the model and the
simplicity of the model.

DATA

Data Description

This paper leverages two key data sources to estimate Safety Performance Functions
(SPFs) for roadway segments:
e Pennsylvania Roadway Inventory and Crash Database: This dataset, utilized in (E.
T. Donnell et al., 2019), is derived from PennDOT’s Roadway Management System
and supplemented by the PennDOT Online VideoLog System. It also integrates
Google Earth crash data files, providing comprehensive details about crash events,
drivers, and vehicle occupants for all reported incidents on Pennsylvania's two-lane
undivided urban-suburban collectors.
e Pennsylvania Traffic Counts: These datasets, provided by PennDOT, include key
traffic metrics such as Average Annual Daily Traffic (AADT), K-factor, and D-
factor. Data from the years 2016, 2017, and 2018 are utilized in this study.
The two datasets are merged using shared identifiers—state route ID and segment ID—
ensuring alignment between roadway inventory, crash data, and traffic count metrics. This
integration facilitates a comprehensive analysis for SPF estimation.

Statistical Summary

A total of 23,415 unique roadway segments were available in the two-lane undivided urban
- suburban collector segment analysis file. Roadway elements from the data sources for the
roadway segment analysis include:

e [JLinear reference information (county, route, and segment)
e [JSegment length

e [JAverage annual daily traffic (vehicles/day)

e [IK-factor

e [ID-factor

e []Paved roadway width (including all travel lanes)

e [/Number of travel lanes in both directions

e []Posted speed limit

e [ |Divisor type

e [|Left- and right-shoulder type

e []Left- and right-shoulder paved width (feet)

e [JLeft- and right-shoulder total width

e []Presence of bicycle lanes

e [JPresence of on-street parking

e [JPresence of curb/sidewalk combinations

e [IDriveway density

e []Presence of auxiliary lanes (e.g., turn lanes, bus lanes, etc.)

A statistical summary of the combined dataset is shown in Table 1:



Table 1. Summary of Variables

Number of Observations = 23415

Variable Mean Std. Dev. Min Max
Total Crashes 1.021 1.602 0 22
Fatal Plus Injury Crashes 0.460 0.945 0 20
Rear-end Crashes 0.159 0.499 0 12
Angle Crashes 0.342 0.890 0 14
AADT (veh/day) 3319.245 2814.396 0 20072
Segment Length (mile) 0.437 0.168 0.001 0.820
K-factor (%) 9.358 3.445 0 21
D-factor (%) 51.761 19.418 0 100
Degree of Curvature Per 20.865 54.407 0 1379.865
Mile (°/mile)

Access Points and 33 2 0 377

Intersections Per Mile

Percent of Sites with Percent of Sites without

Characteristic Characteristic

Presc;nce of on-street 9.660% 90.340%
parking
Presence of curb 20.730% 79.270%
Posted speed limit 45 mph 22.960% 77.040%
or above
Segrnent is less than 0.1 4.100% 95.900%
miles long

RESULTS

Total Crash SPF

First, Table 2 presents the estimation results for the Total Crash Safety Performance
Function (SPF). The model includes various explanatory variables, each accompanied by its
coefficient, standard error, and statistical significance level , represented by the p-value (P > z).
Among these, the D-factor, representing the directional distribution of traffic, demonstrates a
statistically significant positive association with total crashes at the @ = 0.05 significance level.
This finding indicates that greater directional traffic imbalance will lead to an increase in total
crash frequencies, suggesting that implementation of measures to balance traffic flows between
directions may improve roadway safety. Potential countermeasures include dynamic lane
allocation (Baskar et al., 2008; Hausknecht et al., 2011), where lanes are reassigned based on real-
time traffic conditions, or the use of variable message signs (VMS) or variable speed limits (VSL)
to manage traffic flow and redirect vehicles during peak periods (Almallah et al., 2021; Chatterjee
& Mcdonald, 2004; Xu et al., 2024).

In contrast, the K-factor, which reflects temporal traffic unevenness, is not statistically
significant. This result implies that variations in hourly traffic volume distribution do not exhibit
a strong relationship with total crash frequencies in this model. The contrasting roles of the D-



factor and K-factor reflects the importance of directional traffic patterns over temporal variations
in influencing total crash frequency.

Table 2. Total Crash SPF
Variable Name Coef.  Std. Err. P>z
Natural logarithm of AADT 0.7226 0.0134 <0.001
Natural logarithm of segment length (mile) 0.6416 0.0253 <0.001
Degree of curvature per mile -0.0009 0.0002 <0.001
D-factor 0.0048 0.0013 <0.001

Presence of on-street parking

(1 if present; 0 otherwise)

Presence of curb

(1 if present; 0 otherwise)

Posted speed limit 45 mph or above
(1 if present; 0 otherwise)

Segment is less than 0.1 miles long
(1 if true; 0 otherwise)

Constant -5.6548 0.1358 <0.001

Pseudo R? =0.0772
Log-likelihood at convergence = -26935.876
AIC = 53892

0.2821 0.0343 <0.001

0.2091 0.0266 <0.001

-0.1109 0.0227 <0.001

0.3266 0.0908 <0.001

Sum of Fatal and Injury Crash Frequency SPF

Second, Table 3 presents the fitted SPF for estimating the sum of fatal and injury crash
frequency. Consistent with the findings in Table 2, D-factor demonstrates a statistically significant
positive association with fatal and injury crashes at the a = 0.05 significance level. This result
indicates that greater directional traffic imbalance contributes to an increase in the sum of fatal and
injury crash frequencies, reinforcing the importance of addressing heavily directional traffic
patterns to enhance safety. By comparing Table 2 and Table 3, we can see an increase in the
coefficient for D-factor in the SPF for fatal and injury crashes. This implies that greater directional
traffic imbalance may have a stronger impact on severe crashes.

