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We present a refined understanding of cylindrical plasma-facing emitter cathodes by examining the limitations of the
conventional space charge-limited model, which overlooks ion trapping dynamics within the virtual cathode. While
conventional theory distinguishes between temperature-limited and space charge-limited regimes based on electron
current constraints, our findings reveal that trapped ions can form a quasi-neutral “second plasma," expanding upstream
and interacting with the primary plasma. In cylindrical, and other non-planar geometries, an expanding trapped ions
layer produces current enhancement by converting more of the emitted electron flux to passing flux. The current
enhancement leads to a complex coupling between the trapped-ions plasma and upstream plasma through ionizing
collisions in the upstream region and charge exchange collisions in the virtual cathode. The coupling results in mutual
density enhancement, and at the same time, antagonistic expansion dynamics between the two plasma layers. The
process is understood using a new “Aid-Compete" model. Numerical solutions, validated against simulations, reveal the
model’s capacity to predict system evolution and complex discharge behaviors, albeit with qualitative approximations.

Keywords: cylindrical hot filament discharge, ion trapping in virtual cathode, two-plasma mode, plasma coupling
modeled using a set of coupled differential equations, model validation using axisymmetric particle-in-cell simulations

I. INTRODUCTION

The cathode sheath voltage plays a driving role in the
properties of all laboratory plasmas generated by thermionic
cathodes1–7. A higher plasma density can be achieved by ap-
plying a stronger bias across the cathode sheath. This accel-
erates emitted electrons to higher energies thereby increasing
the ionization rate in the background gas . But it also leads
to high ion flux and high ion impact energies on the cath-
ode which are known to cause erosion8. The importance of
protecting the cathode often necessitates operating at modest
voltages where nonclassical sheath effects can manifest. The
cathode sheath may become “space-charge limited" (SCL)
where part of the emission is suppressed by a “virtual cathode"
(VC) and ionization by thermoelectrons (i.e. emitted elec-
trons) is thus reduced. Experiments and simulations have also
found an “anode glow mode" (AGM) where there is a weak
inverse cathode sheath and the the only ionization occurs in a
thin layer of the higher-voltage inverse anode sheath9–13.

Theoretical prediction of thermionic discharge
properties14,15 requires modeling the cathode sheath and
its coupling to the plasma in the ionization region. Rigorous
theories of emitting cathode sheaths exist16 that model the
classical sheath and its transition to SCL. In conventional
theories, ions are presumed to propagate collisionlessly from
the sheath edge to the cathode.

Recent simulation17 and experimental18 studies indicate
that trapped ions can increase the transmitted SCL current
from an emitting cathode. In a new simulation study of a
cylindrical hot filament discharge, we found that the trapped
ions cause more complex “aid-and-compete" dynamics within
the electrode gap19. Specifically, the current increase caused
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by trapped ions proportionally increases the ionization rate in
the upstream plasma. Yet at the same time, the trapped ion
region forms a second quasineutral plasma that reduces the
space available to the upstream plasma. Either plasma can
take over the electrode gap and expel the other as the discharge
evolves. Improved theoretical understanding of the dynamics
is needed to explain how the single-plasma and two-plasma
discharge modes form and how they will evolve as operating
conditions are changed.

The purpose of this paper is to provide a formal theoretical
foundation for the dynamics of a thermionic discharge that in-
cludes trapped ion effects and explains the transitions among
classical, SCL, and inverse sheath modes10,20–24. Because
thermionic cathodes often take the form of wire filaments25–27

or rods18 we will treat the example of a cylindrical geometry
discharge between a small inner emitting cathode and a con-
centric outer anode. We will find that the model is able to
explain some dynamical effects observed in our fully kinetic
simulation study19 at comparatively negligible computational
cost. A more complete quantitative agreement would require
further refinement of the model and lifting some simplifica-
tions that were invoked to make the equations more tractable.
This paper is intended to serve as a starting point that can be
built upon in future work. The main concepts introduced here,
especially how the two plasma regions couple to each other,
are adaptable to other electrode arrangements.

In Section II, we outline the foundations of the aid-and-
compete model and derive the model equations. In Section III,
we calculate solutions of the equations and compare with fully
kinetic simulations. Section IV gives concluding remarks and
suggestions for future enhancements of the model.
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II. THE AID-COMPETE MODEL FOR DYNAMICS IN
THE TWO-PLASMA-MODE OF A DISCHARGE

In a recent simulation study of a cylindrical filament dis-
charge we demonstrated that operating the discharge within
a small window of voltage bias in the range ∼ 1–2V above
the ionization threshold of the working gas, allowed the dis-
charge to evolve unconventionally revealing new dynamics
such as sheath mode transitions, current enhancement, and
hysteresis19. The reason for this was found to be the formation
of a trapped-ions layer in the potential well of the discharge’s
virtual cathode, a process that can only be sustained in this
range of voltage bias. Higher voltage biases generally tend to
make the ionization of the working gas too rapid such that the
Virtual Cathode (VC) has to give way to a classical (ion-rich)
sheath at the filament, taking the discharge to what is called
the Temperature Limited Mode or TLM. At biases lower than
the ionization threshold, no quasi-neutral plasma can be sus-
tained.

Only close to the ionization threshold, a layer of quasi-
neutral plasma forms in the region of the VC made up of
trapped ions and emitted electrons. The cathode-wards ac-
celerating ions get trapped in the VC, when they happen to
make de-energizing charge exchange collisions with back-
ground neutrals in the VC. The formation of a trapped ions
layer modifies the potential structure of the VC giving it an ex-
tended minimum. We call this layer the Trapped Ions plasma
(TIP). The TIP interacts with the upstream plasma layer that is
formed by the conventional impact ionization process. In this
configuration where we have two plasma layers occupying the
upstream and downstream regions of the electrode gap, the ap-
plied bias gets dropped for the most part, in a Double Layer
(DL) formed between the TIP and the upstream plasma. We
call this mode of discharge the Two Plasma Mode (TPM)19.

The TPM configuration shares both morphological and op-
erational similarities with another multi-sheath solution, the
plasma fireball28. Both TPM and fireballs feature a double
layer connecting a second quasi-neutral layer— formed near
an electrode— to the conventionally formed plasma layer29.
Additionally, both exhibit hysteresis under certain electrode
bias modulations30.

However, it is important to note that TPM and fireballs are
fundamentally different phenomena. Anodic double-layer so-
lutions, such as fireballs, form due to enhanced electron im-
pact ionization near the anode. In contrast, the two plasma
mode arises from a trapped-ion layer near an emitting cath-
ode, driven by ion trapping dynamics facilitated by charge ex-
change collisions.

With build up of more trapped ions, the VC gets flatter due
to neutralization of electron space charge, and wider due to
the expansion of the the TIP. The stretching of the VC min-
imum due to an expanding TIP has been observed in both
planar12 and non-planar discharges31, but unlike planar elec-
trodes, in non-planar electrodes such as cylindrical or spheri-
cal, the TIP’s expansion causes an enhancement of the space
charge limited current in the discharge. The effect can be un-
derstood by conventional Space Charge Limited (SCL) sheath
theory. At the junction between the modified VC and the

DL, the potential has a Marginal SCL or MSCL structure, a
shape than can be considered a boundary between an SCL
and a classical sheath. Using theory of MSCL sheath16 we
will demonstrate in this paper, than for a given discharge sys-
tem, the electron current density emanating from the MSCL
becomes fixed by the system parameters. This implies that
as the TIP expands upstream to higher radius the MSCL cur-
rent density it transmits into the DL will remain conserved.
Hence in the axisymmetric configuration of a cylindrical fila-
ment discharge, the electron current has to increase in propor-
tion to rv(t), the dynamic radial width of the TIP / modified
VC. The expanding TIP draws more electrons from the emit-
ted flux and transmits them across into the passing flux of the
electrode. So in effect, the SCL current is increased due to the
increasing fraction of passing to emitted electrons.

In the appendix of Ref.[19] we demonstrated using simula-
tion that in cylindrical geometry an expanding TIP produces a
current that grows in proportion to the increasing radial width
of the TIP. It was also demonstrated in Ref [19] that the rise
in current hits a limit when the passing electron flux becomes
equal to the emitted electron flux, at which point the modified
VC is affected by a violent quenching instability that ejects all
trapped ions into the cathode and reforms a regular VC with
a unique minimum; only for the ion-trapping process to start
again.

