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ABSTRACT

This paper explores an important problem under the domain of network modeling, the optimal
configuration of charging infrastructure for electric vehicles (EVSs) in urban networks considering
EV users’ daily activities and charging behavior. This study proposes a charging behavior
simulation model considering different initial state of charges (SOC), travel distance, availability
of home chargers, and the daily schedule of trips for each traveler. The proposed charging behavior
simulation model examines the complete chain of trips for EV users as well as the interdependency
of trips traveled by each driver. Then, the problem of finding the optimum charging configuration
is formulated as a Mixed-Integer Nonlinear Programming that considers travel time and travel
distance dynamics, the interdependency of trips made by each driver, limited range of EVs,
remaining battery capacity for recharging, waiting time in queue, and the detour to access a
charging station. This problem is solved using a metaheuristic approach for a large-scale case
network. A series of examples are presented to demonstrate the model efficacy and explore the
impact of energy consumption on the final SOC and the optimum charging infrastructure.

KEYWORDS: Network Modeling, Charging Infrastructure Planning, Public Charging Station,
Electric Vehicles, Chain of Trips, Charging Behavior Simulation, System Optimization
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INTRODUCTION

Increased crude oil prices and concerns associated with vehicle emissions have led the car industry
and users toward hybrid and electric vehicles (EVs). While hybrid vehicles are a step forward from
gasoline vehicles, they cannot fully exploit the benefits of EVs as they still depend on their gasoline
engine, especially on long-distance trips. EVs do not have any on-road emissions, and if charged
with green energy, they can significantly mitigate air pollution and oil dependency. However, they
currently suffer from a low range, long charging time, and lack of supporting charging
infrastructure. These factors also affect the decision of potential EV customers in purchasing a
vehicle (1, 2). To address these challenges and increase the market share of EVs, it is proposed to
build a dense network of direct-current fast chargers (DCFC) to ensure the feasibility of trips,
alleviate range anxiety, and provide an acceptable level of service for EV users (3).

Building a charging infrastructure network requires consideration of charging demand,
power supply, and budget limitation, resulting in a charging infrastructure planning problem,
which seeks to optimize a charging configuration (i.e., supply) for a charging demand. Depending
on how each component of the problem (i.e., supply, demand, and objective function) is defined,
the final solution may vary significantly. For instance, the objective function may minimize travel
time and system cost or maximize EV demand, and vehicle miles traveled (VMT). Regardless of
the objective function, the charging infrastructure planning problem seeks a solution that can
address the charging demand while considering human behavior, which is known to be
probabilistic and hard to predict. The more complex user behavior and supply consideration, the
more difficult the problem to solve, and the closer to real optimal the solution.

The charging infrastructure planning problem can be divided into two categories: intercity
models and urban models. The main distinctions between these two categories are associated with
the travel distance range and initial state of charge (SOC) distribution. The intercity trips are long-
distance ones assumed to start fully charged as users plan in advance for them (2, 4-7). On the
other hand, urban trips can start with any SOC depending on home chargers availability, preceding
trips, access to workplace chargers, and dwell time at the origin (8, 9). One approach to finding
the charging demand is to use travel surveys or stand-alone trips (10, 11). In this approach, the
energy demand of each trip is independently evaluated from its past or future trips; either by
assigning an initial SOC and estimating the energy demand to reach the destination with an
assigned SOC (8) or by assuming a fixed energy demand for all trajectories (12). However, trip-
based approaches cannot track the travelers’ activity and do not have information on past and
future trips, two fundamental components of the EV users charging behavior. Since urban trips are
part of a trip chain, their initial SOC at each trip depends on its preceding trips. Further, EVs might
even charge during a feasible trip (i.e., a trip EV can finish without charging) to prevent charging
during a future infeasible trip (i.e., a trip in which EV needs to charge to be able to reach the
destination) (13). Therefore, considering the activity engagement and the chain of trips in the
problem of urban charger placement can represent the users’ behavior more realistically.

While OD demand tables are commonly available to planning agencies, using the classical
four-step travel model, the trip chain data is more limited, and its acquisition usually requires a
significant investment. One of the earlier studies in this domain incorporated trip chain data and
trajectories acquired by installing GPS on taxis to identify locations with the highest dwell times
as candidate locations for building charging stations (14). Later, they found the best locations,
among the candidate locations, by maximizing the VMT on electricity (15). However, the EV
trajectories data is still very limited, especially on large-scale networks, and the studies usually
rely on simulation models as a proxy for the actual vehicle trajectories (8, 16, 17).
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This study employs a state-of-the-art agent-based model, POLARIS, which has an
embedded activity-based model and simulates the travel demand of users by providing daily
vehicle trajectories. Then, it proposes a charging behavior simulation that considers the availability
of home chargers, travel distance, preceding trips, and remaining scheduled trips to update the
SOC after each trip. Next, the charging demand is fed to a charging optimization model, which
finds the optimum charging infrastructure considering the battery capacity, feasible range,
dynamic travel times and travel distances, and the EVs’ battery performance. The main
contributions of this study are as follows:

1) Proposing a comprehensive integration of the activity-based model with mathematical
optimization that enables system planners to gain valuable insights into users' behavioral
factors related to activities and charging, and understand its consequential impact on the
optimal charging infrastructure configuration

2) Employing an activity-based approach to track the drop in EVs SOC during daily activities
and estimate charging demand based on the remaining chain of trips

3) Considering the impact of home chargers on initial and desired SOC and EVs charging
behavior

4) Extending the trip-based charging infrastructure planning optimization problem to a tour-
based problem

5) Conducting a sensitivity analysis, using the extended framework, on the impact of initial
SOC on the final SOC for different energy consumption rates.

While the above items might have been partially or solely considered in similar studies in
the literature, there is no comprehensive study that captures all these features in one framework.
This study proposes a framework that could realistically simulate EVs behavior by considering
users’ daily activities and their access to home chargers while accounting for station congestion,
charging delay, and detour to charging stations. The rest of this paper is organized as follows. The
next section introduces the research framework where different components of the problem are
presented, the problem is formulated, and a solution approach is proposed. Then, the numerical
experiment section presents the case study and provides insights into EV charging behavior. The
last section concludes the paper and proposes future research directions.

LITERATURE REVIEW
The two main approaches in the literature to consider energy demands are point clustering (18)
and the flow-based model (19). The former considers where vehicles run out of charge, calculates
their charging demand, and clusters them at different nodes in the network. However, this approach
cannot track individual trips or place charging stations considering the detour and feasible range.
The latter treats the charging demand as flow and places the charging stations in locations to
capture as much flow as possible, which is called the flow-capturing location model (FCLM) (20).
While FCLM assumes a fixed flow pattern, other variants of this model assume more realistic
behaviors such as round trips and multiple refueling (21) and deviation from the shortest path (22).
Hodgson’s (19) work was among the first to utilize the FCLM method to capture as much
traffic flow as possible in the charging station networks. This work assumes a single charging
facility is enough to support all traffic flow on a given path. However, EVs may need multiple
charging stops on long-distance travel due to limited driving range. Thus, Kuby and Lim (21)
proposed the flow refueling location model (FRLM) to maximize the captured flow while
assigning a combination of stations to cover an EV trip from origin to destination without running
out of power. Studies with flow maximization objectives are best suited for projects aiming to
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increase EV demand coverage, given a fixed number of charging stations and a limited budget. On
the other hand, cost minimization studies aim to build as many stations as needed to support EV
trips without running out of energy while minimizing total system cost or maximizing investor
profit from building charging infrastructure (20).

