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ABSTRACT 1 

This paper explores an important problem under the domain of network modeling, the optimal 2 

configuration of charging infrastructure for electric vehicles (EVs) in urban networks considering 3 

EV users’ daily activities and charging behavior. This study proposes a charging behavior 4 

simulation model considering different initial state of charges (SOC), travel distance, availability 5 

of home chargers, and the daily schedule of trips for each traveler. The proposed charging behavior 6 

simulation model examines the complete chain of trips for EV users as well as the interdependency 7 

of trips traveled by each driver. Then, the problem of finding the optimum charging configuration 8 

is formulated as a Mixed-Integer Nonlinear Programming that considers travel time and travel 9 

distance dynamics, the interdependency of trips made by each driver, limited range of EVs, 10 

remaining battery capacity for recharging, waiting time in queue, and the detour to access a 11 

charging station. This problem is solved using a metaheuristic approach for a large-scale case 12 

network. A series of examples are presented to demonstrate the model efficacy and explore the 13 

impact of energy consumption on the final SOC and the optimum charging infrastructure. 14 

 15 

KEYWORDS: Network Modeling, Charging Infrastructure Planning, Public Charging Station, 16 

Electric Vehicles, Chain of Trips, Charging Behavior Simulation, System Optimization  17 



Kavianipour et al.  3 

INTRODUCTION 1 

Increased crude oil prices and concerns associated with vehicle emissions have led the car industry 2 

and users toward hybrid and electric vehicles (EVs). While hybrid vehicles are a step forward from 3 

gasoline vehicles, they cannot fully exploit the benefits of EVs as they still depend on their gasoline 4 

engine, especially on long-distance trips. EVs do not have any on-road emissions, and if charged 5 

with green energy, they can significantly mitigate air pollution and oil dependency. However, they 6 

currently suffer from a low range, long charging time, and lack of supporting charging 7 

infrastructure. These factors also affect the decision of potential EV customers in purchasing a 8 

vehicle (1, 2). To address these challenges and increase the market share of EVs, it is proposed to 9 

build a dense network of direct-current fast chargers (DCFC) to ensure the feasibility of trips, 10 

alleviate range anxiety, and provide an acceptable level of service for EV users (3). 11 

Building a charging infrastructure network requires consideration of charging demand, 12 

power supply, and budget limitation, resulting in a charging infrastructure planning problem, 13 

which seeks to optimize a charging configuration (i.e., supply) for a charging demand. Depending 14 

on how each component of the problem (i.e., supply, demand, and objective function) is defined, 15 

the final solution may vary significantly. For instance, the objective function may minimize travel 16 

time and system cost or maximize EV demand, and vehicle miles traveled (VMT). Regardless of 17 

the objective function, the charging infrastructure planning problem seeks a solution that can 18 

address the charging demand while considering human behavior, which is known to be 19 

probabilistic and hard to predict. The more complex user behavior and supply consideration, the 20 

more difficult the problem to solve, and the closer to real optimal the solution. 21 

The charging infrastructure planning problem can be divided into two categories: intercity 22 

models and urban models. The main distinctions between these two categories are associated with 23 

the travel distance range and initial state of charge (SOC) distribution. The intercity trips are long-24 

distance ones assumed to start fully charged as users plan in advance for them (2, 4–7). On the 25 

other hand, urban trips can start with any SOC depending on home chargers availability, preceding 26 

trips, access to workplace chargers, and dwell time at the origin (8, 9). One approach to finding 27 

the charging demand is to use travel surveys or stand-alone trips (10, 11). In this approach, the 28 

energy demand of each trip is independently evaluated from its past or future trips; either by 29 

assigning an initial SOC and estimating the energy demand to reach the destination with an 30 

assigned SOC (8) or by assuming a fixed energy demand for all trajectories (12). However, trip-31 

based approaches cannot track the travelers’ activity and do not have information on past and 32 

future trips, two fundamental components of the EV users charging behavior. Since urban trips are 33 

part of a trip chain, their initial SOC at each trip depends on its preceding trips. Further, EVs might 34 

even charge during a feasible trip (i.e., a trip EV can finish without charging) to prevent charging 35 

during a future infeasible trip (i.e., a trip in which EV needs to charge to be able to reach the 36 

destination) (13). Therefore, considering the activity engagement and the chain of trips in the 37 

problem of urban charger placement can represent the users’ behavior more realistically. 38 

While OD demand tables are commonly available to planning agencies, using the classical 39 

four-step travel model, the trip chain data is more limited, and its acquisition usually requires a 40 

significant investment. One of the earlier studies in this domain incorporated trip chain data and 41 

trajectories acquired by installing GPS on taxis to identify locations with the highest dwell times 42 

as candidate locations for building charging stations (14). Later, they found the best locations, 43 

among the candidate locations, by maximizing the VMT on electricity (15). However, the EV 44 

trajectories data is still very limited, especially on large-scale networks, and the studies usually 45 

rely on simulation models as a proxy for the actual vehicle trajectories (8, 16, 17).  46 
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This study employs a state-of-the-art agent-based model, POLARIS, which has an 1 

embedded activity-based model and simulates the travel demand of users by providing daily 2 

vehicle trajectories. Then, it proposes a charging behavior simulation that considers the availability 3 

of home chargers, travel distance, preceding trips, and remaining scheduled trips to update the 4 

SOC after each trip. Next, the charging demand is fed to a charging optimization model, which 5 

finds the optimum charging infrastructure considering the battery capacity, feasible range, 6 

dynamic travel times and travel distances, and the EVs’ battery performance. The main 7 

contributions of this study are as follows: 8 

1) Proposing a comprehensive integration of the activity-based model with mathematical 9 

optimization that enables system planners to gain valuable insights into users' behavioral 10 

factors related to activities and charging, and understand its consequential impact on the 11 

optimal charging infrastructure configuration 12 

2) Employing an activity-based approach to track the drop in EVs SOC during daily activities 13 

and estimate charging demand based on the remaining chain of trips 14 

3) Considering the impact of home chargers on initial and desired SOC and EVs charging 15 

behavior   16 

4) Extending the trip-based charging infrastructure planning optimization problem to a tour-17 

based problem  18 

5) Conducting a sensitivity analysis, using the extended framework, on the impact of initial 19 

SOC on the final SOC for different energy consumption rates. 20 

While the above items might have been partially or solely considered in similar studies in 21 

the literature, there is no comprehensive study that captures all these features in one framework. 22 

This study proposes a framework that could realistically simulate EVs behavior by considering 23 

users’ daily activities and their access to home chargers while accounting for station congestion, 24 

charging delay, and detour to charging stations. The rest of this paper is organized as follows. The 25 

next section introduces the research framework where different components of the problem are 26 

presented, the problem is formulated, and a solution approach is proposed. Then, the numerical 27 

experiment section presents the case study and provides insights into EV charging behavior. The 28 

last section concludes the paper and proposes future research directions. 29 

 30 

LITERATURE REVIEW  31 

The two main approaches in the literature to consider energy demands are point clustering (18) 32 

and the flow-based model (19). The former considers where vehicles run out of charge, calculates 33 

their charging demand, and clusters them at different nodes in the network. However, this approach 34 

cannot track individual trips or place charging stations considering the detour and feasible range. 35 

The latter treats the charging demand as flow and places the charging stations in locations to 36 

capture as much flow as possible, which is called the flow-capturing location model (FCLM) (20). 37 

While FCLM assumes a fixed flow pattern, other variants of this model assume more realistic 38 

behaviors such as round trips and multiple refueling (21) and deviation from the shortest path (22).  39 

Hodgson’s (19) work was among the first to utilize the FCLM method to capture as much 40 

traffic flow as possible in the charging station networks. This work assumes a single charging 41 

facility is enough to support all traffic flow on a given path. However, EVs may need multiple 42 

charging stops on long-distance travel due to limited driving range. Thus, Kuby and Lim (21) 43 

proposed the flow refueling location model (FRLM) to maximize the captured flow while 44 

assigning a combination of stations to cover an EV trip from origin to destination without running 45 

out of power. Studies with flow maximization objectives are best suited for projects aiming to 46 
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increase EV demand coverage, given a fixed number of charging stations and a limited budget. On 1 

the other hand, cost minimization studies aim to build as many stations as needed to support EV 2 

trips without running out of energy while minimizing total system cost or maximizing investor 3 

profit from building charging infrastructure (20). 4 

Some researchers (23, 24) incorporated path deviation to capture the realistic driving 5 

behaviors of EVs in a network with sparse charging infrastructures. These studies allow EV users 6 

to detach from their predetermined path to a charging station in case they need to recharge their 7 

vehicles. Previous studies either included the amount of deviation from the shortest path in their 8 

objective function or considered a tolerance threshold for the detour. In addition, while the initial 9 

charging station planning models focused on finding the optimal location of charging stations 10 

assuming an unlimited service rate implicitly, another group of studies also accounted for the 11 

number of chargers by considering waiting time at charging stations and incorporating the queuing 12 

theory (25, 26). The users’ response to waiting time at charging stations varies among users (27) 13 

