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ABSTRACT

The aerospace, construction/architecture, and transportation manufacturing industries rely heavily on the
mass production of near-net shape metallic and composite extrusions. While the production of raw
extrusions is a relatively fast process, adding functional features such as holes and slots require additional
time, cost, and energy to produce. To compensate for the inherent flexibility of extrusions, conventional
machining requires rigid purpose-built fixtures for operations such as trimming, drilling and thinning. This
approach requires that the machine tools be as large or larger than the parts themselves. This results in the
need for excess shop floor space, energy for auxiliary equipment and motion systems, and significant capital
expenditure. Considerable engineering expense and time involved in the designing, building, and proving
out of part-specific fixtures for holding the components in specific configurations while machining add to
the overall manufacturing cost.

The primary objective of the technical collaboration between Oak Ridge National Laboratory and
Fairmount Technologies (FT) is to improve the XM-3, a fixtureless CNC milling machine designed by FT.
The machine was developed to trim, drill, and thin extrusions without part specific fixturing to make the
manufacturing process more efficient and flexible. Dynamic measurements of the existing structure were
collected, and modeling efforts were made to evaluate optimal machining parameters for the current system.
Areas of improvement to increase the system stiffness, manufacturability, and machining efficiency were
evaluated and highlighted for the next generation design. The impact of this effort may enable agile
manufacturing across the commercial and defense aerospace industries, and other industries where
extrusions are utilized like in the construction, architecture, and transportation industries.

1. SUMMARY

Phase I of this project evaluated the existing XM-3 machining platform by structural measurement testing
and cutting process simulation. The measurements and simulations of the current system provided the team
with an understanding of weaknesses in the design of the current system and allowed for identification of
target improvements for future design iterations.

The following tasks were completed during Phase 1 of the technical collaboration with Fairmount
Technologies:
Task 1: Tap Testing
- The team from ORNL traveled to the Fairmount Technologies facility to perform dynamic tap
testing and quantify the structural performance of the XM-3 machine.
Task 2: Machine Metrology and Modeling
- Fairmount Technologies performed some machine tool metrology of the existing machine
under static loading cases to understand the deflection of the system.
- Fairmount Technologies shared the design CAD files for XM-3 and create models of the
machine (finite element models and machine dynamics models).
Task 3: Design Review
- ORNL assessed the performance of the current machine design and the future design and made
suggestions for improvements for ease of manufacturing and dynamic stiffness. This document
is considered business proprietary and will not be contained within this report.
Task 4: Final Report
- This report serves as the ORNL summary of the baseline measurements of the current system,
results identifying target areas for improvement, and identification of modifications which
may be made to the current machine design as well as a design review of the next iteration
machine tool design produced by Fairmount Technologies.




2. INTRODUCTION

Fairmount Technologies (FT) has developed the XTRU suite of metal forming and machining technologies
capable of rapid manufacturing of structural components from extrusions without tooling or heat treatment.
XtruMach (XM), a key technology of the XTRU suite, utilizes a universal feeding fixture (UFF) to securely
fixture the parts in all degrees of freedom except one that is used to feed parts through a processing volume
within the machine. This allows elongated, curved, flexible structural sections made by extrusion or roll
forming, that are much longer than the machine envelope, to be machined without part-specific tooling.
Figure 1 below shows airframe components manufactured for customers using the XM technology. While
this technology is currently targeted at aluminum parts used in aviation, it can also be used to produce parts
for other transportation and construction industries.
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Figure 1. Examples of components machined by XtruMach.

Fairmount Technologies’ XtruMach-3 (XM-3) is a small format, four-axis CNC milling machine for rapid
machining of extrusions up to a 4” x 4” cross section without the need for dedicated fixturing or manual
part repositioning. In this generation of machine design, the tool tip accessed the parts from above the UFF
as well as from the front. This design resulted in an increased extension length of the tool, increasing the
moment arm and decreasing the tool tip stiffness.

The low machine stiffness for this design made the machining operations more prone to chatter. Chatter
also causes significant problems for the machine to track the length of the part accurately.

The intent of this CRADA was to assess the design deficiencies with the current machine tool to identify
paths for design improvement or optimal machining parameters for this iteration and provide design
feedback on the next version. Together, ORNL and FT performed structural testing, machining simulation,
and finite element analysis of the existing machine to guide the development of a new machine with
improved stiffness and cutting performance.

3. XTRUMACH-3 MEASUREMENT

Members of the ORNL Advanced Machining and Machine Tool Research group traveled to FT’s
production facility to observe a cutting demonstration on the existing XM-3 and collect dynamic
measurements of the structure. Figure 2 shows the XM-3 machine tool configuration, the universal feeding
fixture (UFF), the workpiece, and the cutting tool. Measurements of the machine tool were collected for
various spindle poses (changes in orientation of the cutting tool) and at different points on the UFF with
both stationary and moving workpieces to identify the most flexible parts of the system.
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Figure 2. Orientation and nomnlature for XM-3.
3.1 EVALUATION OF SPINDLE DYNAMICS

In many machine tools, the most flexible portion of the system is at the tool tip. The XM-3 tool tip frequency
response function was measured in both the X and Y directions for both the 0° and 90° spindle orientations
as shown in Figure 3. The magnitude frequency response for each of these four measurements is shown in
Figure 4, where in both the X and Y direction, the 0° orientation dominates the flexibility as indicated by
the higher peak. The magnitudes of these responses were comparable in both directions, however the natural
frequency for the in the X direction is significantly lower than that in the Y direction.