Some researchers (23, 24) incorporated path deviation to capture the realistic driving
behaviors of EVs in a network with sparse charging infrastructures. These studies allow EV users
to detach from their predetermined path to a charging station in case they need to recharge their
vehicles. Previous studies either included the amount of deviation from the shortest path in their
objective function or considered a tolerance threshold for the detour. In addition, while the initial
charging station planning models focused on finding the optimal location of charging stations
assuming an unlimited service rate implicitly, another group of studies also accounted for the
number of chargers by considering waiting time at charging stations and incorporating the queuing
theory (25, 26). The users’ response to waiting time at charging stations varies among users (27)
For instance, for some users, such as electric taxis, a long waiting time for charging could cost
them to be out of business (27). Thus, it is vital to consider station capacity and queue when
locating charging stations.

Recent studies have accounted for the charging station capacity and EVs’ detours by
incorporating a framework based on the user equilibrium concept (4, 12, 28). According to this
concept, all the selected paths for an origin-destination (OD) pair should have the same travel time
as the optimum path, in which the travel time includes the link travel times and waiting times in
the queue (29, 30). In this approach, the EV users’ selection of charging stations impacts the
resulting congestion on network links, which will further impact the assignment of other users to
their best path (31). Huang and Kockelman (28) proposed a bi-level optimization framework that
modifies travelers' route behavior based on traffic congestion and station queues to find charging
station configurations that maximize owners’ profit.

Above mentioned studies cannot capture the effect of charging station location on EV users’
activities and chain of trips. In addition, they are not able to track the battery state of charge and
user charging considerations when travelers create a sequence of trips. To address this limitation,
some studies (15, 17, 32, 33) utilized activity-based models to capture individual charging
behavior in their daily schedules. Usman et al. (13) proposed a simulation framework to plan
charging strategies for urban city trips considering recharging options available at home, work, or
a fixed number of fast charging stations. The model does not suggest optimum charging
infrastructure but rather seeks to optimize the daily schedule of EV users created by an agent-based
model, assigning EVs to the charging station that results in the minimum detour, waiting, and
recharging time. Khayati and Kang (33) utilize a variant of Household Activity Pattern Problem
(HAPP) to simulate the changes in travel behavior of households when replacing conventioal
vehicles by EVs. They developed four scenarios with different settings to investigate potential
impacts of EV adoption including intra-household interactions, vehicle and activity assignment
among household members, and decisions regarding activity starttime and sequencing. He, Yin,
and Zhou (34) suggested a tour-based network equilibrium model searching for the optimum
location of the charging station while considering the interdependency of multiple trips made by
the same driver. The proposed bi-level mathematical model was applied to the Sioux Falls network.
However, this model cannot consider charging station congestion and queueing and was only
tested on a small-scale network. Zhang et al. (35) suggested a multi-day scenario analysis for EV
feasibility assessment and charging planning as single-day data may lead to an overestimation in
travelers' EV feasibility. However, obtaining multi-day data can be expensive or unavailable. To
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tackle this issue, they replicated single-day travel activities for several days to generate multi-day
data. According to their results, home charging considerably decreases the need for level 3
charging, even for people with high travel demands, and for those whose trip purposes are usually
leisure.

Since urban trips are usually part of a sequence of tours, the integration of activity-based
tools and mathematical charging placement optimization models is a promising approach to
simulate EV charging behavior and find the optimum number and location of EV charging stations.
However, there are limited comprehensive studies considering individual EV users’ characteristics
in optimizing charger placement infrastructures that could be efficiently applied to large-scale
networks. Therefore, this study proposes a framework for monitoring EVs’ daily chain of trips,
battery performance, access to home chargers, charging delay, and detour time while optimizing
charging placement infrastructure.

RESEARCH FRAMEWORK

This section discusses the research framework as presented in Figure 1. This framework consists
of an agent-based model, a charging behavior simulation module, and a mathematical optimization
model. The agent-based model, POLARIS, considers travel demand, network supply, and network
operations (36). Travel demand-related inputs to POLARIS include data from the American
Community Survey that provides cross-tabulated information on the number of people in the
household and demographics. This is supplemented with the data of activity generation rates, mode
choice, and destination choice from the regional MPOs. Network supply inputs include road
network properties. The network operation element connects the supply and demand using a
dynamic traffic simulation module (37). The agent-based model outputs are vehicle daily
trajectories, zone-to-zone travel distances, and travel times. The next element, the charging
behavior simulation, analyses the daily chain of trips for each EV and evaluates its feasibility by
tracking the state of charge along its trips. For the identified infeasible trip with the state of charge
below the minimum acceptable threshold, it also estimates the energy demand considering the
availability of the home charger, initial charge, desired charge upon arriving home at the end of
the day, trip distances, location of charging stations, and the remaining trips. The third element,
the charging optimization model, takes the charging demand from the charging behavior
simulation and the average zone-to-zone travel times and travel distances from POLARIS and
finds the optimum charging infrastructure that minimizes the total system cost, including the
infrastructure cost and delay costs. The outputs of the optimization model are the location of
charging stations and the number of chargers at each location. The approach to solving the
optimization problem is also discussed, where the problem is decomposed into two subproblems.
The first subproblem finds the location of charging stations and provides the spatiotemporal
charging demand, an input to the second subproblem, which finds the number of chargers
separately.
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Figure 1- Research framework

Agent-Based Model

The agent-based modeling software used in this study, POLARIS, is a dynamic simulation tool
that integrates the simulation of travel demand, network supply, and operations (36). Within the
agent-based model framework of POLARIS, an activity-based model (ABM) is integrated that
simulates the travel planning behavior. The ABM includes three steps; First, an activity-based
travel demand model is implemented, including the agents’ behaviors and actions during the
simulation. After the simulation of activities and travels, the second component, i.e., the network
simulation model, is tasked with assigning the travel demand and simulating the traffic. Finally,
the traffic management component monitors the traffic information (e.g., accidents and weather
conditions) and provides feedback to the other two components.

Charging Behavior Simulation Module
The charging behavior of EV users varies depending on the trip they make. Intercity trips are
usually preplanned, where users fully recharge their EVs before departure. On the other hand,
urban trips may include a constant daily schedule with some day-to-day variations. Depending on
the availability of home chargers, length of trips, and daily schedule of trips, users may or may not
preplan for their trips. EV users with home charger access are more likely to prepare for their
upcoming trips by charging their vehicles overnight. This group tries to minimize the use of
DCFCs, since charging at home is typically cheaper than charging at a public DCFC and helps
them to avoid wasting their time waiting in queue or charging. On the other hand, EV users who
do not have access to home chargers would more likely fully recharge their vehicles whenever
they have to recharge them to minimize the number of charging incidences, similar to the behavior
of conventional vehicle users. To provide a charging configuration that can address the EV
charging demand, it is essential to consider the EV users’ charging behavior. The more realistic
the charging demand estimation, the better service EVs will receive, promoting their adoption.
Several behavioral factors may impact EV charging behavior. Considering such factors in
a mathematical optimization model makes the EV charging infrastructure problem more complex
and expensive to solve. Therefore, the common approach in the literature is to recharge EVs with
a fixed energy (12, 28) or to their full capacity (2, 38). However, depending on the availability of
home chargers and the travel distance of the remaining trips, the charging behavior changes, and
assuming the same behavior for them cannot realistically reflect the heterogeneity in the charging
behavior of EV users. Thus, this study estimates the EV charging demand considering the
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remaining daily schedule, home-charger availability, energy consumption, battery size, and
minimum charge acceptable by users. The charging behavior simulation considers the following
intuitive assumptions:

I) EV users recharge their batteries during any infeasible trip that results in a state of
charge below the minimum acceptable value at their destination (without charging)

I1) The remaining trips of EV users’ daily schedules beyond the infeasible trip are known
to them.

