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1 Introduction

Travel burdens are a major barrier to healthcare access among US Veteran patient popu-
lations, particularly those residing in rural areas (5 [). Spatial accessibility to points of
care for US Veteran populations is commonly assessed in two ways. The first approach
uses open data from the US Census to represent collective travel burdens, for example the
distance between population-weighted census tract centroids and VHA points of care (7} ]]).
The second approach uses restricted-access VHA patient data to measure travel costs (e.g.,
distance, time) for accessing points of care with respect to geolocated patient addresses
and real or approximated transportation networks (B [4)). While the advantage of the open
data approach lies in its reproducibility, it has notable limitations in its tendency to infer
individual travel behavior from aggregate population characteristics, a problem known as
ecological fallacy (7). Conversely, while the patient data approach is able to account for
individual travel behavior, its ability to account for localized access disparities (e.g., a neigh-
borhood with exceptionally high transportation costs) and patient demographics is limited
as protecting individual patient data requires their storage in closed systems with limited
capacity for adequately modeling real-world travel patterns or for supplementing patient
attributes. Additionally, the patient data approach cannot account for veterans who are
not enrolled in the VHA system but who may be eligible for care. These challenges limit
the ability to perform “what if” analyses on the effects of place-specific interventions on
veteran populations with high access barriers to healthcare.

To address these challenges, we explore the application of realistic synthetic populations
to examine travel burdens and spatial accessibility issues among veteran patient populations.
Synthetic populations provide a virtual, individually-resolved and cross-sectional represen-
tation of the veteran patient population that enables investigation of spatial access to points
of care in ways in which aggregate data and patient data do not. First, synthetic populations
allow one to directly assess how individuals access points of care, from synthesized residential
locations to outpatient facilities on real-world transportation networks (11 [12). Modeling
access to points of care at the individual scale addresses the ecological fallacy problem as-
sociated with using aggregated census data to represent veteran populations and patterns
of movement. Second, synthetic populations provide a means of completely representing an
area’s veteran population using only publicly available, anonymized census microdata from
the American Community Survey (ACS) to ensure the privacy of real-world individuals.
Generating synthetic populations from the ACS also expands descriptive characteristics be-
yond what patient data typically offers to include socio-demographic, economic, housing,
and mobility attributes. More detailed profiles of both VHA patient populations and veter-
ans not enrolled in the VA system will provide a comprehensive picture of groups that may



Census VISN Market VISN Market

Division 2019 Code Description
Pacific 21-c Central California: Fresno-Merced-Tulare
Mountain 19-c Central/Southern Front Range and Eastern Colorado
WNC 23-n North Dakota and Northeast Minnesota
ENC 12-f Central Illinois
WSC 17-e Central and South Texas
ESC 09-g Upper Tennessee Valley and Eastern Kentucky
S Atlantic 08-h Northern Florida/Big Bend
Mid Atlantic  02-h New York City, Hudson and Upper Delaware Valleys
New England 01-c Northern New Hampshire and Vermont

Table 1: Study Areas Crosswalk.

benefit from interventions or outreach.

As an initial exercise for using synthetic populations to measure veteran travel burdens
to VA care, we apply Oak Ridge National Laboratory’s (ORNL) UrbanPop capability (9)
to generate a series of synthetic VHA patient populations for 9 Veterans Integrated Services
Networks (VISN) market areas in 9 Census Divisions across the continental United States,
which are listed in Table We use UrbanPop to produce synthetic populations for the
VISN markets selected for each US Census Division, then assign VA outpatient clinic desti-
nations to synthetic VHA patients based on travel about each VISN market’s road network.
To demonstrate using the synthetic populations to evaluate healthcare travel burdens, we
compare the time-based impedance between simulated home locations and VA outpatient
clinics in each VISN market. We then perform validation exercises on the synthetic pop-
ulations with respect to neighborhood (block group) demographic composition as well as
patient mobility, comparing aggregate origin-destination statistics for the synthetic popula-
tion to outpatient visits available in restricted patient data from the VA’s Corporate Data
Warehouse (CDW) database.

