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ABSTRACT

This paper addresses the challenge of traffic monitoring and incident detection in 
remote areas, utilizing multimodal large language models (LLMs) deployed on edge 
AI devices. The key novelty of the LLM is to convert real-time video streams into 
descriptive texts, enabling low-bandwidth transmissions and reliable detection of 
anomalies and incidents in environments of intermittent connectivity. The model is 
developed based on fine-tuning open-source LLMs and extending it with multi-modal 
capabilities to analyze video frames. Our work also involves deploying this model on 
edge devices such as Nvidia IGX Orin and is planned to be tested in realistic 
environments as future work. The methodology includes dataset curation, iterative 
model fine-tuning and compression, and hardware-based optimization. This approach 
aims to enhance traffic safety and response speed in remote areas, marking a significant 
advancement in the application of AI for traffic monitoring and safety management.

INTRODUCTION

The advent of Generative Artificial Intelligence (GenAI) technologies (Vaswani
2017), particularly Large Language Models (LLMs) (Achiam et al. 2023), has opened 
new frontiers in intelligent transportation systems and smart mobility. In this work, we 
use cutting-edge multimodal LLMs to address critical challenges in traffic monitoring 
and anomaly detection, especially in remote and inaccessible areas.

Remote regions, such as rural roads and sprawling wilderness routes, present 
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unique challenges for timely incident detection and response. Traditional surveillance 
systems face limitations due to intermittent network connectivity, high bandwidth 
requirements for real-time video transmission, and constraints on continuous operation. 
These challenges create significant gaps in monitoring and incident response, 
potentially delaying emergency services and compromising safety in areas with low 
population density.

The deployment of fine-tuned multimodal LLMs on edge computing devices at 
high-risk intersections presents a transformative solution for rapid incident response in 
transportation systems. By automatically analyzing and interpreting traffic incidents in 
real-time, these models can significantly reduce the critical time between accident 
occurrence and emergency response deployment. This capability is particularly 
valuable at busy intersections with historically high accident rates, where immediate 
and accurate incident classification can streamline communication with appropriate 
authorities, whether it be emergency medical services, traffic management teams, or 
law enforcement. Edge-computing implementation ensures rapid processing without 
manual operations, enabling instant decision-making even in areas with limited 
connectivity, thereby potentially saving crucial minutes in emergency situations where 
every second counts.

Our research vision centers on developing a cutting-edge multimodal LLM 
tailored specifically for intelligent traffic monitoring and anomaly detection on edge 
computing devices. It has the following key contributions:

 GenAI for Mobility: We leverage generative deep learning techniques, 
specifically multimodal LLMs, to analyze and interpret complex traffic 
scenarios from video feeds.

 Infrastructure Sensing: Our approach involves deploying sophisticated AI 
models on edge devices, contributing to the development of advanced urban 
sensing infrastructure and edge computing capabilities.

 Human Dynamics Analysis: By converting real-time events into descriptive 
summaries, our system enhances the modeling and analysis of traffic flow and 
human movement patterns in remote areas.

 Cyberinfrastructure: Our research contributes to the development of AI-
powered platforms that facilitate the acquisition, management, and analysis of 
mobility data, even in challenging environments with limited connectivity.

Our methodology encompasses a comprehensive approach to address these 
challenges: 

 Dataset curation, combining existing traffic incident datasets with newly 
collected data from remote areas.
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 Selection and fine-tuning of a foundational multimodal LLM, adapting it to 
understand and interpret complex traffic scenarios.

 Iterative fine-tuning to continuously improve the model's performance on 
specific tasks related to traffic monitoring and incident detection.

 Advanced compression and quantization techniques for deploying these 
sophisticated models on edge devices, balancing performance and 
computational efficiency. 
This methodological framework ensures that our system can operate effectively 

in resource-constrained environments while maintaining high accuracy in detecting 
and reporting critical traffic events. By doing so, we aim to enhance traffic safety and 
response speed in remote areas, marking a significant advancement in the application 
of AI for traffic monitoring and safety management.

The remainder of this paper is organized as follows: Section 2 provides an 
overview of related work. Section 3 details our methodology, including dataset 
curation, model selection, fine-tuning processes, and optimization techniques for edge 
deployment. In Section 4, we present our preliminary results and discuss the 
performance of our system in detecting and classifying various traffic incidents. We 
also analyze the challenges encountered and propose potential solutions. Finally, 
Section 5 concludes the paper.