I11) EV users try to minimize the number of charging events and costs.

IV) EV users comply with their scheduled chain of trips and do not visit their homes to
recharge their batteries between their daily tours due to the slowness of their home
chargers relative to DCFCs. In addition, it is assumed that the cost of charging at DCFC
stations is much higher than the cost of charging at home, typically during the off-peak

The first assumption determines the trip in which the users would recharge their batteries based on
current practice in the literature. The second and third assumptions imply that users want to
minimize the number of recharging events (e.g., they do not want to recharge on each trip).
Therefore, they consider their remaining trips in their schedule and charge enough to reach their
final destination (i.e., home) with their desired state of charge. In addition, users would like to
spend as little as possible on their charging costs (i.e., EV users who have access to a home charger
would not fully charge their vehicle as they have a cheaper charging alternative option at home).
On the other hand, EV users who do not have access to home chargers would fully charge their
vehicle once they have to recharge it, as they would not like to visit a charging station every day.
The fourth assumption says EV users can only charge their vehicle at home after finishing their
daily activities.

Figure 2 shows the impact of the chain of trips on the charging behavior. The EV starts
fully charged, and its SOC drops because of the trip it makes. As the third trip is not feasible for
the user, the EV user must make a detour and recharge the vehicle to get to its next stop. The
amount of charge to be acquired via a detour in trip 3 depends on the distance between the charging
station and trip 3 destination, the length of trip 4, and desired state of charge at the final destination,
which varies significantly depending on the home charger availability.

EJ Coffee Shop

Figure 2- Charging decision in a chain of trips
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Mathematical Optimization Model
This section introduces the developed modeling framework to minimize the cost of charging
infrastructure and user delays. Table 1 presents the notation used in the study.

Table 1 — Notations

Sets
i€l Set of zones
T€eT Set of time intervals that vehicles get to charging stations
0EeT Set of time intervals that vehicles leave charging stations
j€E] Set of electric vehicles/trip chains
k € K; Set of trips by vehicle j
Parameters
T, Duration of a time interval in this study
0(j, k) Origin zone of trip k by vehicle j
D(j, k) Destination zone of trip k by vehicle j
tix Exact time of departure for vehicle j in trip k
tj Time interval of departure for vehicle j in trip k
Ljk Distance from origin to destination in trip k by vehicle j (mile)

(0G.k).D(.K))
tik
(0G.k).D( k)
Sj,k
Smax
S
Fj
Bj
c?
cP

1

14
P
a
M

Travel time from origin to destination in trip k by vehicle j (hour)

State of charge for vehicle j at the beginning of trip k

Maximum state of charge that EVs can reach to in a charging station

Minimum acceptable state of charge for vehicle j

Battery capacity of vehicle j (kwh)

Battery performance of vehicle j (mile/kWh)

Fixed cost of building and maintaining a charging station at zone i, converted to
depreciation cost per day ($)

Cost of installation and maintenance of one charger at zone i, converted to depreciation
cost per day ($)

Value of time ($/hour)

Charging power (kW)

Charger efficiency

An arbitrary large number

State Variables

Ejk

Ejk,i
0

Eijx

T
T

TTd,

Energy demand of vehicle j at the end of trip k (kwh)

Energy demand of vehicle j charging in zone i during trip k (if it is selected as the
charging station) (kWh)

Energy demand of vehicle j charging in zone i during trip k and departs after charging

at time interval 8 (kwh)
Total charging and queuing time experienced by EVs reaching to the charging station

in zone i at time interval = (hour)
Detour travel time of vehicle j in trip k to access a charging station (hour)



~N O g ~rOODNPRE

10
11
12

13
14

15
16
17
18
19
20
21
22

Kavianipour et al. 10

Qz}fk Binary variable, equal to 1 if vehicle j in trip k arrives to charging station in zone i at
time interval T and departs after charging at time interval 8; and 0 otherwise

i Total number of EVs visiting charging station in zone i at time interval t

v} Total energy demand of EVs visiting charging station in zone i at time interval t
(kWh)

|74 Average waiting time in charging station of zone i for EVs arriving at time t (hour)

jo,k Refueling time for vehicle j recharging at zone i during trip k and departs after

charging at time interval 6 (hour)
Decision Variables
X; Binary variable, equal to 1 if a charging station is built at zone i and O otherwise
Z; Integer variable, number of chargers to be built at location i

This study considers a set of zones (i € I) and a set of time intervals (z € T) specifying the times
EVs arrive at charging stations. T, represents the duration of each time interval in this study. Each
trip chain (j € J) includes multiple trips (k € K;) with known origins (0(j,k)), destinations

. . , . . ti
(D(j, k)), exact departure times (&), departure time intervals (t;; ), lengths (d (fok(j‘k)’D (j‘k))), travel

. tjk . ..

times (t(o(j‘k)'D(j'k))), initial state of charge (s; ), and acceptable minimum state of charge ({;).

O

Tl T 20
0O &—— —® D
\\\ 1‘3
O
g

Figure 3- Electric vehicle’s charging-routing decision

The feasibility of trip k for EV j between O and D in Figure 3 can be calculated using the below
equation:
1 ¢ .
Bjx = Fjd(glzj.k).n(j.k)) G Sjuky Vi€l kek @)
Where Ejy, is the energy demand of vehicle j at the end of trip k, F; is the battery capacity, and j;

is the battery performance (;"7”:) for vehicle j, which is the inverse of energy consumption rate.

The energy demand is calculated assuming the minimum state of charge at the destination, the
initial state of charge, and the distances from the origin zone to the destination zone. E;, < 0
shows that energy demand is negative, i.e., the trip is feasible, and the EV would end its trip with
a state of charge higher or equal to its minimum acceptable threshold. On the other hand, Ej; >
0) means that the EV needs to recharge its battery and would select one of its charging options
(i.e., ip,n =1..4in the example shown in Figure 3). This study assumes that EV users would
like to minimize the number of times they recharge their EVs (assumption I1l). Therefore, when
EV users need to recharge their battery, they consider the remaining daily trips to estimate their
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required charge for the entire day. Depending on the availability of the home charger, the initial
state of charge, and the remaining distance to home, this study considers two charging scenarios,
as illustrated in Figure 4.

@ (b)
Figure 4- Charging scenarios depending on the initial state of charge and the remaining distance to
home. (a) Feasible area to do a single recharge and reach the destination (2) No feasible area to
reach the destination based on a single recharge.