Conversely, K-factor exhibits a statistically significant negative association with fatal and
injury crashes. This suggests that higher temporal traffic imbalances may reduce the likelihood of
fatal and injury crashes. A possible reason is that temporal peaks in traffic may encourage lower
speeds during high-volume periods, reducing crash severity.

Table 3. Sum of Fatal and Injury Crash SPF

Variable Name Coef.  Std. Err. P>z
Natural logarithm of AADT 0.7630 0.0186 <0.001
Natural logarithm of segment length (mile) 0.6787 0.0347 <0.001



Degree of curvature per mile -0.0013 0.0003 <0.001

K-factor -0.0310 0.0118 0.008
D-factor 0.0076 0.0017 <0.001
Presence of on-street parking 0.4102 0.0434 <0.001
(1 if present; 0 otherwise)

Presence of curb 0.2777 0.0344 <0.001
(1 if present; 0 otherwise)

Segment is less than 0.1 miles long 0.4102 0.1235 0.001
(1 if true; 0 otherwise)

Constant -6.6614 0.2280 <0.001

Pseudo R? = 0.0802
Log-likelihood at convergence = -17409.8330
AIC = 34840

Rear-end Crash Frequency SPF

Next, Table 4 presents the fitted SPF for estimating rear-end crash frequencies. In this
model, the K-factor is statistically significant, while the D-factor is not. This result is intuitive, as
a larger K-factor indicates more congestion during peak hours, which increases the risk of rear-
end crashes. In contrast, uneven directional traffic distribution, captured by the D-factor, does not
strongly influence rear-end crash occurrences, as it is less relevant to this crash type.

Table 4. Rear-end Crash SPF

Variable Name Coef. Std. Err. P>z
Natural logarithm of AADT 1.4234 0.0341  <0.001
Natural logarithm of segment length (mile) 0.6008 0.0462  <0.001
Degree of curvature per mile -0.0022 0.0006  <0.001
K-factor -0.0435 0.0190 0.022
Access_density 0.0028 0.0010 0.004
Presence of on-street parking

(1 if present; 0 otherwise) 0.1677 0.0665 0.012
Presence of curb

(1 if present; 0 otherwise) 0.2922 0.0509 " <0.001
Constant -12.8936 0.3722  <0.001

Pseudo R2 =0.1398
Log-likelihood at convergence = -8182.6285
AIC = 16383

Angle Crash Frequency SPF

Finally, the fitted SPF for estimating angle crash frequency is given in Table 5. In this
model, the D-factor is statistically significant, while the K-factor is not included. This result also
aligns intuitively with the nature of angle crashes, as a larger D-factor, reflecting uneven
directional traffic distribution, is more likely to contribute to angle crashes, which often occur at
intersections or locations with conflicting traffic flows. In contrast, temporal traffic unevenness,
captured by the K-factor, is less relevant to the occurrence of angle crashes.



Table S. Angle Crash SPF

Variable Name Coef. Std. Err. P>z

Natural logarithm of AADT 0.8871 0.0250 <0.001
Natural logarithm of segment length (mile) 0.5103 0.0346 <0.001
Degree of curvature per mile -0.0027 0.0005 <0.001
D-factor 0.0122 0.0022 <0.001
Access_density 0.0053 0.0008 <0.001

Presence of on-street parking

(1 if present; 0 otherwise) 0.4087 0.0570 <0.001
Presence of curb

(1 if present; 0 otherwise) 0.4452 0.0453 <0.001
Posted speed limit 45 mph or above _0.0988 0.0415 0.017
(1 if present; 0 otherwise)

Constant -8.9336 0.2532 <0.001

Pseudo R2 =0.0781
Log-likelihood at convergence = -14003.331
AIC = 28027

CONCLUSIONS

This study highlights the significance of considering temporal fluctuations in traffic flow
(such as peak-hour surges) and directional imbalances between opposing traffic streams in the
development of Safety Performance Functions (SPFs). Using crash data from Pennsylvania urban-
suburban collector roadways, we demonstrate that the D-factor, representing directional traffic
imbalance, is a key predictor for predicting total crashes, fatal and injury crashes, and angle
crashes. Its positive association with crash frequency indicates the importance of addressing
directional traffic imbalances to mitigate safety risks. Similarly, the K-factor, reflecting temporal
traffic fluctuations, is identified as a critical factor for predicting fatal and injury crashes and rear-
end crashes. Interestingly, its negative association with crash frequency suggests that higher peak-
hour traffic proportions may reduce crashes, potentially due to speed reduction during congestion.
By integrating K-factor and D-factor, SPFs can more effectively capture the dynamic interactions
between traffic patterns and traffic safety, offering insights that traditional models might overlook.
This enhanced understanding supports the development of targeted safety interventions, such as
dynamic traffic management strategies and roadway designs tailored to address temporal and
directional imbalances.

Due to data availability, this study focuses exclusively on developing SPFs for urban-
suburban collector roadways. Future research could expand on this work by exploring the role of
these factors across diverse roadway types and regions (Xu & Gayah, 2023). In addition, future
work should also consider other variables that capture the uneven distribution of traffic in time and
space. Future studies could also investigate the impact of temporal and directional traffic
distribution at intersections, incorporating factors such as turning ratios (Z. Wang et al., 2023; Xu
et al., 2020) and signal timing (Yu et al., 2022) into SPFs. These would further refine the
application of SPFs in traffic safety analysis and contribute to safer, more efficient roadway
systems.
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