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Density functional theory (DFT) and its extensions, such as DFT+U and DFT+dynamical
mean-field theory, are invaluable for studying magnetic properties in solids. However, rare-
earth (R) materials remain challenging due to self-interaction errors and the lack of proper
orbital polarization. We show how the orbital dependence of self-interaction error contra-
dicts Hund’s rules and plague magnetocrystalline anisotropy (MA) calculations, and how
analyzing DFT states that respect Hund’s rules can mitigate this issue. We benchmark MA
in RCo5, R2Fe14B, and RFe12, extending prior work on RMn6Sn6, achieving excellent agree-
ment with experiments. Additionally, we illustrate a semi-analytical perturbation approach
that treats crystal fields as a perturbation in the large spin-orbit coupling limit. Using Gd-4f
crystal-field splitting, this method provides a microscopic understanding of MA and enables
rapid screening of high-MA materials.



INTRODUCTION

Among all the elements, the open-shelled lanthanides provide the largest magnetocrystalline anisotropy
(MA), due to the strongly-localized nature of 4f orbitals and strong spin-orbit coupling (SOC),
which can evolve substantially, including changing sign while varying the rare earth (R) element
in an isostructural series of compounds. The unparalleled strength and tunability of rare-earth MA
allows for a wide range of applications, ranging from conventional high-performance permanent
magnets1–4 to recent rare-earth-containing topological magnets5,6. To further exploit existing sys-
tems and explore new ones, ab initio methods that can provide a microscopic understanding of
rare-earth anisotropy and reliably predict new materials are highly desired.

The MA originates from the interplay between SOC and the crystal field (CF)7,8. The 4f states
are the most-localized among all shells and generally well-shielded by the outermost electrons,
resulting in a small CF splitting (∆) of tens of meV. Considering the relatively large SOC strength
ξ, CF effects can be treated as a perturbation, and the 4f orbital largely remains atomic-like. The
mechanism of R MA can be understood in the following picture. When the spin of 4f electrons
rotates, in the first approximation, the charge of the strongly-correlated 4f electrons remains the
same shape and follows the spin, as the spin and orbitals are locked by the large SOC. The MA then
arises from the energy variation corresponding to the rotating aspherical 4f cloud under the ligand-
induced CF potential. In the conventional CF theory, this energy dependence on spin direction
(θ, ϕ) can be written as:

E(θ, ϕ) =

∫
drρ4f (r; θ, ϕ)VCF(r) =

∑
Am

l Q
m
l (θ, ϕ). (1)

Here, the CF potential of isostructural compounds is characterized by CF parameters (CFPs) Am
l ,

while the asphericity of the rotating 4f charge, evolved with 4f orbital filling, is characterized by
multipole moment Qm

l (θ, ϕ). The multipole moment can be expressed in terms of the Stevens coef-
ficients Θl, the operator equivalents Om

l , and the rare-earth radii ⟨rl⟩4f , e.g., Q0
l = Θl⟨rl⟩4fO0

l
9–11.

Overall, the 4f electron configurations in solids, especially those of heavy R elements, generally
obey the same Hund’s rules as in a free ion, according to the so-called standard rare-earth model
(SRM)12–14. The MA of 4f elements can reach the same order of magnitude as the CF strength,
which typically ranges in tens of meV.

The atomic nature of the strongly-correlated, localized 4f electrons poses great challenges for
mean-field methods such as density functional theory (DFT). Various approaches, including the 4f -
open-core method, DFT+U 6,15, dynamical mean-field theory (DMFT)16,17, and quasiparticle self-
consistent GW (QSGW)18, have been employed depending on the specific rare-earth properties
being targeted. DFT+U is the simplest and most widely-used method to treat strong correlations.
Regarding the 4f MA, the primary issue with DFT+U is that it is known to fail in reproducing
the experimental ground-state 4f configuration15,19–24. Specifically, it fails to reproduce Hund’s
second rule, which maximizes orbital polarization.
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In general, DFT+U can have many metastable 4f -configuration solutions13,24,25, and the correct
ground state often appears in DFT+U as a metastable state that is hundreds of meV higher. As
discussed in detail, for instance, in Ref. [24], the root of the problem is the orbital-dependent self-
interaction error (SIE), stemming from the fact that each Kohn-Sham particle interacts with the
total charge density, including its own. This orbital dependence of SIE is particularly significant
for 4f orbitals, leading to incorrect orbital occupancies and 4f charge density, and consequently
to incorrect MA.

A key question arises: Can DFT+U accurately describe the MA of tens of meV, even though
it overestimates the energy of the true ground state by hundreds of meV? Our recent systematic
study on topological magnetic compounds RMn6Sn6 with heavy-R elements has shown promise6,
provided that their Hund’s-rules ground states are enforced. Not only are the easy directions of
the entire series of compounds reproduced if Hund’s rules are enforced6, but the calculated MAE
amplitude also agrees reasonably well with experiments26,27. However, it remains unclear how
well the delicate MA in other rare-earth-containing magnets can be described using the SRM in the
simplistic DFT+U framework. To better establish the validity and effectiveness of these methods,
systematic investigations of MA in more rare-earth-based compounds are needed.

In this work, we first review and illustrate how the orbital dependence of SIE affects the 4f
ground state and MA calculation in DFT-based methods. We then discuss various methods that
attempt to enforce Hund’s rules, such as DFT+U , self-interaction corrections (SIC), and orbital po-
larization corrections (OPC), and how the additional terms therein affect the MA calculations. We
further systematically benchmark DFT+U calculations of MA in several isostructural R-transition-
metal (R-TM) intermetallic series, including well-established permanent magnet systems, RCo5,
R2Fe14B, and RFe12 with heavy R elements. In all cases, with the enforcement of Hund’s rules,
DFT+U calculations provide a useful description of the MA without the need to include SIC
and OPC. Finally, we demonstrate that the evolution of MA can be modeled purely analytically
based on a perturbative treatment of the crystal field using the single-particle 4f levels obtained in
DFT+U 6.

