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Density functional theory (DFT) and its extensions, such as DFT+U and DFT+dynamical
mean-field theory, are invaluable for studying magnetic properties in solids. However, rare-
earth (1) materials remain challenging due to self-interaction errors and the lack of proper
orbital polarization. We show how the orbital dependence of self-interaction error contra-
dicts Hund’s rules and plague magnetocrystalline anisotropy (MA) calculations, and how
analyzing DFT states that respect Hund’s rules can mitigate this issue. We benchmark MA
in RCo;, R-Fe 4B, and RFe,,, extending prior work on RMngSng, achieving excellent agree-
ment with experiments. Additionally, we illustrate a semi-analytical perturbation approach
that treats crystal fields as a perturbation in the large spin-orbit coupling limit. Using Gd-4 f
crystal-field splitting, this method provides a microscopic understanding of MA and enables
rapid screening of high-MA materials.



INTRODUCTION

Among all the elements, the open-shelled lanthanides provide the largest magnetocrystalline anisotropy
(MA), due to the strongly-localized nature of 4 f orbitals and strong spin-orbit coupling (SOC),
which can evolve substantially, including changing sign while varying the rare earth (R) element

in an isostructural series of compounds. The unparalleled strength and tunability of rare-earth MA
allows for a wide range of applications, ranging from conventional high-performance permanent
magnets ' to recent rare-earth-containing topological magnets>S. To further exploit existing sys-
tems and explore new ones, ab initio methods that can provide a microscopic understanding of
rare-earth anisotropy and reliably predict new materials are highly desired.

The MA originates from the interplay between SOC and the crystal field (CF)”®. The 4 f states
are the most-localized among all shells and generally well-shielded by the outermost electrons,
resulting in a small CF splitting (A) of tens of meV. Considering the relatively large SOC strength
&, CF effects can be treated as a perturbation, and the 4 f orbital largely remains atomic-like. The
mechanism of R MA can be understood in the following picture. When the spin of 4f electrons
rotates, in the first approximation, the charge of the strongly-correlated 4 f electrons remains the
same shape and follows the spin, as the spin and orbitals are locked by the large SOC. The MA then
arises from the energy variation corresponding to the rotating aspherical 4 f cloud under the ligand-
induced CF potential. In the conventional CF theory, this energy dependence on spin direction
(0, ¢) can be written as:

B(0.0) = [ drpus(r:0,6)Vies(r) = 3 AT QP(6.9). M)

Here, the CF potential of isostructural compounds is characterized by CF parameters (CFPs) A}",
while the asphericity of the rotating 4 f charge, evolved with 4 f orbital filling, is characterized by
multipole moment @} (6, ¢). The multipole moment can be expressed in terms of the Stevens coef-
ficients O, the operator equivalents O}, and the rare-earth radii (r') 4, e.g., Q¥ = ©;(r'),; O?°-11.
Overall, the 4f electron configurations in solids, especially those of heavy R elements, generally
obey the same Hund’s rules as in a free ion, according to the so-called standard rare-earth model
(SRM) %14 The MA of 4f elements can reach the same order of magnitude as the CF strength,
which typically ranges in tens of meV.

The atomic nature of the strongly-correlated, localized 4 f electrons poses great challenges for
mean-field methods such as density functional theory (DFT). Various approaches, including the 4 f-
open-core method, DFT+U %!°, dynamical mean-field theory (DMFT)!®!7, and quasiparticle self-
consistent GW (QSGW)!'®, have been employed depending on the specific rare-earth properties
being targeted. DFT+U is the simplest and most widely-used method to treat strong correlations.
Regarding the 4f MA, the primary issue with DFT+U is that it is known to fail in reproducing
the experimental ground-state 4f configuration'>!°2*  Specifically, it fails to reproduce Hund’s
second rule, which maximizes orbital polarization.



In general, DFT+U can have many metastable 4 f-configuration solutions '*?*?%, and the correct

ground state often appears in DFT+U as a metastable state that is hundreds of meV higher. As
discussed in detail, for instance, in Ref. [24], the root of the problem is the orbital-dependent self-
interaction error (SIE), stemming from the fact that each Kohn-Sham particle interacts with the
total charge density, including its own. This orbital dependence of SIE is particularly significant
for 4 f orbitals, leading to incorrect orbital occupancies and 4 f charge density, and consequently
to incorrect MA.

A key question arises: Can DFT+U accurately describe the MA of tens of meV, even though
it overestimates the energy of the true ground state by hundreds of meV? Our recent systematic
study on topological magnetic compounds RMngSng with heavy-R elements has shown promise®,
provided that their Hund’s-rules ground states are enforced. Not only are the easy directions of
the entire series of compounds reproduced if Hund’s rules are enforced®, but the calculated MAE
amplitude also agrees reasonably well with experiments?®?’. However, it remains unclear how
well the delicate MA in other rare-earth-containing magnets can be described using the SRM in the
simplistic DFT+U framework. To better establish the validity and effectiveness of these methods,
systematic investigations of MA in more rare-earth-based compounds are needed.

In this work, we first review and illustrate how the orbital dependence of SIE affects the 4 f
ground state and MA calculation in DFT-based methods. We then discuss various methods that
attempt to enforce Hund’s rules, such as DFT+U, self-interaction corrections (SIC), and orbital po-
larization corrections (OPC), and how the additional terms therein affect the MA calculations. We
further systematically benchmark DFT+U calculations of MA in several isostructural R-transition-
metal (R-TM) intermetallic series, including well-established permanent magnet systems, RCos,
RyFe 4B, and RFe; > with heavy R elements. In all cases, with the enforcement of Hund’s rules,
DFT+U calculations provide a useful description of the MA without the need to include SIC
and OPC. Finally, we demonstrate that the evolution of MA can be modeled purely analytically
based on a perturbative treatment of the crystal field using the single-particle 4 f levels obtained in
DFT+US.

