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Abstract

High-stakes analytical environments require analysts to evaluate evidence and generate
conclusions to inform critical decisions often under conditions of uncertainty. Researchers are
developing expert systems built on foundation models (FMs) to support analysts’ decision-
making processes, in part by quantifying and expressing uncertainty information. To ensure
effective human-artificial intelligence (Al) teaming, it is imperative to address analysts’ needs
when interpreting and using uncertainty information. However, it remains unclear how analysts
engage with FM-generated uncertainty information and the extent to which these interactions
influence trust in, and reliance on, expert systems. We will review the state of the science and
propose our research design and methodology of an exploratory, qualitative study currently
under review to (a) understand how properly communicated uncertainty fosters calibrated trust
and appropriate reliance, and (b) identify strategies for conveying FM-generated uncertainty
information during analytical work. Through semi-structured interviews, analysts will share their
current experiences with job-related uncertainty and assess FM outputs that communicate
uncertainty. The results will help us to understand how analysts currently interpret and use
uncertainty information. Our findings may inform human factors recommendations for effectively
conveying uncertainty information to foster calibrated trust in, and appropriate reliance on,
expert systems. Practitioners can use this knowledge to enhance human-Al teaming and
promote responsible FM-based expert system deployment.
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GPT-3 Generative Pre-trained Transformer 3
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1.0 Introduction

On July 3, 1988, the crew aboard the U.S.S. Vincennes faced a critical decision in the Persian
Gulf. Engaged in a skirmish with Iranian gunboats, tactical personnel detected an approaching
aircraft on radar. Officers reported that the aircraft was attacking because it was descending
toward the ship, but its transponder indicated that it was a commercial flight. Multiple data
sources provided conflicting signals about the aircraft's identity, altitude, and intentions. The
crew's interpretation of this ambiguity led to a devastating decision: they fired two missiles at
what they believed was an attacking Iranian F-14 Tomcat. However, the target was Iran Air
Flight 655, a civilian Airbus A300 carrying 290 passengers and crew, all of whom were killed
(U.S. Department of Defense, 1988). This tragedy demonstrates how the interpretation and
communication of uncertain information can have catastrophic consequences. It represents a
“just-so” story, a plausible but untestable narrative where the conclusions of “yes,” “no,” or
“maybe so” appear equally valid.

Such “just-so” stories are characteristic of high-stakes analytical environments, where analysts
systematically analyze information from multiple sources to assess threats and inform critical
decisions (Drumbhiller et al., 2024). This work inherently involves uncertainty because analysts
must often draw conclusions from incomplete, conflicting, or ambiguous evidence under
demanding circumstances (Amiram et al., 2018). For example, an analyst might need to assess
the credibility of a threat based on one data source with unknown reliability, fragmented
communications intercepts, or satellite imagery that shows unusual but not definitively
suspicious activity. These judgments require both analytical skill and explicit communication of
uncertainty information.

The challenge of effectively communicating uncertainty will become increasingly complex once
artificial intelligence (Al) systems enter analytical workflows. Foundation models (FMs) are
being developed to augment human analytical capabilities by processing vast amounts of data,
identifying patterns, and generating insights more quickly than human analysts alone (Vaccaro
et al., 2024). However, the future integration of these Al systems introduces new questions
about how uncertainty should be communicated from machines to humans. While FMs can
guantify and express their uncertainty in various ways, it remains unclear how analysts interpret
and respond to this uncertainty information. Additionally, it is unknown whether uncertainty
expression approaches can foster calibrated trust in, and appropriate reliance on, Al-assisted
decision-making. To address these gaps, this paper proposes an exploratory, qualitative study
design to better understand how analysts engage with uncertainty information both in their
current work and from FM outputs. The study has not yet been conducted; this paper presents
our research design and methodology.