The electron current enhancement by a radially expanding
TIP sets forth a coupling mechanism between the TIP and the
upstream plasma. The increased electron flux leads to more
ionization in the upstream plasma increasing its density. More
ions from the upstream plasma are now transmitted down-
stream across the DL into the modified VC. This leads to more
ion-trapping and growth of the TIP. This feedback mechanism
of mutual growth between the TIP and the upstream plasma
layers also causes the two plasma layers to expand into the
electrode gap approaching each other in the process. The ex-
pansion dynamics is antagonistic, where the stronger expan-
sion of one layer within the limited electrode gap, can cause
the other layer to shrink. The combined effect of the mutual
enhancement and antagonistic expansion of the two plasmas
is referred as the “aid-compete" effect19.

The aid-compete model offers a way of understanding the
coupling between the trapped-ions plasma and the upstream
plasma in the two-plasma mode (TPM) of a cylindrical co-
axial discharge. In the name of the model, the ‘aid’ part
refers to the coupling mechanism that produces mutual den-
sity enhancement of the two plasma layers. The ‘compete’
part refers to the antagonistic expansion dynamics of the two
plasma layers in the electrode gap. In Ref.[19] we explained
and demonstrated the aid-compete effect using simulations of
the two-plasma mode of a cylindrical filament discharge. In
this paper we will derive an approximate analytical form of
the model and compare its solutions for some given parame-
ters with corresponding simulations. It will be revealed that
the simulations grossly agree with the model, indicating that
our model incorporates the essential coupling mechanisms be-
tween the two plasma. At the same, divergence between sim-
ulation data and the model at a finer level, leaves scope for
refinement of the model to make it more predictive which will
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be discussed.
The analytical form of the aid-compete model should be

treated as the first attempt to mathematically grasp the dy-
namic, nonlinear, collisional coupling mechanism between
the TIP and upstream plasma, leaving some allowance for in-
exact convergence with the simulations. To build the model
we first understand the unconventional two-plasma mode of a
discharge in the following subsection.

A. The Two Plasma Mode or TPM

In Fig. 1, a snapshot from simulation19, we observe the
TPM. In the system, the inner cathode is biased to VB =−17V
while the outer anode is grounded. Rct and Ran on the ra-
dial axis of Fig.1 represent the cathode and anode boundaries.
The potential, Φ, reveals a distinct behavior across the ra-
dial domain. It decreases sharply from the cathode in a thin
inverse sheath before stabilizing into a quasi-neutral area of
nearly flat potential in the trapped-ions plasma. Exiting the
upstream side of the trapped-ions plasma, the potential forms
a Marginal-Space-Charge Limited (MSCL) sheath, with Φ in-
creasing radially towards the upstream plasma potential in a
charge-accelerating double-layer. The radial increase in Φ

saturates in the upstream plasma region, delineating the sec-
ond region of nearly flat potential. Approaching the anode, Φ

decreases to match the anode’s fixed potential, forming a clas-
sical sheath. The voltage across the accelerating double layer
region is equivalent to the applied bias plus an additional 0.6V
in this snapshot, due to the influence of the electrode sheaths
on the interior potential.

The corresponding electron and ion densities ne and ni
clearly depict that - (i) the cathode sheath region has more
electrons than ions hence the inverse sheath of Φ (see Fig.1-
inset (I)) , (ii) the trapped-ions plasma is quasi-neutral and
has an almost flat potential, (ii) the double-layer transits from
electron rich to ion rich as Φ rises in the acceleration region
(see Fig.1-inset (II)), (iv) the upstream plasma is quasi-neutral
with weak potential gradients, and (v) the anode sheath has
more ions than electrons, hence a classical sheath (see Fig.1-
inset (III)).

In the TPM, the emitted electrons that enter the double layer
get accelerated to ionizing energies producing an upstream
plasma through electron impact ionization of neutrals. Ions
from the upstream plasma are transported downstream via the
same double layer. In their trajectory towards the cathode,
some ions would make charge exchange collisions with cold
neutrals residing in the Virtual Cathode (VC), producing cold
ions that are captured within the potential well of the VC. The
accumulated trapped ions within the VC form a second layer
of plasma that is neutralized by the portion of emitted elec-
trons that get past the thin inverse sheath.

The TPM can be thought of as the general solution for all
the four sheath modes of the thermionic discharge. The single-
plasma modes (see Fig.1 of Ref.[19]) can be obtained as lim-
iting cases of the TPM when the radial width of one of the
plasma layers approaches zero. If the trapped ion plasma’s
width reduces to zero, the discharge will either be in the fa-

miliar classical sheath “temperature-limited mode" (TLM) or
in a SCL sheath mode without trapped ions, also known as
the “Langmuir mode" (LM), see Fig. 4 of Ref.20. On the
other hand, if the upstream plasma width reduces to zero and
the trapped ion plasma takes over, the discharge is in the “An-
ode Glow Mode" (AGM). Our simulation studies suggest that
discharges have a strong tendency to settle to a one-plasma
steady state rather than a TPM. But understanding the TPM is
crucial because the TPM often forms during the initial striking
of a discharge, or after a single-plasma discharge is subjected
to an adjustment of operating conditions similar to what would
happen in an experiment. In all cases, the aid-and-compete
dynamics between the two plasmas determines which steady
state modes are accessible in which regions of operating pa-
rameter space.

We proceed to formulate the aid-compete model.

B. An overview of the set of equations that form the aid-
compete model

As demonstrated in Ref.[19] the feedback process of mu-
tual density growth in the TIP and the upstream plasma, and
their antagonistic spatial expansions to occupy the electrode
gap act in unison. In combination, these processes dynami-
cally evolve the densities of the two plasma layers and their
radial widths in the gap. In our model we represent the chang-
ing densities of the two plasma layers with the functions dPups

dt

and dPtrp
dt where Pups and Ptrp represent the total spatially inte-

grated population of the upstream plasma and the trapped-ions
plasma respectively, see Fig.1. We represent the movement of
the two plasma layers, using a common variable rv (subscript
‘v’ used to represent a variable radius). Technically rv is the
radial extent of the modified virtual cathode or TIP. The re-
maining space in the radial domain, which is occupied by the
double layer plus the upstream plasma (see Fig.1), is taken as
a rough approximation for the width our model’s ‘upstream
plasma’ with population Pup. The width of the thin inverse
cathode sheath and the classical anode sheath in Fig.1 is ne-
glected in our model. The resulting picture of the density pro-
file is schematically represented in the top panel of Fig.2. The
grey and yellow regions are quasi-neutral and they represent
Ptrp and Pups respectively. The two quasi-neutral populations
are separated by an operational boundary at r = rv.

The movement of Pup(t), Ptrp(t) and rv(t) is the solution
from the model. For example, a sheath transition where the
trapped ions plasma grows in density and radially expands,
while the upstream shrinks19 will be represented in our solu-
tion by increasing Ptrp and rv and a decreasing Pups.

The quasi-neutral density functions of the TIP and the up-
stream plasma are assumed to be purely geometric, hence
∝1/r, as indicated in Fig.2 - top panel. In Fig.2 we have
shown sheaths of finite widths at the cathode and anode for
the purpose of understanding the model. In application of the
model these widths are neglected as mentioned earlier. Hence
the left bounding density of the TIP, nL

trp is approximated to be
at the cathode’s radius, Rct (see Fig.1) while its right bound-
ing value, nR

trp is at the operational boundary at r = rv. The
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FIG. 1: The two plasma mode (TPM): A snapshot from simulation is used for illustration. The graph is dual, showing
the electron density ne and ion density ni on the left y-axis and the potential function Φ on the right y-axis. Distinct re-
gions on the potential profiles are labelled in black. Different discharge regions are marked in magenta along the den-
sity profile. Ptrp and Pups are the quasi-neutral populations (i.e. total amount of plasma) of the trapped-ions plasma and
the upstream plasma. Rct and Ran on the radial axis show the position of the cathode and anode respectively. The radial

extent of the trapped-ions layer is demarcated as rv on the radial axis. ‘WF’ implies a weak field region and ‘MSCL’
refers to a marginal space charge limited sheath. Inset (I) is a zoomed-in plot of the inverse cathode sheath and trapped-
ions layer where nL

trp and nR
trp marks the downstream and upstream quasi-neutral density of the trapped-ions layer. In-

set (II) is a zoomed-in plot of the double layer. Inset (III) is a zoomed in plot of the classical anode sheath where nL
ups

and nR
ups mark the downstream and upstream quasi-neutral density of the upstream plasma. Note that the snapshot

shown here was chosen for clarity of the different regions of the discharge. The double layer is not always so wide.

density decreases as 1/r between the two boundaries. Sim-
ilarly the upstream plasma’s density function starts from its
Left boundary at radius rv with a density value nL

ups and falls
smoothly as 1/r up to its Right boundary at ≈ Ran where its
value is nR

ups. In our model, a density jump occurs at loca-
tion rv because the plasma densities on either side of the DL
are unequal: nR

trp on the downstream side and nL
ups on the up-

stream side. The location rv acts as an operational boundary,
where the nR

trp(rv) and nL
ups(rv) are related through the theory

of Marginal Space Charge Limited (MSCL) sheaths16.