2 Methods

We generate synthetic populations and simulate patient mobility using Likeness, a Python
toolkit that supports UrbanPop’s capabilities for population synthesis, transportation net-
work generation, and activity allocation (IT} 12]). To validate these results, we compare
simulated VHA patient mobility to that observed in real-world patient data available from
CDW via ORNL’s Knowledge Data Infrastructure (KDI) Enclave.

2.1 Population Synthesis

The basis for synthetic populations is the ACS, the United States Census Bureau’s primary
intercensal dataset which estimates a variety of social, economic, demographic, and other
subjects based on an annual 5% sample of the United States population. The ACS provides
two components necessary for population synthesis: an anonymized selection of individual
survey responses in the Public-Use Microdata Sample (PUMS) and neighborhood profiles in
the Summary File (SF). Likeness generates residential synthetic populations from the ACS 5-
Year Estimates via its 1ivelike utility by estimating occurrence probabilities of households



from the PUMS for small census areas (block groups, tracts) (O I1)). This is accomplished
by statistically matching PUMS households, observed at the scale of Public-Use Microdata
Areas (PUMAS) containing 100,000 or more people, to census block groups (600-3000 people)
in a way that preserves aggregate population statistics about those places available from the
ACS SF ([6). The synthetic population is then generated from a bootstrap sample of PUMS
households to small census areas based on residence type (family/nonfamily, group quarters)
and household size, which approximately preserves both the total number of people and
number of residences in an area. Residential locations for the synthetic population — serving
as origin points for travel — are subsequently modeled by conflating synthetic population
attributes (dwelling type, household income, number of units in structure) with those of
residential buildings in the Federal Emergency Management Agency’s (FEMA) public USA
Structures dataset (10).
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Figure 1: Case study VISN markets for 9 Census Divisions in the continental United States.

We leveraged Likeness residential modeling capabilities to produce synthetic populations
for one 2019 VISN market per Census Division in the continental United States (9 in total,
see Figure [1)). Within the synthetic population models, we controlled for demographic,
social, economic, housing, mobility, and worker/student characteristics, as well as veteran
status. Expanding upon the approach for US metropolitan areas demonstrated by (12]), we
generated a synthetic population for each PUMA intersecting the area of interest (AOI)
defined by VISN market, then limited the combined population to counties comprising
that AOI. This was necessary due to incongruent spatial boundaries between counties and
PUMASs: while block groups nest completely within each larger spatial unit, a PUMA is
often a collection of block groups from different counties.

We evaluated two AOI definitions in our analysis:
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Figure 2: Example of VISN market with edge counties for scenario evaluation.

e VISN market only. In this scenario, we assume that VHA patients do not travel
beyond the boundaries of the VISN market to seek care. The AOI is limited to counties
belonging to the VISN market only.

e Core VISN market with edge counties. In this scenario, we assume that VHA
patients may seek care at outpatient facilities in portions of VISN markets adjacent
to the core market in which they reside. Additionally, we assume that VHA patients
in adjacent VISN markets may travel into the core market to seek care. Accounting
for both of these factors allows us to assess edge effects in travel to outpatient clinics.
These AOIs consist of the core VISN market and edge counties, identified as those
intersecting with a convex hull of the core VISN market boundaries (see Figure .

Finally, for each AOI, we isolated agents with veteran status and VHA coverage from
each VISN market’s synthetic population. Because VHA coverage is not available as a
modeling constraint for population synthesis, we appended it post hoc via record linkage
with the PUMS.

2.2 Modeling access to VA points of care

The Likeness movelike utility supports generation of real-world transportation networks
with OpenStreetMap (OSM) via the 0SMnx and pandana Python packages (I B} 11} [12)).
Using movelike, we modeled access to VA outpatient clinics within each VISN market based
on time traveled between each synthetic VHA patient residence and clinics on the OSM road



network. We compared travel characteristics across VISN markets based on both least-cost
paths between residences and clinics and mean travel times from each residence to all clinics.

