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ABSTRACT

This paper addresses the challenge of traffic monitoring and incident detection in
remote areas, utilizing multimodal large language models (LLMs) deployed on edge
Al devices. The key novelty of the LLM is to convert real-time video streams into
descriptive texts, enabling low-bandwidth transmissions and reliable detection of
anomalies and incidents in environments of intermittent connectivity. The model is
developed based on fine-tuning open-source LLMs and extending it with multi-modal
capabilities to analyze video frames. Our work also involves deploying this model on
edge devices such as Nvidia IGX Orin and is planned to be tested in realistic
environments as future work. The methodology includes dataset curation, iterative
model fine-tuning and compression, and hardware-based optimization. This approach
aims to enhance traffic safety and response speed in remote areas, marking a significant
advancement in the application of Al for traffic monitoring and safety management.

INTRODUCTION

The advent of Generative Artificial Intelligence (GenAl) technologies (Vaswani
2017), particularly Large Language Models (LLMs) (Achiam et al. 2023), has opened
new frontiers in intelligent transportation systems and smart mobility. In this work, we
use cutting-edge multimodal LLMs to address critical challenges in traffic monitoring
and anomaly detection, especially in remote and inaccessible areas.

Remote regions, such as rural roads and sprawling wilderness routes, present
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unique challenges for timely incident detection and response. Traditional surveillance
systems face limitations due to intermittent network connectivity, high bandwidth
requirements for real-time video transmission, and constraints on continuous operation.
These challenges create significant gaps in monitoring and incident response,
potentially delaying emergency services and compromising safety in areas with low
population density.

The deployment of fine-tuned multimodal LLMs on edge computing devices at
high-risk intersections presents a transformative solution for rapid incident response in
transportation systems. By automatically analyzing and interpreting traffic incidents in
real-time, these models can significantly reduce the critical time between accident
occurrence and emergency response deployment. This capability is particularly
valuable at busy intersections with historically high accident rates, where immediate
and accurate incident classification can streamline communication with appropriate
authorities, whether it be emergency medical services, traffic management teams, or
law enforcement. Edge-computing implementation ensures rapid processing without
manual operations, enabling instant decision-making even in areas with limited
connectivity, thereby potentially saving crucial minutes in emergency situations where
every second counts.

Our research vision centers on developing a cutting-edge multimodal LLM
tailored specifically for intelligent traffic monitoring and anomaly detection on edge
computing devices. It has the following key contributions:

e GenAl for Mobility: We leverage generative deep learning techniques,
specifically multimodal LLMs, to analyze and interpret complex traffic
scenarios from video feeds.

e Infrastructure Sensing: Our approach involves deploying sophisticated Al
models on edge devices, contributing to the development of advanced urban
sensing infrastructure and edge computing capabilities.

e Human Dynamics Analysis: By converting real-time events into descriptive
summaries, our system enhances the modeling and analysis of traffic flow and
human movement patterns in remote areas.

e Cyberinfrastructure: Our research contributes to the development of Al-
powered platforms that facilitate the acquisition, management, and analysis of
mobility data, even in challenging environments with limited connectivity.

Our methodology encompasses a comprehensive approach to address these
challenges:

e Dataset curation, combining existing traffic incident datasets with newly
collected data from remote areas.



e Selection and fine-tuning of a foundational multimodal LLM, adapting it to
understand and interpret complex traffic scenarios.

e [terative fine-tuning to continuously improve the model's performance on
specific tasks related to traffic monitoring and incident detection.

e Advanced compression and quantization techniques for deploying these
sophisticated models on edge devices, balancing performance and
computational efficiency.

This methodological framework ensures that our system can operate effectively
in resource-constrained environments while maintaining high accuracy in detecting
and reporting critical traffic events. By doing so, we aim to enhance traffic safety and
response speed in remote areas, marking a significant advancement in the application
of Al for traffic monitoring and safety management.

The remainder of this paper is organized as follows: Section 2 provides an
overview of related work. Section 3 details our methodology, including dataset
curation, model selection, fine-tuning processes, and optimization techniques for edge
deployment. In Section 4, we present our preliminary results and discuss the
performance of our system in detecting and classifying various traffic incidents. We
also analyze the challenges encountered and propose potential solutions. Finally,
Section 5 concludes the paper.