An important quantity indicated on the density axis of Fig.2
- top panel is the fixed emission density nemt on the cathode fil-
ament. As depicted in Fig.2 the actual density of electrons on
the filament can exceed nemt because of reflected electrons by
the space charge. We assume an exponential Boltzmann de-
cay of nemt to the left boundary value of the TIP-density, nL

trp.
The Boltzmann decay is indicated by the thick black dashed
curve in the top panel of Fig.2. This relation follows from an
approximation that at the density value nL

trp the electron dis-

tribution has no reflected electrons left i.e. all the electrons at
this point are headed radially outwards.

The bottom panel of Fig.2 represents the assumed poten-
tial function in our model. Important flux quantities are also
represented using broad arrows. These include the fixed emit-
ted electron flux Γemt , and the transmitted or passing flux
Γtmt . The Γemt is the emergent electron flux through the in-
verse sheath at the cathode formed by space charge electrons,
see Fig.1. The inverse sheath imposes a potential barrier of
strength −Φbar on the emitted electrons, suppressing the Γemt
to Γtmt as represented in the bottom panel of Fig.2. In our
model the −Φbar and the Γtmt are dynamic quantities.

Another important flux quantity shown in Fig.2 - bottom
panel is the downstream ion flux of the Bohm kind from the
upstream plasma. This flux provides the ions for trapping the
virtual cathode. In our model the upstream Γtmt and the down-
stream Bohm flux are assumed to be conserved across the op-
erational boundary. However electrons and ions are assumed
to gain energy equal to the voltage difference of the double
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FIG. 2: A schematic representation of the aid-compete effect in the two plasma mode of a cylindrical dis-
charge. The top plot represents the assumed analytical shapes of the radial density functions for electrons

and ions in different regions of the discharge. The bottom plot represents the corresponding assumed shape
of the radial potential function. Important quantities and effects are symbolically represented on the figure
to be taken up in the corresponding discussion. The solved variables are distinguished using magenta print.

layer (see Fig.1) upon crossing the operational boundary in
opposite directions. This acceleration is also schematically
represented in the bottom panel of Fig.2. The implication for
the numerical works of the model is as follows. We use Γtmt
for the number of electrons entering the upstream plasma in
unit time. The energies of these electrons used to calculate
the mean free path of ionization, ∆iz, is the accelerated energy
past the operational boundary. Similarly the number of ions
entering the TIP per unit time is the calculated Bohm flux and
the ion energy used to calculate the mean free path for charge
exchanges in the TIP, ∆cx is the accelerated ion energy past
the operational boundary.

The analytical model solves for the rate of change of the
upstream and downstream populations, dPups

dt and dPtrp
dt using a

pair of coupled differential equations, the equations 1 and 2 in
the following subsection. The multiple variables that feature

in this two differential equations, are systematically reduced
to a solvable pair of variables using algebraic relations derived
from standard theory of sheaths, the Eq.s 3-9 in the following
subsections. In Fig.2 the 9 solved variables viz. Ptrp, Pups, rv,
nL

trp, nR
trp, nL

ups, nR
ups, Γtmt , −Φbar are distinguished using ma-

genta print. Remaining constant values that appear in the set
of equations 1-9 include (i) the temperature Temt of the emitted
electrons (ii) Te the (assumed) electron temperature of the up-
stream plasma, (iii) Ti the (assumed) common temperature of
ions in the upstream plasma and trapped-ions plasma, (iv) α

a proportionality constant that will be calculated using MSCL
sheath theory16, and (v) the physical constants for electron
mass me, ion mass mi, Boltzmann constant kB, and electron
charge magnitude q.
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C. Derivation of the equations of the aid-compete model

We start with the equation describing the rate of change of
the upstream plasma population, Pups.

dPups

dt
= Γtmt

(
1− e

− (Ran−rv)
∆iz

)
−2πRannR

ups

√
kBTe

mi
−2πrvnL

ups

√
kBTe

mi

(1)

The first term on the right hand side (RHS) of Eq.1 cal-
culates the rate of electron impact ionization. Here Γtmt rep-
resents the transmitted electron flux (not flux density) - the
portion of the injected electron flux Γemt that makes it past
the space charge voltage barrier, −Φbar of the inverse cathode
sheath. It is approximated in our model that these electrons
propagate collisionlessly through the quasi-neutral space of
the trapped-ions plasma, and then get accelerated by the dou-
ble layer to an energy sufficient to cause ionization of neutrals.
The factor in parenthesis is the probability of each accelerated
electron causing an ionization, which is expressed in terms of
an ionization mean free path ∆iz and the length of the upstream
plasma, Ran − rv.

The upstream plasma’s length is Ran − rv in our model, ne-
glecting for simplicity, the space consumed by the Double
Layer (DL). This approximation comes from a simplifying
‘small Debye length’ assumption that we apply for all the
sheaths in the TPM - cathode, anode, and DL. However, as the
simulation snapshot Fig.1 shows us, the DL does not neces-
sarily have a negligible width compared to the plasma widths.
Because the DL’s width is coupled in time to both plasmas,
including it in the equations would introduce entanglements
that make them considerably more complicated to solve. We
trade off the DL width for tractability of our model.

To estimate the constant ∆iz, one can approximate that the
energy of accelerated electrons is comparable to the mean ini-
tial energy of thermoelectrons, Eth, plus the electrode bias
voltage and use the known ionization cross section of the gas
at that energy32,33. The actual accelerating voltage in the dou-
ble layer is larger than the applied bias |VB| by some volt-
age δV . The δV accounts for the sum of the inverse cath-
ode sheath and classical anode sheath voltage magnitudes;
see Fig.1. We neglect time variation of the sheath volt-
ages. The ∆iz is calculated using the ionization cross-section
σiz(Eth +q|VB|+qδV ).

Another simplification in the theory is neglecting the role
of elastic scattering and energy-loss excitation collisions on
the thermionic beam. The effects of non-ionizing collisions
on the predicted ionization rate is expected to be negligible
because the mean free paths of all types of electron collisions
are much longer than the electrode gap radius in the pressure
range under consideration for the TPM (∼ 25mTorr). Higher
neutral pressures generally tend to produce TLM.

The second and third terms on the RHS of Eq.1 represent
the loss of plasma (estimated via Bohm’s criterion on ions)
from the two radial bounds of the upstream plasma with local
densities nL

ups and nR
ups. The term with Ran represents losses

to the anode while the term with rv represents losses from
the upstream plasma towards the cathode. Te is the known
electron temperature in the upstream plasma.

Next we calculate the rate of change of the trapped ions
plasma population, Ptrp.

dPtrp

dt
= 2πrvnL

ups

√
kBTe

mi

(
1− e−

(rv−Rct )
∆cx

)
−2πRctnL

trp

√
kBTi

2πmi
e−

qΦbar
kBTi

(2)

The first term on the RHS of Eq.2 represents the creation of
trapped ions. Ions from the upstream plasma are assumed to
enter the potential well of the Virtual Cathode (VC) at a rate

associated with the Bohm criterion −2πrvnL
ups

√
kBTe
mi

, same as
the downstream loss term in Eq.1. The factor in parenthe-
sis estimates the probability of a charge exchange collision
for each ion passing through. This probability is expressible
in terms of the radial width (rv − Rct) of the Trapped Ions
Plasma (TIP) and ∆cx, the mean free path of charge exchange
collisions. Assuming that the ions are accelerated from negli-
gible initial energy to |VB|+ δV across the DL we can calcu-
late ∆cx by estimating the charge exchange cross-section32,34,
σcx(q|VB|+qδV ).