RESULTS

SIE effects on 4f Ground state and MA in DFT: TbMn6Sn6 as an example
Many-body effects are crucial for accurately describing the strongly-correlated 4f electrons. Es-
pecially for light rare-earth elements, multiple Slater determinants are typically required to capture
their complex electronic structure. Here, in this study, we focus primarily on the heavy R elements
with a large R-TM exchange coupling because their ground states effectively satisfy Hund’s rules,
and the |L, S, J,mJ = J⟩ state with J = L + S can, in principle, be represented using a sin-
gle Slater determinant, as in methods such as DFT28. However, even for these “relatively easier”
heavy-R cases, challenges arise in describing 4f electrons, specifically related to the SIE and the
corresponding violation of Hund’s rules.
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To gain a quantitative understanding of how SIE affects the ground state and MA, we illustrate
this with a DFT+U calculation of TbMn6Sn6—a recently discovered quantum magnet with very
strong easy-axis anisotropy. According to Hund’s rules, Tb3+ (4f 8) is expected to have a fully-
filled 4f majority-spin channel and one electron in the minority spin channel, with 4f 1,↓

|ml=3⟩. This
expectation is consistent with neutron scattering and magnetization measurements of TbMn6Sn6

26

and TbV6Sn6
27. However, DFT+U instead found a 4f ground state corresponding to 4f 1,↓

|ml=2⟩
6,27.

The experimental ground state is approximately ∆ϵ = 340 meV higher in TbMn6Sn6, appearing
as a metastable state in DFT+U (performed with SOC included and the experimental out-of-plane
spin orientation at U = 10 eV). Considering that the SOC included in calculation already lowers
the |3⟩ state relative to |2⟩ by approximately 1

2
ξTb
4f ≈ 120meV, the orbital dependence of SIE for

these two orbitals is about 460 meV, which is more than one order of magnitude larger than MA.

The SIE, while sizable, is practically independent of the crystallographic environment and is
rotationally invariant. The energy difference between these two 4f configurations remains essen-
tially the same as for the free Tb3+ ion, where we found ∆ϵatom = 350 meV using a large supercell
calculation. Moreover, to ensure numerical accuracy, we calculated the variation of ∆ϵatom with
spin rotation and found that the change is negligible. In other words, the SIE is spin-rotationally
invariant.

If, as we just established, the SIE is rotationally invariant, one may work around that by cal-
culating the MA (and similar effects) not in the DFT ground state, but in a metastable state that
respects Hund’s rules. This can be achieved by starting DFT+U calculations from a 4f occupation
matrix constructed according to the desired orbital state, and by monitoring and controlling the or-
bital occupancy through the self-consistency process to ensure convergence closely to the targeted
state. Such capability is easy to implement and is generally available in popular DFT packages,
including WIEN2K and VASP 29.

Figure 1 shows the total energy variation as a function of the spin-quantization axis rotation,
characterized by polar angle θ, calculated for the two 4f configurations corresponding to the ex-
perimental and DFT ground states, respectively. As illustrated in Fig. 1, at each polar angle, using
the procedure discussed above, the calculations converge to solutions closely approximating the
4f 1,↓

|ml=3⟩ and 4f 1,↓
|ml=2⟩ configurations, respectively, in the local coordinate system (with the z-axis

along the local spin direction). The MA profiles calculated with these two solutions are markedly
different. Calculations using the |ml = 2⟩ DFT+U ground state yield an incorrect easy-cone MA,
while those calculated with the |ml = 3⟩ configuration, the true ground state but metastable in
DFT+U calculations, correctly host a strong easy-axis MA.

This is not surprising, as the |ml = 2⟩ and |ml = 3⟩ configurations lead to different asphericities
of the 4f charge distribution, or equivalently, different multipole moments Ql, which result in
drastically different MA. Therefore, for accurate MA calculations, it is crucial to enforce solutions
that represent the correct 4f orbital configurations.
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Origin of erroneous Tb-4f ground state: orbital dependence of SIE
The origin of the erroneous f 1,↓

|ml=2⟩ ground state in DFT calculations for the Tb3+ ion is due to
the strong orbital dependence of the SIE for 4f orbitals. The Tb3+ atom, with a 4f 8 configura-
tion, has a fully-occupied 4f majority-spin channel that produces an s-type spherical charge and
potential. In a single-particle Hamiltonian, without considering SOC, the seven 4f states should
be degenerate if the potential is orbital-independent, as in plain DFT, and spherical. Therefore,
excluding self-interaction, the additional electron in the minority-spin channel, f 1,↓, experiences
a nearly spherical potential that does not lift the degeneracy of the seven 4f orbital states. This
is the same reason behind the well-known issue of 4f states being pinned at the Fermi level in
DFT calculations unless a sizable Hubbard U interaction is introduced in schemes such as DFT+U
to polarize the occupied and unoccupied 4f states. However, in DFT, the occupied f 1,↓ electron
generates an aspherical charge density that acts upon itself, as the functionals are evaluated using
the total electron density. The total SIE in the local density approximation (LDA), ϵLDA, originates
from the Hartree energy, EH, and the exchange-correlation energy, Exc, and can be written as

ϵLDA = ϵH + ϵxc, (2)

where ϵH and ϵxc are the corresponding SIE contributions associated with EH and Exc, respectively.
Due to the local approximation of the unknown exact exchange-correlation functional, ϵH and ϵxc

do not cancel out as they do in the Hartree-Fock method, resulting in a nonzero ϵLDA. Moreover,
the orbital dependence of ϵLDA is substantial for 4f states, leading to an incorrect 4f ground state.

Since the 4f charge asphericity and orbital dependence of SIE for the Tb3+ ion (with f 7,↑+ f 1,↓

configuration) are predominantly associated with the single electron in the minority-spin channel,
we now present an analytical estimation of ϵH and ϵxc for the f 1 configurations with various |ml⟩
states. Obviously, we have ϵH = EH and ϵxc = Exc for this single-electron model. Here, we
consider the eigenstates of the f electron, where the angular part of the wavefunction is described
by complex spherical harmonics Y m

l=3. As we will show, ϵH favors the |ml = 2⟩ state, with the
energy order |2⟩ < |1⟩ < |3⟩ < |0⟩. Conversely, ϵxc favors the |ml = 0⟩ state, with the energy
hierarchy |2⟩ > |1⟩ > |3⟩ > |0⟩. However, these contributions do not cancel each other out,
resulting in an overall ϵLDA that disfavors the |ml = 3⟩ state.

Hartree self-interaction for f 1.— For the f 1 single-electron state, the ϵH of the |±m⟩ state can
be written as:

ϵHm =
1

2

∫∫
dr1 dr2

ρm(r1)ρm(r2)

|r1 − r2|
, (3)

where the electron density can be expressed in terms of the radial and angular parts of the wave-
function as ρm(r) = R2

4f (r)|Y3m(θ, ϕ)|2, with m ∈ 0, 1, 2, 3. The Coulomb interaction can be
expanded using complex spherical harmonics as:

1

|r1 − r2|
=

∞∑
k=0

rk<
rk+1
>

4π

2k + 1

q=k∑
q=−k

Ykq(θ1, ϕ1)Y
∗
kq(θ2, ϕ2), (4)
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where ri = ri(sin θi cosϕi, sin θi sinϕi, cos θi), and r< = min(r1, r2) and r> = max(r1, r2).