For instance, for some users, such as electric taxis, a long waiting time for charging could cost 14 

them to be out of business (27). Thus, it is vital to consider station capacity and queue when 15 

locating charging stations.  16 

Recent studies have accounted for the charging station capacity and EVs’ detours by 17 

incorporating a framework based on the user equilibrium concept (4, 12, 28). According to this 18 

concept, all the selected paths for an origin-destination (OD) pair should have the same travel time 19 

as the optimum path, in which the travel time includes the link travel times and waiting times in 20 

the queue (29, 30). In this approach, the EV users’ selection of charging stations impacts the 21 

resulting congestion on network links, which will further impact the assignment of other users to 22 

their best path (31). Huang and Kockelman (28) proposed a bi-level optimization framework that 23 

modifies travelers' route behavior based on traffic congestion and station queues to find charging 24 

station configurations that maximize owners’ profit. 25 

Above mentioned studies cannot capture the effect of charging station location on EV users’ 26 

activities and chain of trips. In addition, they are not able to track the battery state of charge and 27 

user charging considerations when travelers create a sequence of trips. To address this limitation, 28 

some studies (15, 17, 32, 33) utilized activity-based models to capture individual charging 29 

behavior in their daily schedules. Usman et al. (13) proposed a simulation framework to plan 30 

charging strategies for urban city trips considering recharging options available at home, work, or 31 

a fixed number of fast charging stations. The model does not suggest optimum charging 32 

infrastructure but rather seeks to optimize the daily schedule of EV users created by an agent-based 33 

model, assigning EVs to the charging station that results in the minimum detour, waiting, and 34 

recharging time. Khayati and Kang (33) utilize a variant of Household Activity Pattern Problem 35 

(HAPP) to simulate the changes in travel behavior of households when replacing conventioal 36 

vehicles by EVs. They developed four scenarios with different settings to investigate potential 37 

impacts of EV adoption including intra-household interactions, vehicle and activity assignment 38 

among household members, and decisions regarding activity starttime and sequencing. He, Yin, 39 

and Zhou (34) suggested a tour-based network equilibrium model searching for the optimum 40 

location of the charging station while considering the interdependency of multiple trips made by 41 

the same driver. The proposed bi-level mathematical model was applied to the Sioux Falls network. 42 

However, this model cannot consider charging station congestion and queueing and was only 43 

tested on a small-scale network. Zhang et al. (35) suggested a multi-day scenario analysis for EV 44 

feasibility assessment and charging planning as single-day data may lead to an overestimation in 45 

travelers' EV feasibility. However, obtaining multi-day data can be expensive or unavailable. To 46 
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tackle this issue, they replicated single-day travel activities for several days to generate multi-day 1 

data. According to their results, home charging considerably decreases the need for level 3 2 

charging, even for people with high travel demands, and for those whose trip purposes are usually 3 

leisure. 4 

Since urban trips are usually part of a sequence of tours, the integration of activity-based 5 

tools and mathematical charging placement optimization models is a promising approach to 6 

simulate EV charging behavior and find the optimum number and location of EV charging stations. 7 

However, there are limited comprehensive studies considering individual EV users’ characteristics 8 

in optimizing charger placement infrastructures that could be efficiently applied to large-scale 9 

networks. Therefore, this study proposes a framework for monitoring EVs’ daily chain of trips, 10 

battery performance, access to home chargers, charging delay, and detour time while optimizing 11 

charging placement infrastructure. 12 

 13 

RESEARCH FRAMEWORK 14 

This section discusses the research framework as presented in Figure 1. This framework consists 15 

of an agent-based model, a charging behavior simulation module, and a mathematical optimization 16 

model. The agent-based model, POLARIS, considers travel demand, network supply, and network 17 

operations (36). Travel demand-related inputs to POLARIS include data from the American 18 

Community Survey that provides cross-tabulated information on the number of people in the 19 

household and demographics. This is supplemented with the data of activity generation rates, mode 20 

choice, and destination choice from the regional MPOs. Network supply inputs include road 21 

network properties. The network operation element connects the supply and demand using a 22 

dynamic traffic simulation module (37). The agent-based model outputs are vehicle daily 23 

trajectories, zone-to-zone travel distances, and travel times. The next element, the charging 24 

behavior simulation, analyses the daily chain of trips for each EV and evaluates its feasibility by 25 

tracking the state of charge along its trips. For the identified infeasible trip with the state of charge 26 

below the minimum acceptable threshold, it also estimates the energy demand considering the 27 

availability of the home charger, initial charge, desired charge upon arriving home at the end of 28 

the day, trip distances, location of charging stations, and the remaining trips. The third element, 29 

the charging optimization model, takes the charging demand from the charging behavior 30 

simulation and the average zone-to-zone travel times and travel distances from POLARIS and 31 

finds the optimum charging infrastructure that minimizes the total system cost, including the 32 

infrastructure cost and delay costs. The outputs of the optimization model are the location of 33 

charging stations and the number of chargers at each location. The approach to solving the 34 

optimization problem is also discussed, where the problem is decomposed into two subproblems. 35 

The first subproblem finds the location of charging stations and provides the spatiotemporal 36 

charging demand, an input to the second subproblem, which finds the number of chargers 37 

separately. 38 

 39 
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 1 
Figure 1- Research framework 2 
 3 

Agent-Based Model 4 

The agent-based modeling software used in this study, POLARIS, is a dynamic simulation tool 5 

that integrates the simulation of travel demand, network supply, and operations (36). Within the 6 

agent-based model framework of POLARIS, an activity-based model (ABM) is integrated that 7 

simulates the travel planning behavior. The ABM includes three steps; First, an activity-based 8 

travel demand model is implemented, including the agents’ behaviors and actions during the 9 

simulation. After the simulation of activities and travels, the second component, i.e., the network 10 

simulation model, is tasked with assigning the travel demand and simulating the traffic. Finally, 11 

the traffic management component monitors the traffic information (e.g., accidents and weather 12 

conditions) and provides feedback to the other two components. 13 

 14 

Charging Behavior Simulation Module 15 

The charging behavior of EV users varies depending on the trip they make. Intercity trips are 16 

usually preplanned, where users fully recharge their EVs before departure. On the other hand, 17 

urban trips may include a constant daily schedule with some day-to-day variations. Depending on 18 

the availability of home chargers, length of trips, and daily schedule of trips, users may or may not 19 

preplan for their trips. EV users with home charger access are more likely to prepare for their 20 

upcoming trips by charging their vehicles overnight. This group tries to minimize the use of 21 

DCFCs, since charging at home is typically cheaper than charging at a public DCFC and helps 22 

them to avoid wasting their time waiting in queue or charging. On the other hand, EV users who 23 

do not have access to home chargers would more likely fully recharge their vehicles whenever 24 

they have to recharge them to minimize the number of charging incidences, similar to the behavior 25 

of conventional vehicle users. To provide a charging configuration that can address the EV 26 

charging demand, it is essential to consider the EV users’ charging behavior. The more realistic 27 

the charging demand estimation, the better service EVs will receive, promoting their adoption. 28 

Several behavioral factors may impact EV charging behavior. Considering such factors in 29 

a mathematical optimization model makes the EV charging infrastructure problem more complex 30 

and expensive to solve. Therefore, the common approach in the literature is to recharge EVs with 31 

a fixed energy (12, 28) or to their full capacity (2, 38). However, depending on the availability of 32 

home chargers and the travel distance of the remaining trips, the charging behavior changes, and 33 

assuming the same behavior for them cannot realistically reflect the heterogeneity in the charging 34 

behavior of EV users. Thus, this study estimates the EV charging demand considering the 35 
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remaining daily schedule, home-charger availability, energy consumption, battery size, and 1 

minimum charge acceptable by users. The charging behavior simulation considers the following 2 

intuitive assumptions: 3 

I) EV users recharge their batteries during any infeasible trip that results in a state of 4 

charge below the minimum acceptable value at their destination (without charging)  5 

II) The remaining trips of EV users’ daily schedules beyond the infeasible trip are known 6 

to them. 7 

III) EV users try to minimize the number of charging events and costs. 8 

IV)  EV users comply with their scheduled chain of trips and do not visit their homes to 9 

recharge their batteries between their daily tours due to the slowness of their home 10 

chargers relative to DCFCs. In addition, it is assumed that the cost of charging at DCFC 11 

stations is much higher than the cost of charging at home, typically during the off-peak 12 

The first assumption determines the trip in which the users would recharge their batteries based on 13 

current practice in the literature. The second and third assumptions imply that users want to 14 

minimize the number of recharging events (e.g., they do not want to recharge on each trip). 15 

Therefore, they consider their remaining trips in their schedule and charge enough to reach their 16 

final destination (i.e., home) with their desired state of charge. In addition, users would like to 17 

spend as little as possible on their charging costs (i.e., EV users who have access to a home charger 18 

would not fully charge their vehicle as they have a cheaper charging alternative option at home). 19 

On the other hand, EV users who do not have access to home chargers would fully charge their 20 

vehicle once they have to recharge it, as they would not like to visit a charging station every day. 21 

The fourth assumption says EV users can only charge their vehicle at home after finishing their 22 

daily activities. 23 

Figure 2 shows the impact of the chain of trips on the charging behavior. The EV starts 24 

fully charged, and its SOC drops because of the trip it makes. As the third trip is not feasible for 25 

the user, the EV user must make a detour and recharge the vehicle to get to its next stop. The 26 

amount of charge to be acquired via a detour in trip 3 depends on the distance between the charging 27 

station and trip 3 destination, the length of trip 4, and desired state of charge at the final destination, 28 

which varies significantly depending on the home charger availability. 29 

 30 
Figure 2- Charging decision in a chain of trips 31 

 32 

 33 

 34 
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Mathematical Optimization Model 1 

This section introduces the developed modeling framework to minimize the cost of charging 2 

infrastructure and user delays. Table 1 presents the notation used in the study. 3 

