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Network Performance and Hardware

Deployment
We explore anomaly detection using Convolutional Neural 30
Network (CNN) autoencoders, which flag unusual, rare ..

Anomaly Detection with Machine Learning
Input Output

"2
. . . O .-
activity (Anomaly) based on reconstruction loss. This loss, or =208
anomaly score, captures how poorly the model reproduces € 10
] " ] (] ] " " " I_
an input image, with large differences indicating potential , "
anomalies. This approach is model-agnhostic and data-driven, 0 20 40 60 0 20 40 60
aIIovvllrllg us to |d§nt|fy ungxpeoted S|.gnals without rglylng on
specific assumptions. This is essential when searching for
unknown signatures of new physics. Ny Input Output
s E’ 20
. :
oo it [ ol L P £ 10
| \ ¥ | 0)
—> ¢ — S | 0 20 40 60 0 20 40 60

Wire Wire

“Typical” event: Low Anomaly Score

Schematic of an autoencoder network. The network encodes the input into a simpler latent space

and decodes the latent space into an output resembling the input. In this process, the network
learns common features of the input dataset. Example of typical and anomalous event. By comparing the input and output of the teacher

autoencoder, anomalous features, such as multiple particle tracks can be identified. The teacher is
trained with publicly available raw data from the MicroBooNE experiment.
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shows that a greater number of tracks

The Deep Underground Neutrino Experiment (DUNE) will | results in a higher anomaly score,

_ _ ) 0.018 ! indicating that the network is sensitive
stream several terabytes of high-resolution data per to certain physical features of the data.
second, requiring real-time data reduction by over four
orders of magnitude while maintaining sensitivity to rare } !
signals like supernova neutrinos. To meet these demands, _ . _ | X
we deploy lightweight models using techniques such as |
quantization and Knowledge Distillation. In our g
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minimal resources. This approach enables fast, _=—
low-latency inference on constrained hardware such as
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; Conclusion and Summary
M | Data . Reconstruction . . .
sl loss * Future particle experiments will generate huge amount of data,

requiring real-time triggering
» Autoencoders enable model-independent anomaly detection

Traini C : :
- » Knowledge Distillation allows compression of large network onto
Schematic of the Knowledge Distillation process. The unsupervised Teacher autoencoder is -
distilled by using its anomaly score as an additional input for the supervised training of the a hardware deployable Smal Ier network
Student. Through this process, a high-performance network with low resource consumption is o Our model SUCCGSSfU”y detects anomalies particu|ar|y
achieved. )

multi-track events based on LArTPC wire data
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