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Abstract 

High-stakes analytical environments require analysts to evaluate evidence and generate 
conclusions to inform critical decisions often under conditions of uncertainty. Researchers are 
developing expert systems built on foundation models (FMs) to support analysts’ decision-
making processes, in part by quantifying and expressing uncertainty information. To ensure 
effective human-artificial intelligence (AI) teaming, it is imperative to address analysts’ needs 
when interpreting and using uncertainty information. However, it remains unclear how analysts 
engage with FM-generated uncertainty information and the extent to which these interactions 
influence trust in, and reliance on, expert systems. We will review the state of the science and 
propose our research design and methodology of an exploratory, qualitative study currently 
under review to (a) understand how properly communicated uncertainty fosters calibrated trust 
and appropriate reliance, and (b) identify strategies for conveying FM-generated uncertainty 
information during analytical work. Through semi-structured interviews, analysts will share their 
current experiences with job-related uncertainty and assess FM outputs that communicate 
uncertainty. The results will help us to understand how analysts currently interpret and use 
uncertainty information. Our findings may inform human factors recommendations for effectively 
conveying uncertainty information to foster calibrated trust in, and appropriate reliance on, 
expert systems. Practitioners can use this knowledge to enhance human-AI teaming and 
promote responsible FM-based expert system deployment. 
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Acronyms and Abbreviations 

AI  Artificial intelligence 

CLIP  Contrastive Language-Image Pre-training 

DOE  U.S. Department of Energy 

FM  Foundation model 

GPT-3  Generative Pre-trained Transformer 3 

IRB  Institutional Review Board 

ML  Machine learning 
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1.0 Introduction 

On July 3, 1988, the crew aboard the U.S.S. Vincennes faced a critical decision in the Persian 
Gulf. Engaged in a skirmish with Iranian gunboats, tactical personnel detected an approaching 
aircraft on radar. Officers reported that the aircraft was attacking because it was descending 
toward the ship, but its transponder indicated that it was a commercial flight. Multiple data 
sources provided conflicting signals about the aircraft's identity, altitude, and intentions. The 
crew's interpretation of this ambiguity led to a devastating decision: they fired two missiles at 
what they believed was an attacking Iranian F-14 Tomcat. However, the target was Iran Air 
Flight 655, a civilian Airbus A300 carrying 290 passengers and crew, all of whom were killed 
(U.S. Department of Defense, 1988). This tragedy demonstrates how the interpretation and 
communication of uncertain information can have catastrophic consequences. It represents a 
“just-so” story, a plausible but untestable narrative where the conclusions of “yes,” “no,” or 
“maybe so” appear equally valid. 

Such “just-so” stories are characteristic of high-stakes analytical environments, where analysts 
systematically analyze information from multiple sources to assess threats and inform critical 
decisions (Drumhiller et al., 2024). This work inherently involves uncertainty because analysts 
must often draw conclusions from incomplete, conflicting, or ambiguous evidence under 
demanding circumstances (Amiram et al., 2018). For example, an analyst might need to assess 
the credibility of a threat based on one data source with unknown reliability, fragmented 
communications intercepts, or satellite imagery that shows unusual but not definitively 
suspicious activity. These judgments require both analytical skill and explicit communication of 
uncertainty information. 

The challenge of effectively communicating uncertainty will become increasingly complex once 
artificial intelligence (AI) systems enter analytical workflows. Foundation models (FMs) are 
being developed to augment human analytical capabilities by processing vast amounts of data, 
identifying patterns, and generating insights more quickly than human analysts alone (Vaccaro 
et al., 2024). However, the future integration of these AI systems introduces new questions 
about how uncertainty should be communicated from machines to humans. While FMs can 
quantify and express their uncertainty in various ways, it remains unclear how analysts interpret 
and respond to this uncertainty information. Additionally, it is unknown whether uncertainty 
expression approaches can foster calibrated trust in, and appropriate reliance on, AI-assisted 
decision-making. To address these gaps, this paper proposes an exploratory, qualitative study 
design to better understand how analysts engage with uncertainty information both in their 
current work and from FM outputs. The study has not yet been conducted; this paper presents 
our research design and methodology. 
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2.0 Literature Review 