 4 
Table 1 – Notations 

Sets 

𝑖 ∈ 𝐼 Set of zones 

𝜏 ∈ 𝑇  Set of time intervals that vehicles get to charging stations 

𝜃 ∈ 𝑇 Set of time intervals that vehicles leave charging stations 

𝑗 ∈ 𝐽  Set of electric vehicles/trip chains 

𝑘 ∈ 𝐾𝑗 Set of trips by vehicle j 

Parameters 

𝑇0  Duration of a time interval in this study 

𝑂(𝑗, 𝑘) Origin zone of trip k by vehicle j 

𝐷(𝑗, 𝑘)  Destination zone of trip k by vehicle j 

𝑡𝑗𝑘
′  Exact time of departure for vehicle j in trip k 

𝑡𝑗𝑘 Time interval of departure for vehicle j in trip k 

𝑑
(𝑂(𝑗,𝑘),𝐷(𝑗,𝑘))

𝑡𝑗𝑘
 Distance from origin to destination in trip k by vehicle j (mile) 

𝑡
(𝑂(𝑗,𝑘),𝐷(𝑗,𝑘))

𝑡𝑗𝑘
 Travel time from origin to destination in trip k by vehicle j (hour) 

𝑠𝑗,𝑘 State of charge for vehicle j at the beginning of trip k 

𝑠𝑚𝑎𝑥 Maximum state of charge that EVs can reach to in a charging station 

𝜁𝑗 Minimum acceptable state of charge for vehicle j 

𝐹𝑗 Battery capacity of vehicle j (kWh) 

𝛽𝑗 Battery performance of vehicle j (mile/kWh) 

𝐶𝑖
𝑠 Fixed cost of building and maintaining a charging station at zone i, converted to 

depreciation cost per day ($) 

𝐶𝑖
𝑝

 Cost of installation and maintenance of one charger at zone i, converted to depreciation 

cost per day ($) 

𝛾 Value of time ($/hour) 

𝑃 Charging power (kW) 

𝛼 Charger efficiency 

𝑀 An arbitrary large number 

State Variables 

𝐸𝑗,𝑘 Energy demand of vehicle j at the end of trip k (kWh) 

𝐸𝑗,𝑘,𝑖 Energy demand of vehicle j charging in zone i during trip k (if it is selected as the 

charging station) (kWh) 

𝐸𝑖,𝑗,𝑘
𝜃  Energy demand of vehicle j charging in zone i during trip k and departs after charging 

at time interval 𝜃 (kWh) 

𝜋𝑖
𝜏 Total charging and queuing time experienced by EVs reaching to the charging station 

in zone i at time interval 𝜏 (hour) 

𝑇𝑇𝑑𝑗,𝑘 Detour travel time of vehicle j in trip k to access a charging station (hour) 
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𝑄𝑖,𝑗,𝑘
𝜏,𝜃

 Binary variable, equal to 1 if vehicle j in trip k arrives to charging station in zone i at 

time interval 𝜏 and departs after charging at time interval 𝜃; and 0 otherwise 

𝑦𝑖
𝜏 Total number of EVs visiting charging station in zone i at time interval 𝜏 

𝑣𝑖
𝜏 Total energy demand of EVs visiting charging station in zone i at time interval 𝜏 

(kWh) 

𝑊̅𝑖
𝜏 Average waiting time in charging station of zone i for EVs arriving at time 𝜏 (hour) 

𝑅𝑖,𝑗,𝑘
𝜃  Refueling time for vehicle j recharging at zone i during trip k and departs after 

charging at time interval 𝜃 (hour) 

Decision Variables 

𝑥𝑖 Binary variable, equal to 1 if a charging station is built at zone i and 0 otherwise 

𝑧𝑖 Integer variable, number of chargers to be built at location i 

 1 

This study considers a set of zones (𝑖 ∈ 𝐼) and a set of time intervals (𝜏 ∈ 𝑇) specifying the times 2 

EVs arrive at charging stations. 𝑇0 represents the duration of each time interval in this study. Each 3 

trip chain (𝑗 ∈ 𝐽)  includes multiple trips (𝑘 ∈ 𝐾𝑗)  with known origins (𝑂(𝑗, 𝑘)), destinations 4 

(𝐷(𝑗, 𝑘)), exact departure times (𝑡𝑗𝑘
′ ), departure time intervals (𝑡𝑗𝑘), lengths (𝑑

(𝑂(𝑗,𝑘),𝐷(𝑗,𝑘))

𝑡𝑗𝑘
), travel 5 

times (𝑡
(𝑂(𝑗,𝑘),𝐷(𝑗,𝑘))

𝑡𝑗𝑘
), initial state of charge (𝑠𝑗,𝑘), and acceptable minimum state of charge (𝜁𝑗). 6 

 7 

 8 
Figure 3- Electric vehicle’s charging-routing decision 9 

 10 

The feasibility of trip 𝑘 for EV 𝑗 between 𝑂 and 𝐷 in Figure 3 can be calculated using the below 11 

equation:  12 

𝐸𝑗,𝑘 =
1

𝛽𝑗
𝑑

(𝑂(𝑗,𝑘),𝐷(𝑗,𝑘))

𝑡𝑗,𝑘 + 𝜁𝑗𝐹𝑗 − 𝑠𝑗,𝑘𝐹𝑗 ,            ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾𝑗 (1) 

Where 𝐸𝑗𝑘 is the energy demand of vehicle 𝑗 at the end of trip k, 𝐹𝑗 is the battery capacity, and 𝛽𝑗 13 

is the battery performance (
𝑚𝑖𝑙𝑒

𝑘𝑊ℎ
) for vehicle 𝑗, which is the inverse of energy consumption rate. 14 

The energy demand is calculated assuming the minimum state of charge at the destination, the 15 

initial state of charge, and the distances from the origin zone to the destination zone. 𝐸𝑗,𝑘 ≤ 0 16 

shows that energy demand is negative, i.e., the trip is feasible, and the EV would end its trip with 17 

a state of charge higher or equal to its minimum acceptable threshold. On the other hand, 𝐸𝑗,𝑘 >18 

0) means that the EV needs to recharge its battery and would select one of its charging options 19 

(i.e., 𝑖𝑛, 𝑛 = 1 … 4 in the example shown in Figure 3). This study assumes that EV users would 20 

like to minimize the number of times they recharge their EVs (assumption III). Therefore, when 21 

EV users need to recharge their battery, they consider the remaining daily trips to estimate their 22 
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required charge for the entire day. Depending on the availability of the home charger, the initial 1 

state of charge, and the remaining distance to home, this study considers two charging scenarios, 2 

as illustrated in Figure 4.   3 

 4 

  
(a) (b) 

Figure 4- Charging scenarios depending on the initial state of charge and the remaining distance to 5 
home. (a) Feasible area to do a single recharge and reach the destination (2) No feasible area to 6 
reach the destination based on a single recharge. 7 
 8 

Figure 4 shows two different charging scenarios considered in this study. In  Figure 4(a), the small 9 

circle shows the range of the EV at location A assuming a given state of charge, 𝑠𝐴. The radius of 10 

this circle is (𝑠𝐴 − 𝜁𝑗)𝐹𝑗𝛽𝑗, which is the available range for the EV from origin A. The larger circle 11 

shows the area that if the EV recharges there, it can reach B with the minimum charge. The radius 12 

of this circle is (1 − 𝜁𝑗)𝐹𝑗𝛽𝑗. In scenario (a), the distance between A and B is less than the range 13 

of a fully charged EV plus the EV available range, i.e., 𝑑(𝐴,𝐵) < (1 + 𝑠𝐴 − 2𝜁𝑗)𝐹𝑗𝛽𝑗 If the vehicle 14 

recharges within the highlighted area, it can fulfill its trip with just one charge (Assumption III). 15 

If the EV has access to home charger, it would only charge enough to make the trip feasible. The 16 

energy demand for this vehicle can be calculated based on the following equation: 17 

𝐸𝑗,𝑘,𝑖 =
1

𝛽𝑗
[𝑑(𝑂(𝑗,𝑘),𝑖)

𝑡𝑗,𝑘 + 𝑑
(𝑖,𝐷(𝑗,𝑘))

𝑡𝑗,𝑘 + ∑ 𝑑
(𝑂(𝑗,𝑚),𝐷(𝑗,𝑚))

𝑡𝑗,𝑘

𝐾𝑗

𝑚=𝑘+1

] + 𝜁𝑗𝐹𝑗 − 𝑠𝑗,𝑘𝐹𝑗 (2) 

Where 𝐸𝑗𝑘,𝑖 shows the energy demand of vehicle 𝑗 in its trip 𝑘 at location 𝑖 (if it is selected as the 18 

charging station) and 𝑠𝑗,𝑘  shows the state of charge of vehicle 𝑗  at the beginning of trip 𝑘 . 19 

∑ 𝑑
(𝑂(𝑗,𝑚),𝐷(𝑗,𝑚))

𝑡𝑗𝑘𝐾𝑗

𝑚=𝑘+1  shows the remaining trip distances in the schedule of vehicle 𝑗. Contrarily, 20 

vehicles without home chargers fully recharge in their infeasible trip. The energy demand for these 21 

vehicles can be calculated as follows: 22 

𝐸𝑗,𝑘,𝑖 =
𝑑(𝑂(𝑗,𝑘),𝑖)

𝑡𝑗𝑘

𝛽𝑗
+ 𝐹𝑗 − 𝑠𝑗,𝑘𝐹𝑗 (3) 