Substituting Eq. (4) into Eq. (3) and separating the radial and angular parts of the integration,
we obtain: 

ϵ0
ϵ1
ϵ2
ϵ3


H

= F0 +


a02 a04 a06
a12 a14 a16
a22 a24 a26
a32 a34 a36


F2

F4

F6

 ≈ F0 +


ã02
ã12
ã22
ã32

F2. (5)

Here, the radial integrals are represented by the Slater integrals [F0, F2, F4, F6], and the angu-
lar integrals are represented by the matrix element amk, which can be evaluated using the Gaunt
coefficients as follows:

amk =
4π

2k + 1
[Gaunt(3, k, 3;−m, 0,m)]2 . (6)

The last step of Eq. (5) is obtained using am0 = 1 and assuming F4/F2 ≈ 0.6681 and F6/F2 ≈
0.4943.

Table 1 lists the matrix elements amk and the effective element ãm2, as well as the orbital-
dependent part of ϵHm, ∆ϵHm ≈ ãm2F2, calculated with F2 = 10 eV, with respect to the |ml = 2⟩
state. Clearly, ϵH favors |ml = ±2⟩ states while disfavoring |ml = 0⟩ and |ml = ±3⟩ states. The
small SIE of |±2⟩ is due to the vanishing of the matrix element a22 calculated using Eq. (6), which
results from the fact that they satisfy one of the conditions for non-trivial zeros of Wigner-3j
symbols, i.e., Wigner3j(3, k, 3;m, 0,−m) = 0 with k = 2.

Exchange-correlation self-interaction for f 1.— The ϵxc, which comprises the exchange part
ϵx and the correlation part ϵc, is also orbital-dependent. In general, the exchange energy has a
much larger magnitude than the correlation energy, making it the dominant contribution to ϵxc.
With the LDA exchange energy given by Ex[ρ] ∝ −

∫
ρ

4
3 (r), dr, the orbital-dependent ϵxm for the

f 1 = |±m⟩ states can be characterized by the angular part of the integration:

Ω(ϵxm) = −
∫

dΩ
(
|Ylm(θ, ϕ)|2

) 4
3 . (7)

Table 2 lists Ω(ϵxm) values and the corresponding values with respect to the |m = 0⟩ state, along
with the relative exchange-correlation energy Exc

m and total energy ETot
m of free Tb atoms calculated

using DFT+U . Clearly, ϵxm favors the |0⟩ minority-spin state, following the energy ordering |0⟩ <
|±3⟩ < |±1⟩ < |±2⟩. Numerically, our DFT+U calculations for the Tb3+ free ion also show that
Exc strongly favors |0⟩ state while least favoring |2⟩ state, in agreement with ∆Ω(ϵxm).
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Moreover, the numerical values of ETot
m −Exc

m listed in Table 2 follow the same ordering as ∆ϵHm
listed in Table 1. Therefore, the DFT+U calculations provide numerical support for the analytical
f 1 model, despite the latter being a highly simplified representation of the Tb3+-4f system, which
contains many electrons beyond the single 4f electron in the minority-spin channel.

Overall, when combining ϵH and ϵxc, the total ϵLDA yields a much higher energy for |±3⟩ solu-
tions compared to other |m⟩ solutions. Specifically, ϵH strongly favors |±2⟩ much more than |0⟩
and |±3⟩, while ϵxc strongly favors |0⟩. Consequently, overall ϵLDA results in a significantly higher
energy for |±3⟩ states than for other states. The SOC energy, on the other hand, favors states with
large positive ml values in the minority-spin channel. While it may not be sufficient to overcome
the SIE to stabilize the true ground state of |3⟩, it does lower the energy of the |2⟩ state below that
of the |0⟩ and |1⟩ states, ultimately leading to an erroneous ground state of f 1,↓

|ml=2⟩ in calculations.

DFT+U , DFT+DMFT, SIC, and OPC
Various methods have been developed and employed to improve the DFT description of 4f elec-
trons, including DFT+U, SIC, and OPC methods. Both SIC30 and OPC31 methods can be con-
nected to the more general DFT+U method; all of these methods polarize selected local orbitals us-
ing an additional orbital-dependent potential within the single-particle DFT framework. DFT+DMFT,
on the other hand, enables a multiple-Slater-determinant description of the 4f shell. In this section,
we discuss their applications to MA calculations.

DFT+U approach.— To resolve the unphysical pinning of 4f states near the Fermi level in DFT,
DFT+U with a sizable Hubbard U value is the most employed method to treat the well-localized 4f
orbitals, shifting the occupied and unoccupied 4f states away from the Fermi level by ±1

2
(U−JH),

respectively.

The DFT+U total energy, which differs from the plain DFT one by a correlation contribution
from the Hubbard-type model Hamiltonian for the selected orbitals, can be written as

ELDA+U [ρ(r),n] = ELDA(ρ) + Ecorr(n), (8)

where the correlation energy is evaluated using the occupation matrix n with the screened Coulomb
interactions parameterized with U and J values as

Ecorr(n) = EHub(n)− Edc(n). (9)

Here, the Hartree-Fock-like interaction EHub(n) is self-interaction-free as the SIE of the direct
and exchange terms is exactly canceled out22; the double-counting term Edc(n), which accounts
for the interaction already included in LDA, is not uniquely defined and depends on the implemen-
tation scheme. Typically, it depends only on the trace of n; therefore, Edc(n) depends only on the
number, but not the orbital character ml, of the occupied states. It is worth noting that, besides of
the aforementioned splitting between the occupied and unoccupied 4f states by (U − JH), in the
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popular fully-localized-limit (FLL) double-counting scheme, JH also induces the spin splitting of
corresponding 4f levels, depending on the orbital’s occupancy. Overall, the Ecorr(n) in DFT+U,
which consists of the SIE-free EHub(n) and the orbital-independent Edc(n), do not explicitly ad-
dress the orbital dependence of SIE. Therefore, the SIE inherited from the original DFT in DFT+U
remains largely intact, and conventional DFT+U schemes are not expected to correct the Tb3+

ground state discussed above.