The second term on the RHS of Eq. 2 represents the loss
rate of trapped ions escaping to the cathode over a potential
barrier of height Φbar formed by the inverse sheath; see Fig.1.
We assume that the trapped ions are singly charged and are
Maxwellian at the sheath edge with constant temperature Ti
and variable density nL

trp. Trapped ions in practice might be
expected to be in a collisional thermal equilibrium (and hence
Maxwellian) with the background neutrals at room tempera-
ture < 0.03eV . But the trapped ions tend to acquire additional
energy through collisions with thermoelectrons or the effects
of instabilities. A typical Ti measured from simulations19 is
∼ 0.1eV . No trapped ions have sufficient energy to escape
through the upstream side over the immense double layer’s
barrier ∼ |qVb| ≫ kBTi.

Having established the two main differential equations Eq.1
and 2 we proceed to derive some algebraic relations between
the 9 unknown quantities in Eq.1 and 2 which would help in
reducing the total number of unknowns to two, making Eq.1
and 2 solvable.

To establish a system of equations with a finite number
of unknowns, we make informed assumptions about the ra-
dial charge distribution in both plasma regions. This will
help us link the values of Pups and Ptrp to the local densi-
ties at the plasma boundaries. Plasma density upstream will
develop at a rate proportional to the flux density of the ac-
celerated thermionic beam which in the cylindrical axisym-
metric discharge has a 1/r distribution as long as collision-
ality is low, meaning that the attenuation of the beam is
weak across the electrode gap. We will therefore approxi-
mate that the upstream plasma has a 1/r spatial density distri-
bution. This ignores the effects of plasma force balance and
presheath physics on the upstream density distribution which
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are too complicated to embed in the analytical model. Simula-
tions suggest that a density assumption, n(r)∝1/r is roughly
reasonable19. The amount of plasma particles at each r (az-
imuthally integrated) is then ∝

2πr dr
r , independent of r. The

cumulative (radially integrated) amount of plasma upstream
Pups can then be expressed in terms of nL

ups and rv via the rela-
tion -

Pups = 2πrvnL
ups (Ran − rv) (3)

We also approximate that the trapped ion plasma has a 1/r
density distribution within its bounds, resulting in a similar
expression for Ptrp.

Ptrp = 2πRctnL
trp (rv −Rct) (4)

This justification is more intricate. Because the trapped
ion region has roughly zero electric field, the emitted elec-
trons passing through expand radially and (ignoring colli-
sions) must have a 1/r spatial density distribution, and thus
so do the neutralizing trapped ions. This argument holds even
if the creation of new trapped ions follows a different radial
distribution. For example, if the mean free path of charge-
exchange collisions is smaller than the radial length of the
trapped ion plasma, which sometimes occurs in simulations,
most trapped ions will be created near the outer bound of the
region. Experience with simulations shows that weak elec-
tric fields will establish to move the trapped ions closer to the
cathode to set up the approximate 1/r density profile. Inci-
dentally, we note that there will always be some un-collided,
high-energy ions passing through the trapped ion region, but
their spatial density is comparatively small and has been ne-
glected.

The relation between the emitted electron flux from the
cathode, Γemt and the electron flux transmitted through the
inverse sheath, Γtmt is expressed in analytical form as-

Γtmt = Γemt e−
qΦbar
kBTemt (5)

The two fluxes are connected by an exponential factor
which represents the Boltzmann decay in electron density
across the −Φbar inverse sheath. Cylindrical decay of ther-
moelectron density within the inverse sheath was neglected in
Eq.5 under the approximation of zero sheath thickness. The
electrostatic decay of the emitted electron density is much
more pronounced than its geometric decay.

For a half-Maxwellian emitted electron population with
known flux density Γemt and temperature Temt their density
at the cathode nemt is also known. The inverse sheath barrier
attenuates the +r flux and the density electrostatically (not
geometrically) by the same factor. Eq.6 is a resulting relation
that links variable values nL

trp and Γtmt at the downstream edge
of the trapped ion plasma to known values at the surface.

nemt

Γemt
=

nL
trp

Γtmt
(6)

Using the known Γemt and the mean radially directed ve-

locity, vin j =
√

2kBTemt
πme

(me is electron mass), we can get
an approximate value for nemt using the relation Γemt =
2πRctnemtvin j. We note that the actual density of electrons
at the cathode can be higher than nemt due to those reflected
by the inverse sheath.

Next, the downstream and upstream densities of the
trapped-ions plasma, nL

trp and nR
trp are connected based on

the previously discussed 1/r (geometric decay) radial density
profile.

nL
trp Rct = nR

trp rv (7)

Eq.8 relates the upstream density of the trapped-ions
plasma nR

trp with the downstream density of the upstream
plasma, nL

ups.

nR
trp = α nL

ups

√
πme

2kBTemt
(8)

The nR
trp and nL

ups quantities are interconnected because the
double layer between them must maintain the structure of a
“marginal SCL" (MSCL) sheath as the two plasmas evolve
in time. For calculation tractability, we approximate that the
MSCL sheath is thin enough to exhibit local planar geome-
try even though its radial extent in simulations is often wider.
In planar sheath theory16, the emitted electron flux density
through a MSCL sheath ΓMSCL is proportional to the density
of the plasma at the upstream sheath edge. Let us define α

as the proportionality coefficient, ΓMSCL = αnL
ups. Then using

the fact that in our system the ΓMSCL is the product of spatial
density of the thermoelectrons entering the double layer, nR

trp,
and the known thermoelectron thermal velocity, we arrive at
Eq.8. The value of α can be estimated using existing models
of MSCL sheaths16.

As an alternate to using the theory of MSCL sheaths16

to establish a relationship between nR
trp and nL

ups one could
also apply the Langmuir condition35,36 for the current across
the Double Layer (DL). The Langmuir condition for double
layer states that the ratio of the electron flux to the ion flux
across the DL is equal to

√
(mi/me) . Imposing the Lang-

muir condition on our system we get the relation nR
trp vin j =√

(kBTe/me)nL
ups , where the term

√
kBTe/me mimics the role

of α in Eq.8. For our system the value
√

kBTe/me = 7.24×
105 ms−1 is comparable to estimated value of the α function,
α = 8.25× 105 ms−1 obtained from MSCL sheath theory16.
However the two relations are not exactly equivalent. The
Langmuir condition35,36 is arrived at by assuming counter-
propagating ion and electron beams emitted at zero velocity
from opposite boundaries. A plasma-facing thermionic cath-
ode sheath as modelled by Takamura et al16 has several ad-
ditional complexities including (a) a confined plasma elec-
tron species contributing to the space charge distribution in
the sheath, (b) a substantial ion injection velocity given by the
Bohm criterion, (c) nonzero emitted electron temperature, and
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(d) quasineutrality among the plasma electron, emitted elec-
tron and ion charge populations is imposed at the ion-injection
boundary.

Interestingly upon closer examination, the two models
seem to approach each other under certain conditions, in par-
ticular, a very large voltage bias reaching tens of Te. This
looks consistent with intuition on the grounds that under large
bias, finite injection velocities of emitted electrons and ions
would become negligible and the plasma electrons have neg-
ligible penetration into the sheath. Such extreme biases are
generally not usable due to practical considerations such as
ion sputtering. So to keep our result general and valid for the
full range of biases, we opt to express the MSCL current in
terms of Takamura’s cathode sheath model16.

Finally, Eq.9 relates the density at the inner and outer
boundaries of the upstream plasma nL

upsand nR
ups based on the

presumed 1/r (geometric decay) spatial density profile.

nL
ups rv = nR

ups Ran (9)

D. Visualizing the model at work through the equations

The set of Equations 1-9 gives a feel of the aid–compete ef-
fect that will be at work when they are solved together. For ex-
ample, the first term on the RHS of Eq. 2 which feeds ions to
the trapped-ions plasma has a coefficient that is proportional
to the upstream plasma’s population through nL

ups. Hence as
Pups builds in Eq. 1 it will aid the growth of the downstream
plasma through Eq. 2.