2.3 Validation
2.3.1 Neighborhood Demographics

Following (9; [12)) we validated neighborhood demographics for each AOI based on the per-
centage of block group synthetic constraints conforming to the 90% Margins of Error (MOEs)
on the published constraints from the ACS SF. Because the ACS is a 5% sample of the United
States population, every small-area estimate carries a degree of uncertainty (e.g., a block
group with 150 people with veteran status + 10). Instead of directly minimizing error be-
tween a synthetic and published estimate, UrbanPop aims to produce synthetic population
estimates that are aligned with the error variances on those estimates (€). Therefore, the
90% MOE fit rate provides a measure of the degree to which the synthetic estimates conform
to the bounds of uncertainty on the ACS SF.

2.3.2 VHA Patient Mobility

We validated VHA patient mobility in each AOI by comparing synthetic and observed origin-
destination (O-D) matrices representing flows between residential and outpatient facility ZIP
codes. O-D flows represent travel to the facility with the least cost (time-based impedance)
of access. Cumulative patterns of access to VA clinics among VHA patients in a market
form an origin-destination (O-D) matrix between patient and clinic ZIP code locations. We
chose ZIP codes as the spatial reference for our initial exercise because they are the finest
geographic resolution provided for VA facilities in CDW.

As in (11t O 12), we performed this comparison using Canonical Correlation Analysis
(CCA), a method that measures the linear association between two multidimensional data
matrices (2). A CCA R? approaching 1 in our case indicates a high degree of congruence
between synthetic and observed patient O-D flows. Any CDW observations of outpatient
visits outside the AOI were omitted from the observed O-D matrix (reported in Tables
and . Additionally, to ensure that the synthetic and observed O-D matrices had the same
dimensionality, we padded the synthetic O-D matrix with a row of zeroes to represent no
incoming patients for cases where patients were observed in a ZIP code in CDW but not
modeled in the synthetic population. We compared the O-D matrices based on relative
numbers of patients traveling to each VA patient facility by scaling the destination counts
to mean 0 and unit variance (z-score).

3 Results

3.1 Estimated Travel Costs

Table [2] displays the estimated least-cost and mean travel times to outpatient clinics along
the road network for both the core market only and core-and-edges AOI definitions. Mean
travel times for least-cost routes ranged for core market only AOIs from 9.6 minutes (02-
h: Mid-Atlantic) to 30.8 minutes (12-f: East North Central) and for core-and-edges AOIs
from 9.1 minutes (02-h: Mid-Atlantic) to 29.7 minutes (23-n: West North Central). Grand
mean (“mean of means”) travel times are considerably higher than mean least-cost travel
times, indicating dispersal of outpatient clinics throughout the VISN markets and associated



Mean Least-Cost Grand Mean
Core Market Core Market + Edges Core Market Core Market + Edges

Mid-Atlantic (02-h) 9.6 9.1 55.5 59.1
WSC (17-e) 15.7 15.5 434 70.9
Mountain (19-c) 16.0 15.6 95.7 119.7
Pacific (21-C) 16.1 17.6 53.0 112.3
ESC (09-g) 18.5 13.3 87.2 109.1
South Atlantic (08-h) 19.5 18.9 101.1 122.1
New England (01-c) 24.7 23.7 110.6 126.5
WNC (23-n) 29.8 29.7 184.1 202.5
ENC (12-f) 30.8 27.3 82.8 113.0

Table 2: Estimated mean least-cost (minimum) and grand mean travel times between syn-
thetic VHA patient residences and VA outpatient clinics on the road network by VISN
market.

edge counties. These times range for core-only AOIs from 43.4 minutes (17-e: West South
Central) to 184.1 minutes (23-n: West North Central) and for core-and-edges AOIs from
59.1 minutes (02-h: Mid-Atlantic) to 202.5 minutes (23-n: West North Central).