Alternative DFT+U schemes that aim to minimize the orbital dependence of SIE have been
proposed. An interesting work by Zhou and Ozoliņš modifies only the exchange term of the LDA
by including only the exchange, but not Hartree, component of Ecorr(n). The exchange-only
Ecorr(n) now contains orbital-dependent SIE and can be used to minimize the orbital dependence
of SIE by properly mixing the FLL Edc(n) exchange and LDA exchange. This method has been
demonstrated to improve the description of the 4f ground-state and other properties such as CFP
and optical properties24,32. However, such corrections, with rotational invariant Ecorr(n), does not
explicitly affect the calculated E(θ, ϕ) profile once the 4f configuration is enforced during the
rotation.

Therefore, the main effect of applying the U parameter is to shift the occupied 4f states away
from the Fermi level. This shift is necessary to be consistent with experiments and helps ensure
convergence to the desired 4f orbital occupation that respects all three Hund’s rules, which may
otherwise be disrupted by strong hybridization between 4f and ligand orbitals. This is because,
when the spin-quantization axis rotates, the U - and JH-dependent correlation energy remains con-
stant as long as the orbital occupancy remains the same in the local coordinate system. On the other
hand, in the range of U values that lead to strong hybridization between 4f and ligand orbitals, a
much stronger U dependence of MA is expected. This is because the contribution of hybridization,
in addition to the crystal electric field, becomes more significant for MA.

DFT+DMFT approach.— In contrast to DFT+U, where the Hubbard-type interaction is treated
by adding a Hartree-Fock-like mean-field term into the LDA Hamiltonian, DMFT allows a mul-
ticonfigurational description for the selected orbitals of rare-earth elements, capturing the atomic
physics of the 4f shell. Applications to rare-earth elements so far have mostly been implemented
using the Hubbard-I approximation (HIA)33, which neglects the explicit hybridization between the
impurity and the bath for simplicity and computational efficiency. DFT+HIA has been used to
investigate various properties of rare-earth materials, including cohesive, structural, spectroscopic,
and magnetic properties13,14; it has later been extended to more challenging properties such as mag-
netocrystalline anisotropy and crystal-field parameters16,17,34, with further development of methods
and implementations, e.g., the implementation of a charge self-consistency scheme35. An advan-
tage of DMFT over DFT+U is its improved description of correlation effects. However, the princi-
pal problem outlined above—the SIE of the 4f -orbitals—remains equally severe in DFT+DMFT
as in DFT+U . In Ref. [16], this issue was circumvented in an ingenious way: they replaced the
actual 4f -electron density obtained in DMFT with its spherical average by enforcing a uniform
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occupancy of the 4f ground-state multiplet before recalculating the electron density and updating
the one-electron Kohn-Sham potential in the next DFT iteration. Conceptually, this approach is
similar to our analytical model, which replaces the crystal field of an actual material with that of
spherically symmetric Gd, as described below. However, it contrasts with our ab initio calculation,
where the crystal fields and hybridizations effects on MA are evaluated based on the charge density
with properly-enforced Hund’s-rules 4f occupations.

Self-interaction correction.— The SIC method, proposed by Perdew and Zunger in 198136, was
initially inspired by the problem of reproducing the correct energy gap in insulators. They pointed
out that in the limit of one-electron systems, the exchange-correlation potential should exactly
cancel the Hartree potential, which was not the case for all functionals available at that time.
With this in mind, Perdew and Zunger proposed a method that deducts the self-interaction energy
of each orbital from the DFT functional. The resulting orbital-dependent functional was neither
a Kohn-Sham functional nor uniquely defined for many-electron systems36–39. Nevertheless, it
was conceived that this functional would offer a better approximation to the exact Kohn-Sham
functional than existing local flavors. However, it was never proven to systematically improve the
total energy. Indeed, the weighted density functional40, which is inherently self-interaction-free in
the Perdew-Zunger sense and yields improved total energy and linear response41, produces results
that are quite different from those of SIC LDA or GGA functionals.

There have been widespread applications of the SIC method across various materials, including
localized 4f systems42. For instance, Strange et al.43 demonstrated it to investigate the preferred
valence states of R-compounds by calculating the energy differences between R3+ and R2+ states.
Hughes et al.44 utilized SIC to study lanthanide contraction and magnetism in heavy rare-earth
elements. Svane et al.45 demonstrated that the SIC method provides a more accurate description of
isostructural transitions, the equilibrium lattice constants of Ce and CeP, and the zero-temperature
equations of state for Pr and Sm compared to LDA. Lüders et al.46 implemented SIC using multiple
scattering theory and applied it to the α-γ phase transition in Ce. Patrick et al.47 utilized SIC
with the disordered local moment (DLM) formalism to investigate the finite-temperature magnetic
properties of RCo5. Overall, SIC provides a parameter-free approach to enhancing the localization
of correlated orbitals, leading to a more accurate description of various properties.

However, to the best of our knowledge, there is still a lack of systematic studies demonstrat-
ing whether the application of SIC can resolve the orbital dependence of 4f SIE and correctly
reproduce the Hund’s rule ground state of 4f states in rare-earth magnets. Thus, there is no solid
foundation for expecting that such non-DFT SIC functionals would universally enforce Hund’s
rules in f -electron systems, nor is this method (as opposed to DFT+U ) commonly implemented in
modern DFT codes.
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Orbital polarization correction.— In analogy to the Stoner expression for spin polarization
−1

4
IM2

s , Brooks and coworkers48 introduced an orbital polarization term proportional to −1
2
L2,

giving rise to a one-electron eigenvalue shift (−E3Lml) for the state |ml⟩. Here, the Racah pa-
rameter E3, which can be related to Slater integrals (F2, F4, and F6), plays a role analogous to the
Stoner I for spin polarization.

While this method does introduce a correction that tries to maximize the orbital moment and,
thus, technically can enforce Hund’s rules, it has no direct first-principles justification. Various
attempts31,49 to derive an OPC have resulted in formulations that, while potentially useful, differ
from the suggested form. To the best of our knowledge, the more elaborate OPC schemes beyond
the original description of Brooks and coworkers are neither implemented in standard codes nor
universally tested.

The original OPC prescription is implemented in WIEN2K code and we applied it to TbV6Sn6.
It appears that achieving the Hund’s rule state using the OP method is quite challenging, if not
impossible. In the minority spin channel, |ml = 2⟩ levels remain the lowest unless a very high OP
parameter is applied to promote the occupation of the |ml = 3⟩ state. However, since the orbital
polarization term is spin-independent, such a large OP parameter also causes large orbital polariza-
tion in the majority-spin channel, resulting in partial occupation in the majority-spin channel. As
a result, with this OPC scheme, we are not able to obtain the correct 4f ground state that satisfies
Hund’s rules.

