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ABSTRACT This article proposes an extended state observer based robust model predictive velocity control
to decrease system prediction error under parameter uncertainties for permanent magnet synchronous motor
(PMSM). We develop a new PMSM model that consists of velocity and acceleration to lump the system
information and an external disturbance into a disturbance. The extended state observer (ESO) is designed to
estimate the velocity, acceleration, and disturbance. By estimating the state variables and disturbance using
the ESO, the model predictive control (MPC) finds the optimal control input by predicting future system
behavior. Additionally, the direct current controller is designed so that the direct current converges to zero.
Because the proposed method is not designed based on the cascade structure from the viewpoint of velocity
control, the optimization control for the velocity and currents can be defined. Thus, the proposed method
is robust against external disturbances and parameter uncertainties owing to feedback linearization, state
feedback, and ESO-based MPC using the acceleration PMSM model. The proposed control algorithm was
experimentally verified and it showed improved velocity tracking performance compared with ESO-based
MPC using the conventional PMSM model.

INDEX TERMS Model predictive control, Extended state observer, Feedback linearization, Permanent

magnet synchronous motor, Velocity tracking.

I. INTRODUCTION

ERMANENT magnet synchronous motor (PMSM) have

been widely used in various applications, such as indus-
trial robots, electric vehicles, and air conditioners because of
their high efficiency, low maintenance cost, and high torque-
to-current ratio [1]-[2]. However, it is difficult to guarantee
high control performance for a PMSM because it is a non-
linear system with two inputs and its control performance is
affected by the existence of nonlinearities, parameter uncer-
tainties, unmodeled dynamics, and load torque [3]. To address
these problems, various control methods have been developed
for PMSM systems over the past few decades. Proportional-
integral-derivative (PID) control has been widely used in vari-
ous applications because of its effectiveness and simplicity of
design without considering the system’s model. Nevertheless,
a significant limitation of the conventional PID controller is
its sensitivity to system uncertainties, which degrades con-
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trol performance [4]-[5]. To solve these problems, various
control methods have been proposed and applied to PMSM
systems, such as sliding mode control [6], adaptive control
[7]1-[8], fuzzy control [9], disturbance observer based control
[10]-[11], and model predictive control (MPC) [12]. Among
the aforementioned advanced control methods, optimization
control methods have been more thoroughly studied in recent
years to achieve high control performance.

Model predictive control, as an optimal control method, has
received increasing attention owing to its online optimization
ability, simple structure, and easy-to-include constraints [13]-
[14]. However, for several decades, MPC was only success-
fully applied in the process and chemical industries because
of its complicated models and slow rate dynamics [15]. With
the rapid increase in computing hardware performance in
recent years, MPC has been widely implemented in many
applications, such as machine drives [16], controllable power
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supplies [17], and grid-connected inverters [18]. In general,
the MPC algorithm is based on the repeated real-time op-
timization of a mathematical system model, particularly re-
garding in the PMSM model [19]. For every sampling time,
MPC calculates the future control action sequence by mini-
mizing a cost function to include a control objective and uses
only the first element of this control action sequence [20].
Thus, the MPC method predicts the behavior of the future
system in the next control period and determines control
actions through optimization of the cost function according
to the system state variables [21]. This means that the MPC
algorithm is significantly affected by system uncertainties,
including external disturbances, because system uncertainties
cause prediction errors in the system control behavior and
may degrade the control performance [22].

An extended state observer (ESO) is a very effective
method to compensate for the severe effects of parameter
uncertainties in the PMSM by estimating the state variables
and disturbances, including the load torque [23]-[24]. Thus,
various ESO based MPC methods have been studied [25]-
[26]. In [27], to minimize the impact of parameter uncertain-
ties, improved MPC algorithms were presented to increase
the robustness and enhance the control performance under
load parameter uncertainty. However, these methods focus
on affecting only one parameter uncertainty in the control
performance. In general, most system models are not specific
to a particular parameter, so all parameter uncertainties and
disturbances must be estimated using an observer to achieve
high control performance. On the other hand, in [13], a sim-
ple disturbance observer was designed to estimate parameter
uncertainties and used for a calculation of reference voltage.
However, this method was designed to compensate only for
electrical parameter uncertainties and did not consider all
system uncertainties, owing to the complexity of the control
structure. Therefore, a simple controller design is required to
estimate all system parameter uncertainties and disturbances
[28].