RESULTS

SIE effects on 4f Ground state and MA in DFT: TbMnsSng as an example

Many-body effects are crucial for accurately describing the strongly-correlated 4 f electrons. Es-
pecially for light rare-earth elements, multiple Slater determinants are typically required to capture
their complex electronic structure. Here, in this study, we focus primarily on the heavy R elements
with a large R-TM exchange coupling because their ground states effectively satisfy Hund’s rules,
and the |L, S, J,m; = J) state with J = L + S can, in principle, be represented using a sin-
gle Slater determinant, as in methods such as DFT?8. However, even for these “relatively easier”
heavy-R cases, challenges arise in describing 4 f electrons, specifically related to the SIE and the
corresponding violation of Hund’s rules.



To gain a quantitative understanding of how SIE affects the ground state and MA, we illustrate
this with a DFT+U calculation of TbMngSng—a recently discovered quantum magnet with very
strong easy-axis anisotropy. According to Hund’s rules, Tb3* (4f%) is expected to have a fully-
filled 4 f majority-spin channel and one electron in the minority spin channel, with 4 f\}v’jz=3>' This
expectation is consistent with neutron scattering and magnetization measurements of TbMngSng 2
and TbVSng?’. However, DFT+U instead found a 4f ground state corresponding to 4 fﬁ;i:m 6.27,
The experimental ground state is approximately Ae = 340 meV higher in TbMngSng, appearing
as a metastable state in DFT+U (performed with SOC included and the experimental out-of-plane
spin orientation at U = 10eV). Considering that the SOC included in calculation already lowers
the [3) state relative to |2) by approximately 3£ ~ 120 meV, the orbital dependence of SIE for
these two orbitals is about 460 meV, which is more than one order of magnitude larger than MA.

The SIE, while sizable, is practically independent of the crystallographic environment and is
rotationally invariant. The energy difference between these two 4 f configurations remains essen-
tially the same as for the free Tb** ion, where we found Aé€,om = 350 meV using a large supercell
calculation. Moreover, to ensure numerical accuracy, we calculated the variation of A€o, With
spin rotation and found that the change is negligible. In other words, the SIE is spin-rotationally
1nvariant.

If, as we just established, the SIE is rotationally invariant, one may work around that by cal-
culating the MA (and similar effects) not in the DFT ground state, but in a metastable state that
respects Hund’s rules. This can be achieved by starting DFT+U calculations from a 4 f occupation
matrix constructed according to the desired orbital state, and by monitoring and controlling the or-
bital occupancy through the self-consistency process to ensure convergence closely to the targeted
state. Such capability is easy to implement and is generally available in popular DFT packages,
including WIEN2K and VASP?.

Figure 1 shows the total energy variation as a function of the spin-quantization axis rotation,
characterized by polar angle 6, calculated for the two 4 f configurations corresponding to the ex-
perimental and DFT ground states, respectively. As illustrated in Fig. 1, at each polar angle, using
the procedure discussed above, the calculations converge to solutions closely approximating the
4 f\;’i:@ and 4 fﬁ;fl:m configurations, respectively, in the local coordinate system (with the z-axis
along the local spin direction). The MA profiles calculated with these two solutions are markedly
different. Calculations using the |m; = 2) DFT+U ground state yield an incorrect easy-cone MA,
while those calculated with the |m; = 3) configuration, the true ground state but metastable in

DFT+U calculations, correctly host a strong easy-axis MA.

This is not surprising, as the |m; = 2) and |m; = 3) configurations lead to different asphericities
of the 4f charge distribution, or equivalently, different multipole moments ();, which result in
drastically different MA. Therefore, for accurate MA calculations, it is crucial to enforce solutions
that represent the correct 4 f orbital configurations.



Origin of erroneous Th-4 f ground state: orbital dependence of SIE

The origin of the erroneous fl ground state in DFT calculations for the Tb3* ion is due to
the strong orbital dependence of the SIE for 4f orbitals. The Tb3* atom, with a 4f® configura-
tion, has a fully-occupied 4 f majority-spin channel that produces an s-type spherical charge and
potential. In a single-particle Hamiltonian, without considering SOC, the seven 4 f states should
be degenerate if the potential is orbital-independent, as in plain DFT, and spherical. Therefore,
excluding self-interaction, the additional electron in the minority-spin channel, f+, experiences
a nearly spherical potential that does not lift the degeneracy of the seven 4 f orbital states. This
is the same reason behind the well-known issue of 4f states being pinned at the Fermi level in
DFT calculations unless a sizable Hubbard U interaction is introduced in schemes such as DFT+U
to polarize the occupied and unoccupied 4 f states. However, in DFT, the occupied f!*+ electron
generates an aspherical charge density that acts upon itself, as the functionals are evaluated using
the total electron density. The total SIE in the local density approximation (LDA), €“P*, originates
from the Hartree energy, Ey, and the exchange-correlation energy, F., and can be written as

6LDA — €H + EXC, (2)

where ' and €% are the corresponding SIE contributions associated with Fy; and F.., respectively.
Due to the local approximation of the unknown exact exchange-correlation functional, €' and €<
do not cancel out as they do in the Hartree-Fock method, resulting in a nonzero ¢“PA. Moreover,
the orbital dependence of €“PA is substantial for 4 f states, leading to an incorrect 4 f ground state.

Since the 4 f charge asphericity and orbital dependence of SIE for the Tb** ion (with f7T 4 f1+
configuration) are predominantly associated with the single electron in the minority-spin channel,
we now present an analytical estimation of ¢! and ¢*° for the f! configurations with various |m;)
states. Obviously, we have ¢! = Ey and € = E,. for this single-electron model. Here, we
consider the eigenstates of the f electron, where the angular part of the wavefunction is described
by complex spherical harmonics Y;™,. As we will show, € favors the |m; = 2) state, with the
energy order |2) < |1) < |3) < |0). Conversely, €*° favors the |m; = 0) state, with the energy
hierarchy |2) > |1) > |3) > |0). However, these contributions do not cancel each other out,
resulting in an overall e“P# that disfavors the [m; = 3) state.

Hartree self-interaction for f1.— For the f! single-electron state, the ¢! of the |4-m) state can

be written as: .
= - // dr, dr, PP (r2) 3)
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where the electron density can be expressed in terms of the radial and angular parts of the wave-
function as p,(r) = R3;(r)|Ysm(0,¢)[*, with m € 0,1,2,3. The Coulomb interaction can be
expanded using complex spherical harmonics as:

= Z kszHZqu 01,0V, 02,0, @



where r; = 7;(sin 6; cos ¢;, sin 6; sin ¢;, cos 6;), and - = min(ry, 75) and 7~ = max(ry, o).