Thus, we conclude that neither the SIC nor the OPC method, at least by itself, is useful for
extensive calculations of MA in 4f -metal compounds. Therefore, we will pursue the idea discussed
above of calculating MA in an artificially stabilized, computationally-metastable orbital state that
respects Hund’s rules.

4f anisotropy: Benchmarking Total Energy Calculation
To systematically benchmark the validity of MA calculations, we further investigate several isostruc-
tural systems, including the two most important permanent magnet systems: RCo5 and R2Fe14B.
Among them, SmCo5- and Fe-rich Nd2Fe14B-based magnets are the most successful permanent
magnets so far. We will show that the rare-earth MA in these systems can be well described using
DFT+U .

Various methods, including DFT+U , SIC47, and DMFT in the form of Hubbard I16,17, have been
employed to investigate the rare-earth MA in these systems, especially for SmCo5 due to its impor-
tance and a smaller RCo5 unit cell. However, despite the wide application of simplistic DFT+U ,
the systematic MA study of isostructural series with heavy-R elements is, to the best of our knowl-
edge, rare. Moreover, most of the previous calculations in the literature did not discuss the details
of the converged 4f configuration or were carried out without enforcing Hund’s rules; the cal-
culated orbital moments can deviate significantly from SRM due to the orbital-dependent SIE in
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DFT+U and the corresponding failure to reproduce Hund’s rules being ignored. Consequently, the
reported orbital magnetic moment and MA values are scattered and hard to evaluate, casting doubt
on the validity of DFT+U applications for rare-earth MA.

Therefore, here we want to fill this gap by systematically benchmarking MA calculations with
the SRM model using DFT+U . Such benchmarking is also necessary if we want to compare with
more sophisticated approaches such as DMFT or other methods and evaluate their improvement.

Here, we focus on the rare-earth MA in these systems, although the transition-metal sublattice
MA is also important and of interest by itself50. For example, in RCo5, the Co sublattice also
contributes a large easy-axis anisotropy, as YCo5 represents one of the largest 3d MA systems.
However, plain DFT underestimates the MA of Co sublattices and only gives a value between
1
4

and 1
3

of the experimental value in RCo5
51. Orbital polarization34,52 or applying an additional

Hubbard U interaction on Co-3d orbitals in DMFT53 or DFT+U has been used to improve the
agreement between calculation and experiments.

RCo5 compounds.— Figure 2 shows the calculated total energies E(θ, ϕ) in RCo5 as functions
of spin-quantization direction characterized by the polar angle θ and the azimuthal angle ϕ. Besides
the heavy R elements, we also consider R = Sm and Nd for comparison with existing experimental
data. In contrast to other RCo5 compounds, GdCo5 with a spherical Gd-4f charge exhibits a very
small easy-axis MA, contributed mostly by the Co sublattices. The energy minimum occurs at
θ = 0°, [0 0 1], for Er and Sm, and at θ = 90° for all other compounds. This suggests that RCo5

has an easy-axis MA for R = Er and Sm, while an easy-plane MA for R = Tb, Dy, Ho, and Nd.
The calculations for all the compounds accurately reproduce their experimental easy directions
measured at low temperatures54–57, demonstrating the effectiveness of MA description in SRM
through DFT+U .

HoCo5 shares a similar MA profile with NdCo5 but has an opposite MA profile to ErCo5. This
can be understood as Ho3+ with a 4f 3,↓ configuration and Nd3+ with a 4f 3,↑ configuration having
a similar aspherical charge density in the single-Slater-determinant description of DFT, if one
ignores the difference between their radial wavefunctions. The nearly perfect opposite MA profiles
of HoCo5 and ErCo5 reflect the particle-hole symmetry also found in HoMn6Sn6 and ErMn6Sn6

6.

Interestingly, all RCo5 compounds exhibit a sizable in-plane MA, suggesting a significant higher-
order CFP A6

6. Among all R elements, TbCo5 has the smallest in-plane MA, while NdCo5 shows
the strongest in-plane MA, almost equal in amplitude to the out-of-plane MA. Notably, a large
in-plane MA in NdCo5 has been observed experimentally58,59 and has also been reproduced in a
recent DFT+DMFT study17. Assuming a fixed CFP A6

6 for the isostructural RCo5, the magni-
tude of in-plane MA correlates well with the element’s multipole moment Q6, with the largest
value found in Nd and the smallest in Tb. However, our calculations overestimate the in-plane
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anisotropy of NdCo5 due to inherent limitations of DFT, which can be alleviated by employing a
multiple-Slater-determinant approach.

It is worth noting that the in-plane MA in SmCo5 would vanish in a conventional CFP model
using the lowest multiplet |L = 5, S = 5

2
, J = 5

2
,mJ⟩, as the Stevens operator O6

6 vanishes for
J = 5

2
, unless the J mixing due to multiplet interaction is considered. The non-zero in-plane

MA also reflects a difference between the many-body treatment and the single-Slater-determinant
description of DFT for the Sm ion.

R2Fe14B compounds.— R2Fe14B compounds crystallize in a tetragonal crystal structure with
space group P42/mnm (no. 136). There are two inequivalent R sites, denoted by Wyckoff sites
4g and 4f . The primitive cell consists of four formula units. Experimentally, the easy directions of
R2Fe14B at low temperatures are easy-axial for Tb and Dy, conical for Ho and Nd, and easy-plane
for Er and Tm60.

Figure 3 shows the MA calculated in R2Fe14B with the spin quantization direction rotating from
[001] to [100] and then to [110] directions of the tetragonal crystal structure. The calculated easy
directions again all agree with experimental observations. Notably, for the in-plane MA, R2Fe14B
compounds show somewhat smaller values than those in RCo5.

Remarkably, very strong easy-axis MA is obtained for R=Tb and Dy. In fact, in practice, a small
amount of these two heavy R elements is often required to enhance the coercivities of R2Fe14B-
based magnets for real applications. Similar to RCo5 and RMn6Sn6, the calculated E(θ, ϕ) profiles
of R2Fe14B also exhibit perfect particle-hole symmetry for R =Ho and Er.