2.1 Foundation Models (FMs) in Decision Support 

FMs are large-scale AI models characterized by unprecedented scale, generality, and 
adaptability across diverse tasks through extensive pretraining on massive datasets 
(Bommasani et al., 2021). These models serve as general-purpose platforms that can be 
adapted for specialized applications, functioning through five major decision-making paradigms: 
optimization, prediction, planning, recommendation, and control (Schneider, 2022; Zhang et al., 
2023). FMs encompass multiple types: natural language models like Generative Pre-trained 
Transformer 3 (GPT-3) demonstrate sophisticated text generation capabilities, while vision-
language models such as Contrastive Language-Image Pre-training (CLIP) enable cross-modal 
understanding and image classification for improved zero-shot performance and flexible 
transferability (Awais et al., 2025; Zhou et al., 2024). However, evaluation and benchmarking 
remain challenging. Because significant gaps exist between pretraining tasks and real-world 
performance, there are ongoing concerns regarding data quality and alignment (Zhou et al., 
2024). 

End-user interactions with FMs present significant challenges for effective decision support. 
Users often develop inadequate mental models of these complex systems, leading to 
misaligned expectations about their capabilities and limitations (Passi & Vorvoreanu, 2022). The 
inherently unexplainable nature of AI systems (particularly very large models) limits 
transparency and user understanding (Bommasani et al., 2021; von Eschenbach, 2021). This 
“black box” problem becomes more pronounced as FMs exhibit emergent behaviors that cannot 
be directly understood or predicted. Thus, risks of under- or over-reliance based on perceived 
competence arise that may not be justified in real-world scenarios (Bommasani et al., 2021). A 
lack of transparency may challenge users who must make critical decisions based on system 
outputs without fully understanding the system’s underlying reasoning processes (Schneider, 
2022). Given these challenges, it is important to understand how users develop and maintain 
trust in AI systems. 

2.2 Trust in Artificial Intelligence (AI) Systems 

Trust can be defined as the “reliance by an agent that actions prejudicial to their well-being will 
not be undertaken by influential others” (Hancock et al., 2011, p. 24). A meta-analysis of trust in 
AI reveals that appropriate trust formation depends on antecedents in three categories: 
characteristics of the trustor, trustee, and their shared situation (Kaplan et al., 2023). For 
example, trust may depend on an individual’s level of technology knowledge, the accuracy of 
the technology itself, or the difficulty of the task they are performing together. Glikson and 
Woolley (2020) explain that calibrating trust with system performance becomes difficult with 
increased model complexity because outputs cannot be interpreted as simply correct or 
incorrect. This requires users to consider the various ways in which outputs may be accurate or 
flawed (Glikson & Woolley, 2020). If trust remains uncalibrated, users may inappropriately 
mistrust or distrust the system, which can lead to actions of over-trust and under-trust (Jacovi et 
al., 2021). These actions may result in users relying on a system when it is incorrect or failing to 
rely on it when it is correct (Glikson & Woolley, 2020). This underscores the need for calibrated 
trust rather than simply high or low trust levels. Several mechanisms can be employed to 
achieve calibrated trust. From interviews with 12 expert decision-makers in various domains, 
Bedué and Fritzche (2022) report that access to knowledge, transparency, explainability, 
certification, and self-imposed standards and guidelines are most important for user trust 
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calibration. While calibration mechanisms guide the maintenance of appropriate trust levels, 
trust must first be established. 

Research on trust formation shows several patterns and challenges in understanding human-AI 
relationships. Glikson and Woolley (2020) distinguish between cognitive trust (competence-
based) and affective trust (emotional-based). Different system representations elicit different 
types of trust: whereas anthropomorphic agents (e.g., physical robots) generate more affective 
trust, feedback (e.g., transparency cues) strengthens cognitive trust. Multiple factors influence 
how trust is formed and the types of trust that manifest. In a review of 23 empirical studies, Bach 
et al. (2024) conclude that user characteristics (e.g., gender, education, AI 
experience/interactions) are the most influential to trust formation. However, the authors also 
suggest that socio-ethical considerations (e.g., continuous feedback, legal boundaries) and 
technical and design features (e.g., anthropomorphism, social presence) are paramount, 
especially when considering the diverse contexts and environments in which AI systems can be 
used. Moreover, other factors influence trust formation such as task attributes (e.g., complexity, 
time pressure) and system properties (e.g., robustness, reliability, transparency; Bach et al., 
2024). These influential factors may interact with each other. For instance, Bedué and Fritzsche 
(2022) illustrate how user characteristics interact with system properties through their finding 
that AI certifications increase novice user trust but may lower expert trust when viewed as 
superficial marketing. These findings underscore that trust in AI systems is a complex result of 
the user, the technology, and the situation in which they are operating. Central to trust formation 
is the clear communication of expected system performance to users. With FMs, this involves 
appropriately conveying how certain or uncertain the model is about its results. 