Figure 4 shows two different charging scenarios considered in this study. In Figure 4(a), the small
circle shows the range of the EV at location A assuming a given state of charge, s4. The radius of
this circle is (s4 — {;)FjpB;, which is the available range for the EV from origin A. The larger circle
shows the area that if the EV recharges there, it can reach B with the minimum charge. The radius
of this circle is (1 — ;) F;B;. In scenario (a), the distance between A and B is less than the range
of a fully charged EV plus the EV available range, i.e., d(4 5y < (1 +5s4—2¢ ])F] p; 1f the vehicle
recharges within the highlighted area, it can fulfill its trip with just one charge (Assumption III).
If the EV has access to home charger, it would only charge enough to make the trip feasible. The
energy demand for this vehicle can be calculated based on the following equation:

Kj
_ 1t Ljk tik 2
Eiwi = g 10000 T Yingio) * zz AoGimyngmpl + $it5 = Sk @)
m=k+1
Where Ej; ; shows the energy demand of vehicle j in its trip k at location i (if it is selected as the

charging station) and s;, shows the state of charge of vehicle j at the beginning of trip k.
Zz’;kﬂ Eg‘(j m).0 () shows the remaining trip distances in the schedule of vehicle j. Contrarily,
vehicles without home chargers fully recharge in their infeasible trip. The energy demand for these

vehicles can be calculated as follows:
tjk
E,,_déGMﬂ
j ki ,Bj

In the second charging scenario, presented in Figure 4 (b), the EV cannot reach the destination
with a single charge. This scenario can happen when the size of the battery is small, the battery
performance is low, or the trip length is significantly long, which may happen in large-scale
networks. In this case, the EV user, regardless of its home charger availability, will fully recharge
the battery, based on Eq. 3, until the user reaches a point where the EV can get to the destination
with just one recharging. At that point, the EV user determines the required charge according to
Eqg. 2 and Eqg. 3, considering the home charger availability. In this case, the location of each
charging would depend on the previous charging, which makes the problem highly nonlinear and

+ E] - Sj,ij (3)
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expensive to solve. This study proposes an algorithm to preprocess the trips and prevent extensive
computation by breaking the long-distance trips into smaller trips and addressing the charging
demand at each trip separately. The algorithm to determine the energy demand for such vehicles
is provided below.

Algorithm to estimate charging demand

(1) For each vehicle j inJ

2 While each trip k in K;

1 Gtk
(3) If sjp — ;Tjd(jé(i,k),D(i,k)) < (ij then
4) While d < ﬁj(l — (j)Fj and k < K; then
tik
ded+ d(’(')(j'k)’D(].‘k))
k<« k+1
End While
(5) Check Figure 4a and 4b
(6) If Figure 4a then
@) If home charger available then
1 tik tjk
Ejki = Bj [d(O(j,k),i) + d(i,D(j,k)) +
K; t
ij=k+1 d(glzj,m),D(j,m))] + {iFj — Sk
tik

Else Ej,k,i = —d(og}k)'i) + F} - Sj,kF}'

End if
(8) Else

dfé’éj K.0)

Ejpei = =5 T B = sjxck

Break the trip into two smaller trips and update the SOCs and indices and

K; accordingly

k<« k+1

Goto (3)

End if
End if
End While

End For

Based on the estimated charging demand, the activity-based optimization model can be formulated

as below:
minZ(Cisxi + Cipzi) + y(zz i + Z Z TTd; ) 4)

i€l i€l TET j€J k€K

The objective function (4) consists of two main terms. The first term calculates the total
infrastructure investment cost, including the costs associated with the availability of charging
stations, x;, and the integer variable z; that represents the number of chargers at each location i.
The next term provides the monetary value of the total delay of all EV travelers that need
recharging, including those related to the queueing and charging delays, n;, at all charging stations
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for different arrival time intervals and those related to the detour travel time, TTd;, experienced
by EV users to access a charging station. These delays are multiplied by the value of time (VOT),
v, to calculate their monetary values. While a fixed value of time is considered for simplicity here,
the assumption can easily be updated to account for different values of time for different users.
The objective function (4) is subject to the constraints (1-3) and (5-23):

x; € {0,1}, Viel 5)
z; €{0,1,2,..} Viel ()
z; < x;M, Viel (7)
ZZZQUk Eix>0,Vje] k€K ()
i€l TET O€ET
ZZZQuk Ej,kSO,V]'E],kEKj (9)
i€l T€T O€ET
_ 1 f}k w0 o .
Sierfy = Sjeky = ﬁ (O(Jk)D(jk))+zzz Qi Eijk Vi€e]keK;,k>1 (10)
iel TETHET
TG d(O(jk)l) . . 11
ZZQl]kElijSmaxF} Sij +ﬁ— V]E],kEKj,lE] (12)
TET O€ET ]
9 .

Zz Z Qf}kd(o(]) i — 'BJ (SJ k™ {j)F" V_] E] (12)
i€l TET O€T

zQinkai, ViEI,VjE],kEKj (13)
TET O€ET

t]k t]k .
TTd; = Z Z Z Q‘Jk 0GR T t(lD(J ) ~ Lo, k),D(J, k))) Vjelk 14)
T€ET O€T i€l
€K,

t +t((]3]((1)l) T0T<(1_ Uk)M VteT,0eT,i€el,je] keK; (15)

Gttty ~To@—1D 2 (Qff—1)M,  VieT,6eTieljelkek; (16)

Constraint (5) shows the problem is an integer programming, and each candidate location can be
equipped with a charging station (x = 1) or not (x = 0). Constraint (6) shows that the number of
chargers at each location must be an integer value. Constraint (7) shows that chargers can only be
placed where a charging station is built. Constraints (8-9) enforce a charging incidence only when
a trip become infeasible and the energy demand is positive (E > 0); otherwise, no charging is
required. Constraint (10) tracks the state of charge. If a vehicle is not recharged during a trip, it
updates the EV’s SOC based on its preceding SOC and traveled distance. Otherwise, it updates
the EV’s SOC based on its preceding SOC, traveled distance, and the charged energy. Constraint
(11) limits the feasible locations to charge by not letting the EV charge more than its battery
capacity. Constraint (12) ensures that EVs will only recharge at locations within their feasible
range. Constraint (13) ensures that EVs cannot charge at locations with no charging stations.
Constraint (14) calculates the detour travel time by considering the difference between the
preplanned trip distance and the summation of distances from the origin to the charging station
and from the charging station to the destination. Constraints (15-16) find the time interval in which
EVs would enter a charging station.
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The charging demand at a charging station includes 1) the number of vehicles recharging
and 2) energy demand. The constraints (17-18) find the spatiotemporal charging demand for all
selected charging stations. Finally, the equations (19-23) are related to deterministic queuing at
charging stations.

ZZjE]ZkEK]ZQETQ;E']QkJ VTET'i EI! (17)
vi = Z]E]ZkEK]ZQETQTQELQ]k' VteT,iel. (18)
WF = o}, v}, 2, P), VteT,i€l (19)

E9.
R{’jkzaﬂ, VieljejkeK; (20)

0 .
s —yLWT+ZZZQT RS, VteT,iel 1)

€T jE] kEK

k 0 A7 . ,
t; +t(éok)1)+Ri’j‘k+WiT_T09S(1— Qrl M, VieT,0eT,iclje]k 22)
€K;
tik . .
i+ tauon T R+ Wi = To(0 — 1) = (QFF), — )M, VteT 0€T,i€lj 23)
€L kEK;

Where equation (19) summarizes the deterministic queuing formula is a function of the number of
visiting EVs, energy demand, number of chargers, and charging power (Please refer to (8) for more
in-depth discussion on the deterministic queuing formula constraints). Equation (20) finds the
charging time considering the electricity loss, a, and charging power. Equation (21) calculates the
total delay in the charging station, including the charging time and waiting time in a queue. The
constraints (22-23) find the time interval that an EV would leave the charging station.