Experimentally, it was found that the net magnetization in Nd2Fe14B cants away from the c
axis toward the [110] direction by an angle of θ = 30°, measured at 4K. This is consistent with
the calculated energy minimum occurring at θ = 30° when the spin rotates from [001] to [100],
as shown in Fig. 3 We further confirm that rotation from [001] toward [110] produces a slightly
deeper energy minimum at θ = 30° (not shown), thus reproducing exactly the experimental easy-
cone angle. The contribution from the two inequivalent Nd sites to the MA is also of great interest.
It has been argued that the 4f and 4g sites have negative and positive contributions, respectively, to
the MAE61. However, we found that contributions from both sites show an energy minimum near
θ = 30° (see Supplementary Fig. 1).

It is interesting that in some light-R elements, DFT—despite being an approximation that projects
the Hund’s-rules ground state onto a dominant single Slater determinant—successfully reproduces
the easy magnetization directions in SmCo5 and NdCo5, as well as the nontrivial easy-cone angle
of Nd2Fe14B. We see here that simply enforcing Hund’s rules already gives the correct easy di-
rection, an improvement over conventional DFT+U . However, the magnitude of the MAE can be
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significantly overestimated for light rare earths, such as the easy-axis anisotropy in SmCo5 and the
in-plane anisotropy in NdCo5. These errors can be corrected by explicitly accounting for multiple
Slater determinants (this will be the subject of a future publication).

RFe12 compounds.— Fe-rich RFe12-based compounds have recently attracted significant in-
terest in the permanent magnet community62. In general, these compounds typically form as
RFe12−xMx, requiring a third element M = Ti, V, Cr, Mn, Mo, W, Al, or Si to stabilize a body-
center-tetragonal ThMn12-type (I4/mmm space group, no. 139) structure. Experimental easy-axis
information for RFe11Ti is available for comparison, though there are some disagreements in ex-
perimental reports60,63–65. For example, both easy-plane and easy-cone MA have been reported for
R = Tb, while both easy-axis and easy-cone MA have been reported for R = Ho at low tempera-
tures.

To compare with experiments, we calculated the MA in the hypothetical composition of RFe12,
ignoring the third element for simplicity. We found that the calculated MAE per R atom of RFe12
is more than five times smaller than in RCo5 and R2Fe14B. The calculated MA, as showin in Fig. 4,
is easy-plane for R = Tb and Dy, and easy-cone for R = Ho, which agrees with the experimental
findings reported60,63. For R = Er and Tm, however, our calculated easy directions for RFe12
do not exactly match the experimental results for RFe11Ti. Experiments found that the MA is
easy-cone and easy-axis, respectively, for R = Er and Tm in RFe11Ti. In contrast, for R = Er,
our calculations indicate a local minimum at the experimental easy direction, but the energy is
slightly higher than that of the in-plane direction. Similarly, for R = Tm, the easy-axis and in-
plane directions have nearly identical energies. The discrepancy is likely due to the presence of
the Ti atom in the real materials; the chemical effect and induced crystal structure distortion can
modify the crystal field of the R element and MA66. More comprehensive experiments and MA
calculations, incorporating more realistic experimental structures and compositions, are desired to
further elucidate MA in RFe12-based systems.

RMn6Sn6 and RV6Sn6 compounds.— Besides these three permanent magnet systems, we have
also previously investigated the rare-earth MA in RMn6Sn6 and RV6Sn6 compounds6,27, which
have recently garnered significant attention as platforms for topological magnets. For all of these
different isostructural series, the calculated easy directions are consistent with experiments, as long
as reliable experimental measurements are available for comparison. Among these two dozen com-
pounds, in addition to the easy-axis and easy-plane anisotropy, some of them exhibit non-trivial
easy-cone angles, e.g., ∼ 30◦ in Nd2Fe14B and ∼ 45◦ in DyMn6Sn6 and HoMn6Sn6. Moreover,
we found that not only the easy directions but also the magnitudes of MA are comparable to exist-
ing experiments26,27,67. Therefore, our benchmarking of MA in all of these systems validates the
usefulness of applying simplistic DFT+U total energy calculations to investigate rare-earth MA,
provided that Hund’s rules are enforced.
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4f anisotropy: Perturbation theory for fast scanning
Perturbation theory (PT) on top of magnetic force theory has been widely used to calculate and
spatially resolve MA in non-4f systems, providing a microscopic understanding of MA. Since
SOC is much smaller than the CF in d-electron systems and is treated as a perturbation, one obtains
K = 1

2
KSO according to second-order perturbation theory7,8,68. In other words, the total MA is

half of the anisotropy of the SOC energy, KSO. Unlike total MA, KSO can be resolved into sites,
orbitals, spin channels, and bandfillings7,8,69.

In contrast to d-electron systems, in heavy R systems, CF is much smaller than SOC and should
be treated as a perturbation. When the spin rotates, the 4f charge is locked to the spin by the
dominant SOC and rotates rigidly with the spin. As a result, the SOC energy ESO remains the
same during the rotation, and the MA, in principle, can be calculated as K = KCF in first-order
perturbation theory.

The challenge lies in the accurate estimation of CF energy in open-4f -shell elements using
DFT+U methods, where CF is overestimated by an order of magnitude, as the aspherical 4f charge
induces a much larger CF splitting than the ligands. A quick and rough fix is to use the CF levels
of isostructural compounds with R = Gd (f 7), whose half-filled 4f orbitals give a spherical charge
and minimize the CF splitting caused by 4f electrons themselves. It is worth noting that, in a
similar spirit, Yttrium (f 0) analogues of rare-earth/transition-metal magnets have been used to
investigate their CFPs70,71. However, for our approach, Gd is better suited for estimating the CF
splittings in magnetic rare earths because the occupied 4f states are significantly more localized
than the unoccupied ones. Using the occupied 4f levels in Gd provides a much more accurate
estimate compared to relying on the high-lying 4f bands of Y.

Obviously, one should expect that the ligand-only-induced CF splittings would vary across the R
series, deviating from the values in the Gd counterpart. However, even with this rough estimation
of CF, we have shown that the perturbation treatment of 4f MA provides a good description of MA
in RMn6Sn6

6. To further demonstrate the validity of PT application on rare-earth anisotropy, we
next model the 4f uniaxial MA in RCo5 and compare it with the 4f -only contributions obtained
from total energy calculations.