In this paper, an ESO based model predictive velocity
control is proposed to achieve high control performance under
disturbances and parameter uncertainties in a PMSM. We
propose a single MPC that integrates the control of both
velocity and current in a non-cascade structure. This inno-
vative approach to velocity control applies a newly defined
acceleration-based PMSM model to design a robust unified
controller that effectively compensates for disturbances with
partial system information. Utilizing the new model, a ex-
ternal disturbance and acceleration dynamics, including pa-
rameter uncertainties, can be lumped into the disturbance.
By estimating the state variables and disturbance using the
ESO, the MPC determines the optimal control input by pre-
dicting the behavior of the future system. The direct current
controller is designed for the direct current to zero using
feedback linearization and ESO-based MPC, operating within
an independent reference frame. Thus, the combination of
the new model and ESO based MPC improves the veloc-
ity tracking performance using the nominal input parameter.
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Also, because the proposed method is not designed based on
the cascade structure from the viewpoint of velocity control,
the optimization control for the velocity and currents can be
obtained. Therefore, the proposed method is robust against
external disturbances and parameter uncertainties owing to
feedback linearization, state feedback, and ESO based MPC
for the new PMSM model. The performance of the proposed
method is validated via experiments.

The main contributions are summarized as follows:

o Unlike conventional PMSM model approaches that de-
pend on precise system information, our method em-
ploys a acceleration dynamics to use only input pa-
rameter information and merge in the inner and outer
loop, achieving high control performance under external
disturbance and parameter uncertainties.

o The proposed control strategy enhances the robustness
of MPC against external disturbance and parameter un-
certainties by estimating a lumped disturbance, effec-
tively compensating for system uncertainties.

o The newly developed PMSM model, incorporating ac-
celeration dynamics, eliminates the need for additional
control design while ensuring optimal velocity control.

o The direct current control based on ESO-based MPC
improves the control performance while minimizing the
requirement for precise system information, thereby sig-
nificantly reducing system dependency.

Il. PMSM MODEL AND PROBLEM FORMULATION
A. MATHEMATICAL MODEL OF PMSM

Consider the mathematical PMSM model represented in the
d — g frame as follows:

w =7 [Kinig — Bw — 7]

-1

iy =7 vg = Riy = PwLiy — Ko

-1

id =— [Vd - Rid + PwLiq] (1)

L

where w is the angular velocity (rad/s), B is the viscous
friction coefficient (N-m-s/rad), J is the inertia of the motor
(kg-m/rad), K,, is the torque constant (rad/s), R is the phase
winding resistance (2), L is the phase winding inductance
(H), P is the number of rotor teeth, 7, is the load torque
(NAﬁm), and iy, ig, and vy, v4 are the direct and quadrature
currents (A) and voltages (V). The load torque perturbation
is denoted by 7. The derivative of the load torque 7, with
respect to time exists and is bounded, i.e., 77 = J, is bounded,
but unknown. Among the PMSM parameters, only the nomi-
nal value of is known. The PMSM model (1) is a third-order
system with the phases d and ¢ voltage inputs and velocity
output.

VOLUME 11, 2023
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B. MODEL REPRESENTATION AND PROBLEM
FORMULATION

The acceleration « is defined as
a=w

1
:j( mlqg —Bw — 7). 2)

From (2), the new PMSM is obtained as

w=«a
1
& :J—L[Kqu — (JR+LB)a — (BR+ K, K,
—K,LPig)w — Ry — L#y]. 3)

We define the input gain g, as
Kn
JL

where g,, is the nominal value of g, and Ag, represents the
uncertainties in g,. From (1)-(4), the new model of PMSM is
obtained as

8q = 8q0 + qu 4)

).Cl = X9
. 1
X9 = (gqo + qu)u — E[(JR + LB)xs + (BR + K, K,
— KmLPid)x1 + R’TL + L7.'L] (5)

where x; = w and x3 = a. In (5), the disturbance d, = x3 is
defined as

x3 = Agyvy — —[(JR + LB)xy + (BR + K,,K,

1
JL
— K, LPig)xy + R, + L. (6)
Assumption 1: The derivative of the lumped disturbance x3
is varying and bounded since x5 include 7, i.e., X3, is bounded
but unknown.
From Assumption 1, X3 = J, is bounded. All state vari-
ables in most systems are physically bounded, because the
input is bounded in a practical system [28]. Therefore, it
is reasonable that the lumped disturbance d, composed of
a linear combination of the state variable and parameter is
bounded. Therefore, there exists an upper positive bound such
that sup|d,(¢)| = dg,max- The PMSM model (1) for velocity
control without considering i; is defined as