In the second charging scenario, presented in  Figure 4 (b), the EV cannot reach the destination 23 

with a single charge. This scenario can happen when the size of the battery is small, the battery 24 

performance is low, or the trip length is significantly long, which may happen in large-scale 25 

networks. In this case, the EV user, regardless of its home charger availability, will fully recharge 26 

the battery, based on Eq. 3, until the user reaches a point where the EV can get to the destination 27 

with just one recharging. At that point, the EV user determines the required charge according to 28 

Eq. 2 and Eq. 3, considering the home charger availability. In this case, the location of each 29 

charging would depend on the previous charging, which makes the problem highly nonlinear and 30 
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expensive to solve. This study proposes an algorithm to preprocess the trips and prevent extensive 1 

computation by breaking the long-distance trips into smaller trips and addressing the charging 2 

demand at each trip separately. The algorithm to determine the energy demand for such vehicles 3 

is provided below. 4 
Algorithm to estimate charging demand 5 

(1) For each vehicle 𝑗 in 𝐽 6 

(2) While each trip 𝑘 in 𝐾𝑗 7 

(3)  If  𝑠𝑗,𝑘 −
1

𝛽𝑗
𝑑

(𝑂(𝑗,𝑘),𝐷(𝑗,𝑘))

𝑡𝑗,𝑘
< 𝜁𝑗𝐹𝑗 then 8 

(4)   While 𝑑 <  𝛽𝑗(1 − 𝜁𝑗)𝐹𝑗 and 𝑘 ≤ 𝐾𝑗 then 9 

    𝑑 ← 𝑑 + 𝑑
(𝑂(𝑗,𝑘),𝐷(𝑗,𝑘))

𝑡𝑗,𝑘
 10 

𝑘 ←  𝑘 + 1 11 

   End While 12 

(5)   Check Figure 4a and 4b  13 

(6)   If Figure 4a then 14 

(7)    If home charger available then 15 

     𝐸𝑗,𝑘,𝑖 =
1

𝛽𝑗
[𝑑(𝑂(𝑗,𝑘),𝑖)

𝑡𝑗,𝑘 + 𝑑
(𝑖,𝐷(𝑗,𝑘))

𝑡𝑗,𝑘 +16 

                                                                                                     ∑ 𝑑
(𝑂(𝑗,𝑚),𝐷(𝑗,𝑚))

𝑡𝑗,𝑘𝐾𝑗

𝑚=𝑘+1 ] + 𝜁𝑗𝐹𝑗 − 𝑠𝑗,𝑘𝐹𝑗 17 

    Else 𝐸𝑗,𝑘,𝑖 =
𝑑

(𝑂(𝑗,𝑘),𝑖)

𝑡𝑗𝑘

𝛽𝑗
+ 𝐹𝑗 − 𝑠𝑗,𝑘𝐹𝑗 18 

    End if 19 

(8)   Else  20 

    𝐸𝑗,𝑘,𝑖 =
𝑑(𝑂(𝑗,𝑘),𝑖)

𝑡𝑗𝑘

𝛽𝑗
+ 𝐹𝑗 − 𝑠𝑗,𝑘𝐹𝑗 21 

Break the trip into two smaller trips and update the SOCs and indices and 22 

𝐾𝑗 accordingly 23 

    𝑘 ←  𝑘 + 1 24 

    Go to (3)  25 
   End if 26 

End if 27 

End While 28 

End For 29 

 30 

Based on the estimated charging demand, the activity-based optimization model can be formulated 31 

as below:  32 

 33 

The objective function (4) consists of two main terms. The first term calculates the total 34 

infrastructure investment cost, including the costs associated with the availability of charging 35 

stations, 𝑥𝑖, and the integer variable 𝑧𝑖 that represents the number of chargers at each location i. 36 

The next term provides the monetary value of the total delay of all EV travelers that need 37 

recharging, including those related to the queueing and charging delays, 𝜋𝑖
𝜏, at all charging stations 38 

𝑚𝑖𝑛 ∑(𝐶𝑖
𝑠𝑥𝑖 + 𝐶𝑖

𝑝𝑧𝑖

𝑖∈𝐼

) + 𝛾(∑ ∑ 𝜋𝑖
𝜏

𝜏∈𝑇𝑖∈𝐼

+ ∑ ∑ 𝑇𝑇𝑑𝑗,𝑘

𝑘∈𝐾𝑗𝑗∈𝐽

 ) (4) 
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for different arrival time intervals and those related to the detour travel time, 𝑇𝑇𝑑𝑗, experienced 1 

by EV users to access a charging station. These delays are multiplied by the value of time (VOT), 2 

𝛾, to calculate their monetary values. While a fixed value of time is considered for simplicity here, 3 

the assumption can easily be updated to account for different values of time for different users. 4 

The objective function (4) is subject to the constraints (1-3) and (5-23): 5 

 6 

Constraint (5) shows the problem is an integer programming, and each candidate location can be 7 

equipped with a charging station (𝑥 = 1) or not (𝑥 = 0). Constraint (6) shows that the number of 8 

chargers at each location must be an integer value. Constraint (7) shows that chargers can only be 9 

placed where a charging station is built. Constraints (8-9) enforce a charging incidence only when 10 

a trip become infeasible and the energy demand is positive (𝐸 > 0); otherwise, no charging is 11 

required. Constraint (10) tracks the state of charge. If a vehicle is not recharged during a trip, it 12 

updates the EV’s SOC based on its preceding SOC and traveled distance. Otherwise, it updates 13 

the EV’s SOC based on its preceding SOC, traveled distance, and the charged energy. Constraint 14 

(11) limits the feasible locations to charge by not letting the EV charge more than its battery 15 

capacity. Constraint (12) ensures that EVs will only recharge at locations within their feasible 16 

range. Constraint (13) ensures that EVs cannot charge at locations with no charging stations. 17 

Constraint (14) calculates the detour travel time by considering the difference between the 18 

preplanned trip distance and the summation of distances from the origin to the charging station 19 

and from the charging station to the destination. Constraints (15-16) find the time interval in which 20 

EVs would enter a charging station.  21 

𝑥𝑖 ∈ {0,1},             ∀ 𝑖 ∈ 𝐼 (5) 

𝑧𝑖 ∈ {0,1,2, … }             ∀ 𝑖 ∈ 𝐼 (6) 

𝑧𝑖 ≤ 𝑥𝑖𝑀,             ∀ 𝑖 ∈ 𝐼 (7) 

∑ ∑ ∑ 𝑄𝑖,𝑗,𝑘
𝜏,𝜃

𝜃∈𝑇𝜏∈𝑇

= 1,

𝑖∈𝐼

        𝐸𝑗,𝑘 > 0, ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾𝑗 (8) 

∑ ∑ ∑ 𝑄𝑖,𝑗,𝑘
𝜏,𝜃

𝜃∈𝑇𝜏∈𝑇

= 0,

𝑖∈𝐼

        𝐸𝑗,𝑘 ≤ 0, ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾𝑗 (9) 

𝑠𝑗,𝑘+1𝐹𝑗 = 𝑠𝑗,𝑘𝐹𝑗 −
1

𝛽𝑗
𝑑

(𝑂(𝑗,𝑘),𝐷(𝑗,𝑘))

𝑡𝑗,𝑘 + ∑ ∑ ∑ 𝑄𝑖,𝑗,𝑘
𝜏,𝜃

𝜃∈𝑇𝜏∈𝑇

𝐸𝑖,𝑗,𝑘
𝜃

𝑖∈𝐼

,         ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾𝑗, 𝑘 > 1 (10) 

∑ ∑ 𝑄𝑖,𝑗,𝑘
𝜏,𝜃 𝐸𝑖,𝑗,𝑘

𝜃

𝜃∈𝑇𝜏∈𝑇

≤ 𝑠𝑚𝑎𝑥𝐹𝑗 − 𝑠𝑗,𝑘𝐹𝑗 +
𝑑(𝑂(𝑗,𝑘),𝑖)

𝑡𝑗,𝑘

𝛽𝑗
,            ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾𝑗 , 𝑖 ∈ 𝐼 (11) 

∑ ∑ ∑ 𝑄𝑖,𝑗,𝑘
𝜏,𝜃 𝑑(𝑂(𝑗),𝑖)

𝑡𝑗

𝜃∈𝑇𝜏∈𝑇𝑖∈𝐼

≤ 𝛽𝑗(𝑠𝑗,𝑘 − 𝜁𝑗)𝐹𝑗 ,             ∀ 𝑗 ∈ 𝐽 (12) 

∑ ∑ 𝑄𝑖,𝑗,𝑘
𝜏,𝜃

𝜃∈𝑇𝜏∈𝑇

≤ 𝑥𝑖,             ∀ 𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾𝑗 (13) 

𝑇𝑇𝑑𝑗,𝑘 = ∑ ∑ ∑ 𝑄𝑖,𝑗,𝑘
𝜏,𝜃

𝑖∈𝐼𝜃∈𝑇

(

𝜏∈𝑇

𝑡
(𝑂(𝑗,𝑘),𝑖)

𝑡𝑗,𝑘 + 𝑡(𝑖,𝐷(𝑗,𝑘))
𝜃 − 𝑡(𝑂(𝑗,𝑘),𝐷(𝑗,𝑘))

𝑡𝑗,𝑘 ),             ∀  𝑗 ∈ 𝐽, 𝑘

∈ 𝐾𝑗   

(14) 

𝑡𝑗,𝑘
′ +  𝑡

(𝑂(𝑗),𝑖)

𝑡𝑗,𝑘 − 𝑇0𝜏 ≤ (1 − 𝑄𝑖,𝑗,𝑘
𝜏,𝜃 )𝑀,             ∀ 𝜏 ∈ 𝑇, 𝜃 ∈ 𝑇, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾𝑗 (15) 