Substituting Eq. (4) into Eq. (3) and separating the radial and angular parts of the integration,
we obtain:

H -
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Here, the radial integrals are represented by the Slater integrals [Fy, F», Fy, Fg|, and the angu-
lar integrals are represented by the matrix element a,,;, which can be evaluated using the Gaunt
coefficients as follows:
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= a1 [Gaunt(3, k, 3; —m, 0,m)]”. (6)
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The last step of Eq. (5) is obtained using a,,0 = 1 and assuming Fy/F, ~ 0.6681 and Fg/F, ~
0.4943.

Table 1 lists the matrix elements a,,; and the effective element a,,2, as well as the orbital-
dependent part of €, Aell ~ a,,5Fy, calculated with F;, = 10 €V, with respect to the |m; = 2)
state. Clearly, ¢! favors |m; = 42) states while disfavoring |m; = 0) and |m; = +3) states. The
small SIE of |£2) is due to the vanishing of the matrix element ay, calculated using Eq. (6), which
results from the fact that they satisfy one of the conditions for non-trivial zeros of Wigner-3;
symbols, i.e., Wigner3j(3, k, 3;m,0, —m) = 0 with k = 2.

Exchange-correlation self-interaction for f!.— The ¢, which comprises the exchange part
€* and the correlation part €, is also orbital-dependent. In general, the exchange energy has a
much larger magnitude than the correlation energy, making it the dominant contribution to €*°.
With the LDA exchange energy given by Ey[p] o< — [ p% (r), dr, the orbital-dependent €, for the
f! = |4m) states can be characterized by the angular part of the integration:

Wl

Qey,) = —/dﬂ (1Y (6, 9)%) (7)

Table 2 lists 2(€X,) values and the corresponding values with respect to the |m = 0) state, along
with the relative exchange-correlation energy E*¢ and total energy E™ of free Tb atoms calculated
using DFT+U. Clearly, €, favors the |0) minority-spin state, following the energy ordering |0) <
|+£3) < |£1) < |£2). Numerically, our DFT+U calculations for the Tb** free ion also show that
E,. strongly favors |0) state while least favoring |2) state, in agreement with AQ(€,).



Moreover, the numerical values of E™ — EX¢ listed in Table 2 follow the same ordering as Ael
listed in Table 1. Therefore, the DFT+U calculations provide numerical support for the analytical
f! model, despite the latter being a highly simplified representation of the Tb>*-4 f system, which
contains many electrons beyond the single 4 f electron in the minority-spin channel.

Overall, when combining €' and €*°, the total ¢*P* yields a much higher energy for |£3) solu-
tions compared to other |m) solutions. Specifically, € strongly favors |[+2) much more than |0)
and |+3), while € strongly favors |0). Consequently, overall e“P# results in a significantly higher
energy for |£3) states than for other states. The SOC energy, on the other hand, favors states with
large positive m; values in the minority-spin channel. While it may not be sufficient to overcome
the SIE to stabilize the true ground state of |3), it does lower the energy of the |2) state below that
of the |0) and |1) states, ultimately leading to an erroneous ground state of fﬁ)’jl:% in calculations.

DFT+U, DFT+DMFT, SIC, and OPC

Various methods have been developed and employed to improve the DFT description of 4 f elec-
trons, including DFT+U, SIC, and OPC methods. Both SIC?° and OPC?' methods can be con-
nected to the more general DFT+U method; all of these methods polarize selected local orbitals us-
ing an additional orbital-dependent potential within the single-particle DFT framework. DFT+DMFT,
on the other hand, enables a multiple-Slater-determinant description of the 4f shell. In this section,
we discuss their applications to MA calculations.

DFT+U approach.— To resolve the unphysical pinning of 4 f states near the Fermi level in DFT,
DFT+U with a sizable Hubbard U value is the most employed method to treat the well-localized 4 f
orbitals, shifting the occupied and unoccupied 4 f states away from the Fermi level by :I:% (U—Jy),
respectively.

The DFT+U total energy, which differs from the plain DFT one by a correlation contribution
from the Hubbard-type model Hamiltonian for the selected orbitals, can be written as

Erpatulp(r),n] = Erpa(p) + E“"(n), ®)

where the correlation energy is evaluated using the occupation matrix n with the screened Coulomb
interactions parameterized with U and J values as

E™(n) = E™"(n) — Eg.(n). 9)

Here, the Hartree-Fock-like interaction E'™P(n) is self-interaction-free as the SIE of the direct
and exchange terms is exactly canceled out®?; the double-counting term Fg.(n), which accounts
for the interaction already included in LDA, is not uniquely defined and depends on the implemen-
tation scheme. Typically, it depends only on the trace of n; therefore, F4.(n) depends only on the
number, but not the orbital character m;, of the occupied states. It is worth noting that, besides of
the aforementioned splitting between the occupied and unoccupied 4 f states by (U — Jy), in the
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popular fully-localized-limit (FLL) double-counting scheme, Ji; also induces the spin splitting of
corresponding 4 f levels, depending on the orbital’s occupancy. Overall, the £°°"(n) in DFT+U,
which consists of the SIE-free £'"P(n) and the orbital-independent Eq4.(n), do not explicitly ad-
dress the orbital dependence of SIE. Therefore, the SIE inherited from the original DFT in DFT+U
remains largely intact, and conventional DFT+U schemes are not expected to correct the Tb3*+
ground state discussed above.

Alternative DFT+U schemes that aim to minimize the orbital dependence of SIE have been
proposed. An interesting work by Zhou and Ozolin$ modifies only the exchange term of the LDA
by including only the exchange, but not Hartree, component of £°(n). The exchange-only
E°°(n) now contains orbital-dependent SIE and can be used to minimize the orbital dependence
of SIE by properly mixing the FLL Fq4.(n) exchange and LDA exchange. This method has been
demonstrated to improve the description of the 4 f ground-state and other properties such as CFP
and optical properties>*32. However, such corrections, with rotational invariant £<°™*(n), does not
explicitly affect the calculated F(0, ¢) profile once the 4 f configuration is enforced during the
rotation.