X1 = X2

Xo = 8q0Vq + x3 (N
where x = [x1, x2, x3]7 is the state vector. The aim is to make
the velocity x; tracks the desired velocity x14 using only the
information of gg,.
Remark 1: Generally, i, is controlled to a given reference
(typically zero) because it represents internal dynamics from
the viewpoint of velocity control. Therefore, an additional
controller design is required to ensure that i; converges to
Zero.
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1Il. ESO BASED MPC CONTROLLER

A. VELOCITY TRACKING CONTROL USING ESO BASED
MPC

Using EuleraAZs law, the new normal form of the PMSM for
velocity control in discrete-time is obtained as follows:

Xe(k +1) = Aex (k) + Bovy (k)

Ye(k) = Cexe(k) )]
where
1 7, O 0
Ac=|0 1 Tg| ,B.= |gTs|.Cc=[1 0 0].
0 0 1 0
X, = [x1 x2 x3]7 is the state variable vector, k is the time

index, and T} is the sampling time. An ESO is used to estimate
the lumped disturbance for the MPC. The estimation state
variable vector X, is defined as

fo=[0 R i) )

Using (7) and (8), the ESO in the discrete-time model is
designed as follows:

fce(k + 1) :Aeffe(k) +Bevq(k) ""L(ye(k) - )A)e(k))
ye(k) :Cefce(k) (10)
where
L= [LT, LT, LT)]" .

L is an observer gain. We assume that d(k + 1) = d(k) +
Ad (k) where Ad (k) < dnqyr- Therefore, the estimation errors
are defined as

)~Cl X1—)AC1
ie:xe—fce: )~CQ = .x27.£2 . (]1)
X3 X3 — X3

From (8)-(11), the estimation error dynamics can be defined
as

Folk +1) = Ake(k) + DO (12)
where
0 d(k +1) — d(k)
p=o|, §=2ET)=d8)
1 TY

A, = A, — LC,. If the observer gain L is set to be the
eigenvalues of A, in a unit circle, X, converges to the bounded
ball. As an augmented model for the MPC, x,(k) is defined
as the amount of change in the state variable and the output
as follows:

(k
X, (k) = | Axa(k) (13)
k)
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where Ax;(k) = x;(k) —x;(k — 1), i = [1 2] and y,(k) is
the velocity as output. Using (13), the augmented model is
defined as

Xq(k + 1) = Agxg(k) + ByAvy (k) + HyAxs (k)

Yq(k) = Cyxy(k) (14)
where
1 7, 0 0
Aq =10 1 0 an = gqux ,
1 7, 1 0

The predicted output is obtained by using the calculated
future state of the system in the augmented model (14). The
predictive output is defined as

Y, = Fyxg(k) + ®,Av, (k) + LAR (k) (15)

where
- N, T
F, = C/A, Cqu Cqu CA |
i C,B, 0 e 0
CquBq7 CyB, S 0
<I>q _ CquBq CquBq s 0 ’
_CqA{qvq_qu Cquq_2Bq e Cqup_Nqu
i C,H, 0 ce 0
CquHq C,H, ce 0
L,= CquHq C,A.H, ce 0
_Cqulp_lHq Cqulp_qu e CqASJP_NEHq

(16)

N, is the prediction horizon and N, is the control horizon.
Using (15), the cost function that reflects the control objective
is defined as

Jg= Ry = Y))"(Ry = Y;) + AvI R, Av,,
e -+ 0

R, = RI=[1 1 1) r(ki) (17)
0 - r

where R, is the weight matrices and R, is the reference of
control. To find the optimal value of Ay, that minimizes
Jy4, the first derivative of the cost function is zero. Thus, the
optimal solution for the control signal is obtained as

Avy = (CI)§<I>q + Rq)’lq)qT(Rs — Fxy(k;) — LyAxs(k)).
(18)

Finally, the velocity control input through the MPC is defined
as

ve(k +1) = v (k) + Av, (19)
where v, (k) is the velocity control input for velocity tracking.