Again, From Eq.5 and 6 we have-

−Φbar =
kBTemt

q
ln

(
nL

trp

nemt

)
(10)

In Eq.10 the logarithmic term is negative as nL
trp≤nemt . As

nL
trp approaches nemt through more and more ion trapping in

Eq.2, the barrier height Φbar will approach zero. This will
lead to an increase of Γtmt through Eq.5 which will in turn feed
the ionization term in Eq.1 aiding the growth of the upstream
plasma.

A compete effect between the plasmas occurs because any
increase in the radial length of one plasma reduces the other’s.
Meanwhile, the particle gain terms of Eqs.1 and 2 indicate that
the creation rate of new ions in each plasma is an increasing
function of its existing length. Thus, movement of rv in ei-
ther direction can feedback on itself, favoring the expanding
plasma to take over. That outcome is not guaranteed, how-
ever. Data will show that rv can be moving in one direction
and then turn around, in some calculations. The length of one
plasma can be decreasing even while its total content Pups or
Ptrp is increasing, and vice versa. Equilibrium TPM’s are even
possible in principle. But they have not yet been observed in
our simulations19 or model calculations. The reason, we ar-
gue, is that it is improbable for two plasmas to simultaneously
achieve a balance with exactly equal particle creation and loss
rates within.

It is worthwhile to discuss how the discharge model
changes if trapped ions are not considered. Maintaining the
assumption of thin planar space charge sheaths for simplic-
ity, conventional theories of a filament with a thin SCL sheath
would predict the MSCL current density to be transmitted past
the virtual cathode at all points around the cathode surface.
With a trapped ion plasma in the VC, its outer edge transmits
the MSCL current density, so having an rv > Rct enhances the
total amount of current emitted from the filament cathode by
a factor rv/Rct in cylindrical geometry. This current enhance-
ment is produced via a reduction of the barrier height Φbar
which electrostatically (not geometrically) regulates the por-
tion of the emitted electron flux allowed to enter the TIP. The
trapped ion plasma is eliminated in our model when rv reaches
Rct . In this scenario, nL

trp = nR
trp via Eq.7. The transmitted

total filament current, which is still coupled to the evolving
upstream plasma density, is then recovered by plugging Eq.8
into Eq.6. It may seem contradictory that nR

trp = nL
trp > 0 in

the limit of no trapped ions. But the trapped ion plasma does
not exist because it has zero width and Ptrp = 0. Its “density"
is nonzero at just one radial point, equal to the expected elec-
tron density at the potential minimum of a SCL sheath without
trapped ions. This scenario successfully reproduces the con-
ventional SCL solution.

The concepts introduced here are adaptable to other ge-
ometries with minor changes. The trapped ion plasma’s cur-
rent enhancement effect discussed above increases from rv/Rct
for a cylindrical geometry trapped ion plasma to rv

2/Rct
2 for

spherical geometry. There is no enhancement for a fully pla-
nar discharge where the trapped ion plasma is also planar,
as first argued in Ref.12. If the roles of the electrodes are
reversed in curved geometry, meaning outer electrode is the
negatively biased emitting cathode, a trapped ion plasma in a
SCL sheath will interestingly cause a reduction of transmitted
current due to contraction of the effective radius of the MSCL
emission. We suggest that the contraction may play a role in
the sheath physics of hot hollow cathode37,38 devices.

E. Reducing the equation set to a solvable form

Using Equations 3-9 we can reduce the number of un-
knowns in the coupled differential Equations 1 and 2 to two
variables - the downstream density of the trapped-ions plasma,
nL

trp, and the radial extent of the trapped-ions plasma rv. One
useful substitution needed in the process comes from Eq.8 as
-

nL
ups rv =

nL
trp

β
(11)

where,

β =
α

Rct

√
πme

2kBTemt
(12)

Now using Eq.s 3,10, 11, and 12 we can express Eq. 1 in
terms of nL

trp and rv as -
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(Ran − rv)
dnL

trp

dt
−nL

trp
drv

dt
=

Γemt β

2π nemt
nL

trp

(
1− e

− (Ran−rv)
∆iz

)
−2

√
kBTe

mi
nL

trp

(13)

Using Eq.s 10,4, 11, and 12 we can express Eq.2 in terms
of nL

trp and rv as -

Rct (rv −Rct)
dnL

trp

dt
+Rct nL

trp
drv

dt
=

nL
trp

β

√
kBTe

mi

(
1− e−

(rv−Rct )
∆cx

)

−Rct

√
kBTi

2π mi
nL

trp e

(
Temt

Ti
ln
(

nL
trp

nemt

)) (14)

The boxed Equations 13 and 14 form a system of cou-
pled differential equations which can be solved numerically
for nL

trp and rv, given their initial values. Mathematically,
Equations 13 and 14 are Generalized Lotka-Volterra (GLV)
equations with function-based interactions between the vari-
ables. Numerically, one can also solve Eq.13 and 14 as linear

equations for
dnL

trp
dt and drv

dt and use forward difference with
an adequately small time-step to evolve nL

trp and rv. Both
methods yield convergent solutions. We adopted the faster
linear equations method in our solutions using a time-step of
10−10 s which well resolves the sheath-dynamics time scale of
∼ 10−7 s.

The choice of numerically solving differential equations in
nL

trp and rv instead of Ptrp and Pups are as follows. In prac-
tical terms, the differential equations expressed terms of the
P’s contain singularities that complicate solving, and the up-
per bounds are not very clear. The rv has clear bounds in
both directions (the electrodes). Meanwhile, nL

trp has physi-
cal nonzero bounds that establish clear limits for the solver.
The minimum value of nL

trp corresponding to a SCL sheath
without trapped ions was discussed earlier. The maximum
value of nL

trp is nemt , corresponding to when the inverse sheath
vanishes. In this scenario, the trapped ion plasma has reached
the cathode, fully neutralizing all available emitted electrons,
allowing all of them into the upstream plasma. Any further ac-
cumulation of charge-exchange ions will cause a breakdown
of neutrality, resulting in the “quenching instability" demon-
strated in the simulation paper19.

Quenching instabilities cause a rapid expulsion of many
ions in the trapped ion plasma. The instability itself cannot
be captured within this model which assumes the two plas-
mas are coupled and evolving in a quasistatic manner. Fur-
thermore, the model equations break down when nL

trp > nemt
since Eq.6 suggests a transmitted electron current exceeding
the maximum available emission. It is known from simula-
tions that after a quenching instability, a quasi-steady TPM
reforms with fewer trapped ions. This may be approximated
in the model by reducing nL

trp and rv, which, due to the cou-
plings in Eqs. 1–9, also implies that the properties of the up-
stream plasma must change post-instability. Determining the

best way to set a post-quenching-instability TPM state consis-
tent with the simulations and the model equations is left for
future work.

We remark that if nL
trp reaches nemt and rv reaches Rct , the

cathode is transmitting the full emitted current even without
the help of trapped ions. This signifies a completed transi-
tion to the classical, temperature-limited sheath regime. Con-
versely, if rv reaches Ran, the discharge has entered the AGM
with no upstream plasma.

Now that we have derived and explained the model, the next
step will be to numerically solve the equations 13 and 14 to
model the evolution of an TPM in a cylindrical filament dis-
charge.

F. A sample solution

We demonstrate a sample solution of Eq.s 13-14 (≡ Eqs. 1-
9) in Fig.3 using the parameters of Table I which correspond
to the simulated system in the simulation paper19. As seen in
Table I the Temt value of 0.5eV was chosen to be a few times
higher than typical thermionic cathode temperatures to ensure
adequate local Debye length resolution in the near-filament re-
gion of the simulation domain19. This choice helped manage
computational cost in the simulations, as resolving the local
Debye length becomes increasingly challenging at lower Temt
values. While this simplification may influence some details
of the solution, it is not expected to alter the fundamental na-
ture of the sheath physics under consideration.The initial val-
ues nL

trp(0) and rv(0), although arbitrary, are conceivable in
the simulations. They represent the initial TPM profile that is
chosen for the solver to clearly demonstrate the aid-compete
effect.