2.3 Uncertainty Information 

Uncertainty in AI systems stems from multiple sources and manifests in different forms. Jalaian 
et al. (2019) identify various sources of uncertainty in AI, including model selection, data noise, 
and extrapolation beyond training contexts. Two types of uncertainty exist: (1) aleatoric 
uncertainty, which represents irreducible randomness inherent in data, and (2) epistemic 
uncertainty, which reflects limitations in model knowledge that could potentially be addressed 
with additional information (Abdar et al., 2021; Bhatt et al., 2021). Senge et al. (2014) clarify that 
distinguishing between these uncertainty types is crucial in domains like medical diagnosis for 
determining whether additional data collection is warranted. Beyond these traditional categories, 
Wenskovitch et al. (2024) introduce the concept of interaction uncertainty in human-machine 
teaming, which arises from mismatches in behavior, communication, or goal understanding 
between humans and AI systems. 

The quantification and expression of uncertainty information significantly impact how users 
interpret and respond to FM outputs. Emerging uncertainty quantification methods for FMs 
include Bayesian methods, ensemble approaches, conformal prediction, and entropy-based 
metrics (Abdar et al., 2021). Bhatt et al. (2021) propose uncertainty quantification as a 
complement to explainability for achieving algorithmic transparency, advocating for visual and 
probabilistic formats to communicate uncertainty to different stakeholder groups. However, 
quantifying uncertainty is only part of the challenge; the format and framing of expressing 
uncertainty also matter. Dhami et al. (2025) compared verbal probability expressions with visual 
encodings for uncertainty communication in intelligence analysis, finding that analysts were 
slightly more sensitive to verbal probability cues but showed poor consistency across all 
formats. Further, the linguistic framing of uncertainty communications influences user 
perceptions and decision-making: first-person expressions like “I am certain” are perceived 
differently depending on speaker expertise compared to general perspective statements like “It 
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is uncertain” (Juanchich et al., 2017). This suggests that how FMs quantify and express 
uncertainty can affect both judgment and decision-making. 

Users can employ various strategies to reduce uncertainty when interacting with AI systems. In 
their seminal work on uncertainty reduction during interpersonal communication, Berger and 
Calabrese (1975) present a three stage-based theory with six axioms and 21 theorems on the 
psychosocial behavior people exhibit to respond to and reduce uncertainty when uncertain 
information is presented. As an example, as the amount of verbal communication between 
strangers increases during the entry stage, the level of uncertainty each person perceives will 
decrease. Kramer (1999) reconceptualizes this theory for organizational contexts, proposing a 
“Motivation to Reduce Uncertainty” model influenced by context, goals, and uncertainty 
tolerance. Reduction strategies can be categorized as passive (observing entity behavior), 
active (seeking information from external sources), and interactive (directly engaging with the 
entity). Wenskovitch et al. (2024) highlight that uncertainty in human-AI collaboration is 
bidirectional because machines may also experience uncertainty about human behavior (e.g., in 
understanding the task that the user is trying to complete). The bidirectional nature of human-AI 
uncertainty presents unique challenges for ensuring that uncertainty can be effectively reduced 
not only for the human decision-maker, but also for the AI assistant. Building on these 
theoretical foundations, research has begun to investigate how humans actually perform when 
provided with AI-generated uncertainty information. 

2.4 Human Performance Under AI-Generated Uncertainty 

When properly communicated, uncertainty information can significantly improve human 
decision-making performance. Schaekermann et al. (2020) compared conventional AI 
assistants with ambiguity-aware systems that highlighted cases likely to lead to expert 
disagreement and presented arguments for conflicting classification choices. Their ambiguity-
aware AI altered expert workflows by significantly increasing the proportion of contentious cases 
reviewed, with the relevance of AI-provided arguments affecting experts' accuracy at revising 
AI-suggested labels. Users benefit most when uncertainty information is paired with clear 
explanations of underlying reasoning, particularly regarding why the system is uncertain rather 
than simply being told that uncertainty exists. This approach enables rapid trust calibration and 
helps users adjust their reliance levels appropriately, emphasizing the importance of 
interpretable uncertainty that clarifies the source, scope, and implications of uncertain 
recommendations (Tomsett et al., 2020). 