4

B. DIRECT CURRENT CONTROLLER USING ESO BASED
MPC

A feedback linearization for v, is designed to remove the
coupled quadrature current as follows:

Vg = ug — PLwi,. (20)
Similarly, in (7), iy can be defined as
id = 8aotta + du @1

where g, is the nominal value of g4, g4 = % = 8ao + Agu,
and Ag, denotes the uncertainties of g;. d; is the lumped
disturbance for the i; dynamics. The lumped disturbance is
defined as the uncertainty of the input parameter and the
system information. The lumped disturbance d; is

R
dg = Zid + Agy. (22)

The i; dynamics model of PMSM in discrete-time is also
defined as

ig(k +1) =ig(k) + Tsgaouta(k) + Tody (k).  (23)

The ESO is used to estimate the lumped disturbance because
the lumped disturbance is difficult to know exactly. The state
variable vector is x; = [{d, d,)", and the estimation state
variable vectoris X; = [iz,ds]”. The ESO in the discrete-time
model is designed as follows:
Xa(k +1) = Acky (k) + Beua (k) + Le(va (k) = Ya(k))
va(k) = Cexy(k) (24)

_ 10 _gdoTs
wefy o a [

L= [T, 1T]", C.=[1 0].

where

yq is the direct current as output and L. is an observer gain.
The estimation errors are defined as

By =xg—fy = Lﬂlﬂ — [‘Z :ZJJ . (25)

From (24) and (25), the estimation error dynamics can be
defined as

id(k + 1) = Ado)zd(k) + Dby (26)
where
0 di(k+1)—d;k
Dd:H, g, = } W)

Agp = Ac — L.C.. If the observer gain, L. is set to the
eigenvalues of A4, in a unit circle, x; converges to the bounded
ball. i; is controlled to converge to zero by the MPC. In the
augmented model, x, (k) is defined as the amount of change
of iy and the output.

(k)T = [Ai":((,f))r] 28)

VOLUME 11, 2023
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where Aiy(k) = iy(k) — iq(k — 1) and iy (k) is the output.
Therefore, using (23), the augmented model for i, is defined
as

xd(k + 1) = Adxd(k) + Bdud(k) + HdA(,Al'd<k)

Vd (k) = Cdxd (k) (29)
where
_ 10 _ gdoTs
Ad — |:1 1:| 3 Bd - |:gdoTs:| )
T;
Hi= 7| c=[0 1]. (30)

The prediction output is obtained using the calculated future
state of the system in the augmented model (29). The predic-
tive output is defined as

Yy = Fuxg(k) 4+ ®4Auy(k) 4+ Ly Ady (k) (31)

where
_ T
Fi=|CiAy CiAZ CiAB ],
 CuBy 0 0
C,A By C, By 0
o, — | CA3Bs  CihaBy - 0 |

LAY By Al By C,AY By

CuHy 0 e 0

CaAqH,y CeHy - 0

L — | CiAiHs  CohaHy - 0
LAY Hy A PH, o ATV,

(32)

Subsequently, using (31), the cost function that reflects the
control objective is defined as

Jo=(Ry — Yd)T(Rd - Y+ AMZRdAud,
rW ... 0
Ry P | Rg=[101

O PPN Iy

1) r(k) (33)

where R; denotes the weight matrices and Ry is the reference
of control. To find the optimal Au, that minimizes J,;, the
first derivative of the cost function is zero. Thus, the optimal
solution for the control signal i, is obtained as

Aug = (D70, + Ry) "' ®F (Ry — Faxg(ki) — LaAdy(k)).

(34)
Finally, the direct current control input for MPC is defined as
ug(k +1) = ug(k) + Aug. (35)

Fig. 1 shows a block diagram of the proposed method.
The proposed control algorithm consists of two main parts,
velocity tracking control and direct current control. For the
velocity tracking controller, the ESO (10) estimates x, using
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FIGURE 2. PMSM experimental testbed.

TABLE 1. Hardware specification.

RapidPro and SCALEXIO
Max. voltage 60V
RapidPro Max. cur.renf 60 A
Max. switching freq. 50 kHz
Number of legs (bridges) 4
System clock 3.8 GHz
Number of cores 4
Internal supply voltage 33,5V
External power 12V
SCALEXIO | Number of DIO 36
DIO input capture resolution 8 ns
Number of ADCs 16
ADC bit resolution 16
ADC Max. conversion rate 4 MSPS
ADC input range Astov

the feedback of x;. Then, the MPC (19) generates the control
input v, using X, and x;. The direct current controller is de-
signed so that the direct current converges to zero. Feedback
linearization (20) removes the nonlinear coupled terms, and
the ESO(24) estimates d; using the feedback of i;. Then, the
MPC (35) makes the optimal control input u; using Eld and
iy. Thus, the proposed method is designed using two MPCs
to achieve high control performance.