RELATED WORK

Recent advancements in multimodal LLMs have shown promising results in 
visual understanding tasks (Liu et al. 2023). These models can process both text and 
image inputs, allowing for a more comprehensive analysis of visual scenes. However, 
their application to traffic monitoring, especially in resource-constrained edge 
environments, remains largely unexplored.

On the other hand, edge computing in transportation systems has gained 
significant attention in recent years (Shi et al. 2016). These approaches bring 
computation closer to the data source, reducing latency and bandwidth requirements. 
However, they often lack the reasoning capabilities required for complex traffic 
scenarios, which our proposed multimodal LLM aims to address.

For testing the effectiveness of traffic understanding, we utilize the Car 
Accident Detection and Prediction (CADP) dataset (Shah et al. 2018). The dataset 
contains 230 videos, each with at least one accident captured from fixed traffic camera 
views, and 1,416 segments of traffic accidents. Additionally, 205 segments with HD 
quality are annotated with spatio-temporal data for object detection, tracking, and 
collision detection. The CADP dataset is particularly relevant as it focuses on traffic 
accidents captured from fixed third-person views, which aligns with our goal of 
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monitoring remote areas using stationary edge devices. Therefore, we choose this 
dataset for fine-tuning our selected models.

METHODOLOGY 

Dataset Curation
We consider various traffic scenes, including incidents and a range of traffic 

conditions typically encountered in remote areas. To efficiently annotate the video 
frames, we utilize existing LLMs (GPT, Gemini, Claude) for initial text descriptions. 
This will be followed by careful human refinement for accuracy, particularly for critical 
events like accidents or wildlife encounters.

Our focus is on developing a comprehensive taxonomy for remote traffic 
incidents, ensuring the dataset captures a broad spectrum of anomalies and potential 
disruptions. To further enhance the quality and robustness of the dataset, we implement 
an iterative feedback loop, through retraining open-source LLM models with the 
evolving data. This process will place emphasis on examples where the model exhibits 
low confidence, ensuring continuous improvement. Data curation strictly adheres to 
ethical standards, prioritizing privacy by removing personally identifiable information.
Foundational Model Selection 

Our work builds upon the strengths of cutting-edge open-source multimodal 
LLMs and chooses the most suitable existing model as the basis for fine-tuning. Our 
selection process prioritizes models that demonstrate strong multimodal understanding 
of images and text, proven transfer learning capabilities, and potential for 
computational efficiency. We carefully evaluate various candidate models from Meta, 
Google, among others. We choose LLaVA, which is based on the Llama series, for 
later experiments. 
Iterative Fine-tuning

The iterative fine-tuning stage is the most computationally expensive of the 
visual language representation learning process. It involves multiple rounds of training 
the model on a curated dataset to enhance the large language model’s (LLM’s) ability 
to interpret complex traffic images accurately. The fine-tuning process is inspired by 
BLIP-2 (Li et al. 2023), but with added temporal cross-attention in the Q-Former design. 

Specifically, the LLM is first subjected to a round of training on the prepared 
dataset. During this training, the LLM learns to map the visual features extracted from 
the image (using the Q-Former) to the corresponding textual descriptions. After the 
initial training, the model’s performance is evaluated on a separate validation set. This 
helps identify areas where the LLM struggles to accurately interpret the visual content. 
Based on the evaluation results, the LLM is fine-tuned further on a subset of the 
training data specifically chosen to address the identified shortcomings. These steps 
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are repeated iteratively. The LLM is continuously evaluated and finetuned on carefully 
selected subsets of the training data to progressively improve its performance on the 
task of interpreting complex traffic images. The iterative finetuning process continues 
until a pre-defined stopping criterion is met. This criterion could be based on the LLM 
achieving a desired level of accuracy on the validation set, or after a fixed number of 
iterations. 
Compression and Quantization

In this step, we reduce the model size through compression and quantization, 
so that the resulting model can fit on resource-constrained edge computing devices. We 
aim to achieve a good trade-off between cost and accuracy of the resulting model.  