In terms of least-cost paths to outpatient clinics, we find that VISN markets contain-
ing large urban centers (02-h: Mid Atlantic, containing portions of the New York City
Metropolitan Area; 17-e: West South Central, containing the Houston, Austin, and San
Antonio, TX metropolitan areas) offer reduced travel time, whereas predominantly rural
markets with smaller urban centers (01-c: New England; 23-n: West North Central; 12-f:
East North Central) feature the longest overall travel duration. Travel times for the re-
mainder of markets appear to loosely follow the sizes of their primary cities, with Mountain
(12-f, Denver/Colorado Springs, CO) and Pacific (21-c: Fresno/Merced, CA) next in line,
followed by markets characterized by smaller to midsized cities (09-g: East South Central,
Knoxville, TN; 08-h: South Atlantic, Gainesville/Talahassee, FL). These high and low rank-
ings remain generally consistent with mean travel costs between residences and outpatient
facilities. The most pronounced shift between least-cost and mean travel times occurs for
the Mountain VISN market (19-c), with a large spatial footprint that encompasses most of
Colorado and adjacent states.

The distributions of least-cost path times for all synthetic patients by AOI/VISN market
(Figures are all heavily right-skewed, further reflecting differences in access between
core urban areas with outpatient clinics and distal peripheral/rural areas. For core market
only AOIs, the distribution of times is highly peaked at 30 minutes and below for markets
with the shortest travel times (02-h: Mid Atlantic; 17-e: West South Central), but more
dispersed and bimodal in the markets with the longest travel times (01-c: New England;
12-f: East North Central; 23-N: West North Central). Least-cost travel time distributions
are much the same for the core-and-edges AOIs, with some increased dispersal of longer
travel times, particularly in those markets with higher time-based impedance. However,
outlying high travel times decrease for core-and-edges AOIs, as evidenced by differences in
the upper limits of the x-axes between Figures [3] and [
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Figure 3: Distribution of least cost travel times in minutes by VISN market, core market
only AOIs.
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Figure 4: Distribution of least cost travel times in minutes by VISN market, core-and-edges
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Figure 5: One-dimensional kernel density estimates of block group-level MOE Fit Rates by

VISN Market.




Observed Trips
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0

Pacific 136 4 8.9 0.878 < 0.0001
Mountain 328 12 5.3 0.758 0
WNC 533 11 11.3 0.856 0
ENC 387 5 18.5 0.869 0
WSC 242 9 5.3 0.648 0
ESC 259 12 7.2 0.768 0
S Atlantic 330 16 10.3 0.745 0
Mid Atlantic 424 18 3.5 0.668 0
New England 496 13 9.9 0.793 0

Table 3: Canonical Correlation Analysis (CCA) results for mobility validation exercise.

3.2 Validation
3.2.1 Neighborhood Composition

In general, the block group-level MOE Fit Rates for the market-only AOIs show between
99%-100% correspondence between the synthetic and reported estimates relative to the
MOEs. However, the distributions of MOE Fit Rates (Figure all feature long left
tails, indicating that each VISN Market contains a handful of block groups with populations
that conform less neatly to the ACS SF MOEs. We observe MOE Fit Rates below 90% for
the Pacific (21-c) and West South Central (17-e¢) Markets (~88% each), as well as the
Mountain Market (19-c), with a minimum MOE Fit Rate of ~75%. These cases appear to
be consistently tied to block groups where the majority of the population is associated with
some large institutional (e.g., prison, nursing home) or military facility (the outlying low
value for Mountain 19-c coincides with the US Air Force Academy). This issue is potentially
tied to differences in sample size for institutionalized and military populations that make
the ACS SF estimates more difficult to fully recreate.

3.2.2 VHA Patient Mobility

For the market-only AOIs, we observed modest to strong association between the syn-
thetic and observed O-D matrices representing ZIP-ZIP flows between residential and VA
outpatient facility locations (Table [3). The strongest correspondence between synthetic
and observed O-D flows was for the Pacific VISN market (21-c: Fresno-Merced, CA; CCA
R? = 0.878), with similarly high values for the Eastern North Central VISN market (12-f:
Central Illinois; CCA R? = 0.869) and Western North Central VISN market (23-n: North
Dakota, Northwest Minnesota; CCA R? = 0.856). Lower correspondence occurred for the
West South Central VISN market (17-e: Central and South Texas; CCA R? = 0.648) and
Mid Atlantic VISN market (02-H: New York City and Hudson/Delaware River Valleys; CCA
R? = 0.668).