TABLE I: Fixed parameters in the solution of Fig.3

Parameter Value

nemt 2.29×1016 m−3

Γemt 1.0214 ×
1019 m−1s−1

nL
trp(0) (initial value) 7.5×1015 m−3

rv(0) (initial value) 0.34mm

∆cx 3.753mm

∆iz 0.997m

Temt 0.5eV

Te 2.843eV

Ti 0.132eV

Rct 0.3mm

Ran 7.5mm

Ions Ar+

α 8.25×105 ms−1
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FIG. 3: Sample solutions: Using the parameters of I Eq.s 13-14 are solved to yeild (a) dual
plots of rv and −Φbar, (b) dual plots of nl

trp and nL
ups, and (c) dual plots of Ptrp and Pups.

In Fig.3 three pairs of solved variables are plotted as func-
tions of time - Fig.3a plots the trapped-ion plasma’s radial ex-
tent, rv and the barrier potential, −Φbar. Fig.3b plots nL

trp and
nL

ups, the densities at the downstream edges of the trapped-
ions plasma and the upstream plasma. Fig.3c plots Ptrp and
Pups, the populations of the trapped-ions plasma and upstream
plasma. The solutions are plotted for a 3 µs time-interval.

We observe in Fig.3c that for the first 2.3 microseconds Ptrp
and Pups have a mutually aided growth. After 2.3 µs however,
competitive effects become dominant and Ptrp can been seen
to fall while Pups continues a monotonic rise. Generally we
would expect the TIP radius rv to rise and fall with the Ptrp.
However we observe in Fig.3a that although the rv has a simi-
lar peaking and falling trend as Ptrp its maximization point oc-
curs much earlier at 0.75 µs. Hence, between 0.75 µs and 2.3
the TIP layer is shrinking, yet its population is rising. Such
a situation becomes possible owing to the ultra-slow move-
ment of the rv in this particular solution. In the 3 µs plotted in
Fig.3a, the rv has only moved about 0.007mm in the 7.2mm
electrode gap. Because of the ultra-slow contraction of the
TIP, the charge-exchange probability in the TIP layer does not
vary significantly. As such the ‘aid’-part of the model can
continue to sustain a rising Ptrp until the ‘compete’-part even-
tually takes over at 2.3µs as seen in Fig.3c. For a solution with
a faster moving rv having a similar shape as in Fig.3a, we can
expect the maximization points of rv and Ptrp to be closer in
time.

The densities on the downstream edges of the two plasmas
plotted in Fig.3b grow nonlinearly through the 3 µs period
with the nL

trp growing at a faster rate than nL
ups. The rising

of nL
trp implies that the inverse sheath is getting weaker. This

effect is also evident from the diminishing magnitude the bar-
rier potential, −Φbar in Fig.3a.

The solution in Fig.3 exemplifies some of the complexities
of the aid-compete dynamics. For example, inverse sheath can
continue to get weaker even as the total trapped-ions popula-
tion decreases. This can happen when the upstream plasma is
gaining population as in the Pups of Fig.3c and also expanding
towards the cathode as in the rv of Fig.3a. In this situation
the inverse sheath is getting weaker, not due to ions getting

trapped in the VC, but because it is transiting to a classical
sheath.

III. VERIFICATION OF THE MODEL USING SIMULA-
TIONS

Next, we test our analytical aid-compete model using sim-
ulations. The simulations are performed using the code and
set-up of the simulation paper19, their device parameters fol-
lowing Table I except for the initial values nL

trp(0) and rv(0),
and the collision mean free paths ∆cx, and ∆iz. The nL

trp(0)
and rv(0) correspond to a chosen TPM snapshot from Ref.[19]
simulation, while ∆cx, and ∆iz are varied parameters in these
tests.

A. Test-1: Variation of the charge exchange collision fre-
quency

The initial plasma profile for the analytical solutions and
simulations of this paper is a mid-simulation profile from one
of the numerical experiments of Ref. [19]. Specifically, it is
a TPM profile formed 156 microseconds into the simulation.
The TIP in this profile has a downstream quasi-neutral density,
nL

trp ≈ 2.0×1016 m−3 and a radial extent, rv ≈ 0.52mm. These
values are fed as the initial values nL

trp(0) and rv(0) for the
analytical equations’ solver and a set of solutions are obtained
for a fixed ionization mean-free-path (mfp), ∆iz = 2.25m, and
a variable charge exchange mfp given as ∆cx = f × 3.73mm,
where 0.2 ≤ f ≤ 1.8. The fixed ∆iz and the base value for the
∆cx variation i.e. ∆cx = 3.73mm, are estimated from the given
initial profile. The goal of the experiment is to demonstrate
how the aid-compete solutions vary with increased / decreased
rates of ion-trapping through ∆cx.

The first row of Fig.4 plots the solutions for a color coded
f . The solved rv, Ptrp, and Pups are plotted in Fig.4a,b, and c
respectively. A larger f implies a longer charge exchange mfp
hence a lower rate of such collisions. In Fig.4a and b the non-
linear increase rv and Ptrp for all values of f can be attributed
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to the fed initial values nL
trp(0) and rv(0). The rates of ascent

of rv and Ptrp vary with f , rising faster for lower values of f .
A lower f implies more charge-exchange collisions which ac-
celerates the process of ion trapping. Hence in Fig.4a and b
the rv and Ptrp grow faster for lower f .

The initial conditions are such that the interaction between
the two plasmas is more competitive than aiding, favoring the
radial expansion of the TIP. Hence the Ptrp in Fig.4b grows at
the expense of the corresponding Pups in Fig.4c for all values
of f . For higher f values in Fig.4c the Pups curve descends
slower. This is because the higher f values (≡ less charge ex-
changes) slow down the competitive growth of Ptrp in Fig.4b.

We seek to investigate an equivalent variation of the charge
exchange collision rate using simulations. In order to set
up an equivalent set of simulations, we continue the numer-
ical experiment of Ref.[19] from the 156 µs point as a set
of branched simulations with systematically scaled charge-
exchange cross-sections.

Note that unlike the model, the charge exchange cross-
section in simulation, σcx(Ei) is a dynamic quantity that de-
pends on the energy, Ei of individual ions at each time-
step. Nevertheless, we can still apply a gross variation of the
charge-exchange cross-section over the entire ion population
throughout the simulation using a modified value, σmod

cx (Ei) =
f ×σcx(Ei). The factor f allows an enveloping external con-
trol over the charge-exchange frequency of the system while
keeping σcx(Ei) energy-dependent and temporally dynamic.
The simulation time step is 5×10−12 s, which is much smaller
than the model solver’s time step (1× 10−10 s). This differ-
ence is expected since the simulation time step is constrained
by PIC resolution requirements19, whereas the model solver
is not.

The simulation results using modified charge exchange
cross-sections are plotted in the second row of Fig.4 with the
measured rv, Ptrp and Pups plotted in Fig.4d, e, and f respec-
tively. Note that there is a role reversal of the scaling factor
f between Fig.4a-c and Fig.4d-f. In the model equations’ so-
lutions the f scales ∆cx while in the simulations the f scales
σcx ∼ 1/∆cx. Notwithstanding the role reversal of f the color
code used in Fig.4d-f matches that of Fig.4a-c : As one moves
from red to violet the charge exchange frequency increases in
both sets.

In Fig.4d the rv(t) from simulation is measured using the
method outlined in Ref.[19]. The Ptrp(t) and Pups(t) in Fig.4e-
f are counts of the number of ions downstream and upstream
of the measured rv(t) respectively. These counts unavoidably
absorb ions occupying the sheath regions.

Comparing Fig.4a with Fig.4d we find that while the theory
plot shows an increasing rate of growth of rv with increased
charge exchange collisionality, the simulation rv’s do not show
any specific trend with the change in charge exchange colli-
sion frequency. Moreover unlike the theory plots, some of
the rv curves from the simulation show strong undulations,
being affected by quenching instabilities. For example, see
the f = 0.25 curve in Fig.4d. Comparing Fig.4b with Fig.4e
we find that there is gross agreement between the two sets of
curves in the fact that both exhibit faster growth of Ptrp with
increased charge exchange collision frequency. Comparing

Fig.4c with Fig.4f we find a discrepancy in the scaling of Pups
with charge-exchange frequency between the simulations and
the model. While more charge-exchange collisions leads to
faster decrease of Pups in the model (see Fig.4c), the simula-
tions, as per Fig.4f, are showing that Pups decreases slower for
higher charge exchange frequency.