Therefore, the main effect of applying the U parameter is to shift the occupied 4f states away
from the Fermi level. This shift is necessary to be consistent with experiments and helps ensure
convergence to the desired 4f orbital occupation that respects all three Hund’s rules, which may
otherwise be disrupted by strong hybridization between 4f and ligand orbitals. This is because,
when the spin-quantization axis rotates, the U- and Ji-dependent correlation energy remains con-
stant as long as the orbital occupancy remains the same in the local coordinate system. On the other
hand, in the range of U values that lead to strong hybridization between 4f and ligand orbitals, a
much stronger U dependence of MA is expected. This is because the contribution of hybridization,
in addition to the crystal electric field, becomes more significant for MA.

DFT+DMFT approach.— In contrast to DFT+U, where the Hubbard-type interaction is treated
by adding a Hartree-Fock-like mean-field term into the LDA Hamiltonian, DMFT allows a mul-
ticonfigurational description for the selected orbitals of rare-earth elements, capturing the atomic
physics of the 4f shell. Applications to rare-earth elements so far have mostly been implemented
using the Hubbard-I approximation (HIA)*?, which neglects the explicit hybridization between the
impurity and the bath for simplicity and computational efficiency. DFT+HIA has been used to
investigate various properties of rare-earth materials, including cohesive, structural, spectroscopic,
and magnetic properties '*!'#; it has later been extended to more challenging properties such as mag-
netocrystalline anisotropy and crystal-field parameters '®!7-**, with further development of methods
and implementations, e.g., the implementation of a charge self-consistency scheme?®*. An advan-
tage of DMFT over DFT+U is its improved description of correlation effects. However, the princi-
pal problem outlined above—the SIE of the 4 f-orbitals—remains equally severe in DFT+DMFT
as in DFT+U. In Ref. [16], this issue was circumvented in an ingenious way: they replaced the
actual 4 f-electron density obtained in DMFT with its spherical average by enforcing a uniform
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occupancy of the 4 f ground-state multiplet before recalculating the electron density and updating
the one-electron Kohn-Sham potential in the next DFT iteration. Conceptually, this approach is
similar to our analytical model, which replaces the crystal field of an actual material with that of
spherically symmetric Gd, as described below. However, it contrasts with our ab initio calculation,
where the crystal fields and hybridizations effects on MA are evaluated based on the charge density
with properly-enforced Hund’s-rules 4 f occupations.

Self-interaction correction.— The SIC method, proposed by Perdew and Zunger in 19813°, was
initially inspired by the problem of reproducing the correct energy gap in insulators. They pointed
out that in the limit of one-electron systems, the exchange-correlation potential should exactly
cancel the Hartree potential, which was not the case for all functionals available at that time.
With this in mind, Perdew and Zunger proposed a method that deducts the self-interaction energy
of each orbital from the DFT functional. The resulting orbital-dependent functional was neither
a Kohn-Sham functional nor uniquely defined for many-electron systems3*=°. Nevertheless, it
was conceived that this functional would offer a better approximation to the exact Kohn-Sham
functional than existing local flavors. However, it was never proven to systematically improve the
total energy. Indeed, the weighted density functional*’, which is inherently self-interaction-free in
the Perdew-Zunger sense and yields improved total energy and linear response*!, produces results
that are quite different from those of SIC LDA or GGA functionals.

There have been widespread applications of the SIC method across various materials, including
localized 4 f systems*?. For instance, Strange et al.** demonstrated it to investigate the preferred
valence states of R-compounds by calculating the energy differences between B3 and R>™ states.
Hughes et al.** utilized SIC to study lanthanide contraction and magnetism in heavy rare-earth
elements. Svane et al.** demonstrated that the SIC method provides a more accurate description of
isostructural transitions, the equilibrium lattice constants of Ce and CeP, and the zero-temperature
equations of state for Pr and Sm compared to LDA. Liiders et al. *® implemented SIC using multiple
scattering theory and applied it to the a-vy phase transition in Ce. Patrick et al.*’ utilized SIC
with the disordered local moment (DLM) formalism to investigate the finite-temperature magnetic
properties of RCos;. Overall, SIC provides a parameter-free approach to enhancing the localization
of correlated orbitals, leading to a more accurate description of various properties.

However, to the best of our knowledge, there is still a lack of systematic studies demonstrat-
ing whether the application of SIC can resolve the orbital dependence of 4f SIE and correctly
reproduce the Hund’s rule ground state of 4 f states in rare-earth magnets. Thus, there is no solid
foundation for expecting that such non-DFT SIC functionals would universally enforce Hund’s
rules in f-electron systems, nor is this method (as opposed to DFT+U) commonly implemented in
modern DFT codes.



Orbital polarization correction.— In analogy to the Stoner expression for spin polarization
—i[ M?, Brooks and coworkers*® introduced an orbital polarization term proportional to —%LQ,
giving rise to a one-electron eigenvalue shift (—ELmy) for the state |m;). Here, the Racah pa-
rameter &2, which can be related to Slater integrals (I, F}y, and Fy), plays a role analogous to the
Stoner [ for spin polarization.

While this method does introduce a correction that tries to maximize the orbital moment and,
thus, technically can enforce Hund’s rules, it has no direct first-principles justification. Various
attempts>!'* to derive an OPC have resulted in formulations that, while potentially useful, differ
from the suggested form. To the best of our knowledge, the more elaborate OPC schemes beyond
the original description of Brooks and coworkers are neither implemented in standard codes nor
universally tested.

The original OPC prescription is implemented in WIEN2K code and we applied it to TbVSng.
It appears that achieving the Hund’s rule state using the OP method is quite challenging, if not
impossible. In the minority spin channel, |m; = 2) levels remain the lowest unless a very high OP
parameter is applied to promote the occupation of the |m; = 3) state. However, since the orbital
polarization term is spin-independent, such a large OP parameter also causes large orbital polariza-
tion in the majority-spin channel, resulting in partial occupation in the majority-spin channel. As
a result, with this OPC scheme, we are not able to obtain the correct 4 f ground state that satisfies
Hund’s rules.