Introduction 1
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2.0 Literature Review

2.1 Foundation Models (FMs) in Decision Support

FMs are large-scale Al models characterized by unprecedented scale, generality, and
adaptability across diverse tasks through extensive pretraining on massive datasets
(Bommasani et al., 2021). These models serve as general-purpose platforms that can be
adapted for specialized applications, functioning through five major decision-making paradigms:
optimization, prediction, planning, recommendation, and control (Schneider, 2022; Zhang et al.,
2023). FMs encompass multiple types: natural language models like Generative Pre-trained
Transformer 3 (GPT-3) demonstrate sophisticated text generation capabilities, while vision-
language models such as Contrastive Language-Image Pre-training (CLIP) enable cross-modal
understanding and image classification for improved zero-shot performance and flexible
transferability (Awais et al., 2025; Zhou et al., 2024). However, evaluation and benchmarking
remain challenging. Because significant gaps exist between pretraining tasks and real-world
performance, there are ongoing concerns regarding data quality and alignment (Zhou et al.,
2024).

End-user interactions with FMs present significant challenges for effective decision support.
Users often develop inadequate mental models of these complex systems, leading to
misaligned expectations about their capabilities and limitations (Passi & Vorvoreanu, 2022). The
inherently unexplainable nature of Al systems (particularly very large models) limits
transparency and user understanding (Bommasani et al., 2021; von Eschenbach, 2021). This
“black box” problem becomes more pronounced as FMs exhibit emergent behaviors that cannot
be directly understood or predicted. Thus, risks of under- or over-reliance based on perceived
competence arise that may not be justified in real-world scenarios (Bommasani et al., 2021). A
lack of transparency may challenge users who must make critical decisions based on system
outputs without fully understanding the system’s underlying reasoning processes (Schneider,
2022). Given these challenges, it is important to understand how users develop and maintain
trust in Al systems.

2.2 Trust in Artificial Intelligence (Al) Systems

Trust can be defined as the “reliance by an agent that actions prejudicial to their well-being will
not be undertaken by influential others” (Hancock et al., 2011, p. 24). A meta-analysis of trust in
Al reveals that appropriate trust formation depends on antecedents in three categories:
characteristics of the trustor, trustee, and their shared situation (Kaplan et al., 2023). For
example, trust may depend on an individual’s level of technology knowledge, the accuracy of
the technology itself, or the difficulty of the task they are performing together. Glikson and
Woolley (2020) explain that calibrating trust with system performance becomes difficult with
increased model complexity because outputs cannot be interpreted as simply correct or
incorrect. This requires users to consider the various ways in which outputs may be accurate or
flawed (Glikson & Woolley, 2020). If trust remains uncalibrated, users may inappropriately
mistrust or distrust the system, which can lead to actions of over-trust and under-trust (Jacovi et
al., 2021). These actions may result in users relying on a system when it is incorrect or failing to
rely on it when it is correct (Glikson & Woolley, 2020). This underscores the need for calibrated
trust rather than simply high or low trust levels. Several mechanisms can be employed to
achieve calibrated trust. From interviews with 12 expert decision-makers in various domains,
Bedué and Fritzche (2022) report that access to knowledge, transparency, explainability,
certification, and self-imposed standards and guidelines are most important for user trust

Literature Review 2
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calibration. While calibration mechanisms guide the maintenance of appropriate trust levels,
trust must first be established.

Research on trust formation shows several patterns and challenges in understanding human-Al
relationships. Glikson and Woolley (2020) distinguish between cognitive trust (competence-
based) and affective trust (emotional-based). Different system representations elicit different
types of trust: whereas anthropomorphic agents (e.g., physical robots) generate more affective
trust, feedback (e.g., transparency cues) strengthens cognitive trust. Multiple factors influence
how trust is formed and the types of trust that manifest. In a review of 23 empirical studies, Bach
et al. (2024) conclude that user characteristics (e.g., gender, education, Al
experience/interactions) are the most influential to trust formation. However, the authors also
suggest that socio-ethical considerations (e.g., continuous feedback, legal boundaries) and
technical and design features (e.g., anthropomorphism, social presence) are paramount,
especially when considering the diverse contexts and environments in which Al systems can be
used. Moreover, other factors influence trust formation such as task attributes (e.g., complexity,
time pressure) and system properties (e.g., robustness, reliability, transparency; Bach et al.,
2024). These influential factors may interact with each other. For instance, Bedué and Fritzsche
(2022) illustrate how user characteristics interact with system properties through their finding
that Al certifications increase novice user trust but may lower expert trust when viewed as
superficial marketing. These findings underscore that trust in Al systems is a complex result of
the user, the technology, and the situation in which they are operating. Central to trust formation
is the clear communication of expected system performance to users. With FMs, this involves
appropriately conveying how certain or uncertain the model is about its results.