We note that there is a qualitative dissimilarity of the simu-
lations’ rv plots (Fig.4d) from the model (Fig.4a) in not show-
ing a trend with variation of the charge exchange frequency.
Also, the variation of simulations’ Pups with charge exchange
frequency (Fig.4e) has the reverse trend to that of the model
(Fig.4c). Both these discrepancies between the model and the
simulations can be resolved to some extent, when we con-
sider the difference in the spatial extent of the effect of scaled
charge-exchange collisions between the model and the simu-
lations.

In the model the charge exchange collisions are only con-
sidered in the trapped-ions plasma layer, while in the simula-
tion the charge-exchanges happen through out the domain in-
cluding the upstream plasma, where unaccelerated ‘cold’ ions
have more charge-exchange collisions with neutrals than the
accelerated ions entering the VC. The difference in collision-
ality arises from the larger charge exchange cross-sections of
colder ions with cold neutrals (see Fig. 5 of Ref. 32). It
is possible that raising the charge exchange collision rate in
the entire domain of the simulation produces a stronger drag
on the ion transport in the upstream plasma suppressing its de-
cay. This drag may be having a stronger effect on Pups over the
competition from the increasing Ptrap resulting in the anomaly
of scaling with collision frequency in Fig.4f. The same drag
could also be preventing a trend with charge exchange colli-
sionality from emerging in the simulations’ rv curves.

We tested this hypothesis by limiting the scaled charge ex-
change cross-section, σmod

cx to the region downstream of rv(t)
while the rest of the domain maintained the unmodified σcx.
The results with the spatially adjusted σcx are shown in the
third row of Fig.4g-i where rv, Ptrp, and Pups are plotted in
Fig.4g, h, and i respectively.

The simulations with the spatially varied charge-exchange
collisionality demonstrate a greater level of agreement with
the model’s data. Comparing Fig.4a with Fig.4g we find that
the rv’s in both sets show an increased rate of growth with in-
creased charge exchange frequency. The discrepancy of the
Pups trend observed in Fig.4f is also resolved in Fig.4i. Now,
both Fig.4c and 4i show a faster rate of fall of Pups with in-
creased rate of charge exchange in the TIP. Fig.4g-i demon-
strates the importance of the neutral drag forces (on ions) in
the aid-compete effect and it is something to be considered in
future improvements to the theory model.

Overall the set of numerical experiments in Fig.4 demon-
strate that indeed there is an aid-compete effect at work in a
TPM, and verify the correctness in our mathematical approach
towards modeling this effect.
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FIG. 4: Comparing the analytical model with simulations for a systematic variation of charge exchange colli-
sion frequency. Top row shows the model’s solution for a variation of charge exchange mean free path, ∆cx. Mid-
dle row shows the simulation solution for an equivalent variation of the charge exchange cross-section, σcx(Ei)

where Ei is ion energy. Bottom row shows the simulation solution for charge exchange cross-section varied only
within the trapped-ions layer i.e. in the r < rv region. In each row the solutions for three quantities are shown.

First-column panels i.e. (a),(d), and (g) show the solution for rv. Second-column panels i.e. (b), (e), and (h) show
the solutions for Ptrp. Third-column panels i.e. (c), (f), and (i) show the solutions for Pups. Variation of the charge

exchange frequency is achieved through the multiplicative factor f given in the color-bar or key of the panel.

B. Test-2: Variation of the neutral pressure

We ran a second test to verify the model using simulations,
this time scaling the background pressure so that both ∆cx and
∆iz are varied concurrently as would happen in experiments.
The results are illustrated in Fig.5. The first row, Fig.5a-c,
depicts the solutions of the analytical model while the the sec-
ond row, Fig.5d-f depicts the simulation results. The third row,
Fig.5g-i depicts a second set of analytical solutions obtained
with identical conditions as the first row except for a slightly

higher upstream plasma potential Φup, affecting the ∆cx and
∆iz. The starting profile and the fixed system parameters are
the same as in Test-1 (Fig.4) and so is the arrangement of the
plotted solved variables viz., rv, Ptrp, and Pups. The back-
ground neutral pressure, Πneu at room temperature, 300K is
varied as Πneu = f ×25mTorr where 0.2 ≤ f ≤ 1.8.

For the given initial values, nL
trp(0) and rv(0), Fig.5a and b

reveal the rv and Ptrp to be increasing functions with time. The
rate of their growth increases with an increase in the neutral
pressure. The set of Pups in Fig.5c are all decreasing with time
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FIG. 5: Comparing the analytical and simulation solutions for a systematic scaling of the neutral density: Top row,
(a) – (c) shows the model’s solutions while the middle row, (d) – (f) shows the simulation solutions. Bottom row, (g)
– (i) shows a second set of analytical solutions obtained assuming a slightly higher (by 0.6V ) upstream plasma po-
tential than the first row’s solutions. In each row, the first-column panels viz (a), (d), (g) shows the rv solution, the

second-column panels viz (b), (e), (h) show the Ptrp solution, and the third-column panels viz (c), (f), (i) show the Pups
solution. Variation of the neutral pressure is achieved through factor f shown in the color-bar or key of the panels.

at rates which become slower with increasing neutral pres-
sure. This can be understood by considering the effects of the
changing neutral pressure on charge exchange and ionization
collision rates. While the growth of rv and Ptrp are acceler-
ated by increased charge exchange collisions rate at higher
pressures, the corresponding decline of Pups via the ‘compete’
effect gets slowed down at higher pressures due to an increase
in the upstream ionization rate.

In Fig.5d-f corresponding evolution of the rv, Ptrp, and Pups
functions from equivalent simulations are depicted. Coarsely,
the characteristics of Fig.5d-f are convergent with those of
Fig.5a-c. The rv and Ptrp curves at the highest pressures in
Fig.5d and e are affected by quenching instabilities produc-

ing strong undulations; see f = 1.5 and f = 1.75 curves in
Fig.5d-e. For these curves, their trend prior to the instability
needs to be considered. We observe that that the Pups curves
from the simulations (Fig.5f) are significantly more divergent
with the changing f than the corresponding Pups curves form
the model (Fig.5c).

Now, the ∆cx and ∆iz in the solutions of Fig.5a-c were cal-
culated assuming an upstream plasma potential, (∼ the anode
sheath voltage) Φup = 0.4V ; see Fig.1. While this is a good
approximation for the upstream plasma potential in the initial
profile adopted from the snapshot of Ref.[19], we have seen in
simulations that the upstream plasma potential can vary spa-
tially as well as temporally within a range of ∼ 1V .
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Out of curiosity, we tested what would happen to the so-
lutions of Fig.5a-c if we just raised the assumed upstream
plasma potential from 0.4V to 1.0V . The results are depicted
in Fig.5g-i. Interestingly in Fig.5g, the growth rate of rv de-
creases with increased neutral pressure, the opposite of what
we observed in Fig.5a. This is most likely due to a stronger in-
fluence of upstream ionization at the higher value of upstream
plasma potential. Also, we observe that the Pups curves are
significantly more spread out in the f space, similar to the
simulations’ Pups in Fig.5f.

The results of Fig.5a-i, while demonstrating agreement of
the model with simulations, also highlight some of the intrica-
cies of the aid-compete model, especially how minor changes
to one or more parameters can substantially alter the out-
come. Similar conclusions were arrived at in Ref.[19] where
we demonstrated the heightened sensitivity of the system to
ambient changes, when operated near its ionization threshold.

C. Behavior of the model after rv reaches one of the elec-
trodes

Finally, let us focus on the physical limits of the analyt-
ical model. Although the model treats a discharge in the
TPM, it can demonstrate the transition to the TLM (classi-
cal sheath mode), AGM (inverse sheath mode) or LM (SCL
sheath mode). Enhancements would be needed to accurately
advance the discharge that enters the latter three modes. In
the model’s current form, the upstream ionization rate and
downstream ion trapping rate both vanish if the correspond-
ing plasma’s length reaches zero. In a real AGM, there is still
ionization in a thin region of the anode sheath where the po-
tential exceeds the ionization threshold. Similarly, if the dis-
charge has a SCL sheath with no trapped ions, there is still a
finite length potential well where trapped ions could start ac-
cumulating. These regions could be accounted for by adding
a suitable length to the regions of ion creation in Eqs. 1,2.
In Eq. 1, the exponential factor would be -(Ran -rv +∆r)/∆iz
for some ∆r expression. Calculating ∆r is nontrivial because
it is a function of the existing discharge state and depends on
the details of the potential distribution in the space charge re-
gions, so it is left to future work. A useful benefit of including
a ∆r is that it would enable the formation of a TPM with an
upstream plasma even when there is only one plasma in an
AGM initially. This is likely to happen in practice when an
initial AGM discharge is subjected to an increase of bias or
neutral pressure.