Thus, we conclude that neither the SIC nor the OPC method, at least by itself, is useful for
extensive calculations of MA in 4 f-metal compounds. Therefore, we will pursue the idea discussed
above of calculating MA in an artificially stabilized, computationally-metastable orbital state that
respects Hund’s rules.

4 f anisotropy: Benchmarking Total Energy Calculation

To systematically benchmark the validity of MA calculations, we further investigate several isostruc-
tural systems, including the two most important permanent magnet systems: RCos and RyFe 4B.
Among them, SmCos- and Fe-rich NdyFe,,B-based magnets are the most successful permanent
magnets so far. We will show that the rare-earth MA in these systems can be well described using
DFT+U.

Various methods, including DFT+U, SIC*’, and DMFT in the form of Hubbard 1'®!7, have been
employed to investigate the rare-earth MA in these systems, especially for SmCos due to its impor-
tance and a smaller RCos unit cell. However, despite the wide application of simplistic DFT+U,
the systematic MA study of isostructural series with heavy- R elements is, to the best of our knowl-
edge, rare. Moreover, most of the previous calculations in the literature did not discuss the details
of the converged 4 f configuration or were carried out without enforcing Hund’s rules; the cal-
culated orbital moments can deviate significantly from SRM due to the orbital-dependent SIE in



DFT+U and the corresponding failure to reproduce Hund’s rules being ignored. Consequently, the
reported orbital magnetic moment and MA values are scattered and hard to evaluate, casting doubt
on the validity of DFT+U applications for rare-earth MA.

Therefore, here we want to fill this gap by systematically benchmarking MA calculations with
the SRM model using DFT+U. Such benchmarking is also necessary if we want to compare with
more sophisticated approaches such as DMFT or other methods and evaluate their improvement.

Here, we focus on the rare-earth MA in these systems, although the transition-metal sublattice
MA is also important and of interest by itself>’. For example, in RCos, the Co sublattice also
contributes a large easy-axis anisotropy, as YCos represents one of the largest 3d MA systems.
However, plain DFT underestimates the MA of Co sublattices and only gives a value between
1 and £ of the experimental value in RCos>'. Orbital polarization®*** or applying an additional
Hubbard U interaction on Co-3d orbitals in DMFT>® or DFT+U has been used to improve the
agreement between calculation and experiments.

RCos compounds.— Figure 2 shows the calculated total energies F/(6, ¢) in RCos as functions
of spin-quantization direction characterized by the polar angle # and the azimuthal angle ¢. Besides
the heavy R elements, we also consider R = Sm and Nd for comparison with existing experimental
data. In contrast to other RCos compounds, GdCos with a spherical Gd-4 f charge exhibits a very
small easy-axis MA, contributed mostly by the Co sublattices. The energy minimum occurs at
6 = 0°,[00 1], for Er and Sm, and at ¢ = 90° for all other compounds. This suggests that RCos
has an easy-axis MA for R = Er and Sm, while an easy-plane MA for R = Tb, Dy, Ho, and Nd.
The calculations for all the compounds accurately reproduce their experimental easy directions
measured at low temperatures>*>’, demonstrating the effectiveness of MA description in SRM
through DFT+U.

HoCoj shares a similar MA profile with NdCos but has an opposite MA profile to ErCos. This
can be understood as Ho®** with a 43+ configuration and Nd** with a 4 f3" configuration having
a similar aspherical charge density in the single-Slater-determinant description of DFT, if one
ignores the difference between their radial wavefunctions. The nearly perfect opposite MA profiles
of HoCos and ErCoj reflect the particle-hole symmetry also found in HoMngSng and ErMngSng©.

Interestingly, all RCo; compounds exhibit a sizable in-plane MA, suggesting a significant higher-
order CFP A¢. Among all R elements, TbCos has the smallest in-plane MA, while NdCo; shows
the strongest in-plane MA, almost equal in amplitude to the out-of-plane MA. Notably, a large
in-plane MA in NdCoj; has been observed experimentally>®> and has also been reproduced in a
recent DFT+DMFT study'”. Assuming a fixed CFP A¢ for the isostructural RCos, the magni-
tude of in-plane MA correlates well with the element’s multipole moment ()¢, with the largest
value found in Nd and the smallest in Tb. However, our calculations overestimate the in-plane
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anisotropy of NdCos due to inherent limitations of DFT, which can be alleviated by employing a
multiple-Slater-determinant approach.

It is worth noting that the in-plane MA in SmCo; would vanish in a conventional CFP model
using the lowest multiplet |L = 5,5 = g, J = g, my), as the Stevens operator Of vanishes for
J = %, unless the J mixing due to multiplet interaction is considered. The non-zero in-plane
MA also reflects a difference between the many-body treatment and the single-Slater-determinant
description of DFT for the Sm ion.

RyFe,B compounds.— RyFe;4B compounds crystallize in a tetragonal crystal structure with
space group P4s/mnm (no. 136). There are two inequivalent R sites, denoted by Wyckoff sites
4g and 4 f. The primitive cell consists of four formula units. Experimentally, the easy directions of
RyFe 4B at low temperatures are easy-axial for Tb and Dy, conical for Ho and Nd, and easy-plane
for Er and Tm°,

Figure 3 shows the MA calculated in RyFeq4B with the spin quantization direction rotating from
[001] to [100] and then to [110] directions of the tetragonal crystal structure. The calculated easy
directions again all agree with experimental observations. Notably, for the in-plane MA, R,Fe 4B
compounds show somewhat smaller values than those in RCos.

Remarkably, very strong easy-axis MA is obtained for =Tb and Dy. In fact, in practice, a small
amount of these two heavy R elements is often required to enhance the coercivities of RoFeq4B-
based magnets for real applications. Similar to RCos and RMngSng, the calculated £(6, ¢) profiles
of RyFeq,4B also exhibit perfect particle-hole symmetry for R =Ho and Er.