The communication of uncertainty information critically influences user responses, particularly in 
how users recover from AI errors. Siegling (2020) demonstrates that when AI systems disclose 
their uncertainty, users experience less severe trust degradation following system failures and 
develop better awareness of system limitations. Participants preferred AI systems that 
communicated uncertainty, perceiving them as more trustworthy and valuable compared to 
systems that did not disclose uncertainty. However, the design must balance clarity with 
information visualization, as overly complex visualizations can reduce utility despite their 
transparency benefits. For example, Reyes et al. (2025) reveal that the size and visual 
prominence of uncertainty displays emerge as key factors affecting both trust and decision 
confidence, with continuous uncertainty visualization significantly enhancing trust for 58% of 
participants who initially held negative attitudes toward AI. 

Task characteristics and individual differences can moderate how uncertainty affects human-AI 
collaboration. Salimzadeh et al. (2024) found that complex and uncertain tasks lead users to 
rely more heavily on AI systems while paradoxically demonstrating lower appropriate reliance 
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compared to simpler tasks. Interestingly, their research reveals that trust in AI systems appears 
less sensitive to task characteristics than reliance behavior, suggesting these constructs 
respond differently to uncertainty. User expertise also plays a crucial role in uncertainty 
interpretation. For example, novice users reported slowing down and thinking more analytically 
about their decisions when uncertainty about machine learning (ML) predictions were properly 
communicated, demonstrating greater vigilance and reducing overreliance (Prabhudesai et al., 
2023). Beyond individual responses, users actively develop strategies to manage uncertainty 
when interacting with AI systems. Chang et al. (2025) found that interactive approaches such as 
asking follow-up questions were more effective than passive observation strategies, with their 
study of 566 users revealing that consulting peer feedback was the most effective strategy for 
reducing uncertainty while transparency concerns, information accuracy issues, and privacy 
worries serve as key sources of uncertainty that users must navigate. Given these findings 
about the complex relationship between uncertainty communication and human performance, it 
becomes imperative to understand how analysts engage with uncertainty information to make 
decisions during their analytical work. 
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3.0 Methods 

The following study is under review with the Central Department of Energy (DOE) Institutional 
Review Board (IRB). We propose a qualitative study to understand how analysts working in a 
specific high-stakes analytical environment conceptualize, produce, and use uncertainty 
information in their analytical work, with the goal of informing FM-based AI system design for 
effective uncertainty communication. We aim to explore how analysts currently understand and 
interpret uncertainty, gather feedback on different approaches to uncertainty, and identify their 
preferences for uncertainty representation in FM-generated outputs. 

3.1 Participants 

We will recruit analysts working at four national laboratories. Participants must have experience 
conducting analytical work in high-consequence decision environments. They will have varying 
levels of familiarity with AI/ML systems. We will collect demographic information related to their 
analytical background, technical knowledge, and experience with AI/ML systems. 

3.2 Measures 

Semi-structured interviews will explore participants' current experiences with uncertainty 
information in their analytical work and their interpretations of AI-generated uncertainty outputs. 
The interview protocol will include questions about how analysts currently understand, use, and 
communicate uncertainty information in their professional practice. Additionally, participants will 
discuss their thoughts, beliefs, and reactions regarding the presentation of several FM outputs 
containing different representations of uncertainty information. The interviews may also capture 
participants’ impressions of how uncertainty information might influence their trust in, and 
reliance on, FM-based AI systems. 

3.3 Procedure 

Following informed consent, we will conduct individual semi-structured interviews with each 
participant. Interviews will begin with questions about participants' current experiences with 
uncertainty in their analytical work, including how they interpret, use, and communicate 
uncertain information. Then, participants will view examples of FM outputs that display 
uncertainty information in different formats and provide feedback on their interpretations and 
preferences. Finally, we will ask participants to share demographic information related to their 
experience and expertise. Throughout the interview, participants can share their thoughts about 
how uncertainty information might affect their trust in AI-assisted analysis. 