IV. EXPERIMENTAL RESULTS

Experiments were conducted to evaluate the control perfor-
mance of the proposed method by using a PMSM driver set.
The experimental setup consisted of a host computer with
ControlDesk software, a three-phase inverter (Rapid-Pro),
a PMSM (APM-SBO3ADK-9, Kwapil and company), and
the SCALEXIO real-time system manufactured by dSPACE

5



IEEE Access

______________

1Q frame i | D-frame !
: : : ij—’ MPC (35) : Uy Feedback Vo Voltage
: A = ! 7| Linearization(20) i "% | source
: ! ! d-q to a-b-c )
of—ip | ! L a, v, | transformation lnverter
1 MPC (19) L 0 »
—P 1! 1
: T | ESO (24) ! ;
1 ., d 1! 1 —
: H Tz‘d ! i,| abctodq [ek
' ESO (10) ! ' | transformation |g—s ¥
1 ! 1 y—Yy
1 L ! | A
1 ! 1
U U U 1
[
Encoder PMSM
FIGURE 1. Block diagram of proposed method.
TABLE 2. Model parameter and control gain. 07
0.6 - T
Parameter Value Gain Value go°r
J 4.675x10~% [kgm?] | N, 20 gor
B 9x10~* [N-m-s/rad] | Ne 2 £l
R 0.2 [£2] la1 1280 oa L
L 0.4 [mH] lj2 | 4.08 x10° o
Km 0.102 [Nm/A] 5 6 7 8 9 Tir:]z[S] 11 12 13 14 15
K. 0.102 [N-m/A]
p 4 FIGURE 3. Load torque injected by the powder brake.

GmbH. A host computer was used to implement the control
program generated through MATLAB/Simulink in C lan-
guage, compile the program, and upload the executable output
code to the SCALEXIO real-time system. The three-phase
inverter(Rapid-Pro) consisted of three half bridge power stage
modules. The PMSM was directly connected to an incre-
mental encoder (2500 pulses/revolution). The switching fre-
quency was set at 20 kHZ. Fig. 2 shows the hardware con-
figuration of the PMSM driver set. The detailed hardware
specifications are listed in Table 1. The parameters of the
PMSM listed in Table 2 were used. The maximum desired
angular velocity was 207 rad/s. The load torque, which is
an external disturbance, was injected using a powder brake.
The viscosity of the powder positioned between the rotor and
stator was generated by the current applied to the powder
brake. Therefore, the load torque injected by the powder brake
can be expressed as

(5 <t <10)

0
™ {0.25 sin (22£) +0.3 (10 <t < 15)

(36)

The load torque 7;, was injected, as shown in Fig.3.
The following two cases were conducted to evaluate the
performance of the proposed method.

6

1) Case 1: Velocity tracking control ESO based MPC
using conventional PMSM model.
2) Case 2: Proposed method.

In Case 1, the nominal PMSM model was used through MPC
based on an ESO. The feedback linearization for the d — g
input voltages was designed to remove coupled nonlinear
terms as follows:

va = ug — pLwiy,
Vg = ug + pLwiy. (37)

The disturbance in velocity dynamics was defined as
d=rm. (38)
The ESO was defined as

Sk +1) =ak) — g [—Bd) k) + Kpig(k) — Zi(k)}

+ Tyl (w(k) — w(k))

bk 1) = iy (k) + 2 [K(k) — Rig(k) + v (k)]

+ Tilga(w(k) — @(k)).

The control input for velocity control was defined as
ug(k + 1) = uy(k) + Au, (40)

VOLUME 11, 2023
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FIGURE 4. Block diagram of Case 1.

where Au, was obtained from the MPC cost function. This
controller was designed to compensate for only mechanical
disturbance, 77, using the ESO. The direct current control was
designed to be the same as that in the proposed method. The
observer gains were set as l;; = 1.518 x103, [,5 = -301.2.
The observer gains for i; and the MPC gains listed in Table 1
were used. A block diagram of the Case 1 algorithm is shown
in Fig. 4.

In Case 2, the proposed control algorithm was used. The
observer gains were set as /1 = 2022, I, = 1.3x 108, and I3 =
3.05x10%. Same as in Case 1, the observer gains for i; and
the MPC gains listed in Table 1 were used.

Experiments were conducted to validate the velocity-
tracking performance of all cases. The experiments were
conducted under the following two scenarios:

1) Scenario 1: Velocity control was conducted without
parameter uncertainties.

2) Scenario 2: Velocity control was conducted with 30%
parameter uncertainties.