Experimentally, it was found that the net magnetization in NdsFe 4B cants away from the ¢
axis toward the [110] direction by an angle of § = 30°, measured at 4 K. This is consistent with
the calculated energy minimum occurring at # = 30° when the spin rotates from [001] to [100],
as shown in Fig. 3 We further confirm that rotation from [001] toward [110] produces a slightly
deeper energy minimum at # = 30° (not shown), thus reproducing exactly the experimental easy-
cone angle. The contribution from the two inequivalent Nd sites to the MA is also of great interest.
It has been argued that the 4 f and 4g sites have negative and positive contributions, respectively, to
the MAE®!. However, we found that contributions from both sites show an energy minimum near
0 = 30° (see Supplementary Fig. 1).

It is interesting that in some light- R elements, DFT—despite being an approximation that projects
the Hund’s-rules ground state onto a dominant single Slater determinant—successfully reproduces
the easy magnetization directions in SmCo; and NdCos, as well as the nontrivial easy-cone angle
of Nd,Fe,,B. We see here that simply enforcing Hund’s rules already gives the correct easy di-
rection, an improvement over conventional DFT+U. However, the magnitude of the MAE can be
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significantly overestimated for light rare earths, such as the easy-axis anisotropy in SmCoj; and the
in-plane anisotropy in NdCos. These errors can be corrected by explicitly accounting for multiple
Slater determinants (this will be the subject of a future publication).

RFe;; compounds.— Fe-rich RFe»-based compounds have recently attracted significant in-
terest in the permanent magnet community®?. In general, these compounds typically form as
RFes_ . M,, requiring a third element M = Ti, V, Cr, Mn, Mo, W, Al, or Si to stabilize a body-
center-tetragonal ThMny»-type (14/mmm space group, no. 139) structure. Experimental easy-axis
information for RFe,;Ti is available for comparison, though there are some disagreements in ex-
perimental reports 504365, For example, both easy-plane and easy-cone MA have been reported for
R =Tb, while both easy-axis and easy-cone MA have been reported for i = Ho at low tempera-
tures.

To compare with experiments, we calculated the MA in the hypothetical composition of RFe;s,
ignoring the third element for simplicity. We found that the calculated MAE per R atom of RFe;
is more than five times smaller than in RCo; and RyFe 4B. The calculated MA, as showin in Fig. 4,
is easy-plane for R = Tb and Dy, and easy-cone for R = Ho, which agrees with the experimental
findings reported®*%*. For R = Er and Tm, however, our calculated easy directions for RFe;,
do not exactly match the experimental results for RFe;;Ti. Experiments found that the MA is
easy-cone and easy-axis, respectively, for R = Er and Tm in RFe,;Ti. In contrast, for R = Er,
our calculations indicate a local minimum at the experimental easy direction, but the energy is
slightly higher than that of the in-plane direction. Similarly, for R = Tm, the easy-axis and in-
plane directions have nearly identical energies. The discrepancy is likely due to the presence of
the Ti atom in the real materials; the chemical effect and induced crystal structure distortion can
modify the crystal field of the R element and MA®®. More comprehensive experiments and MA
calculations, incorporating more realistic experimental structures and compositions, are desired to
further elucidate MA in RRFe ,-based systems.

RMngSng and RVsSng compounds.—  Besides these three permanent magnet systems, we have
also previously investigated the rare-earth MA in RMngSng and RVSng compounds®?’, which
have recently garnered significant attention as platforms for topological magnets. For all of these
different isostructural series, the calculated easy directions are consistent with experiments, as long
as reliable experimental measurements are available for comparison. Among these two dozen com-
pounds, in addition to the easy-axis and easy-plane anisotropy, some of them exhibit non-trivial
easy-cone angles, e.g., ~ 30° in NdyFe 4B and ~ 45° in DyMngSng and HoMngSng. Moreover,
we found that not only the easy directions but also the magnitudes of MA are comparable to exist-
ing experiments?%?”%7, Therefore, our benchmarking of MA in all of these systems validates the
usefulness of applying simplistic DFT+U total energy calculations to investigate rare-earth MA,
provided that Hund’s rules are enforced.

12



4f anisotropy: Perturbation theory for fast scanning

Perturbation theory (PT) on top of magnetic force theory has been widely used to calculate and
spatially resolve MA in non-4f systems, providing a microscopic understanding of MA. Since
SOC is much smaller than the CF in d-electron systems and is treated as a perturbation, one obtains
K = 1 Kso according to second-order perturbation theory”#®. In other words, the total MA is
half of the anisotropy of the SOC energy, Kso. Unlike total MA, Ko can be resolved into sites,
orbitals, spin channels, and bandfillings 735,

In contrast to d-electron systems, in heavy R systems, CF is much smaller than SOC and should
be treated as a perturbation. When the spin rotates, the 4 f charge is locked to the spin by the
dominant SOC and rotates rigidly with the spin. As a result, the SOC energy Fso remains the
same during the rotation, and the MA, in principle, can be calculated as X' = K¢ in first-order
perturbation theory.

The challenge lies in the accurate estimation of CF energy in open-4 f-shell elements using
DFT+U methods, where CF is overestimated by an order of magnitude, as the aspherical 4 f charge
induces a much larger CF splitting than the ligands. A quick and rough fix is to use the CF levels
of isostructural compounds with R = Gd (f7), whose half-filled 4 f orbitals give a spherical charge
and minimize the CF splitting caused by 4 f electrons themselves. It is worth noting that, in a
similar spirit, Yttrium (f°) analogues of rare-earth/transition-metal magnets have been used to
investigate their CFPs’*’!. However, for our approach, Gd is better suited for estimating the CF
splittings in magnetic rare earths because the occupied 4 f states are significantly more localized
than the unoccupied ones. Using the occupied 4 f levels in Gd provides a much more accurate
estimate compared to relying on the high-lying 4 f bands of Y.

Obviously, one should expect that the ligand-only-induced CF splittings would vary across the R
series, deviating from the values in the Gd counterpart. However, even with this rough estimation
of CF, we have shown that the perturbation treatment of 4 f MA provides a good description of MA
in RMngSng®. To further demonstrate the validity of PT application on rare-earth anisotropy, we
next model the 4 f uniaxial MA in RCo; and compare it with the 4 f-only contributions obtained
from total energy calculations.