RELATED WORK

Recent advancements in multimodal LLMs have shown promising results in
visual understanding tasks (Liu et al. 2023). These models can process both text and
image inputs, allowing for a more comprehensive analysis of visual scenes. However,
their application to traffic monitoring, especially in resource-constrained edge
environments, remains largely unexplored.

On the other hand, edge computing in transportation systems has gained
significant attention in recent years (Shi et al. 2016). These approaches bring
computation closer to the data source, reducing latency and bandwidth requirements.
However, they often lack the reasoning capabilities required for complex traffic
scenarios, which our proposed multimodal LLM aims to address.

For testing the effectiveness of traffic understanding, we utilize the Car
Accident Detection and Prediction (CADP) dataset (Shah et al. 2018). The dataset
contains 230 videos, each with at least one accident captured from fixed traffic camera
views, and 1,416 segments of traffic accidents. Additionally, 205 segments with HD
quality are annotated with spatio-temporal data for object detection, tracking, and
collision detection. The CADP dataset is particularly relevant as it focuses on traffic
accidents captured from fixed third-person views, which aligns with our goal of



monitoring remote areas using stationary edge devices. Therefore, we choose this
dataset for fine-tuning our selected models.

METHODOLOGY

Dataset Curation

We consider various traffic scenes, including incidents and a range of traffic
conditions typically encountered in remote areas. To efficiently annotate the video
frames, we utilize existing LLMs (GPT, Gemini, Claude) for initial text descriptions.
This will be followed by careful human refinement for accuracy, particularly for critical
events like accidents or wildlife encounters.

Our focus is on developing a comprehensive taxonomy for remote traffic
incidents, ensuring the dataset captures a broad spectrum of anomalies and potential
disruptions. To further enhance the quality and robustness of the dataset, we implement
an iterative feedback loop, through retraining open-source LLM models with the
evolving data. This process will place emphasis on examples where the model exhibits
low confidence, ensuring continuous improvement. Data curation strictly adheres to
ethical standards, prioritizing privacy by removing personally identifiable information.
Foundational Model Selection

Our work builds upon the strengths of cutting-edge open-source multimodal
LLMs and chooses the most suitable existing model as the basis for fine-tuning. Our
selection process prioritizes models that demonstrate strong multimodal understanding
of images and text, proven transfer learning capabilities, and potential for
computational efficiency. We carefully evaluate various candidate models from Meta,
Google, among others. We choose LLaVA, which is based on the Llama series, for
later experiments.

Iterative Fine-tuning

The iterative fine-tuning stage is the most computationally expensive of the
visual language representation learning process. It involves multiple rounds of training
the model on a curated dataset to enhance the large language model’s (LLM’s) ability
to interpret complex traffic images accurately. The fine-tuning process is inspired by
BLIP-2 (Liet al. 2023), but with added temporal cross-attention in the Q-Former design.

Specifically, the LLM is first subjected to a round of training on the prepared
dataset. During this training, the LLM learns to map the visual features extracted from
the image (using the Q-Former) to the corresponding textual descriptions. After the
initial training, the model’s performance is evaluated on a separate validation set. This
helps identify areas where the LLM struggles to accurately interpret the visual content.
Based on the evaluation results, the LLM is fine-tuned further on a subset of the
training data specifically chosen to address the identified shortcomings. These steps



are repeated iteratively. The LLM is continuously evaluated and finetuned on carefully
selected subsets of the training data to progressively improve its performance on the
task of interpreting complex traffic images. The iterative finetuning process continues
until a pre-defined stopping criterion is met. This criterion could be based on the LLM
achieving a desired level of accuracy on the validation set, or after a fixed number of
iterations.
Compression and Quantization

In this step, we reduce the model size through compression and quantization,
so that the resulting model can fit on resource-constrained edge computing devices. We
aim to achieve a good trade-off between cost and accuracy of the resulting model.

Distillation: This method uses a larger model to train a smaller model, which
can enhance memory and computing efficiency by reducing the number of parameters.
In this research direction, we will use the more powerful model as the teacher model
and train a smaller student model with proactive confidence estimation. This
confidence parameter will be used to guide the triage and model selection decision-
making process in the field, with a focus on leveraging the right model given the
computing capability of edge computing hardware, as well as load balancing between
a small triage model and sending more critical cases/signals to a larger model.