𝑡𝑗,𝑘
′ + 𝑡

(𝑂(𝑗),𝑖)

𝑡𝑗,𝑘 − 𝑇0(𝜏 − 1) ≥ (𝑄𝑖,𝑗,𝑘
𝜏,𝜃 − 1)𝑀,             ∀ 𝜏 ∈ 𝑇, 𝜃 ∈ 𝑇, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾𝑗 (16) 
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The charging demand at a charging station includes 1) the number of vehicles recharging 1 

and 2) energy demand. The constraints (17-18) find the spatiotemporal charging demand for all 2 

selected charging stations. Finally, the equations (19-23) are related to deterministic queuing at 3 

charging stations.  4 

𝑦𝑖
𝜏 = ∑ ∑ ∑ 𝑄𝑖,𝑗,𝑘

𝜏,𝜃
𝜃∈𝑇𝑘∈𝐾𝑗𝑗∈𝐽 ,              ∀ 𝜏 ∈ 𝑇, 𝑖 ∈ 𝐼, (17) 

𝑣𝑖
𝜏 = ∑ ∑ ∑ 𝑄𝑖,𝑗

𝜏,𝜃
𝜃∈𝑇 𝐸𝑖,𝑗,𝑘

𝜃
𝑘∈𝐾𝑗𝑗∈𝐽 ,             ∀ 𝜏 ∈ 𝑇, 𝑖 ∈ 𝐼 . (18) 

𝑊̅𝑖
𝜏 = Φ(𝑦𝑖

𝜏, 𝑣𝑖
𝜏, 𝑧𝑖 , 𝑃),             ∀ 𝜏 ∈ 𝑇, 𝑖 ∈ 𝐼. (19) 

𝑅𝑖,𝑗,𝑘
𝜃 = 𝛼

𝐸𝑖,𝑗,𝑘
𝜃

𝑃
,             ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾𝑗 (20) 

𝜋𝑖
𝜏 = 𝑦𝑖

𝜏𝑊̅𝑖
𝜏 + ∑ ∑ ∑ 𝑄𝑖,𝑗

𝜏,𝜃𝑅𝑖,𝑗,𝑘
𝜃

𝑘∈𝐾𝑗𝑗∈𝐽𝜃∈𝑇

,             ∀ 𝜏 ∈ 𝑇, 𝑖 ∈ 𝐼 (21) 

𝑡𝑗,𝑘
′ + 𝑡

(𝑜(𝑗,𝑘),𝑖)

𝑡𝑗,𝑘 + 𝑅𝑖,𝑗,𝑘
𝜃 + 𝑊̅𝑖

𝜏 − 𝑇0𝜃 ≤ (1 − 𝑄𝑖,𝑗,𝑘
𝜏,𝜃 )𝑀,             ∀ 𝜏 ∈ 𝑇, 𝜃 ∈ 𝑇, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘

∈ 𝐾𝑗 
(22) 

𝑡𝑗,𝑘
′ +  𝑡

(𝑜(𝑗,𝑘),𝑖)

𝑡𝑗,𝑘 + 𝑅𝑖,𝑗,𝑘
𝜃 + 𝑊̅𝑖

𝜏 − 𝑇0(𝜃 − 1) ≥ (𝑄𝑖,𝑗,𝑘
𝜏,𝜃 − 1)𝑀,             ∀ 𝜏 ∈ 𝑇, 𝜃 ∈ 𝑇, 𝑖 ∈ 𝐼, 𝑗

∈ 𝐽, 𝑘 ∈ 𝐾𝑗 
(23) 

Where equation (19) summarizes the deterministic queuing formula is a function of the number of 5 

visiting EVs, energy demand, number of chargers, and charging power (Please refer to (8) for more 6 

in-depth discussion on the deterministic queuing formula constraints). Equation (20) finds the 7 

charging time considering the electricity loss, 𝛼, and charging power. Equation (21) calculates the 8 

total delay in the charging station, including the charging time and waiting time in a queue. The 9 

constraints (22-23) find the time interval that an EV would leave the charging station. 10 

 11 

Solution Approach 12 

The proposed problem is a Mixed-Integer nonlinear programming and cannot be solved with 13 

commercial solvers when the size of the problem increases. Similar to (8), this problem can be 14 

decomposed into two subproblems where the location of charging stations and the number of 15 

chargers are found separately. The decomposition approach assumes that vehicles do not 16 

experience significant queuing delays at charging stations that can affect the charging station 17 

allocation; this assumption is verified in (8). Note that the formulated problem in this study is 18 

highly non-linear, and no exact solution method could be applied to solve this problem. In a 19 

previous study, Kavianipour et al. (8) compared the heuristic approach with the implicit 20 

enumeration method and showed the merit of the decomposition technique in terms of accuracy 21 

and run-time. In the next section, the subproblems of finding the location of charging stations and 22 

the number of chargers are formulated.  23 

Charging station location problem 24 

The first subproblem ignores the queuing at charging stations and allocates the charging stations 25 

to EVs minimizing the station costs, charging delay, and detour delay. As the problem is system 26 

optimal and there is no constraint to limit the number of chargers, the number of chargers will be 27 

determined in the next section based on the charging demand at each station and the trade-off 28 

between queuing delay and charger costs. The mathematical model of the first subproblem is 29 

formulated through equations (24-26). 30 

min ∑(𝐶𝑖
𝑠𝑥𝑖

𝑖∈𝐼

) + 𝛾(∑ ∑ ∑ ∑ ∑ 𝑄𝑖,𝑗,𝑘
𝜏,𝜃 𝑅𝑖,𝑗,𝑘

𝜃

𝑘∈𝐾𝑗𝑗∈𝐽𝑖∈𝐼𝜃∈𝑇𝜏∈𝑇

+ ∑ ∑ 𝑇𝑇𝑑𝑗,𝑘

𝑘∈𝐾𝑗𝑗∈𝐽

)  (24) 

Subject to (2-3), (5-16), (20) and 31 
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𝑡𝑗,𝑘
′ + 𝑡

(𝑜(𝑗,𝑘),𝑖)

𝑡𝑗,𝑘 + 𝑅𝑖,𝑗,𝑘
𝜃 − 𝑇0𝜃 ≤ (1 − 𝑄𝑖,𝑗,𝑘

𝜏,𝜃 )𝑀,             ∀ 𝜏 ∈ 𝑇, 𝜃 ∈ 𝑇, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾𝑗 (25) 

𝑡𝑗,𝑘
′ +  𝑡

(𝑜(𝑗,𝑘),𝑖)

𝑡𝑗,𝑘 + 𝑅𝑖,𝑗,𝑘
𝜃 − 𝑇0(𝜃 − 1) ≥ (𝑄𝑖,𝑗,𝑘

𝜏,𝜃 − 1)𝑀,             ∀ 𝜏 ∈ 𝑇, 𝜃 ∈ 𝑇, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘

∈ 𝐾𝑗 
(26) 

Constraints (25-26) find the time interval that an EV leaves the charging station, assuming that 1 

EVs charge upon their arrival to charging stations and no waiting is required to access an available 2 

charger. 3 

This problem is a Mixed-Integer Programming (MIP) and can be solved using commercial 4 

solvers (e.g., CPLEX and Gurobi) for small to medium-sized problems. However, these problems 5 

become computationally expensive once the problem size increases. For large-scale networks (e.g., 6 

the full regional network of Chicago), which is used as the case study in this research, only 7 

heuristic algorithms can yield a solution. Kavianipour et al. proposed a heuristic algorithm based 8 

on the simulated annealing concept, which is used in this study to solve the problem of locating 9 

the charging stations (8). Kavianipour et al. (8) showed that applying the proposed heuristic 10 

method to the network in Detroit, MI decreased the run-time by 50% and memory requirement by 11 

96% while yielding acceptable accuracy compared to results generated by commercial solvers. 12 

 13 

Number of chargers at charging stations 14 

The second subproblem finds the number of chargers at each location 𝑖 and is formulated as in 15 

equation (27). 16 

min 𝐶𝑖
𝑝

𝑧𝑖 + 𝛾 ∑ 𝑦𝑖
𝜏𝑊̅𝑖

𝜏

𝜏∈𝑇

  

Subject to 

(27) 

(17-19)   

The objective function (27) considers the trade-off between the number of chargers and the 17 

monetary value of the deterministic waiting time to access a charger. This problem is Mixed-18 

Integer nonlinear programming but is proven to be convex (8) and can be solved using a 19 

commercial solver (e.g., knitro) or the Golden-section search technique (39). In addition to 20 

deterministic queuing, stochastic queuing can also be incorporated, assuming a Poisson 21 

distribution for the arrival rate of vehicles and an exponential distribution for the service rates (For 22 

a more in-depth discussion on this topic and accessing the required formulation, please refer to 23 

(8)). It should be noted that the proposed mathematical model can consider existing charging 24 

infrastructure or minimum charger requirement at candidate locations by modifying a sub-set of 25 

station set 𝑥𝑖, and/or charger set 𝑧𝑖   to model parameters instead of decision variables. 26 

 27 

NUMERICAL EXPERIMENTS  28 

In this section, the case study and its network specifications are presented. Next, the impact of the 29 

initial SOC on the final SOC is investigated for different battery performances. Based on these 30 

analyses, a base scenario is defined and solved, where the convergence of the solution algorithm 31 

is explored. Next, a few sensitivity analyses are conducted to investigate the impact of charging 32 

power,battery performance, and VOT on the optimum charging configuration to provide insights 33 

for policymakers. 34 

 35 

Case Study and Assumptions 36 

The Chicago full regional network, shown in Figure 5, is selected as a large-scale network for this 37 

study. This network includes a part of three states: Illinois, Indiana, and Wisconsin. The network 38 