3.4 Data Analysis 

We will employ thematic analysis to identify patterns and themes in participants' responses 
regarding their experiences with and interpretations of uncertainty information. Following data 
cleaning and preparation, we will develop a coding framework to systematically analyze 
interview notes and transcripts. We will leverage the resulting themes to create an affinity 
diagram, which may allow us to organize and visualize relationships between different themes 
and concepts that emerge from the data. This analytical approach will help us identify common 
patterns in how analysts conceptualize uncertainty, their preferences for uncertainty 
representation, and factors that influence their trust and reliance on FM-generated uncertainty 
information. 
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4.0 Anticipated Outcomes 

4.1 Research Objectives 

This study may reveal several key insights about how analysts work with uncertainty 
information. For example, analysts might have domain-specific conceptualizations of uncertainty 
that differ from technical definitions used in AI research. We will seek to identify current 
practices for communicating uncertainty in reporting and discover gaps between these practices 
and what analysts need from AI systems. The study also aims to reveal how different types of 
uncertainty information are valued depending on the analytical situation. As such, the interviews 
will explore whether analysts' preferences for uncertainty representation vary based on their 
specific tasks, expertise levels, and analytical contexts. Additionally, findings will inform whether 
analysts' trust in and reliance on AI-generated information is influenced by how uncertainty is 
communicated, with some representation formats potentially fostering more appropriate trust 
calibration than others. 

4.2 Limitations 

Several limitations may affect the generalizability and interpretation of our findings. First, while a 
small sample size is appropriate for qualitative research, it may limit the breadth of perspectives 
captured during this study. Additionally, the cross-sectional nature of the study means we will 
capture analysts' perspectives at a single point in time rather than observing how their views 
change with experience. Further, the study focuses on analysts from national laboratories, 
which may not represent the full range of analytical environments. Finally, findings may be 
specific to the high-consequence domain examined here and may not generalize to other types 
of analytical work or high-consequence domains. 

4.3 Contributions to Knowledge 

Our research seeks to contribute to multiple areas of knowledge. For instance, the findings 
should enhance understanding of how domain experts conceptualize and use uncertainty 
information in high-consequence decision environments. The goal is to provide practical insights 
for AI system designers about how to effectively communicate uncertainty information to 
decision makers. Thus, our findings aim to inform the development of more effective uncertainty 
visualization and communication strategies for FMs used in analytical workflows. Overall, this 
study attempts to bridge the gap between technical uncertainty quantification methods and user 
needs of uncertainty representation in real-world analytical contexts. 

4.4 Future Work 

Several research directions build on this work. A controlled experiment that presents 
participants with different uncertainty representations and measures how their trust, reliance, 
and decision-making accuracy differ between each representation would help to explore 
whether these representations influence those factors. Within high-stakes analytical work, a 
longitudinal study could examine how analysts' trust in and use of AI-generated uncertainty 
information changes over time with repeated exposure. Outside of the domain examined here, 
research across other high-consequence domains could investigate whether findings from this 
study generalize to other tasks such as financial analysis, medical diagnosis, or air traffic 
control. Additionally, it may be fruitful to explore how explanations of AI system 
conservativeness or system limitations affect trust calibration when uncertainty information is 
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presented. This may be especially prevalent if future work examines how individual differences 
(e.g., age, gender, risk tolerance) influence trust formation and calibration under uncertainty. 
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5.0 Conclusion 

When FMs enter analytical workflows, the challenge of effectively communicating uncertainty 
between AI systems and human analysts will become critical for national security decision-
making. The proposed research addresses a significant gap in understanding how analysts 
conceptualize, interpret, and respond to uncertainty information, particularly as generated by AI 
systems. Through qualitative interviews with analysts, this study aims to bridge the divide 
between technical uncertainty quantification methods and the practical needs of domain experts 
who must make consequential decisions based on uncertain information. The findings may 
inform the design of more effective human-AI collaboration systems and contribute to 
appropriate trust calibration in FM-assisted analysis. Ultimately, this research seeks to ensure 
that the integration of AI into workflows enriches rather than undermines analysts' ability to 
navigate the complexity of “yes,” “no,” or “maybe so” possibilities that characterize their 
indispensable work. 
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