Figure 5 compares the 4f MA calculated using total energy in DFT and CF energy in PT. The
latter is calculated using:

E(θ, ϕ) =
∑

m∈Occ. 4f

⟨Ψθ,ϕ
m |HCF|Ψθ,ϕ

m ⟩. (10)

Here, ECF(θ, ϕ) is obtained by evaluating the original CF Hamiltonian in the rotated wavefunc-
tions, or, equivalently, the rotated CF Hamiltonian by (−θ,−ϕ) in the original wavefunctions. For
all R elements, we use the CF levels of GdCo5 at Γ, obtained from scalar-relativistic DFT+U cal-
culations . Due to the high symmetry of the RCo5 crystal structure, the HCF is diagonal in the
real-spherical-harmonics basis at Γ. Therefore, the eigenvalues of the seven occupied 4f states at
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Γ in GdCo5 are sufficient to construct the Hamiltonian HCF in the complex-harmonics basis, which
serves as the natural basis for the SOC Hamiltonian. The rotated wavefunctions and Hamiltonian
can be calculated using the Wigner rotation matrix.

Given that the PT model assumes the Gd-4f crystal field splitting for all R compounds, the
agreement between the DFT and PT model is quite reasonable. Notably, the deviation increases
from Tb to Yb as one moves farther away from Gd. Our results further demonstrate the validity of
the PT approach in describing rare-earth MA.

Due to its simplicity, such PT calculations can be used for 1) fast screening of MA and 2)
for understanding the origin of rare-earth MA in a system. For example, large easy-axis MA is
required for many applications, such as permanent magnets and topological magnets. Total energy
calculations are more demanding, and special care must be taken to ensure convergence to the
desired 4f configurations at every spin direction. In this context, before conducting more reliable
total energy calculations, PT calculations can be used for a rapid initial screening of rare-earth
MA to identify potential easy-axis rare-earth MA in unexplored crystal structures. Furthermore,
the PT approach can be used to decompose MA contributions into those from different rare-earth
sites, such as in R2Fe14B, and analyze how the MA changes with other tuning parameters, thereby
aiding in the understanding of the origin of MA in a system.

DISCUSSION

In summary, using TbMn6Sn6, we illustrate a general challenge of calculating rare-earth mag-
netocrystalline anisotropy in DFT and related methods, which often fail to reproduce the cor-
rect Hund’s-rules ground state of rare-earth elements due to significant orbital dependence of the
self-interaction error for strongly localized 4f orbitals, and the lack of explicit proper orbital po-
larization treatment. The true ground state appears as a metastable state that lies several hun-
dred meV above, resulting in an incorrect 4f orbital occupation associated with an incorrect 4f
charge density, which in turn leads to incorrect magnetocrystalline anisotropy. However, as the
self-interaction error and orbital polarization are, in principle, largely rotationally invariant, the
anisotropy of the true ground state might be expected to remain correct if Hund’s rules are en-
forced by hand.

We have benchmarked this approach on materials with rare-earth atoms with saturated moments
where Hund’s rules are expected to be satisfied and the single Slater determinant description is
suitable. Notably, in RCo5, R2Fe14B, RFe12, and other compounds, the calculated easy direc-
tions (including easy axes, planes, and conical angles) have all agreed resonablly well with low-
temperature measurements.

Besides total energy calculations, we also demonstrate the application of perturbation theory for
evaluating rare-earth anisotropy. The good agreement between the perturbation approach and total
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energy calculations shows that it can be a useful tool for fast screening of new systems. More-
over, in analogy to using the SOC anisotropy to spatially resolve 3d anisotropy, such perturbation
treatment of crystal field energy can be used to resolve anisotropy in systems that contain multi-
ple nonequivalent rare-earth sites, aiding in the understanding the microscopic origin of rare-earth
anisotropy.

METHODS

Total energy calculations of magnetocrystalline anisotropy
To evaluate the MA, we use DFT to compute the total energies E(θ, ϕ) as a function of the
spin-quantization direction, characterized by the polar angle θ and the azimuthal angle ϕ. Un-
like anisotropy in 3d-electron systems, where SOC is generally much weaker than CF and can be
treated as a perturbation—allowing the use of the force theorem for MAE calculations—fully self-
consistent DFT+U+SOC calculations with various spin directions are required to compute the MA
of 4f systems. Additionally, the Hund’s rule states are enforced for all spin quantization directions
in all rare-earth elements.

Crystal structure
Experimental crystal structures were used for all calculations. Detailed structural parameters, in-
cluding lattice constants, atomic positions, and corresponding references, are provided in Supple-
mentary Tables S1, S2 and S3. Note that RFe12 is a hypothetical compound, as real compounds
always contain a small amount of a third element, such as in RFe11Ti, to stabilize the structure.

DFT+U+SOC calculation details
The DFT calculations were performed using the full-potential linear augmented plane wave (FP-
LAPW) method, as implemented in WIEN2K 72. The generalized gradient approximation (GGA)
of Perdew, Burke, and Ernzerhof73 was used for the exchange and correlation potentials.

The strongly correlated R-4f electrons were treated using the DFT+U method with the fully
localized limit (FLL) double-counting scheme19. Sizable U values (8–10 eV) were employed to
shift the occupied 4f states away from the Fermi level. SOC was included using the second-
variational method74–76. Compared to the scalar-relativistic case, SOC explicitly couples the spin-
up and spin-down channels and reduces the symmetry.

To generate the self-consistent potential and charge, we employed RMT ·Kmax = 9, 8, and 9 for
RCo5, R2Fe14B, and RFe12, respectively, with muffin-tin radii RMT = 2.8, 2.1, 2.1, and 1.6 a.u. for
R, Fe, Co, and B atoms, respectively. The calculations were performed with 7200, 400, and 4800
k-points in the full Brillouin zone (FBZ) for RCo5, R2Fe14B, and RFe12, respectively. A further
increase in the number of k-points had a negligible effect on the results. For k-space integrations
to determine the Fermi level, the tetrahedron integration method with Blöchl corrections77 was
used. The calculations were iterated until the charge difference between consecutive iterations was
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smaller than 10−5 e and the total energy difference was below 10−3 mRy/cell.

For perturbation modeling, the CF levels of Gd-4f states of corresponding Gd-containing com-
pounds are calculated without SOC in DFT+U and used for all R elements. Therefore, our per-
turbation model ignore the dependence of the CF on R elements. Additionally, we performed MA
calculations for corresponding Gd compounds (or treated 4f as a spherical open-core) to obtain
the non-4f contributions to the total MA6.

Enforcing Hund’s Rule for the 4f States: with and without constraints
To enforce the Hund’s rule state for 4f electrons, we performed DFT+U+SOC calculations with
constraints. Specifically, we initialized and then froze the 4f occupancy matrix (and consequently,
the potentials dependent on it) for each spin direction until the system reached convergence.