Kavianipour et al.  16 

consists of about 85,000 links, 36,000 nodes, 8,000 signals, and 2,000 traffic analysis zones (TAZ). 1 

The centroids of the TAZs are represented by the blue dots in the figure. 2 

 3 
Figure 5- Chicago regional network 4 

Based on the Chicago travel survey data, the POLARIS agent-based model is estimated and 5 

calibrated against the observed data. It employs population and vehicle synthesis and the ABM to 6 

simulate the traffic and performs the traffic assignment considering the scheduling of all users. In 7 

this study, there are 9,247,846 trips, 2,601,734 persons, and 2,644,118 vehicles available in total 8 

where 1,906,526 trips are EV trips traveled by 582,236 persons and 504,771 vehicles (25% market 9 

share). Influenced by ABM inputs such as sociodemographic characteristics, household size, 10 

income, and education level, 5% of multi-unit buildings and 61% of single-family homeowners 11 

are assumed to have access to home chargers. Considering mixed building settings in Chicago 12 

regional network, this assumption results in 41% of EVs having home chargers. This study 13 

considers three levels of charging powers 50 kW, 150 kW, and 300 kW. Table  shows the station 14 

and charger costs for each charging power. A VOT of $18/hour converts the user’s delay to its 15 

monetary equivalent 16 

 17 
Table 2 Station and charger costs for different charging power 18 
Charging power (kW) 50 150 300 

Station Cost $48,437 $80,125 $135500 

Charger Cost $33,750 $76,250 $155000 

 19 

 20 

 21 
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SOC Analyses 1 

The SOC at the end of the day depends on the initial SOC and charging behavior. Considering the 2 

range of current EVs, if an EV starts the day with a fully charged battery, it would hardly need to 3 

recharge. However, the ability to fully recharge the EV every night depends on different factors 4 

(e.g., the availability of a home charger and available charging time). EV users who live in single-5 

family residentials can purchase home chargers and install them easily. This group of users will 6 

only charge enough to make their trips feasible if they need to recharge during the day, as they can 7 

access cheaper charging at home. Therefore, the charging vehicles would finish their daily trips 8 

with a SOC close to their minimum acceptable charge. Regardless of charging, it can be expected 9 

that this group of EVs would start the day with an almost fully charged battery. 10 

On the other hand, residents of multi-family units might not have access to chargers in their 11 

parking spaces. Therefore, they cannot start every day with a fully-charged battery. Their charging 12 

behavior also varies from the other group as they will fully recharge their vehicle once they have 13 

recharged their EV, similar to gasoline vehicles. Figure 6 investigates the impact of the initial SOC 14 

on the final SOC (upon finishing the daily trips and considering recharging between trips) for the 15 

second group considering different battery performances. The average initial SOC on the 16 

horizontal axis represents the average of a truncated normal distribution (e.g., if the lower bound 17 

and upper bound of a distribution are 0.3 and 0.8, the average SOC would be 0.55). Therefore, for 18 

an average initial SOC, there are different average final SOC in each figure. 19 

 20 
Figure 6- Average final SOC based on battery performance and initial SOC 21 
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Figure 6 considers nine different battery performances, ranging from 𝛽 = 1.5
𝑚𝑖𝑙𝑒

𝑘𝑊ℎ
 to 𝛽 = 5.5

𝑚𝑖𝑙𝑒

𝑘𝑊ℎ
, 1 

assuming that the energy consumption rate of all EVs is the same. As the 𝛽 increases from Figure 2 

6 (a) to (i), vehicles can travel longer distances using the same energy. Each node in the figure 3 

represents an average initial SOC, and an average final SOC estimated through the charging 4 

behavior simulation. In the figure, the line 𝑦 =  𝑥 shows that the initial SOC is the same as the 5 

final SOC, which represents the energy conservation concept on average for this group of users. 6 

A node above this line indicates that the final SOC is higher than the initial SOC; hence the total 7 

energy is increased during the day, which is not possible. On the other hand, a node below the line 8 

shows that the total energy has decreased. As shown in the figure, EVs starting their daily trips 9 

with a very low initial SOC finish their activities with an average SOC significantly higher than 10 

the initial SOC. The reason is that these vehicles cannot fulfill their trips due to their very low 11 

initial SOC and have to recharge their batteries. As they do not have a home charger, they fully 12 

recharge their battery and have a high SOC once they arrive home. On the other hand, EVs starting 13 

with a very high initial SOC hardly need to recharge their vehicles during the day and return home 14 

with a SOC lower than what they started. The average initial energy level of EVs without any 15 

home charger should remain the same on different days to maintain the energy balance in the 16 

network. Thus, the nodes close to the line can represent real-life scenarios. 17 

 18 

DCFC infrastructure 19 

In this section, the battery performance is considered 𝛽 = 3
𝑚𝑖𝑙𝑒

𝑘𝑊ℎ
. A truncated normal distribution 20 

for the initial SOC of vehicles with a home charger is selected with a lower bound of 0.5 and an 21 

upper bound of 1. For vehicles without a home charger, a truncated normal distribution with a 22 

lower bound of 0.15 and an upper bound of 0.8 is selected for the initial SOC. The results are 23 

presented for three charging powers, 50 kW, 150 kW, and 300 kW. First, Figure 7 shows the 24 

convergence of the metaheuristic algorithm to find the optimal optimization problem solution. The 25 

figure shows that after 15,000 iterations, the solution has converged as it does not change 26 

significantly regardless of the increase in the number of iterations.  27 

 28 
Figure 7- Convergence of the optimum solution 29 

Next, provides the estimated charging infrastructure for the selected charging powers. 30 

According to Table 3, the scenario with the 150 kW power yielded a lower infrastructure cost and 31 

experienced delay, although the charging stations and chargers are more expensive per unit than 32 

the scenario with the 50 kW power, a result consistent with prior studies for other networks (4, 6). 33 

Also, although the scenario with 300 kW powers results in a faster average charging time compared 34 

to the 150 kW scenario, due to the high cost of station and chargers in this scenario number of 35 
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station decrease resulting in higher detour and wasting time. Also, no significant investment cost 1 

gained moving from 150 kW to 300 kW. Table 3 also shows that although with the increase in the 2 

charging powers user experienced delays at stations decrease, users have to travel longer to reach 3 

the charging station, which results in higher total detour times. As station and charger costs 4 

increase with the increase in charging powers, the models suggest building lower numbers and 5 

more scattered distribution of stations over the network, which increases the total user-experienced 6 

detour time. Figure 8 shows the estimated charging configurations for each charging power. The 7 

size of the circles relates to the number of chargers in stations, and a larger circle represents a 8 

higher number of chargers than a smaller circle. According to Error! Reference source not 9 

found., the charging stations are distributed more densely in downtown Chicago with a higher 10 

number of chargers; this complies with the fact that many trips are generated or absorbed from 11 

downtown, and a charging station there can address significant charging demand. It should be 12 

noted that each TAZ is represented with one potential node for charging stations to be built. Such 13 

simplicity is considered to diminish the complexity of solving the problem in a macro-level 14 

optimization model for the entire regional network of Chicago. 15 

 16 
Table 3- Results under different charging power 17 

Charging station (kW) 50 150 300 

Number of zones 1,961 1,961 1,961 

EV trips (per day) 1,906,526 1,906,526 1,906,526 

Charging events (per day) 38,648 38,648 38,648 

Charging vehicles (per day) 38,366 38,366 38,366 

Number of stations 438 345 246 

Number of chargers 10,088 3,494 1,679 

Average charging time (min) 58.57 19.54 9.77 

Average waiting time (min) 0.63 0.64 0.67 

Average detour (min) 4.11 4.39 4.79 

Total daily charge (MWh) 1,887.19 1,887.74 1,888.44 

Total station cost (m$) 25.65 31.14 35.83 

Total charger cost (m$) 349.97 269.71 261.82 

Total infrastructure cost (m$) 375.62 300.85 297.65 
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 1 
(a) 50 kW 2 

 3 

 4 
(b) 150 kW 5 

 6 
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 1 
(c) 300 kW 2 

 3 
Figure 8- Optimum charging infrastructure configuration (a) 50 kW charging power (b) 150 kW (c) 4 
300 kW charging power 5 
SENSITIVITY ANALYSIS 6 

Battery Performance 7 

In order to explore the impact of battery performance on the optimum charging infrastructure, a 8 

sensitivity analysis is conducted, changing the values of battery performance from 𝛽 = 1.5
𝑚𝑖𝑙𝑒

𝑘𝑊ℎ
 to 9 

𝛽 = 5
𝑚𝑖𝑙𝑒

𝑘𝑊ℎ
 considering a charging power of 50 kW; the results are provided in Table 4.  10 

Table 4- Results under different battery performance with 50 kW charging power 11 
Battery performance 

(mi/kWh) 
1.5 2 2.5 3 3.5 4 4.5 5 

Charging events (per day)  112,823 73,532 51,576 38,648 30,122 24,309 20,154 17,322 

Charging vehicles (per day)  105,488 71,185 50,792 38,366 30,025 24,271 20,130 17,312 