While the tests conducted would allow prediction of optimal stable cutting parameters for this tool-holder-
spindle combination, the current data does not allow for identification of spindle and Z axis assembly
compliance independent of the cutting tool.
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Figure 3. The tool tip frequency response function was collected for two different spindle orientations. Measurements were
collected in both the X and Y axis.
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Figure 4. The magnitude of the frequency response function for the cutting tool in the spindle is shown for the 0° and 90°
orientations in A) the X axis and B) the Y axis.

3.2 EVALUATION OF WORKHOLDING SYSTEM

The workholding/fixturing and workpiece also contribute to the stability of the system during cutting. For
all tests of the workholding system, a 2” x 2” aluminum L extrusion was loaded in the universal feeding
fixture (UFF). The clamping/ feeding rollers were engaged with the test workpiece as shown in Figure 5.
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Figure 5. Setup for impact testing of workpiece held in universal feeding fixture. Impact testing is illustrated in the Z direction.

3.2.1 Static Workpiece in Universal Feeding Fixture

The workpiece FRF was collected in the X, Y, and Z directions to evaluate which parts of the structure had
the greatest contribution to the flexibility of the system. As shown in Figure 6, the higher peak in the X axis
direction indicates that this flexibility of this mode dominates the system dynamics. The most flexible mode
in the X direction occurs at 106 Hz and is 4.5 times more flexible than the most flexible modes in the Y

and Z directions (both of which occur at 66 Hz). Improvements in the system stiffness should first be aimed
at increasing stiffness in this direction.




Additionally, the lack of stiffness in the X direction, which is also the feed direction of workpieces through
the fixture for this machine, may be responsible for slipping of workpieces during machining operations.
Additional testing of the workpiece dynamics for different bearing preloads would be warranted.
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Figure 6. The magnitude frequency response function for the workpiece/ fixture in the X, Y, and Z directions.

3.2.2 Moving Workpiece in Universal Feeding Fixture

The workpiece is fed through the machine by rollers along the X direction. To further investigate the X
direction flexibility and the potential for feed rate dependent stiffness changes, the X direction frequency
response function was measured as shown in Figure 7.

Figure 7. Impact testing in the workpiece feed direction.
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Figure 8. The magnitude frequency response function for the workpiece in the X/feed direction at three different feed rates.

The response was measured under three different conditions: static, 1in/min, and 10 in/min. The similarities
in the dominant peak at ~106Hz indicate that the greatest contributor to the flexibility of the system is
feedrate-independent.

4. MACHINE METROLOGY AND MODELING

4.1 DEFLECTION TESTING AND FEA MODELING

Fairmount Technologies conducted deflection testing using a portable CMM to record the displacement at
several locations across the machine with a series of loads. Traditionally a portable CMM is used by
recording coordinates where a predefined ball tip touches the model. To consistently measure deflection
the standard tip was replaced with an M6 thread to semi-permanently affix the measurement point to the
machine. A location was chosen from every ‘beam’ of the machine to gather enough data to create an
analytical model to approximate the machine stiffness. This would be compared to a finite element model
and further physical testing.

The portable CMM used was a Quantum Max Faro Arm M Model 7 axis. The arm required zeroing to be
used to and to set the reference coordinate system, however once that tip was removed the measured points
would not be positionally accurate and can only be used for deflection. Each point was tested under five
different X loads and four Y loads with five measurements under each loading condition. With the positions
recorded the deflection was calculated and plotted.
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Figure 10. Displacement as a function of applied load as measured by the Faro Arm in the X direction.
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Figure 11. Displacement as a function of applied load as measured by the Faro Arm in the Y direction.

Initial calculations were done with the assumption of perfectly rigid beams with flexure at the joints to find
the joint stiffness. Maple was selected as the numeric computing environment to be used for the three-
dimensional analysis as it allows for quick processing of equations and automatically simplifies results.
FEA was conducted using 3DExperience with both a simplified model of the full machine and a detailed
model of the Z axis tombstone. Comparisons between the three models showed that some of the
assumptions made within the FEA configuration were faulty and led to inaccurate results, predominately
relating to the stiffness of the base and many of the connection stiffnesses. Additional fidelity in future FEA
model is needed to more accurately predict machine tool deflections.
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Figure 12. Detailed finite element model of Z axis structure.




5. FUTURE WORK

The work conducted in Phase 1 of this technical collaboration with Fairmount Technologies presents
valuable design insights into the current XM-3 machine tool design. Following discussions between ORNL
and FT, the team will not be pursuing phase two of this project.