Once self-consistency was achieved, the constraint could be lifted, allowing additional iterations
to fully relax the 4f states near the targeted Hund’s rule states. With sizable U values of 8–10 eV,
the Hund’s rule state solution remained stable even after the constraint was removed. Special
care, such as reducing the mixing parameters, was sometimes required to ensure that the solution
remained in the designated state during subsequent iterations after the constraint was lifted, which
could result in a slow process.

However, key results, including magnetic moments and anisotropy, remained nearly unchanged
when comparing the constrained and relaxed cases (See Supplementary Discussions for details).
Therefore, we primarily report the constrained calculations in this work. On the other hand, for
small U values, the constraint often became necessary and could not be removed. Some 4f con-
figurations can become extremely difficult—or even impossible—to stabilize without a constraint,
as strong hybridization could destabilize the targeted states.
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20. Czyżyk, M. T. & Sawatzky, G. A. Local-density functional and on-site correlations: The
electronic structure of La2CuO4 and LaCuO3. Phys. Rev. B 49, 14211–14228 (1994).

21. Solovyev, I. V., Dederichs, P. H. & Anisimov, V. I. Corrected atomic limit in the local-density
approximation and the electronic structure of d impurities in Rb. Phys. Rev. B 50, 16861–
16871 (1994).

22. Shick, A. B., Liechtenstein, A. I. & Pickett, W. E. Implementation of the LDA+U method
using the full-potential linearized augmented plane-wave basis. Phys. Rev. B 60, 10763–10769
(1999).

23. Singh, D. J. & Nordstrom, L. Planewaves, Pseudopotentials, and the LAPW method (Springer
Science & Business Media, 2006).
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Table 1: The coefficients amk, where m denotes the complex spherical harmonics.
The coefficients ãm2 = am2 + 0.6681am4 + 0.4943am6 is calculated by assuming the ratio
between F2, F4, and F6 values as 1 : 0.6681 : 0.4943. The orbital-dependent part of
ϵHm, ∆ϵHm (in units of meV), is then calculated by further assuming F2 = 10 eV, with the
value of the |±2⟩ state as the reference zero. For complex |m⟩ states, the ordering is
|±2⟩ < |±1⟩ < |±3⟩ < |0⟩.
m am2 am4 am6 ãm2 ∆ϵHm
0 0.0711 0.0331 0.0543 0.1201 876
±1 0.0400 0.0009 0.0306 0.0557 232
±2 0 0.0450 0.0049 0.0325 0
±3 0.1111 0.0083 0.0001 0.1167 842

Table 2: Angular part of the integration of ϵx, denoted as Ω(ϵxm), for the f 1 configu-
ration, along with the exchange-correlation energy Exc

m and total energy ETot
m of free

Tb atoms calculated using DFT+U . ∆Ω(ϵxm) represents the Ω(ϵxm) values relative to the
|m = 0⟩ state. Similarly, Tb Exc

m and ETot
m are calculated relative to the |m = 0, ↓⟩ state.

SOC is not included in the DFT+U calculations.
m 0 ±1 ±2 ±3

Ω(ϵxm) -0.5314 -0.4903 -0.4801 -0.4963
∆Ω(ϵxm) 0 0.0411 0.0513 0.0351

Exc
m (meV) 0 406.1 757.3 689.0

ETot
m (meV) 0 32.9 73.2 497.4
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Fig. 1: Magnetocrystalline anisotropy in TbMn6Sn6, represented by the variation of magnetic
energy as a function of spin-axis rotation, calculated using DFT+U . The true ground state of
Tb3+ (4f 8 = 4f 7↑ + 4f 1↓), following Hund’s rules, appears as a metastable state in DFT+U . The
anisotropy calculated for two configurations, the true ground state 4f 1,↓

|ml=3⟩ and the DFT+U ground
state 4f 1,↓

|ml=2⟩, is represented by the blue and red lines, respectively. The two 4f 1,↓ configurations
are illustrated with polar plots of the corresponding complex spherical harmonics Y m

l=3(θ, ϕ), where
the radius represents the amplitude and the color represents the phase at the point (θ, ϕ).
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Fig. 2: Variation of magnetic energy (in meV/f.u.) calculated in DFT+U as a function of
spin-axis rotation in RCo5 with R = Gd, Tb, Dy, Ho, Er, Tm, Yb, Sm, and Nd. The spin
direction is characterized by the polar angle θ and the azimuthal angle ϕ. The lattice vector c ([0
0 1]) direction is along the ẑ direction and is denoted by θ = 0°, while the lattice vector a ([1 0
0]) direction is denoted by θ = 90° and ϕ = −30°. The calculations are performed in DFT+U
with U = 10 eV on the 4f states of all R elements to satisfy Hund’s rules. For all the depicted
compounds, the calculated easy directions are consistent with experimental observations.
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Fig. 3: Variation of magnetic energy (in meV/f.u.) calculated in DFT+U as a function of
spin-axis rotation in R2Fe14B with R = Gd, Tb, Dy, Ho, Er, Tm, and Nd. The spin direction is
characterized by the polar angle θ and the azimuthal angle ϕ. The lattice vector c ([0 0 1]) direction
is along the ẑ direction and denoted by θ = 0°, while the lattice vector a ([1 0 0]) direction is
denoted by θ = 90° and ϕ = 0°. The calculations are performed in DFT+U with U = 8 eV on the
4f states of all R elements to satisfy Hund’s rules. For all the depicted compounds, the calculated
easy directions are consistent with experimental observations.
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Fig. 4: Variation of magnetic energy (in meV/f.u.) calculated in DFT+U as a function of
spin-axis rotation in RFe12 with R = Tb, Dy, Ho, Er, Tm. The spin direction is characterized
by the polar angle θ and the azimuthal angle ϕ. The lattice vector c ([0 0 1]) direction is along
the ẑ direction and denoted by θ = 0°, while the lattice vector a ([1 1 0]) direction is denoted by
θ = 90° and ϕ = 45°. The calculations were performed using DFT+U with U = 10 eV applied to
the 4f states of all R elements, with Hund’s rules enforced on the 4f states.
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Fig. 5: Single-ion anisotropy of R-4f in RCo5 calculated using the perturbation model and
DFT+U . The anisotropy is represented as a function of the spin quantization angle, characterized
by the polar angle θ, in RCo5, modeled with perturbation theory using CF levels from GdCo5.
The CF levels of GdCo5 are calculated using DFT+U without SOC, with U ≈ 10 eV. In this
analysis, the energy difference between the |ml = ±3⟩ 4f levels is disregarded, as it reflects in-
plane anisotropy but not uniaxial anisotropy.
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