Solution Approach

The proposed problem is a Mixed-Integer nonlinear programming and cannot be solved with
commercial solvers when the size of the problem increases. Similar to (8), this problem can be
decomposed into two subproblems where the location of charging stations and the number of
chargers are found separately. The decomposition approach assumes that vehicles do not
experience significant queuing delays at charging stations that can affect the charging station
allocation; this assumption is verified in (8). Note that the formulated problem in this study is
highly non-linear, and no exact solution method could be applied to solve this problem. In a
previous study, Kavianipour et al. (8) compared the heuristic approach with the implicit
enumeration method and showed the merit of the decomposition technique in terms of accuracy
and run-time. In the next section, the subproblems of finding the location of charging stations and
the number of chargers are formulated.

Charging station location problem

The first subproblem ignores the queuing at charging stations and allocates the charging stations
to EVs minimizing the station costs, charging delay, and detour delay. As the problem is system
optimal and there is no constraint to limit the number of chargers, the number of chargers will be
determined in the next section based on the charging demand at each station and the trade-off
between queuing delay and charger costs. The mathematical model of the first subproblem is
formulated through equations (24-26).

minZ(Cini) + y(z Z ZZ Z ijgkRg kT Z Z TTd;) (24)

i€l TET O€ET i€l jE€] k€K J€J k€K

Subject to (2-3), (5-16), (20) and
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’ tj, 0 ,0 . .
i+ tociion T Rok = T8 < (1= Q7 )M, VTET,0€T,i€l,j€E] kEK; (25)
’ tik 2] ,0 : .
i+ Loy T Roe—To(0 = 1) = (07 — M, VieT,0 €T i€l,je]k (26)
€ K;
J

Constraints (25-26) find the time interval that an EV leaves the charging station, assuming that
EVs charge upon their arrival to charging stations and no waiting is required to access an available
charger.

This problem is a Mixed-Integer Programming (MIP) and can be solved using commercial
solvers (e.g., CPLEX and Gurobi) for small to medium-sized problems. However, these problems
become computationally expensive once the problem size increases. For large-scale networks (e.g.,
the full regional network of Chicago), which is used as the case study in this research, only
heuristic algorithms can yield a solution. Kavianipour et al. proposed a heuristic algorithm based
on the simulated annealing concept, which is used in this study to solve the problem of locating
the charging stations (8). Kavianipour et al. (8) showed that applying the proposed heuristic
method to the network in Detroit, MI decreased the run-time by 50% and memory requirement by
96% while yielding acceptable accuracy compared to results generated by commercial solvers.

Number of chargers at charging stations
The second subproblem finds the number of chargers at each location i and is formulated as in
equation (27).

minCl'z; +y Z yIwr (27)
. TET

Subject to

(17-19)

The objective function (27) considers the trade-off between the number of chargers and the
monetary value of the deterministic waiting time to access a charger. This problem is Mixed-
Integer nonlinear programming but is proven to be convex (8) and can be solved using a
commercial solver (e.g., knitro) or the Golden-section search technique (39). In addition to
deterministic queuing, stochastic queuing can also be incorporated, assuming a Poisson
distribution for the arrival rate of vehicles and an exponential distribution for the service rates (For
a more in-depth discussion on this topic and accessing the required formulation, please refer to
(8)). It should be noted that the proposed mathematical model can consider existing charging
infrastructure or minimum charger requirement at candidate locations by modifying a sub-set of
station set x;, and/or charger set z; to model parameters instead of decision variables.

NUMERICAL EXPERIMENTS

In this section, the case study and its network specifications are presented. Next, the impact of the
initial SOC on the final SOC is investigated for different battery performances. Based on these
analyses, a base scenario is defined and solved, where the convergence of the solution algorithm
is explored. Next, a few sensitivity analyses are conducted to investigate the impact of charging
power,battery performance, and VOT on the optimum charging configuration to provide insights
for policymakers.

Case Study and Assumptions
The Chicago full regional network, shown in Figure 5, is selected as a large-scale network for this
study. This network includes a part of three states: Illinois, Indiana, and Wisconsin. The network
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consists of about 85,000 links, 36,000 nodes, 8,000 signals, and 2,000 traffic analysis zones (TAZ).
The centroids of the TAZs are represented by the blue dots in the figure.
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Figure 5- Chicago regional network

Based on the Chicago travel survey data, the POLARIS agent-based model is estimated and
calibrated against the observed data. It employs population and vehicle synthesis and the ABM to
simulate the traffic and performs the traffic assignment considering the scheduling of all users. In
this study, there are 9,247,846 trips, 2,601,734 persons, and 2,644,118 vehicles available in total
where 1,906,526 trips are EV trips traveled by 582,236 persons and 504,771 vehicles (25% market
share). Influenced by ABM inputs such as sociodemographic characteristics, household size,
income, and education level, 5% of multi-unit buildings and 61% of single-family homeowners
are assumed to have access to home chargers. Considering mixed building settings in Chicago
regional network, this assumption results in 41% of EVs having home chargers. This study
considers three levels of charging powers 50 kW, 150 kW, and 300 kW. Table shows the station
and charger costs for each charging power. A VOT of $18/hour converts the user’s delay to its
monetary equivalent

Table 2 Station and charger costs for different charging power

Charging power (kW) 50 150 300
Station Cost $48,437 $80,125 $135500
Charger Cost $33,750 $76,250 $155000
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SOC Analyses

The SOC at the end of the day depends on the initial SOC and charging behavior. Considering the
range of current EVs, if an EV starts the day with a fully charged battery, it would hardly need to
recharge. However, the ability to fully recharge the EV every night depends on different factors
(e.g., the availability of a home charger and available charging time). EV users who live in single-
family residentials can purchase home chargers and install them easily. This group of users will
only charge enough to make their trips feasible if they need to recharge during the day, as they can
access cheaper charging at home. Therefore, the charging vehicles would finish their daily trips
with a SOC close to their minimum acceptable charge. Regardless of charging, it can be expected
that this group of EVs would start the day with an almost fully charged battery.

On the other hand, residents of multi-family units might not have access to chargers in their
parking spaces. Therefore, they cannot start every day with a fully-charged battery. Their charging
behavior also varies from the other group as they will fully recharge their vehicle once they have
recharged their EV, similar to gasoline vehicles. Figure 6 investigates the impact of the initial SOC
on the final SOC (upon finishing the daily trips and considering recharging between trips) for the
second group considering different battery performances. The average initial SOC on the
horizontal axis represents the average of a truncated normal distribution (e.g., if the lower bound
and upper bound of a distribution are 0.3 and 0.8, the average SOC would be 0.55). Therefore, for
an average initial SOC, there are different average final SOC in each figure.
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Figure 6 considers nine different battery performances, ranging from g = 1.5 ZVII:Z tof =55 ’:7”:
assuming that the energy consumption rate of all EVs is the same. As the f increases from Figure
6 (a) to (i), vehicles can travel longer distances using the same energy. Each node in the figure
represents an average initial SOC, and an average final SOC estimated through the charging
behavior simulation. In the figure, the line y = x shows that the initial SOC is the same as the
final SOC, which represents the energy conservation concept on average for this group of users.
A node above this line indicates that the final SOC is higher than the initial SOC; hence the total
energy is increased during the day, which is not possible. On the other hand, a node below the line
shows that the total energy has decreased. As shown in the figure, EVs starting their daily trips
with a very low initial SOC finish their activities with an average SOC significantly higher than
the initial SOC. The reason is that these vehicles cannot fulfill their trips due to their very low
initial SOC and have to recharge their batteries. As they do not have a home charger, they fully
recharge their battery and have a high SOC once they arrive home. On the other hand, EVs starting
with a very high initial SOC hardly need to recharge their vehicles during the day and return home
with a SOC lower than what they started. The average initial energy level of EVs without any
home charger should remain the same on different days to maintain the energy balance in the
network. Thus, the nodes close to the line can represent real-life scenarios.