2.3 Uncertainty Information

Uncertainty in Al systems stems from multiple sources and manifests in different forms. Jalaian
et al. (2019) identify various sources of uncertainty in Al, including model selection, data noise,
and extrapolation beyond training contexts. Two types of uncertainty exist: (1) aleatoric
uncertainty, which represents irreducible randomness inherent in data, and (2) epistemic
uncertainty, which reflects limitations in model knowledge that could potentially be addressed
with additional information (Abdar et al., 2021; Bhatt et al., 2021). Senge et al. (2014) clarify that
distinguishing between these uncertainty types is crucial in domains like medical diagnosis for
determining whether additional data collection is warranted. Beyond these traditional categories,
Wenskovitch et al. (2024) introduce the concept of interaction uncertainty in human-machine
teaming, which arises from mismatches in behavior, communication, or goal understanding
between humans and Al systems.

The guantification and expression of uncertainty information significantly impact how users
interpret and respond to FM outputs. Emerging uncertainty quantification methods for FMs
include Bayesian methods, ensemble approaches, conformal prediction, and entropy-based
metrics (Abdar et al., 2021). Bhatt et al. (2021) propose uncertainty quantification as a
complement to explainability for achieving algorithmic transparency, advocating for visual and
probabilistic formats to communicate uncertainty to different stakeholder groups. However,
guantifying uncertainty is only part of the challenge; the format and framing of expressing
uncertainty also matter. Dhami et al. (2025) compared verbal probability expressions with visual
encodings for uncertainty communication in intelligence analysis, finding that analysts were
slightly more sensitive to verbal probability cues but showed poor consistency across all
formats. Further, the linguistic framing of uncertainty communications influences user
perceptions and decision-making: first-person expressions like “I am certain” are perceived
differently depending on speaker expertise compared to general perspective statements like “It
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is uncertain” (Juanchich et al., 2017). This suggests that how FMs quantify and express
uncertainty can affect both judgment and decision-making.

Users can employ various strategies to reduce uncertainty when interacting with Al systems. In
their seminal work on uncertainty reduction during interpersonal communication, Berger and
Calabrese (1975) present a three stage-based theory with six axioms and 21 theorems on the
psychosocial behavior people exhibit to respond to and reduce uncertainty when uncertain
information is presented. As an example, as the amount of verbal communication between
strangers increases during the entry stage, the level of uncertainty each person perceives will
decrease. Kramer (1999) reconceptualizes this theory for organizational contexts, proposing a
“Motivation to Reduce Uncertainty” model influenced by context, goals, and uncertainty
tolerance. Reduction strategies can be categorized as passive (observing entity behavior),
active (seeking information from external sources), and interactive (directly engaging with the
entity). Wenskovitch et al. (2024) highlight that uncertainty in human-Al collaboration is
bidirectional because machines may also experience uncertainty about human behavior (e.g., in
understanding the task that the user is trying to complete). The bidirectional nature of human-Al
uncertainty presents unique challenges for ensuring that uncertainty can be effectively reduced
not only for the human decision-maker, but also for the Al assistant. Building on these
theoretical foundations, research has begun to investigate how humans actually perform when
provided with Al-generated uncertainty information.

2.4 Human Performance Under Al-Generated Uncertainty

When properly communicated, uncertainty information can significantly improve human
decision-making performance. Schaekermann et al. (2020) compared conventional Al
assistants with ambiguity-aware systems that highlighted cases likely to lead to expert
disagreement and presented arguments for conflicting classification choices. Their ambiguity-
aware Al altered expert workflows by significantly increasing the proportion of contentious cases
reviewed, with the relevance of Al-provided arguments affecting experts' accuracy at revising
Al-suggested labels. Users benefit most when uncertainty information is paired with clear
explanations of underlying reasoning, particularly regarding why the system is uncertain rather
than simply being told that uncertainty exists. This approach enables rapid trust calibration and
helps users adjust their reliance levels appropriately, emphasizing the importance of
interpretable uncertainty that clarifies the source, scope, and implications of uncertain
recommendations (Tomsett et al., 2020).