Number of stations  837 642 534 438 385 342 307 284 

Number of chargers  25,806 17,662 13,057 10,088 8,216 6,704 5,691 4,996 

Average charging time (min)  54.41 55.81 57.51 58.57 59.68 60.15 60.47 60.73 

Average waiting time (min)  0.55 0.58 0.59 0.63 0.64 0.64 0.68 0.65 

Average detour (min) 3.87 3.94 4.05 4.11 4.25 4.42 4.54 4.61 

Total daily charge (MWh)  5,115.20 3,419.67 2,471.90 1,887.19 1,498.07 1,218.57 1,015.61 876.59 

Total station cost (m$)  49.02 37.60 31.27 25.65 22.55 20.03 17.98 16.63 

Total charger cost (m$)  895.25 612.72 452.97 349.97 285.03 232.57 197.43 173.32 

Total infrastructure cost (m$)  944.27 650.32 484.24 375.62 307.58 252.60 215.41 189.95 
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According to Table 4, the number of charging events decreases with the increase of battery 1 

performance, which is intuitive. While the size of the batteries for vehicles is not changing between 2 

scenarios, the required infrastructure to address the charging demand increases significantly when 3 

the battery performance decreases. When the battery performance increases, the number of 4 

charging stations decreases, but this decrease is not as steep as the decrease in the number of 5 

chargers. This is due to the fact that there is no cap on the maximum number of chargers in the 6 

model, and for the hot-spot charging stations, the model provides as many chargers as needed. 7 

 8 

VOT 9 

Table 5 shows the sensitivity analysis conducted on VOT variables for the scenario with 50 kW 10 

charging powers, and 𝛽 = 3
𝑚𝑖𝑙𝑒

𝑘𝑊ℎ
. While the modeling always provides as many stations and 11 

chargers as needed to ensure the feasibility of all EV trips, VOT is an essential variable 12 

determining how much emphasis will be on minimizing user experience delays and detours in 13 

finding optimum charging infrastructure configuration. Table 5 shows that with VOT equal to 1 14 

($/hour), the model provides as low as possible number of stations and chargers to minimize the 15 

total infrastructure cost resulting in excessive user time spent in the system. As VOT increases in 16 

each scenario, the number of stations, chargers, and total infrastructure costs will increase to 17 

minimize user time spent on refueling, waiting in the queue, and detour time. With VOT 18 18 

($/hour), the model has already provided enough charging infrastructure to minimize user time 19 

spent in the charging stations (refueling and waiting time) and increasing VOT from this point on 20 

could only decrease the users’ detour time by providing more charging stations.  21 

 22 
Table 5- Results under different VOT with 50 kW charging power 23 

VOT ($/hour) 1 10 18 30 

Charging events (per day)  38,648 38,648 38,648 38,648 

Charging vehicles (per day)  38,366 38,366 38,366 38,366 

Number of stations  92 303 438 589 

Number of chargers  4,884 8,450 10,088 11,479 

Average charging time (min)  58.76 58.61 58.57 58.59 

Average waiting time (min)  5.50 0.99 0.63 0.49 

Average detour (min) 6.77 4.50 4.11 3.91 

Total daily charge (MWh)  1,892.39 1,887.86 1,887.19 1,886.81 

Total station cost (m$)  5.39 17.75 25.65 34.50 

Total charger cost (m$)  169.43 293.14 349.97 398.22 

Total infrastructure cost (m$)  174.82 310.89 375.62 432.72 

 24 

EV Market Share 25 

Table 6 presents the model results under different EV market shares of 5, 15, and 25% considering 26 

50 kW charging power. Table 6 highlights that an increase in the EV market share leads to a 27 

proportional increase in the number of charging events, chargers, and total infrastructure cost. 28 

Charging stations are to be provided to ensure feasibility of trips and reducing detour travel time. 29 

Therefore, even with a low EV market share, a significant number of stations are required in a 30 

large-scale network like Chicago to prevent users from experiencing high detour time or energy 31 
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depletion. Thus, although, increasing EV demand would increase the number of stations and 1 

decrease the detour time, the relationship was found to be more complex and non-linear. 2 

Table 6 demonstrates that as EV market share grows users benefit from lower charging, 3 

waiting, and detour times. As discussed in the methodology section, the system provider aims to 4 

minimize both the total infrastructure cost and user time spent in the charging system. As the 5 

number of EVs grows, the user time spent in the system becomes a more influential factor 6 

compared to the total cost. Thus, the system provider gains higher benefits by reducing the user 7 

time spent and enhancing their charging experience. This finding suggests that as more users adopt 8 

EVs, policymakers and system providers give more priority to this group resulting in an overall 9 

improved charging experience for all EV users.  10 

 11 
Table 6- Results under different EV market share with 50 kW charging power 12 

EV Market Share (%) 5 15 25 

Charging events (per day) 7,810 22,994 38,648 

Charging vehicles (per day) 7,747 22,818 38,366 

Number of stations 161 320 438 

Number of chargers 2,292 6,146 10,088 

Average charging time (min) 59.24 58.66 58.57 

Average waiting time (min) 0.75 0.62 0.63 

Average detour (min) 5.18 4.46 4.11 

Total daily charge (MWh) 385.54 1,123.98 1,887.19 

Total station cost (m$) 9.43 18.74 25.65 

Total charger cost (m$) 79.51 213.21 349.97 

Total infrastructure cost (m$) 88.94 231.95 375.62 

 13 

Home Charger Ownership  14 

Table 7 presents the model result under different shares of home charger ownership for the scenario 15 

with 50 kW charging powers, and 25% EV market share. Users with access to home charging tend 16 

to start their daily trips with a higher initial State of Charge (SOC) and require a lower desired 17 

SOC. Consequently, this group experiences a significantly lower number of charging events and 18 

total daily chargers compared to those without home chargers. Table 7 demonstrates that as the 19 

share of users with home chargers increases, there is a notable decrease in the number of stations, 20 

chargers, and total infrastructure costs. Furthermore, an increase in home charger ownership 21 

reduces the average energy charged, leading to a decrease in average charging and waiting times. 22 

However, consistent with the pattern observed in Table 6, a decrease in the number of charging 23 

events reduces the prominence of user time spent in the system as a dominant term in the objective 24 

function. As a result, the detour travel time increases as the share of users with home charging 25 

increases. Additionally, Table 7 shows the average number of EVs per charger under different 26 

home charging scenarios. It could be seen that under the scenario with no home charging system 27 

provider has to supply 1 charger for every 31 EVs, while in the scenario where all user has access 28 

to home charging this ratio increases to 1 charger for every 988 EVs. This study considers the 29 

home charging investment as the user cost, constrained by their residential area settings. However, 30 

given the potential significant decrease in total infrastructure cost gained with increasing the 31 

number of home charging users, it may be worthwhile for system providers to consider offering 32 

incentives for the purchase or facilitating the installation of home charging equipment.  33 
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 1 
Table 7- Results under different home Charging Scenarios with 50 kW charging power 2 
Share of user with home 

charging (%) 
0 40 50 60 100 

Charging events (per day) 62,908 39,897 34,023 28,610 5,491 

Charging vehicles (per day) 62,523 39,665 33,826 28,461 5,476 

Charging vehicles with home 

charger (per day) 
0 2,108 2,710 3,307 5,476 

Number of stations 562 445 402 360 100 

Number of chargers 16,116 10,359 8,629 7,224 511 

Total number of EVs per chargers 31 49 59 70 988 

Average charging time (min) 61.28 58.69 57.21 55.38 11.35 

Average waiting time (min) 0.62 0.63 0.62 0.564 0.34 

Average detour (min) 3.95 4.08 4.18 4.23 5.29 

Total daily charge (MWh) 3,212.26 1,951.15 1,622.13 1,320.44 51.92 

Home-charging users daily charge 

(MWh) 
0 20.43 25.78 30.67 51.92 

Total station cost (m$) 32.91 26.06 23.54 21.08 5.86 

Total charger cost (m$) 559.09 359.37 299.35 250.61 17.73 

Total infrastructure cost (m$) 592.00 385.43 322.89 271.69 23.59 

 3 

Workplace Charging 4 

With the advancements in level 3 chargers, the charging time for users at DCFCs is becoming 5 

comparable to that of gasoline vehicles. However, level 2 chargers still offer benefits for users who 6 

do not require fast refueling times. Operating within a power range of 3-19 Kw, level 2 chargers 7 

provide a slower but cost-effective charging option, making them suitable for installation at 8 

parking lots in mid or long stay locations. This study aims to examine the impact of level 2 chargers 9 

on the overall charging infrastructure configuration and the distribution of DCFCs by 10 

incorporating level 2 workplace charging for selected users. 11 

To identify potential candidates for workplace charging, this study examines EVs that 12 

remain idle at the workplace for a minimum duration. Out of a total of 1,906,526 EV trips, 351,277 13 

instances were identified where users had their vehicles idle at the workplace for at least one hour. 14 

This study specifically considers workplace level 2 charging for users who may need to charge 15 

their vehicles at DCFCs to complete their daily tours. However, the adoption rate of level 2 16 

chargers at workplaces can vary significantly due to limitations in workplace settings or user 17 

preferences. Therefore, this study examines the reduction in charging load and infrastructure cost 18 

of DCFCs under different workplace charging adoption ratios for EVs that require charging during 19 

their daily trips. 20 

The results of the model, as presented in Table 8, demonstrate the outcomes under different 21 

ratios of workplace charging adoption, considering a charging power of 7 kW for level 2 chargers 22 

and 50 kW for DCFCs. Table 8 shows that with a 100% adoption ratio, out of the 351,277 23 

candidate work trips, there are 19,385 instances where charging at DCFCs can be skipped in favor 24 

of charging at workplaces. Consequently, workplace charging at its maximum potential could 25 

reduce the charging load on DCFCs by 50%, resulting in a reduction in the total infrastructure cost 26 

associated with DCFCs. Similar to the observations in home charging scenarios, increasing the 27 

share of users utilizing workplace chargers can lead to a reduction in the number of DCFC charging 28 