DCFC infrastructure _
In this section, the battery performance is considered f = 3 % A truncated normal distribution

for the initial SOC of vehicles with a home charger is selected with a lower bound of 0.5 and an
upper bound of 1. For vehicles without a home charger, a truncated normal distribution with a
lower bound of 0.15 and an upper bound of 0.8 is selected for the initial SOC. The results are
presented for three charging powers, 50 kW, 150 kW, and 300 kW. First, Figure 7 shows the
convergence of the metaheuristic algorithm to find the optimal optimization problem solution. The
figure shows that after 15,000 iterations, the solution has converged as it does not change
significantly regardless of the increase in the number of iterations.
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Figure 7- Convergence of the optimum solution

Next, provides the estimated charging infrastructure for the selected charging powers.
According to Table 3, the scenario with the 150 kW power yielded a lower infrastructure cost and
experienced delay, although the charging stations and chargers are more expensive per unit than
the scenario with the 50 kW power, a result consistent with prior studies for other networks (4, 6).
Also, although the scenario with 300 kW powers results in a faster average charging time compared
to the 150 kW scenario, due to the high cost of station and chargers in this scenario number of
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station decrease resulting in higher detour and wasting time. Also, no significant investment cost
gained moving from 150 kW to 300 kW. Table 3 also shows that although with the increase in the
charging powers user experienced delays at stations decrease, users have to travel longer to reach
the charging station, which results in higher total detour times. As station and charger costs
increase with the increase in charging powers, the models suggest building lower numbers and
more scattered distribution of stations over the network, which increases the total user-experienced
detour time. Figure 8 shows the estimated charging configurations for each charging power. The
size of the circles relates to the number of chargers in stations, and a larger circle represents a
higher number of chargers than a smaller circle. According to Error! Reference source not
found., the charging stations are distributed more densely in downtown Chicago with a higher
number of chargers; this complies with the fact that many trips are generated or absorbed from
downtown, and a charging station there can address significant charging demand. It should be
noted that each TAZ is represented with one potential node for charging stations to be built. Such
simplicity is considered to diminish the complexity of solving the problem in a macro-level
optimization model for the entire regional network of Chicago.

Table 3- Results under different charging power

Charging station (kW) 50 150 300
Number of zones 1,961 1,961 1,961
EV trips (per day) 1,906,526 1,906,526 1,906,526
Charging events (per day) 38,648 38,648 38,648
Charging vehicles (per day) 38,366 38,366 38,366
Number of stations 438 345 246
Number of chargers 10,088 3,494 1,679
Average charging time (min) 58.57 19.54 9.77
Average waiting time (min) 0.63 0.64 0.67
Average detour (min) 4.11 4.39 4.79
Total daily charge (MWh) 1,887.19 1,887.74 1,888.44
Total station cost (m$) 25.65 31.14 35.83
Total charger cost (m$) 349.97 269.71 261.82

Total infrastructure cost (m$) 375.62 300.85 297.65
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Figure 8- Optimum charging infrastructure configuration (a) 50 kW charging power (b) 150 kW (c)

300 kW charging power

SENSITIVITY ANALYSIS

Battery Performance

In order to explore the impact of battery performance on the optimum charging infrastructure, a

sensitivity analysis is conducted, changing the values of battery performance from g = 1.5 ;nv:/l: to

=5 7:7”2 considering a charging power of 50 kW; the results are provided in Table 4.

Table 4- Results under different battery performance with 50 kW charging power
?n";‘}/tﬁ\r/{”ﬁ’)erforma”ce 15 2 2.5 3 35 4 45 5
Charging events (per day) 112,823 73,532 51,576 38,648 30,122 24,309 20,154 17,322
Charging vehicles (per day) ~ 105488 71,185 50,792 38,366 30,025 24271 20,130 17,312
Number of stations 837 642 534 438 385 342 307 284
Number of chargers 25,806 17,662 13,057 10,088 8,216 6,704 5,691 4,996
Average charging time (min) 54.41 55.81 57.51 58.57 59.68 60.15 60.47 60.73
Average waiting time (min) 0.55 0.58 0.59 0.63 0.64 0.64 0.68 0.65
Average detour (min) 3.87 3.94 4.05 411 4.25 4.42 4.54 461
Total daily charge (MWh) 511520 341967 247190 1,887.19 149807 1,21857 101561 876.59
Total station cost (m$) 49.02 37.60 31.27 25.65 22.55 20.03 17.98 16.63
Total charger cost (m$) 89525 61272 45297 34997 28503 23257  197.43  173.32
Total infrastructure cost (m$) ~ 944.27  650.32 48424 37562 30758  252.60 21541  189.95
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According to Table 4, the number of charging events decreases with the increase of battery
performance, which is intuitive. While the size of the batteries for vehicles is not changing between
scenarios, the required infrastructure to address the charging demand increases significantly when
the battery performance decreases. When the battery performance increases, the number of
charging stations decreases, but this decrease is not as steep as the decrease in the number of
chargers. This is due to the fact that there is no cap on the maximum number of chargers in the
model, and for the hot-spot charging stations, the model provides as many chargers as needed.

VOT
Table 5 shows the sensitivity analysis conducted on VOT variables for the scenario with 50 kW

charging powers, and 8 = 3:{”;; While the modeling always provides as many stations and

chargers as needed to ensure the feasibility of all EV trips, VOT is an essential variable
determining how much emphasis will be on minimizing user experience delays and detours in
finding optimum charging infrastructure configuration. Table 5 shows that with VOT equal to 1
($/hour), the model provides as low as possible number of stations and chargers to minimize the
total infrastructure cost resulting in excessive user time spent in the system. As VOT increases in
each scenario, the number of stations, chargers, and total infrastructure costs will increase to
minimize user time spent on refueling, waiting in the queue, and detour time. With VOT 18
($/hour), the model has already provided enough charging infrastructure to minimize user time
spent in the charging stations (refueling and waiting time) and increasing VOT from this point on
could only decrease the users’ detour time by providing more charging stations.