The communication of uncertainty information critically influences user responses, particularly in
how users recover from Al errors. Siegling (2020) demonstrates that when Al systems disclose
their uncertainty, users experience less severe trust degradation following system failures and
develop better awareness of system limitations. Participants preferred Al systems that
communicated uncertainty, perceiving them as more trustworthy and valuable compared to
systems that did not disclose uncertainty. However, the design must balance clarity with
information visualization, as overly complex visualizations can reduce utility despite their
transparency benefits. For example, Reyes et al. (2025) reveal that the size and visual
prominence of uncertainty displays emerge as key factors affecting both trust and decision
confidence, with continuous uncertainty visualization significantly enhancing trust for 58% of
participants who initially held negative attitudes toward Al.

Task characteristics and individual differences can moderate how uncertainty affects human-Al

collaboration. Salimzadeh et al. (2024) found that complex and uncertain tasks lead users to
rely more heavily on Al systems while paradoxically demonstrating lower appropriate reliance
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compared to simpler tasks. Interestingly, their research reveals that trust in Al systems appears
less sensitive to task characteristics than reliance behavior, suggesting these constructs
respond differently to uncertainty. User expertise also plays a crucial role in uncertainty
interpretation. For example, novice users reported slowing down and thinking more analytically
about their decisions when uncertainty about machine learning (ML) predictions were properly
communicated, demonstrating greater vigilance and reducing overreliance (Prabhudesai et al.,
2023). Beyond individual responses, users actively develop strategies to manage uncertainty
when interacting with Al systems. Chang et al. (2025) found that interactive approaches such as
asking follow-up questions were more effective than passive observation strategies, with their
study of 566 users revealing that consulting peer feedback was the most effective strategy for
reducing uncertainty while transparency concerns, information accuracy issues, and privacy
worries serve as key sources of uncertainty that users must navigate. Given these findings
about the complex relationship between uncertainty communication and human performance, it
becomes imperative to understand how analysts engage with uncertainty information to make
decisions during their analytical work.

Literature Review 5
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3.0 Methods

The following study is under review with the Central Department of Energy (DOE) Institutional
Review Board (IRB). We propose a qualitative study to understand how analysts working in a
specific high-stakes analytical environment conceptualize, produce, and use uncertainty
information in their analytical work, with the goal of informing FM-based Al system design for
effective uncertainty communication. We aim to explore how analysts currently understand and
interpret uncertainty, gather feedback on different approaches to uncertainty, and identify their
preferences for uncertainty representation in FM-generated outputs.

3.1 Participants

We will recruit analysts working at four national laboratories. Participants must have experience
conducting analytical work in high-consequence decision environments. They will have varying
levels of familiarity with Al/ML systems. We will collect demographic information related to their
analytical background, technical knowledge, and experience with AI/ML systems.

3.2 Measures

Semi-structured interviews will explore participants' current experiences with uncertainty
information in their analytical work and their interpretations of Al-generated uncertainty outputs.
The interview protocol will include questions about how analysts currently understand, use, and
communicate uncertainty information in their professional practice. Additionally, participants will
discuss their thoughts, beliefs, and reactions regarding the presentation of several FM outputs
containing different representations of uncertainty information. The interviews may also capture
participants’ impressions of how uncertainty information might influence their trust in, and
reliance on, FM-based Al systems.

3.3 Procedure

Following informed consent, we will conduct individual semi-structured interviews with each
participant. Interviews will begin with questions about participants' current experiences with
uncertainty in their analytical work, including how they interpret, use, and communicate
uncertain information. Then, participants will view examples of FM outputs that display
uncertainty information in different formats and provide feedback on their interpretations and
preferences. Finally, we will ask participants to share demographic information related to their
experience and expertise. Throughout the interview, participants can share their thoughts about
how uncertainty information might affect their trust in Al-assisted analysis.