Quantization: This method converts full precision parameters (e.g., 16-bit float)
into discrete values. However, since this quantization step is done after training, the
conversion can result in performance degradation as the quantized values are not
optimized in a larger context. Alternatively, Quantization-Aware Training (QAT)
attempts to train a model with quantization in mind. Recent work includes binarized
networks for convolutional neural networks, binarized Transformers for machine
translation and BERT, as well as promising results on QAT in LLMs (BitNet) (Wang
et al. 2023). QAT provides a good balance between model compression and has not
been done on an image-to-text LLM especially for multi-frame image-based event
detection.

EVALUATION

Our evaluation focuses on two key aspects: (1) the accuracy of multimodal
Large Language Models (LLMs) in traffic incident detection, and (2) the latency
performance of these models when deployed on edge devices.

Dataset Description

Our experiments utilize a subset of the CADP (CCTV traffic camera based
Accident Analysis Dataset Platform) dataset (Shah et al. 2018). The original dataset
consists of numerous traffic video sequences captured as frame sequences of varying
lengths. For our study, we extracted and manually annotated 200 sequences with
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ground truth labels for training and inference purposes.

A notable characteristic of our dataset subset is its high concentration of
accident scenarios, with approximately 97% of sequences containing traffic incidents.
While this distribution may not be representative of real-world traffic patterns, it allows
us to focus our analysis on accident severity assessment rather than binary accident
detection. The dataset predominantly features T-bone collisions and rear-end collisions,
aligning with accident type distributions reported by the National Highway Traffic
Safety Administration (NHTSA) in 2017, where these collision types, along with
angled collisions, were identified as the most frequent accident categories.

This dataset composition enables us to specifically address the challenge of
accident severity classification, though we acknowledge that future work should
incorporate a more balanced dataset for accident detection tasks. A potential extension
of this research could involve developing or implementing a preliminary model for
accident detection before routing cases to our severity assessment model.

Accuracy Evaluation

We conducted experiments using a subset of 100 traffic video sequences from
the CADP dataset, evaluating three models: OpenAl’s GPT-4 Vision, LLaVA, and
VILA (both based on the LLama series). Each sequence contains multiple frames
capturing potential traffic incidents.

GPT-4 Vision Analysis

Initial experiments with GPT-4 Vision focused on basic accident identification
using binary (yes/no) questions. Figure 1 shows the model’s performance in detecting
accidents.

OpenAl Trials

N
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= Correct Al Didn't See Accident Al Denied the Request  ® Incorrect

Figure 1. GPT-4 Vision performance in accident detection, showing 43% correct
identifications but 34% denied requests due to safety limitations

The results revealed significant limitations: GPT-4 Vision correctly identified
accidents in only 43% of cases, while in 34% of cases it denied the request due to safety



limitations or content restrictions. Given these constraints, we did not proceed with
more detailed accident analysis using GPT-4 Vision.
LLaVA Analysis

We next evaluated LLaVA’s basic ability to identify accidents in traffic scenes.
Figure 2 shows the model’s overall performance in this initial trial.

LLaVA Initial Trials
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Figure 2. LLaVA’s performance in initial trials showing 76% correct identifications
with no denied requests, demonstrating strong reliability in basic accident detection

LLaVA achieved correct responses in 76% of cases, with incorrect responses in 24%
of cases. Notably, there were no instances where LLaVA failed to see an accident or
denied the request, showing robust reliability in basic accident detection tasks.

For detailed analysis, we developed a comprehensive prompt template:

Prompt for Traffic Incident Analysis

These frames are captured for a potential traffic incident, and note that the images
in grid formation are ordered chronologically from left to right then up to down.
Furthermore, most of these vehicles from one image to the next is likely the same
vehicle. With that in mind, give me quantitative information whenever possible.
Give me the following and number each answer:

Number of vehicles in accident in a number,
Accident Type, and be as detailed as possible,
Person Injury yes or no,

Need for ambulance yes or no,

Need for firetruck yes or no,

Need for Police yes or no,

Types of vehicles involved,

Fire yes or no,

Day/night and weather,

Low Res/Bad Footage yes or no.
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Figure 3. LLaVA’s accuracy across different question types, showing strong
performance in police presence (80%) and fire detection (78%), but lower accuracy in
vehicle type identification (30%)

Using this detailed prompt, LLaVA showed varying performance across
different question types, achieving an average accuracy of 57.55%. As shown in Figure
3, the model performed particularly well in identifying police presence (80%) and fire-
related incidents (78%), but struggled with accident type classification (50%) and
vehicle type identification (30%).