Table 5- Results under different VOT with 50 KW charging power

VOT ($/hour) 1 10 18 30
Charging events (per day) 38,648 38,648 38,648 38,648
Charging vehicles (per day) 38,366 38,366 38,366 38,366
Number of stations 92 303 438 589
Number of chargers 4,884 8,450 10,088 11,479
Average charging time (min) 58.76 58.61 58.57 58.59
Average waiting time (min) 5.50 0.99 0.63 0.49
Average detour (min) 6.77 4.50 411 3.91
Total daily charge (MWHh) 1,892.39 1,887.86 1,887.19 1,886.81
Total station cost (m$) 5.39 17.75 25.65 34.50
Total charger cost (m$) 169.43 293.14 349.97 398.22
Total infrastructure cost (m$) 174.82 310.89 375.62 432.72

EV Market Share

Table 6 presents the model results under different EV market shares of 5, 15, and 25% considering
50 kW charging power. Table 6 highlights that an increase in the EV market share leads to a
proportional increase in the number of charging events, chargers, and total infrastructure cost.
Charging stations are to be provided to ensure feasibility of trips and reducing detour travel time.
Therefore, even with a low EV market share, a significant number of stations are required in a
large-scale network like Chicago to prevent users from experiencing high detour time or energy
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depletion. Thus, although, increasing EV demand would increase the number of stations and
decrease the detour time, the relationship was found to be more complex and non-linear.

Table 6 demonstrates that as EV market share grows users benefit from lower charging,
waiting, and detour times. As discussed in the methodology section, the system provider aims to
minimize both the total infrastructure cost and user time spent in the charging system. As the
number of EVs grows, the user time spent in the system becomes a more influential factor
compared to the total cost. Thus, the system provider gains higher benefits by reducing the user
time spent and enhancing their charging experience. This finding suggests that as more users adopt
EVs, policymakers and system providers give more priority to this group resulting in an overall
improved charging experience for all EV users.

Table 6- Results under different EV market share with 50 kW charging power

EV Market Share (%) 5 15 25
Charging events (per day) 7,810 22,994 38,648
Charging vehicles (per day) 7,747 22,818 38,366
Number of stations 161 320 438
Number of chargers 2,292 6,146 10,088
Average charging time (min) 59.24 58.66 58.57
Average waiting time (min) 0.75 0.62 0.63
Average detour (min) 5.18 4.46 411
Total daily charge (MWh) 385.54 1,123.98 1,887.19
Total station cost (m$) 9.43 18.74 25.65
Total charger cost (m$) 79.51 213.21 349.97
Total infrastructure cost (m$) 88.94 231.95 375.62

Home Charger Ownership

Table 7 presents the model result under different shares of home charger ownership for the scenario
with 50 kW charging powers, and 25% EV market share. Users with access to home charging tend
to start their daily trips with a higher initial State of Charge (SOC) and require a lower desired
SOC. Consequently, this group experiences a significantly lower number of charging events and
total daily chargers compared to those without home chargers. Table 7 demonstrates that as the
share of users with home chargers increases, there is a notable decrease in the number of stations,
chargers, and total infrastructure costs. Furthermore, an increase in home charger ownership
reduces the average energy charged, leading to a decrease in average charging and waiting times.
However, consistent with the pattern observed in Table 6, a decrease in the number of charging
events reduces the prominence of user time spent in the system as a dominant term in the objective
function. As a result, the detour travel time increases as the share of users with home charging
increases. Additionally, Table 7 shows the average number of EVs per charger under different
home charging scenarios. It could be seen that under the scenario with no home charging system
provider has to supply 1 charger for every 31 EVs, while in the scenario where all user has access
to home charging this ratio increases to 1 charger for every 988 EVs. This study considers the
home charging investment as the user cost, constrained by their residential area settings. However,
given the potential significant decrease in total infrastructure cost gained with increasing the
number of home charging users, it may be worthwhile for system providers to consider offering
incentives for the purchase or facilitating the installation of home charging equipment.
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Table 7- Results under different home Charging Scenarios with 50 kW charging power
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Share of user with home

charging (%) 0 40 50 60 100

Charging events (per day) 62,908 39,897 34,023 28,610 5,491
Charging vehicles (per day) 62,523 39,665 33,826 28,461 5,476
ghh;r;g;?p‘éf*yggs with home 0 2,108 2,710 3,307 5,476
Number of stations 562 445 402 360 100

Number of chargers 16,116 10,359 8,629 7,224 511

Total number of EVs per chargers 31 49 59 70 988

Average charging time (min) 61.28 58.69 57.21 55.38 11.35
Average waiting time (min) 0.62 0.63 0.62 0.564 0.34
Average detour (min) 3.95 4.08 4.18 4.23 5.29
Total daily charge (MWHh) 3,212.26 1,951.15 1,622.13 1,320.44 51.92
(HA;’\TV‘;‘)Charg'”g users daily charge 0 20.43 25.78 30.67 51.92
Total station cost (m$) 3291 26.06 23.54 21.08 5.86
Total charger cost (m$) 559.09 359.37 299.35 250.61 17.73
Total infrastructure cost (m$) 592.00 385.43 322.89 271.69 23.59

Workplace Charging

With the advancements in level 3 chargers, the charging time for users at DCFCs is becoming
comparable to that of gasoline vehicles. However, level 2 chargers still offer benefits for users who
do not require fast refueling times. Operating within a power range of 3-19 Kw, level 2 chargers
provide a slower but cost-effective charging option, making them suitable for installation at
parking lots in mid or long stay locations. This study aims to examine the impact of level 2 chargers
on the overall charging infrastructure configuration and the distribution of DCFCs by
incorporating level 2 workplace charging for selected users.

To identify potential candidates for workplace charging, this study examines EVs that
remain idle at the workplace for a minimum duration. Out of a total of 1,906,526 EV trips, 351,277
instances were identified where users had their vehicles idle at the workplace for at least one hour.
This study specifically considers workplace level 2 charging for users who may need to charge
their vehicles at DCFCs to complete their daily tours. However, the adoption rate of level 2
chargers at workplaces can vary significantly due to limitations in workplace settings or user
preferences. Therefore, this study examines the reduction in charging load and infrastructure cost
of DCFCs under different workplace charging adoption ratios for EVs that require charging during
their daily trips.

The results of the model, as presented in Table 8, demonstrate the outcomes under different
ratios of workplace charging adoption, considering a charging power of 7 kW for level 2 chargers
and 50 kW for DCFCs. Table 8 shows that with a 100% adoption ratio, out of the 351,277
candidate work trips, there are 19,385 instances where charging at DCFCs can be skipped in favor
of charging at workplaces. Consequently, workplace charging at its maximum potential could
reduce the charging load on DCFCs by 50%, resulting in a reduction in the total infrastructure cost
associated with DCFCs. Similar to the observations in home charging scenarios, increasing the
share of users utilizing workplace chargers can lead to a reduction in the number of DCFC charging
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events, stations, and chargers. Consequently, this reduction in the number of DCFC stations and
charging events increases the total detour time and the number of EVs per charger, respectively.
Additionally, Table 8 introduces the "average return time™ metric, which quantifies the number of
days, on average, it takes for EVs to return to the DCFCs for refueling under different scenarios.
In the absence of any level 2 charging infrastructure at workplaces, it takes, on average, 13.2 days
for all vehicles (average over all vehicles with or without home charger accessibility) and 8 days
for vehicles without home chargers to return to DCFCs for refueling. However, if the adoption of
workplace charging increases to 50%, the average return time could potentially increase to 18 days
for all vehicles and 11.1 days for vehicles without home chargers.

It should be noted that this study assumes a fixed electricity pricing structure for charging
at home, workplace, and DCFCs. However, in reality, charging prices can vary based on charger
type, location, and time of day, which may impact user charging behavior and should be
investigated in future research. Additionally, the cost of installing and maintaining level 2 chargers
at workplaces is assumed to be covered by either the workplace authorities or the car companies,
rather than the system provider. However, considering the benefits gained from workplace
charging, it may be worthwhile for system providers to invest in a mixture of level 2 and level 3
chargers to meet the EVs charging demand.