Kavianipour et al.  25 

events, stations, and chargers. Consequently, this reduction in the number of DCFC stations and 1 

charging events increases the total detour time and the number of EVs per charger, respectively. 2 

Additionally, Table 8 introduces the "average return time" metric, which quantifies the number of 3 

days, on average, it takes for EVs to return to the DCFCs for refueling under different scenarios. 4 

In the absence of any level 2 charging infrastructure at workplaces, it takes, on average, 13.2 days 5 

for all vehicles (average over all vehicles with or without home charger accessibility) and 8 days 6 

for vehicles without home chargers to return to DCFCs for refueling. However, if the adoption of 7 

workplace charging increases to 50%, the average return time could potentially increase to 18 days 8 

for all vehicles and 11.1 days for vehicles without home chargers. 9 

It should be noted that this study assumes a fixed electricity pricing structure for charging 10 

at home, workplace, and DCFCs. However, in reality, charging prices can vary based on charger 11 

type, location, and time of day, which may impact user charging behavior and should be 12 

investigated in future research. Additionally, the cost of installing and maintaining level 2 chargers 13 

at workplaces is assumed to be covered by either the workplace authorities or the car companies, 14 

rather than the system provider. However, considering the benefits gained from workplace 15 

charging, it may be worthwhile for system providers to invest in a mixture of level 2 and level 3 16 

chargers to meet the EVs charging demand. 17 

 18 
Table 8- Results under different workplace charging scenarios with charging power of 7 kW for 19 
level 2 and 50 kW for DCFC 20 
Share of users charging at 

workplace (%) 
0 40 50 60 100 

Charging events (per day) 38,648 29,969 28,181 25,908 19,263 

Charging vehicles (per day) 38,366 29,790 28,012 25,765 19,191 

Charging vehicles without home charger 

(per day) 
36,362 28,539 26,865 24,789 18,670 

Number of stations 438 365 364 347 283 

Number of chargers 10,088 7,784 7,566 6,955 5,750 

Total number of EVs per chargers 50 65 67 73 88 

Average charging time (min) 58.57 59.10 59.11 59.22 59.49 

Average waiting time (min) 0.63 0.61 0.63 0.60 0.68 

Average detour (min) 4.11 4.33 4.36 4.31 4.55 

Total daily charge (MWh) 1,887.19 1,475.87 1,388.2 1,278.24 954.92 

Charging events at workplace (per day) 0 8,679 10,467 12,740 19,385 

Workplace-charging users daily charge 

(MWh) 
0 411.32 498.99 608.95 932.27 

Average return time for all vehicles (days) 13.2 16.9 18 19.6 26.3 

Average return time for vehicles without 

home-charging (days) 
8.2 10.4 11.1 12 16 

Total station cost (m$) 25.65 21.38 21.32 20.32 16.57 

Total charger cost (m$) 349.97 270.04 262.48 241.28 199.48 

Total infrastructure cost (m$) 375.62 291.42 283.80 261.60 216.05 

 21 

Utility Cost 22 

Utility cost is an essential factor in selecting station locations as it captures the cost of purchasing 23 

and installing equipment, electricity, and upgrading power grid infrastructure. Since no real-world 24 
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utility data was available from the case study network, this study assumes a fixed cost of 10,000$ 1 

per station as the utility cost. However, it is important to note that utility costs can be sensitive to 2 

factors such as charging load, station location, and the utility provider company. In a real-world 3 

scenario, a station might require a significant investment for upgrading the power grid 4 

infrastructure as a certain usage threshold is reached. This pattern could be best captured by using 5 

a step function that considers different utility costs for different charging powers. Table 9 presents 6 

the average utility cost obtained from multiple utility providers in Michigan for different charging 7 

power steps. To capture the impact of power grid capacity and constraints on the charging 8 

infrastructure configuration and investment cost, this study developed a scenario using the Table 9 

9 step function and compared it with the base case of fixed utility cost. 10 

 11 
Table 9- Step function utility cost for different power range 12 

Power (KW) 0-500 500-1000 1000-2000 2000-5000 +5000 

Cost ($) 60,000 70,000 100,000 250,000 500,000 

 13 

Table 10 shows the model result under fixed and step function utility costs for the scenario with 14 

50 kW charging powers. As expected, using the step function leads to significantly higher utility 15 

costs compared to the fixed scenario. Consequently, the model suggests reducing the number of 16 

stations and aggregating energy demand at certain locations to minimize the overall cost. Since the 17 

utility cost remains constant within each step range, the optimal solution for the step function 18 

scenario involves concentrating energy demand at each station up to the upper bound of each step, 19 

just before the price jump occurs in the next step. As a result, as depicted in Table 10, the number 20 

of chargers per station increases in the step function scenario. It is worth noting that although the 21 

total infrastructure cost in the two scenarios is similar, the lower number of stations in the step 22 

function scenario leads to increased detour travel time for users. This trade-off between 23 

infrastructure cost and user travel time should be carefully considered when making decisions 24 

regarding charging infrastructure configuration. 25 
 26 
Table 10- Results under different utility function with 50 kW charging power 27 

Utility cost Fixed Step Function 

Charging events (per day) 38,648 38,648 

Charging vehicles (per day) 38,366 38,366 

Number of stations 438 356 

Number of chargers 10,088 9,525 

Number of chargers per stations 23 27 

Average charging time (min) 58.57 58.61 

Average waiting time (min) 0.63 0.64 

Average detour (min) 4.11 4.42 

Total daily charge (MWh) 1,887.19 1,887.64 

Total Utility cost (m$) 4.38 27.58 

Total station cost (m$) 25.65 44.87 

Total charger cost (m$) 349.97 330.44 

Total infrastructure cost (m$) 375.62 375.31 

 28 

 29 
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CONCLUSION 1 

This study adopts an activity-based approach to consider the interdependency of different trips 2 

traveled by the same EV driver. The proposed framework in this study extends the extensive effort 3 

in the literature to more realistically capture charging demand in large-scale networks to improve 4 

planning for charging infrastructure in urban networks. This is achieved by integrating an activity-5 

based model and a mathematical optimization model along with developing a charging behavior 6 

simulation module. The charging behavior simulation module considers the availability of home 7 

chargers, travel distance, past trips, and scheduled trips to estimate the charging demand. The 8 

mathematical optimization model considers the daily schedule of users, feasible range of EVs, 9 

remaining battery capacity, waiting in a queue at charging stations, and travel detours. A solution 10 

approach is proposed to solve this problem for large-scale networks, which is successfully applied 11 

to the full regional network of Chicago, and the results based on realistic values are presented for 12 

three charging powers. A sensitivity analysis is conducted on the initial SOC to estimate the final 13 

SOC for EVs considering different battery performances. Also, the required charging 14 

infrastructures under different scenarios for battery performances, VOT, EV market share, home 15 

charger ownership, workplace charging, and utility cost are investigated. 16 

This study can be further extended and improved through possible future research 17 

directions, to name a few: 18 

• The proposed model assumes that EVs only recharge during their infeasible trip. However, 19 

they might recharge in a feasible trip to prevent future recharging. This behavior must be 20 

captured to provide a solution that can better address the EVs charging demand. However, 21 

this requires a more in-depth study of users’ behavior 22 

• Various strategies for spatial and temporal pricing of electricity can be studied to explore 23 

their impacts on congestion and the required number of chargers. 24 

• In this study the optimization model is founded based on the trip chains provided by an 25 

activity-based model. However, a fully-integrated model can be developed in a future 26 

research capable of constantly back-and-forth between the optimization and activity-based 27 

models to generate trip chains based on the location and quantity of chargers and vice versa. 28 

• Future research should consider heterogeneous EV users with various VOTs during trip 29 

chains to capture the changes in individual charging preferences throughout the daily 30 

schedule.  31 

• Since the location of charging stations affects the trips within the trip chains which can 32 

further affect the travel time and demand, it requires the activity-based model to be run for 33 

multiple days and capture the change in the chain of activities from one day to another. It 34 

ensures that the feedback from the optimization model is provided to the activity-based 35 

model.  36 

• In this study, long-term and medium-term travel behavior and trip profile in the EV era is 37 

assumed to remain similar and only short-term behavior (charging at infeasible trip) is 38 

considered. However, future studies may investigate any possible change in future travel 39 

behaviors in terms of long-term and short-term decisions such as destination choice, and 40 

living and working locations, when more EVs hit the roads around the globe. 41 

• This study considered TAZ centroids as candidate locations for charging stations to be built. 42 

However, sometime these TAZs might be broad and require to be broken into smaller zones. 43 

Therefore, further distribution of chargers within each TAZ can be made using the 44 

information provided by ABM. 45 
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• Future research should explore the integration of different charging options (e.g., DCFCs, 1 

and Level 2 chargers) and consider the charging requirements of a broader range of vehicle 2 

types (e.g., EVs and PHEVs) to further enhance the efficiency and effectiveness of 3 

charging infrastructure configuration. Future work should investigate the budget allocation 4 

between DC fast charging infrastructure and level 2 chargers at short-term stays (e.g., 5 

work-place or shopping centers) that achieves an optimal charging configuration for both 6 

users and the system provider. 7 

 8 
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