Figure 5 compares the 4 f MA calculated using total energy in DFT and CF energy in PT. The
latter is calculated using:
E,0)= Y (VUn/|HeV57). (10)

m&Occ. 4f

Here, Ecg(6, ¢) is obtained by evaluating the original CF Hamiltonian in the rotated wavefunc-
tions, or, equivalently, the rotated CF Hamiltonian by (—6, —¢) in the original wavefunctions. For
all R elements, we use the CF levels of GdCos at I', obtained from scalar-relativistic DFT+U cal-
culations . Due to the high symmetry of the RCojs crystal structure, the Hcr is diagonal in the
real-spherical-harmonics basis at I'. Therefore, the eigenvalues of the seven occupied 4 f states at

13



I' in GdCoy are sufficient to construct the Hamiltonian H¢r in the complex-harmonics basis, which
serves as the natural basis for the SOC Hamiltonian. The rotated wavefunctions and Hamiltonian
can be calculated using the Wigner rotation matrix.

Given that the PT model assumes the Gd-4f crystal field splitting for all R compounds, the
agreement between the DFT and PT model is quite reasonable. Notably, the deviation increases
from Tb to Yb as one moves farther away from Gd. Our results further demonstrate the validity of
the PT approach in describing rare-earth MA.

Due to its simplicity, such PT calculations can be used for 1) fast screening of MA and 2)
for understanding the origin of rare-earth MA in a system. For example, large easy-axis MA is
required for many applications, such as permanent magnets and topological magnets. Total energy
calculations are more demanding, and special care must be taken to ensure convergence to the
desired 4 f configurations at every spin direction. In this context, before conducting more reliable
total energy calculations, PT calculations can be used for a rapid initial screening of rare-earth
MA to identify potential easy-axis rare-earth MA in unexplored crystal structures. Furthermore,
the PT approach can be used to decompose MA contributions into those from different rare-earth
sites, such as in RyFe 4B, and analyze how the MA changes with other tuning parameters, thereby
aiding in the understanding of the origin of MA in a system.

DISCUSSION

In summary, using TbMngSng, we illustrate a general challenge of calculating rare-earth mag-
netocrystalline anisotropy in DFT and related methods, which often fail to reproduce the cor-
rect Hund’s-rules ground state of rare-earth elements due to significant orbital dependence of the
self-interaction error for strongly localized 4 f orbitals, and the lack of explicit proper orbital po-
larization treatment. The true ground state appears as a metastable state that lies several hun-
dred meV above, resulting in an incorrect 4 f orbital occupation associated with an incorrect 4 f
charge density, which in turn leads to incorrect magnetocrystalline anisotropy. However, as the
self-interaction error and orbital polarization are, in principle, largely rotationally invariant, the
anisotropy of the true ground state might be expected to remain correct if Hund’s rules are en-
forced by hand.

We have benchmarked this approach on materials with rare-earth atoms with saturated moments
where Hund’s rules are expected to be satisfied and the single Slater determinant description is
suitable. Notably, in RCos, RyFe;4B, RFe;s, and other compounds, the calculated easy direc-
tions (including easy axes, planes, and conical angles) have all agreed resonablly well with low-
temperature measurements.

Besides total energy calculations, we also demonstrate the application of perturbation theory for
evaluating rare-earth anisotropy. The good agreement between the perturbation approach and total
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energy calculations shows that it can be a useful tool for fast screening of new systems. More-
over, in analogy to using the SOC anisotropy to spatially resolve 3d anisotropy, such perturbation
treatment of crystal field energy can be used to resolve anisotropy in systems that contain multi-
ple nonequivalent rare-earth sites, aiding in the understanding the microscopic origin of rare-earth
anisotropy.

METHODS

Total energy calculations of magnetocrystalline anisotropy

To evaluate the MA, we use DFT to compute the total energies F(0,¢) as a function of the
spin-quantization direction, characterized by the polar angle # and the azimuthal angle ¢. Un-
like anisotropy in 3d-electron systems, where SOC is generally much weaker than CF and can be
treated as a perturbation—allowing the use of the force theorem for MAE calculations—fully self-
consistent DFT+U+SOC calculations with various spin directions are required to compute the MA
of 4f systems. Additionally, the Hund’s rule states are enforced for all spin quantization directions
in all rare-earth elements.

Crystal structure

Experimental crystal structures were used for all calculations. Detailed structural parameters, in-
cluding lattice constants, atomic positions, and corresponding references, are provided in Supple-
mentary Tables S1, S2 and S3. Note that RFe,5 is a hypothetical compound, as real compounds
always contain a small amount of a third element, such as in RFeTi, to stabilize the structure.

DFT+U+SOC calculation details

The DFT calculations were performed using the full-potential linear augmented plane wave (FP-
LAPW) method, as implemented in WIEN2K 2. The generalized gradient approximation (GGA)
of Perdew, Burke, and Ernzerhof”? was used for the exchange and correlation potentials.

The strongly correlated R-4f electrons were treated using the DFT+U method with the fully
localized limit (FLL) double-counting scheme!'®. Sizable U values (810 eV) were employed to
shift the occupied 4f states away from the Fermi level. SOC was included using the second-
variational method*7®, Compared to the scalar-relativistic case, SOC explicitly couples the spin-
up and spin-down channels and reduces the symmetry.

To generate the self-consistent potential and charge, we employed Ryt - Kimax = 9, 8, and 9 for
RCos, RoFe 4B, and RFe, 4, respectively, with muffin-tin radii Ry = 2.8, 2.1, 2.1, and 1.6 a.u. for
R, Fe, Co, and B atoms, respectively. The calculations were performed with 7200, 400, and 4800
k-points in the full Brillouin zone (FBZ) for RCos;, RoFe4B, and RFe,,, respectively. A further
increase in the number of k-points had a negligible effect on the results. For k-space integrations
to determine the Fermi level, the tetrahedron integration method with Bldchl corrections’’ was

used. The calculations were iterated until the charge difference between consecutive iterations was
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smaller than 107° ¢ and the total energy difference was below 10~ mRy/cell.