A. SCENARIO 1

The model parameters used in the experiment are the above
mentioned values, in which 7, represents the load torque. Fig.
5 shows the velocity tracking error, e,, = w — w,. The peaks
of velocity tracking in both Cases appeared at t = 10 due to
the injected load torque, but both peaks rapidly decreased.
On the other hands, Although the tracking error peaks in
Case 2 were slightly larger than those in Case 1, the velocity
tracking in both Cases had similar control performance. Fig. 6
shows the estimated lumped disturbance in the velocity track-
ing controller. Compared to Case 1, the estimated lumped
disturbance in Case 2 had large values because all parameter
uncertainties except for the input parameter were designed to
be estimated. After 10 s, when the load torque was injected,
the oscillation of the estimated lumped disturbance in both
Cases was accompanied by the load torque. Although the
estimated disturbance in Case 1 was only load torque, the
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FIGURE 5. Velocity errors in Cases 1-2 in Scenario 1.

estimated lumped disturbance in Case 1 had higher values
than the injected load torque shown in Fig. 3 because of
several unavoidable reasons, such as non-ideal sinusoidal flux
disturbance and ripples of pulse width modulation. Fig. 7
shows the direct current and estimated lumped disturbance in
the direct current controller. The direct current controllers in
both Cases had similar and satisfactory control performance
because the same controller was applied. The input voltages
are shown in Fig. 8. Direct voltages in both Cases also had
similar values because estimated lumped disturbances in the
direct current controller in both Cases had similar values.
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FIGURE 6. Estimated lumped disturbances in velocity dynamics of Cases
1-2 in Scenario 1.

B. SCENARIO 2

In Scenario 2, to validate the robustness of the performance
of the proposed method, the experiment was performed with
30% parameter uncertainties. The other parameters were the
same as those in Scenario 1. Velocity tracking errors are
shown in Fig. 9. The magnitude of the ripples of the velocity
tracking error in Case 1 increased than in Case 2. The tracking
error in Case 1 increased by 10% compared to that in Case
2 at 5-10 seconds and increased by 25% at 10-15 seconds
after injecting the load torque. Meanwhile, the ripple of the
velocity tracking error in Case 2 exhibited no obvious change
compared to Scenario 1. It can be seen that the control algo-
rithm in Case 2 was robust to system uncertainties, whereas
the controller in Case 1 was susceptible to parameter uncer-
tainties. In other words, the existence of parameter uncertain-
ties in Case 1 led to a velocity tracking error, which aggravates
the control performance of the entire control system. Fig.
10 shows the estimated lumped disturbance for the velocity
tracking controller. The estimated lumped disturbances in
both Cases had more oscillations than in Scenario 1 due to
parameter uncertainties. Fig. 11 shows the direct current and
estimated lumped disturbances in the direct current controller.
The direct current in Case 1 was smaller than that in Scenario
1 because the input parameter was set to increase. Meanwhile,
in Case 2, the direct current was similar to that in Scenario 1
because the lumped disturbance values in the direct current
controller were reduced compared to those in Scenario 1.
Although the direct current controller in Case 1 had better
control performance than that in Case 2, the velocity tracking
control in Case 2 was significantly more robust than that in
Case 1 because the direct current was an internal dynamic of
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FIGURE 7. Direct current and lumped disturbance in direct current
dynamics of Cases 1-2 in Scenario 1.

the PMSM. The voltages are shown in Fig. 12. The voltage
values in both Cases were similar to those in Scenario 1,
even under parameter uncertainties. Therefore, the quadrature
voltage in Case 2 was slightly reduced because the parameter
uncertainties were set by increasing the input parameter.

V. CONCLUSION

In this paper, we proposed an ESO based model predictive
velocity control to achieve high control performance under
disturbance and parameter uncertainties for a new PMSM.
The proposed method was designed to estimate the lumped
disturbance based on the new PMSM model that uses acceler-
ation dynamics instead of quadrature current dynamics. Thus,
the proposed velocity tracking controller compensated for
the uncertainties of the entire PMSM because it was not de-
signed based on a cascade structure. The experimental results
showed that the proposed control algorithm is robust against
parameter uncertainties. Although ripples were caused by
several unavoidable factors, including low encoder resolu-
tion, pulse width modulation ripples, and non-ideal sinusoidal
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FIGURE 9. Velocity errors in Cases 1-2 in Scenario 2.
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FIGURE 10. Estimated lumped disturbances in velocity dynamics of Cases
1-2 in Scenario 2.

flux disturbances, the velocity tracking errors of the proposed
method were small in the steady state responses compared to
the conventional PMSM model. The combination of the new
model and ESO based MPC improved the velocity tracking
performance.
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