The end of the TPM and onset of other modes occurs when
rv reaches an electrode. Fig.6 shows solutions for a transi-
tion to an AGM. Fig.6a plots nL

trp and nL
ups, Fig.6b plots rv and

−Φbar, and Fig.6c plots Ptrp and Pups. We see that the rv hits
the Ran at about 3 µs. At this time there is no more upstream
plasma (Pups = 0) even though there remains a small non-zero
nL

ups due to its coupling to the downstream plasma seen in Eq.
7,8, as shown by the dashed lines in Fig.6a. This nL

ups pro-
duces a persisting source of ion-trapping in Eq. 2 even after
upstream plasma is lost. However due to its small value once
Pups = 0 is reached this unphysical nups only produces a quan-

titative ‘error’ on the net loss rate of Ptrp once rv hits Ran in
Fig.6c. This is because Eq. 2 is dominated by the loss term in
the RHS which is physical.

In Fig.6b, we did not fix rv = Ran beyond 3 µs. We let
the solver continue to evolve rv but enforced the condition
rv = Ran only if the solved rv became greater than Ran. Im-
plementing the limit this way leaves the rv free to fall below
Ran if the solver took it in that direction. However we found
that rv stayed that Ran implying AGM. Trapped ions continue
leaking to the cathode, causing Ptrp and nL

trp to decay in time.
The barrier potential |Φbar| continues to increase because it
enforces neutrality of the remaining trapped ion plasma by re-
stricting how many thermoelectrons can enter. A true steady
state AGM is not reached because there is no production of
new trapped ions in the model once the upstream plasma feed-
ing it is eliminated. In Fig.6c the Pups hits zero as soon as rv
reaches Ran.

Now let us look at the solutions when rv reaches the oppo-
site limit, Rct . As before, the solutions are plotted in pairs nL

trp
and nL

ups in Fig.7a, rv and −Φbar in Fig.7b, and Ptrp and Pups
in Fig.7c. In Fig.7b the rv hits Rct at about 2.3 µs. Again, here
we do not hold rv at Rct once it hits, only enforcing it to not
fall any further.

Once rv reaches Rct at 2.3 µs, the trapped ion plasma has
been fully expelled to the cathode and Ptrp hits zero simulta-
neously as expected. Afterward, nL

trp still has a nonzero value.
As predicted earlier, the model is capturing a realistic sce-
nario called the Langmuir mode (LM) where the cathode has
a conventional SCL sheath with no finite-length trapped ion
plasma. It is equivalent to declare that a quasineutral trapped
ion plasma is present at one point, the potential minimum of
the virtual cathode. The value of nL

trp thus equally represents
the density of emitted electrons at the minimum, which cor-
respondingly determines the SCL current projected into the
upstream plasma. The barrier potential −Φbar in Fig.7b re-
mains nonzero to regulate the SCL emission. It is known
that the SCL current density is proportional to the upstream
plasma density nL

ups which is continuing to increase in time.
The system enters the classical TLM when nL

trp reaches nemt
and simultaneously −Φbar reaches zero. The numerical con-
tinuation of the solution where nL

trp > nemt is unphysical be-
cause the cathode cannot emit any more electrons. A TLM is
incompatible with our model equations, but it could easily be
modelled with a simpler set of equations containing just one
(upstream) plasma and a fixed value of Γtmt = Γemt .

IV. CONCLUSION

In this paper, we demonstrated an approximate analytical
model for the dynamical coupling between the upstream and
downstream plasmas in the two plasma mode of a cylindri-
cal single-filament discharge. The model is aptly named the
aid-and-compete model as it essentially provides a proof-of-
principle for the mutually enhancing and opposing effects at
play between the two plasmas.

Formulated in axisymmetric cylindrical geometry, the
model’s generalized form, expressed through Eq.s 1-14,
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FIG. 6: Sample demonstration of how the solution behaves after rv, through Eq.s 13-14, expands upto the an-
ode at Ran. Once rv hits Ran there is only one plasma, the trapped-ions plasma in the system. (a) shows the so-
lution for downstream densities of the trapped-ions layer, nL

trp and the upstream layer, nL
ups (b) shows the so-

lution for the trapped-ions radius rv and the barrier potential Φbar. (c) shows the solutions for the down-
stream and upstream densities Ptrp and Pups. Dotted segments in the panels indicate non-physical values.
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FIG. 7: Sample demonstration of how the solution behaves after rv, through Eq.s 13-14, shrinks to cathode radius, Rct .
Once rv hits Rct there is only one plasma, the upstream plasma in the system. (a) shows the solution for downstream
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ups (b) shows the solution for the trapped-ions ra-

dius rv and the barrier potential Φbar. (c) shows the solutions for the downstream and upstream densities Ptrp and Pups.

works for any annular aspect ratio of a co-axial discharge
having the same polarity i.e. an inner emitting cathode.
Numerical solutions of the model, with systematically var-
ied mean free paths of charge-exchange and ionization col-
lisions, demonstrate a behavior consistent with physical intu-
ition. These solutions are further corroborated by simulations
conducted under equivalent conditions.

Our model of the two plasma coupling is approximate and
somewhat qualitative. It captures the collision-driven and col-
lisionless mechanisms that constitute the aid-compete effect,
such as (i) how the rate of ion trapping in the virtual cath-
ode modulates the transmitted electron flux that causes ioniza-
tion upstream, and (ii) the transport of ions from the upstream
plasma modulating the rate of ion trapping in the potential
well. While the model has still been successful at predicting
general direction of evolution of the system in simulations,
various secondary effects neglected in the model can intro-
duce quantitative discrepancies.

For example, a major mode transition was seen in one of

the simulations of Ref.[19] the globally averaged density of
plasma collapsed by an order-of-magnitude due to a 1V drop
in the anode sheath voltage. Although the anode sheath volt-
age is weak, it increases the double layer voltage further be-
yond the applied bias which makes a substantial difference
when operating near the gas ionization threshold. A useful
extension of the model would thus be to calculate the anode
sheath’s voltage in terms of the discharge state and include its
effect on ∆iz. In the present paper’s calculations, the ioniza-
tion mean free path ∆iz was held fixed (independent of electron
energy and time).

Other secondary effects include finite sheath widths, curved
geometry effects on sheath physics (e.g. orbital motion of
ions near the cathode), collisional drag slowing the transport
of upstream ions, and presheath’s influence on the upstream
plasma’s potential and density distributions. The analytical
model’s quantitative agreement with simulations or even ex-
periments can be improved via a system-specific inclusion of
important secondary effects in the equations. For example, the
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collisional effects impeding the electron and ion flows could
be empirically or analytically integrated into Eq.s 1 and 2. The
model could also take into account corrections accounting for
the sheath widths, the most important being the double layer
which is known from simulations to take up a substantial por-
tion of the electrode gap and reduce the space available to
the plasmas. Calculations of ionization and ion trapping rates
should be extended to include the amount that occurs in the
space charge regions. This amount is a minor correction in
an existing TPM but becomes crucial when aiming to advance
a discharge state starting in the single-plasma mode, namely
AGM or LM.

Including more of the effects mentioned above will compli-
cate the original equations (Eq. 1-9) by adding additional cou-
plings among them. This could inhibit the substitutions that
we invoked to reduce the equations down to two (Eq. 13,14).
Nevertheless, the more entangled equations would still be nu-
merically solvable, with extra care needed to avoid numerical
transitions to unphysical values.

As a secondary outcome, we discussed the broader applica-
bility of the theoretical model for MSCL sheaths16 in calcu-
lating currents across double layers, as opposed to relying on
the Langmuir condition35. We note that a double layer natu-
rally forms an MSCL sheath on its lower potential side, where
it transitions into the flat potential of the downstream quasi-
neutral layer, making the MSCL sheath theory relevant.

Now that the consequences of the finite-length quasineutral
trapped ion plasma have been clearly demonstrated both in
analytical calculations and kinetic simulations of filament dis-
charges, future work is encouraged to advance these models
and develop experimental diagnostic methods for direct mea-
surement of trapped ion plasmas near hot cathodes.
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