For perturbation modeling, the CF levels of Gd-4 f states of corresponding Gd-containing com-
pounds are calculated without SOC in DFT+U and used for all R elements. Therefore, our per-
turbation model ignore the dependence of the CF on R elements. Additionally, we performed MA
calculations for corresponding Gd compounds (or treated 4 f as a spherical open-core) to obtain
the non-4 f contributions to the total MA®,

Enforcing Hund’s Rule for the 4 f States: with and without constraints

To enforce the Hund’s rule state for 4 f electrons, we performed DFT+U+SOC calculations with
constraints. Specifically, we initialized and then froze the 4 f occupancy matrix (and consequently,
the potentials dependent on it) for each spin direction until the system reached convergence.

Once self-consistency was achieved, the constraint could be lifted, allowing additional iterations
to fully relax the 4 f states near the targeted Hund’s rule states. With sizable U values of 8-10 eV,
the Hund’s rule state solution remained stable even after the constraint was removed. Special
care, such as reducing the mixing parameters, was sometimes required to ensure that the solution
remained in the designated state during subsequent iterations after the constraint was lifted, which
could result in a slow process.

However, key results, including magnetic moments and anisotropy, remained nearly unchanged
when comparing the constrained and relaxed cases (See Supplementary Discussions for details).
Therefore, we primarily report the constrained calculations in this work. On the other hand, for
small U values, the constraint often became necessary and could not be removed. Some 4 f con-
figurations can become extremely difficult—or even impossible—to stabilize without a constraint,
as strong hybridization could destabilize the targeted states.
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Table 1: The coefficients «,,,, where m denotes the complex spherical harmonics.
The coefficients a,,5 = a2 + 0.6681a,,4 + 0.4943a,,6 IS calculated by assuming the ratio
between F;,, F,, and Fy values as 1 : 0.6681 : 0.4943. The orbital-dependent part of
el Aell (in units of meV), is then calculated by further assuming £, = 10 eV, with the
value of the |+-2) state as the reference zero. For complex |m) states, the ordering is
|£2) < |£1) < |£3) < ]0).

m (2 (ma 6 (2 Aell
0 0.0711 0.0331 0.0543 0.1201 876
+1 0.0400 0.0009 0.0306 0.0557 232
+2 0 0.0450 0.0049 0.0325 0

+3 0.1111 0.0083 0.0001 0.1167 842

Table 2: Angular part of the integration of <%, denoted as Q(¢*)), for the f! configu-
ration, along with the exchange-correlation energy £*° and total energy £ of free
Tb atoms calculated using DFT+U. AQ(€X)) represents the Q(€X,) values relative to the
Im = 0) state. Similarly, Tb EX® and E™ are calculated relative to the |m = 0, ) state.
SOC is not included in the DFT+U calculations.

m 0 +1 +2 +3
Q(er) -0.5314 -0.4903 -0.4801 -0.4963
AQ(eX) 0 0.0411 0.0513 0.0351
E° (meV) 0 406.1 757.3 689.0
E™ (meV) 0 32.9 73.2 497 .4
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Fig. 1: Magnetocrystalline anisotropy in ThMnsSng, represented by the variation of magnetic
energy as a function of spin-axis rotation, calculated using DFT+U. The true ground state of
Tb3+ (418 = 4f7" 4 4f), following Hund’s rules, appears as a metastable state in DFT+U. The
anisotropy calculated for two configurations, the true ground state 4 flmz: 3) and the DFT+U ground
state 4 f|1n’jl:2>’ is represented by the blue and red lines, respectively. The two 4 f* configurations
are illustrated with polar plots of the corresponding complex spherical harmonics Y;”;(6, ¢), where
the radius represents the amplitude and the color represents the phase at the point (6, ¢).
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Fig. 2: Variation of magnetic energy (in meV/f.u.) calculated in DFT+U as a function of
spin-axis rotation in RCo; with R = Gd, Tb, Dy, Ho, Er, Tm, Yb, Sm, and Nd. The spin
direction is characterized by the polar angle # and the azimuthal angle ¢. The lattice vector ¢ ([0
0 1]) direction is along the Z direction and is denoted by § = 0°, while the lattice vector a ([1 0
0]) direction is denoted by ¢ = 90° and ¢ = —30°. The calculations are performed in DFT+U
with U = 10 eV on the 4 f states of all R elements to satisfy Hund’s rules. For all the depicted
compounds, the calculated easy directions are consistent with experimental observations.
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Fig. 3: Variation of magnetic energy (in meV/f.u.) calculated in DFT+U as a function of
spin-axis rotation in R;Fe,,B with R = Gd, Th, Dy, Ho, Er, Tm, and Nd. The spin direction is
characterized by the polar angle ¢ and the azimuthal angle ¢. The lattice vector c ([0 0 1]) direction
is along the Z direction and denoted by ¢ = (0°, while the lattice vector a ([1 0 0]) direction is
denoted by § = 90° and ¢ = 0°. The calculations are performed in DFT+U with U = 8 eV on the
4 f states of all R elements to satisfy Hund’s rules. For all the depicted compounds, the calculated
easy directions are consistent with experimental observations.
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Fig. 4: Variation of magnetic energy (in meV/f.u.) calculated in DFT+U as a function of
spin-axis rotation in RFe;> with R = Tb, Dy, Ho, Er, Tm. The spin direction is characterized
by the polar angle # and the azimuthal angle ¢. The lattice vector ¢ ([0 O 1]) direction is along
the 2 direction and denoted by # = 0°, while the lattice vector a ([1 1 0]) direction is denoted by
6 = 90° and ¢ = 45°. The calculations were performed using DFT+U with U = 10 eV applied to
the 4 f states of all R elements, with Hund’s rules enforced on the 4 f states.
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Fig. 5: Single-ion anisotropy of R-4f in RCos calculated using the perturbation model and
DFT+U. The anisotropy is represented as a function of the spin quantization angle, characterized
by the polar angle ¢, in RCos;, modeled with perturbation theory using CF levels from GdCos.
The CF levels of GdCoj are calculated using DFT+U without SOC, with U ~ 10 eV. In this
analysis, the energy difference between the |m; = +3) 4f levels is disregarded, as it reflects in-
plane anisotropy but not uniaxial anisotropy.
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