For the AOIs defined by a core VISN market and edge counties, we observed a slight
shift (mean absolute change in CCA R? = 0.088) in CCA values, with a tendency toward
decreased correspondence between synthetic and observed mobility patterns (Table 5]). The
largest of these is the Eastern North Central VISN market (Agz = —0.247), with a similarly
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Observed Trips
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Pacific 136 5 8.6 0.805 < 0.0001
Mountain 328 15 4.8 0.761 0
WNC 533 14 10.6 0.690 0
ENC 387 11 15.2 0.621 0
WSC 242 13 4.3 0.561 < 0.0001
ESC 259 12 7.2 0.766 0
S Atlantic 330 26 6.9 0.718 0
Mid Atlantic 424 24 3.5 0.583 0
New England 496 20 9.4 0.692 0

Table 4: Canonical Correlation Analysis (CCA) results for mobility validation exercise,
including peripheral counties to the VISN.

Census Division A(R?) (vs. Market-Only)
Pacific -0.073
Mountain 0.004
WNC -0.165
ENC -0.247
WSC -0.087
ESC -0.002
S Atlantic -0.028
Mid Atlantic -0.085
New England -0.101

Table 5: A(R?) between core VISN and edge county inclusion for the Canonical Correlation
Analysis (CCA).
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substantial change for the Western North Central VISN market (Arz = —0.165). The
most stable VISN markets were Eastern South Central (Ag: = —0.002) and Mountain
(Ag2 = 0.004).

4 Discussion

Together, our demographic and mobility validation exercises demonstrate the effectiveness
of using synthetic populations to understand travel burdens among VHA patients. We find
that predominantly rural VISN markets with smaller urban core area — often containing
outpatient clinics — and larger peripheral areas, tend to have heightened outpatient access
barriers. This is likely because patient residential locations are more spatially dispersed
rather than concentrated in urban centers. We see this effect across all selected VISN
markets, but the degree to which it is expressed appears to depend heavily upon urbanicity.
While synthetic neighborhood demographics were more closely aligned with source data
(ACS SF) than mobility of synthetic VHA patients (CDW outpatient visits), each captured
real-world dynamics with reasonable accuracy.

The general decrease in CCA performance between the market-only and core-and-edges
model runs suggests that using VISN markets to bound mobility simulations is more effective
than assuming VHA patients seek out-of-market care. That is, despite fewer extreme high
travel times observed for the core-and-edges models, it appears less realistic overall to assume
that patients would seek care in another VISN market instead of their own.

Differences in mobility validation scores (CCA R?) among the selected VISN markets
reveal some important potential confounding factors for these models that should be ad-
dressed in future work. The most notable of these is the travel mode that synthetic patients
use to access VA points of care. One of the VISN markets with the weakest relative per-
formance (02-h) contains New York City, for which outpatient mobility is likely influenced
more heavily by public transit access than driving. Degree of urbanization may also drive
greater differences between synthetic and observed patient mobility. The VISN market with
the overall weakest relative performance, 17-e, contains two large metropolitan areas (Hous-
ton and San Antonio, TX), and it is possible that factors like traffic congestion affect the
ways in patients access points of care in reality.

5 Conclusion

This preliminary analysis applied synthetic populations and simulated mobility about real-
world transportation (road) networks to evaluate VHA veteran patient access to outpatient
care at VHA facilities. We demonstrated the ability of synthetic populations to provide a
complete, close-to-reality approximation of VHA patient populations at large spatial scales
(VISN markets) with mobility characteristics that sufficiently recreate those of actual pa-
tients while preserving privacy.

In future work, we intend to expand the scope of patient mobility access to encompass
multiple treatment types, ranging from those that could be addressed or supplemented
by telehealth services (psychotherapy, medication management) to those requiring physical
presence (opioid treatment). Toward the former, we will evaluate the potential mitigative
effects of internet availability and broadband access on travel time. Toward the latter, we
will consider the placement of mobile clinics in different areas of interest, particularly in areas
with limited access to brick-and-mortar clinics. To achieve this, we intend to use spatial
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optimization methods to locate facilities in areas most reachable by patient populations
with high access barriers. We will also expand travel modalities to include access barriers
relative to walk/bike infrastructure, as well as public transit routes.
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