Distillation: This method uses a larger model to train a smaller model, which 
can enhance memory and computing efficiency by reducing the number of parameters. 
In this research direction, we will use the more powerful model as the teacher model 
and train a smaller student model with proactive confidence estimation. This 
confidence parameter will be used to guide the triage and model selection decision-
making process in the field, with a focus on leveraging the right model given the 
computing capability of edge computing hardware, as well as load balancing between 
a small triage model and sending more critical cases/signals to a larger model.

Quantization: This method converts full precision parameters (e.g., 16-bit float) 
into discrete values. However, since this quantization step is done after training, the 
conversion can result in performance degradation as the quantized values are not 
optimized in a larger context. Alternatively, Quantization-Aware Training (QAT) 
attempts to train a model with quantization in mind. Recent work includes binarized 
networks for convolutional neural networks, binarized Transformers for machine 
translation and BERT, as well as promising results on QAT in LLMs (BitNet) (Wang 
et al. 2023). QAT provides a good balance between model compression and has not 
been done on an image-to-text LLM especially for multi-frame image-based event 
detection.

EVALUATION

Our evaluation focuses on two key aspects: (1) the accuracy of multimodal 
Large Language Models (LLMs) in traffic incident detection, and (2) the latency 
performance of these models when deployed on edge devices.

Dataset Description
Our experiments utilize a subset of the CADP (CCTV traffic camera based 

Accident Analysis Dataset Platform) dataset (Shah et al. 2018). The original dataset 
consists of numerous traffic video sequences captured as frame sequences of varying 
lengths. For our study, we extracted and manually annotated 200 sequences with 
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ground truth labels for training and inference purposes.
A notable characteristic of our dataset subset is its high concentration of 

accident scenarios, with approximately 97% of sequences containing traffic incidents. 
While this distribution may not be representative of real-world traffic patterns, it allows 
us to focus our analysis on accident severity assessment rather than binary accident 
detection. The dataset predominantly features T-bone collisions and rear-end collisions, 
aligning with accident type distributions reported by the National Highway Traffic 
Safety Administration (NHTSA) in 2017, where these collision types, along with 
angled collisions, were identified as the most frequent accident categories.

This dataset composition enables us to specifically address the challenge of 
accident severity classification, though we acknowledge that future work should 
incorporate a more balanced dataset for accident detection tasks. A potential extension 
of this research could involve developing or implementing a preliminary model for 
accident detection before routing cases to our severity assessment model.

Accuracy Evaluation
We conducted experiments using a subset of 100 traffic video sequences from 

the CADP dataset, evaluating three models: OpenAI’s GPT-4 Vision, LLaVA, and 
VILA (both based on the LLama series). Each sequence contains multiple frames 
capturing potential traffic incidents.

GPT-4 Vision Analysis
Initial experiments with GPT-4 Vision focused on basic accident identification 

using binary (yes/no) questions. Figure 1 shows the model’s performance in detecting 
accidents.

                              

Figure 1. GPT-4 Vision performance in accident detection, showing 43% correct 
identifications but 34% denied requests due to safety limitations

The results revealed significant limitations: GPT-4 Vision correctly identified 
accidents in only 43% of cases, while in 34% of cases it denied the request due to safety 
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limitations or content restrictions. Given these constraints, we did not proceed with 
more detailed accident analysis using GPT-4 Vision.

LLaVA Analysis
We next evaluated LLaVA’s basic ability to identify accidents in traffic scenes. 

Figure 2 shows the model’s overall performance in this initial trial.

                               

Figure 2. LLaVA’s performance in initial trials showing 76% correct identifications 
with no denied requests, demonstrating strong reliability in basic accident detection

LLaVA achieved correct responses in 76% of cases, with incorrect responses in 24% 
of cases. Notably, there were no instances where LLaVA failed to see an accident or 
denied the request, showing robust reliability in basic accident detection tasks.

For detailed analysis, we developed a comprehensive prompt template: 
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Figure 3. LLaVA’s accuracy across different question types, showing strong 
performance in police presence (80%) and fire detection (78%), but lower accuracy in 
vehicle type identification (30%)

Using this detailed prompt, LLaVA showed varying performance across 
different question types, achieving an average accuracy of 57.55%. As shown in Figure 
3, the model performed particularly well in identifying police presence (80%) and fire-
related incidents (78%), but struggled with accident type classification (50%) and 
vehicle type identification (30%).