VILA Model Analysis
VILA demonstrated improved overall performance with an average accuracy of
62.67%. As shown in Figure 4, it excelled in specific tasks such as fire detection (95%)
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Figure 4. VILA’s accuracy across different question types, demonstrating superior
performance in fire detection (95%) and firetruck identification (90%), with an
improved overall average of 62.67%



and firetruck identification (90%). However, like LLaVA, it struggled with accident
type classification, often defaulting to generic responses like "traffic accident" or
"traffic collision" without providing specific details.
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Figure 5. Response time distribution comparison between models, highlighting
VILA’s consistent performance around 19 seconds compared to other models’ greater
variability

Performance Analysis

Response time analysis revealed distinct patterns between the models. As
shown in Figure 5, VILA demonstrated remarkable consistency with a narrow
interquartile range centered around 19 seconds. LLaVA showed similar consistency
but with slightly higher response times (approximately 22 seconds). In contrast, GPT-
4 Vision showed greater variability, with response times occasionally reaching up to
95 seconds.

Fine-tuning Challenges

Our attempts at fine-tuning the models revealed several consistent challenges.
First, models tended to overfit even with 100 training sequences, often converging on
simplified, generic responses. Second, the imbalanced nature of our dataset,
particularly for binary classifications like fire presence (where negative cases
significantly outnumber positive ones), led to biased model responses. These
challenges suggest that effective fine-tuning for traffic monitoring applications
requires substantially larger and more balanced datasets, potentially beyond the scope
of a single research team.
Latency Evaluation of LLaVA

In this section, we evaluate the performance of LLaVA under various
configurations to assess its suitability for edge deployment. Specifically, we choose
different model sizes (7B and 13B parameters) and quantization levels (4-bit and 8-



bit). The evaluation was conducted on L4 GPU, which has a more comparable TFLOPS
compared to our target edge platform than high-end GPUs such as A100 or H100.
Hence, the latency measurement should be more relevant for edge computing
environments.
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Fig. 6. Trial latency measurements for different LLaV A configurations

Figure 6 shows the average latency measurements for different LLaVA
configurations, demonstrating the trade-offs between model size, quantization level,
and processing speed.

Discussions

The evaluation results demonstrate the potential of multimodal LLMs,
particularly LLaVA, for traffic monitoring and incident detection in remote areas. We
conclude that using open-source models seem more preferable than commercial models.
In our planned work, we also aim to fine-tune the open models to further improve its
performance. The latency evaluation reveals trade-offs between model size,
quantization level, and inference time. The 4-bit quantified 7B model shows promise
for edge deployment, balancing performance and latency. Our future work will focus
on fine-tuning LLaVA on diverse traffic incident datasets, optimizing edge
performance through advanced compression techniques, exploring prompt engineering
strategies, and conducting extensive real-world testing.

CONCLUSION

This paper has presented a comprehensive evaluation of multimodal large
language models for traffic monitoring and incident detection in remote areas, with a
particular focus on edge Al deployment. Our experimental results demonstrate that not
only commercial models, but also open-source models like LLaVA and VILA can
achieve competitive performance in analyzing traffic incidents. The key advantage of
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our approach lies in converting real-time video streams into descriptive texts, enabling
efficient monitoring even in areas with limited connectivity.

The research also uncovered significant challenges that need to be addressed.
Model fine-tuning proved particularly demanding due to data imbalance issues,
especially in binary classification tasks like fire detection. Commercial models, despite
their powerful capabilities, showed inconsistent behavior due to built-in safety
limitations, highlighting the need for specialized solutions in traffic monitoring
applications.

Looking ahead, our research points to several crucial directions for advancing
this technology. Future work should focus on developing more comprehensive and
balanced datasets specifically for traffic incident analysis in remote areas. This includes
gathering diverse data across different weather conditions, lighting scenarios, and
incident types. Additionally, we plan to investigate advanced compression techniques
and quantization-aware training methods to optimize model deployment on edge
devices such as the Nvidia IGX Orin platform.
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