3.4 Data Analysis

We will employ thematic analysis to identify patterns and themes in participants' responses
regarding their experiences with and interpretations of uncertainty information. Following data
cleaning and preparation, we will develop a coding framework to systematically analyze
interview notes and transcripts. We will leverage the resulting themes to create an affinity
diagram, which may allow us to organize and visualize relationships between different themes
and concepts that emerge from the data. This analytical approach will help us identify common
patterns in how analysts conceptualize uncertainty, their preferences for uncertainty
representation, and factors that influence their trust and reliance on FM-generated uncertainty
information.

Methods 6
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4.0 Anticipated Outcomes

4.1 Research Objectives

This study may reveal several key insights about how analysts work with uncertainty
information. For example, analysts might have domain-specific conceptualizations of uncertainty
that differ from technical definitions used in Al research. We will seek to identify current
practices for communicating uncertainty in reporting and discover gaps between these practices
and what analysts need from Al systems. The study also aims to reveal how different types of
uncertainty information are valued depending on the analytical situation. As such, the interviews
will explore whether analysts' preferences for uncertainty representation vary based on their
specific tasks, expertise levels, and analytical contexts. Additionally, findings will inform whether
analysts' trust in and reliance on Al-generated information is influenced by how uncertainty is
communicated, with some representation formats potentially fostering more appropriate trust
calibration than others.

4.2 Limitations

Several limitations may affect the generalizability and interpretation of our findings. First, while a
small sample size is appropriate for qualitative research, it may limit the breadth of perspectives
captured during this study. Additionally, the cross-sectional nature of the study means we will
capture analysts' perspectives at a single point in time rather than observing how their views
change with experience. Further, the study focuses on analysts from national laboratories,
which may not represent the full range of analytical environments. Finally, findings may be
specific to the high-consequence domain examined here and may not generalize to other types
of analytical work or high-consequence domains.

4.3 Contributions to Knowledge

Our research seeks to contribute to multiple areas of knowledge. For instance, the findings
should enhance understanding of how domain experts conceptualize and use uncertainty
information in high-consequence decision environments. The goal is to provide practical insights
for Al system designers about how to effectively communicate uncertainty information to
decision makers. Thus, our findings aim to inform the development of more effective uncertainty
visualization and communication strategies for FMs used in analytical workflows. Overall, this
study attempts to bridge the gap between technical uncertainty quantification methods and user
needs of uncertainty representation in real-world analytical contexts.

4.4 Future Work

Several research directions build on this work. A controlled experiment that presents
participants with different uncertainty representations and measures how their trust, reliance,
and decision-making accuracy differ between each representation would help to explore
whether these representations influence those factors. Within high-stakes analytical work, a
longitudinal study could examine how analysts' trust in and use of Al-generated uncertainty
information changes over time with repeated exposure. Outside of the domain examined here,
research across other high-consequence domains could investigate whether findings from this
study generalize to other tasks such as financial analysis, medical diagnosis, or air traffic
control. Additionally, it may be fruitful to explore how explanations of Al system
conservativeness or system limitations affect trust calibration when uncertainty information is

Anticipated Outcomes 7
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presented. This may be especially prevalent if future work examines how individual differences
(e.g., age, gender, risk tolerance) influence trust formation and calibration under uncertainty.

Anticipated Outcomes 8
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5.0 Conclusion

When FMs enter analytical workflows, the challenge of effectively communicating uncertainty
between Al systems and human analysts will become critical for national security decision-
making. The proposed research addresses a significant gap in understanding how analysts
conceptualize, interpret, and respond to uncertainty information, particularly as generated by Al
systems. Through qualitative interviews with analysts, this study aims to bridge the divide
between technical uncertainty quantification methods and the practical needs of domain experts
who must make consequential decisions based on uncertain information. The findings may
inform the design of more effective human-Al collaboration systems and contribute to
appropriate trust calibration in FM-assisted analysis. Ultimately, this research seeks to ensure
that the integration of Al into workflows enriches rather than undermines analysts' ability to
navigate the complexity of “yes,” “no,” or “maybe so” possibilities that characterize their
indispensable work.

Conclusion 9
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