VILA Model Analysis
VILA demonstrated improved overall performance with an average accuracy of

62.67%. As shown in Figure 4, it excelled in specific tasks such as fire detection (95%)

Figure 4. VILA’s accuracy across different question types, demonstrating superior 
performance in fire detection (95%) and firetruck identification (90%), with an 
improved overall average of 62.67%
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and firetruck identification (90%). However, like LLaVA, it struggled with accident 
type classification, often defaulting to generic responses like "traffic accident" or 
"traffic collision" without providing specific details.

                          

Figure 5. Response time distribution comparison between models, highlighting 
VILA’s consistent performance around 19 seconds compared to other models’ greater 
variability

Performance Analysis
Response time analysis revealed distinct patterns between the models. As 

shown in Figure 5, VILA demonstrated remarkable consistency with a narrow 
interquartile range centered around 19 seconds. LLaVA showed similar consistency 
but with slightly higher response times (approximately 22 seconds). In contrast, GPT-
4 Vision showed greater variability, with response times occasionally reaching up to 
95 seconds.

Fine-tuning Challenges
Our attempts at fine-tuning the models revealed several consistent challenges. 

First, models tended to overfit even with 100 training sequences, often converging on 
simplified, generic responses. Second, the imbalanced nature of our dataset, 
particularly for binary classifications like fire presence (where negative cases 
significantly outnumber positive ones), led to biased model responses. These 
challenges suggest that effective fine-tuning for traffic monitoring applications 
requires substantially larger and more balanced datasets, potentially beyond the scope 
of a single research team.
Latency Evaluation of LLaVA

In this section, we evaluate the performance of LLaVA under various 
configurations to assess its suitability for edge deployment. Specifically, we choose 
different model sizes (7B and 13B parameters) and quantization levels (4-bit and 8-
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bit). The evaluation was conducted on L4 GPU, which has a more comparable TFLOPS 
compared to our target edge platform than high-end GPUs such as A100 or H100. 
Hence, the latency measurement should be more relevant for edge computing 
environments.

Fig. 6. Trial latency measurements for different LLaVA configurations

Figure 6 shows the average latency measurements for different LLaVA 
configurations, demonstrating the trade-offs between model size, quantization level, 
and processing speed.

Discussions
The evaluation results demonstrate the potential of multimodal LLMs, 

particularly LLaVA, for traffic monitoring and incident detection in remote areas. We 
conclude that using open-source models seem more preferable than commercial models. 
In our planned work, we also aim to fine-tune the open models to further improve its 
performance. The latency evaluation reveals trade-offs between model size, 
quantization level, and inference time. The 4-bit quantified 7B model shows promise 
for edge deployment, balancing performance and latency. Our future work will focus 
on fine-tuning LLaVA on diverse traffic incident datasets, optimizing edge 
performance through advanced compression techniques, exploring prompt engineering 
strategies, and conducting extensive real-world testing.

CONCLUSION

This paper has presented a comprehensive evaluation of multimodal large 
language models for traffic monitoring and incident detection in remote areas, with a 
particular focus on edge AI deployment. Our experimental results demonstrate that not 
only commercial models, but also open-source models like LLaVA and VILA can 
achieve competitive performance in analyzing traffic incidents. The key advantage of 
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our approach lies in converting real-time video streams into descriptive texts, enabling
efficient monitoring even in areas with limited connectivity.

The research also uncovered significant challenges that need to be addressed. 
Model fine-tuning proved particularly demanding due to data imbalance issues, 
especially in binary classification tasks like fire detection. Commercial models, despite 
their powerful capabilities, showed inconsistent behavior due to built-in safety 
limitations, highlighting the need for specialized solutions in traffic monitoring 
applications.

Looking ahead, our research points to several crucial directions for advancing 
this technology. Future work should focus on developing more comprehensive and 
balanced datasets specifically for traffic incident analysis in remote areas. This includes 
gathering diverse data across different weather conditions, lighting scenarios, and 
incident types. Additionally, we plan to investigate advanced compression techniques 
and quantization-aware training methods to optimize model deployment on edge 
devices such as the Nvidia IGX Orin platform.
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