Table 8- Results under different workplace charging scenarios with charging power of 7 kW for
level 2 and 50 kW for DCFC
Share of users charging at

workplace (%) 0 40 50 60 100
Charging events (per day) 38,648 29,969 28,181 25,908 19,263
Charging vehicles (per day) 38,366 29,790 28,012 25,765 19,191
g)r;arlrg;r;g vehicles without home charger 36,362 28539 26,865 24,789 18,670
Number of stations 438 365 364 347 283
Number of chargers 10,088 7,784 7,566 6,955 5,750
Total number of EVs per chargers 50 65 67 73 88
Average charging time (min) 58.57 59.10 59.11 59.22 59.49
Average waiting time (min) 0.63 0.61 0.63 0.60 0.68
Average detour (min) 411 4.33 4.36 431 4.55
Total daily charge (MWh) 1,887.19 1,475.87 1,388.2 1,278.24 954.92
Charging events at workplace (per day) 0 8,679 10,467 12,740 19,385
\(/I\\//Io\;\ljr;]))lace—charging users daily charge 0 41132 498.99 608.95 932 27
Average return time for all vehicles (days) 13.2 16.9 18 19.6 26.3
ﬁﬁﬁ%ﬁ;ﬁ;ﬁg t(idn;flsgor vehicles without 8.2 104 111 12 16
Total station cost (m$) 25.65 21.38 21.32 20.32 16.57
Total charger cost (m$) 349.97 270.04 262.48 241.28 199.48
Total infrastructure cost (m$) 375.62 291.42 283.80 261.60 216.05

Utility Cost
Utility cost is an essential factor in selecting station locations as it captures the cost of purchasing
and installing equipment, electricity, and upgrading power grid infrastructure. Since no real-world
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utility data was available from the case study network, this study assumes a fixed cost of 10,000$
per station as the utility cost. However, it is important to note that utility costs can be sensitive to
factors such as charging load, station location, and the utility provider company. In a real-world
scenario, a station might require a significant investment for upgrading the power grid
infrastructure as a certain usage threshold is reached. This pattern could be best captured by using
a step function that considers different utility costs for different charging powers. Table 9 presents
the average utility cost obtained from multiple utility providers in Michigan for different charging
power steps. To capture the impact of power grid capacity and constraints on the charging
infrastructure configuration and investment cost, this study developed a scenario using the Table
9 step function and compared it with the base case of fixed utility cost.

Table 9- Step function utility cost for different power range
Power (KW) 0-500 500-1000  1000-2000  2000-5000 +5000

Cost ($) 60,000 70,000 100,000 250,000 500,000

Table 10 shows the model result under fixed and step function utility costs for the scenario with
50 kW charging powers. As expected, using the step function leads to significantly higher utility
costs compared to the fixed scenario. Consequently, the model suggests reducing the number of
stations and aggregating energy demand at certain locations to minimize the overall cost. Since the
utility cost remains constant within each step range, the optimal solution for the step function
scenario involves concentrating energy demand at each station up to the upper bound of each step,
just before the price jump occurs in the next step. As a result, as depicted in Table 10, the number
of chargers per station increases in the step function scenario. It is worth noting that although the
total infrastructure cost in the two scenarios is similar, the lower number of stations in the step
function scenario leads to increased detour travel time for users. This trade-off between
infrastructure cost and user travel time should be carefully considered when making decisions
regarding charging infrastructure configuration.

Table 10- Results under different utility function with 50 kW charging power

Utility cost Fixed Step Function
Charging events (per day) 38,648 38,648
Charging vehicles (per day) 38,366 38,366
Number of stations 438 356
Number of chargers 10,088 9,525
Number of chargers per stations 23 27
Average charging time (min) 58.57 58.61
Average waiting time (min) 0.63 0.64
Average detour (min) 4.11 4.42
Total daily charge (MWh) 1,887.19 1,887.64
Total Utility cost (m$) 4.38 27.58
Total station cost (m$) 25.65 44.87
Total charger cost (m$) 349.97 330.44
Total infrastructure cost (m$) 375.62 375.31
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CONCLUSION
This study adopts an activity-based approach to consider the interdependency of different trips
traveled by the same EV driver. The proposed framework in this study extends the extensive effort
in the literature to more realistically capture charging demand in large-scale networks to improve
planning for charging infrastructure in urban networks. This is achieved by integrating an activity-
based model and a mathematical optimization model along with developing a charging behavior
simulation module. The charging behavior simulation module considers the availability of home
chargers, travel distance, past trips, and scheduled trips to estimate the charging demand. The
mathematical optimization model considers the daily schedule of users, feasible range of EVs,
remaining battery capacity, waiting in a queue at charging stations, and travel detours. A solution
approach is proposed to solve this problem for large-scale networks, which is successfully applied
to the full regional network of Chicago, and the results based on realistic values are presented for
three charging powers. A sensitivity analysis is conducted on the initial SOC to estimate the final
SOC for EVs considering different battery performances. Also, the required charging
infrastructures under different scenarios for battery performances, VOT, EV market share, home
charger ownership, workplace charging, and utility cost are investigated.

This study can be further extended and improved through possible future research
directions, to name a few:

e The proposed model assumes that EVs only recharge during their infeasible trip. However,
they might recharge in a feasible trip to prevent future recharging. This behavior must be
captured to provide a solution that can better address the EVs charging demand. However,
this requires a more in-depth study of users’ behavior

e Various strategies for spatial and temporal pricing of electricity can be studied to explore
their impacts on congestion and the required number of chargers.

e In this study the optimization model is founded based on the trip chains provided by an
activity-based model. However, a fully-integrated model can be developed in a future
research capable of constantly back-and-forth between the optimization and activity-based
models to generate trip chains based on the location and quantity of chargers and vice versa.

e Future research should consider heterogeneous EV users with various VOTs during trip
chains to capture the changes in individual charging preferences throughout the daily
schedule.

e Since the location of charging stations affects the trips within the trip chains which can
further affect the travel time and demand, it requires the activity-based model to be run for
multiple days and capture the change in the chain of activities from one day to another. It
ensures that the feedback from the optimization model is provided to the activity-based
model.

e In this study, long-term and medium-term travel behavior and trip profile in the EV era is
assumed to remain similar and only short-term behavior (charging at infeasible trip) is
considered. However, future studies may investigate any possible change in future travel
behaviors in terms of long-term and short-term decisions such as destination choice, and
living and working locations, when more EVs hit the roads around the globe.

e This study considered TAZ centroids as candidate locations for charging stations to be built.
However, sometime these TAZs might be broad and require to be broken into smaller zones.
Therefore, further distribution of chargers within each TAZ can be made using the
information provided by ABM.
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e Future research should explore the integration of different charging options (e.g., DCFCs,
and Level 2 chargers) and consider the charging requirements of a broader range of vehicle
types (e.g., EVs and PHEVs) to further enhance the efficiency and effectiveness of
charging infrastructure configuration. Future work should investigate the budget allocation
between DC fast charging infrastructure and level 2 chargers at short-term stays (e.g.,
work-place or shopping centers) that achieves an optimal charging configuration for both
users and the system provider.
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