
Magnetic structure of A ≤ 10 nuclei using the Norfolk nuclear models with quantum
Monte Carlo methods

G. Chambers-Wall1,∗ A. Gnech2,3,† G. B. King1,‡ S.

Pastore1,4,§ M. Piarulli1,4,¶ R. Schiavilla2,3,∗∗ and R. B. Wiringa5††
1Department of Physics, Washington University in Saint Louis, Saint Louis, MO 63130, USA

2Department of Physics, Old Dominion University, Norfolk, VA 23529
3Theory Center, Jefferson Lab, Newport News, VA 23610

4McDonnell Center for the Space Sciences at Washington University in St. Louis, MO 63130, USA
5Physics Division, Argonne National Laboratory, Argonne, IL 60439

We present Quantum Monte Carlo calculations of magnetic moments, form factors, and densities
of A ≤ 10 nuclei within a chiral effective field theory approach. We use the Norfolk two- and three-
body chiral potentials and their consistent electromagnetic one- and two-nucleon current operators.
We find that two-body contributions to the magnetic moment can be large (up to ∼ 33% in A = 9
systems). We study the model dependence of these observables and place particular emphasis
on investigating their sensitivity to using different cutoffs to regulate the many-nucleon operators.
Calculations of elastic magnetic form factors for A ≤ 10 nuclei show excellent agreement with the
data out to momentum transfers q ≈ 3 fm−1.

I. INTRODUCTION

In this work, we present quantum Monte Carlo (QMC)
calculations, including both variational Monte Carlo
(VMC) and Green’s Function Monte Carlo (GFMC)
methods, to study magnetic moments and form factors
of A ≤ 10 nuclei. We use the precise experimental mea-
surements of these electromagnetic observables to val-
idate our microscopic modeling; namely, we verify the
accuracy of the approach in which we treat the nucleus
as a system of correlated nucleons interacting amongst
themselves via two- and three-nucleon forces. Addition-
ally, we include the coupling to external electromagnetic
fields via one- and two-nucleon currents.

The specific models upon which we base this study
are the Norfolk two- and three-nucleon potentials [1–5],
derived from a χEFT that retains pions, nucleons, and
∆’s as explicit degrees of freedom. The Norfolk two-
and three-nucleon interactions are formulated in configu-
ration space and we denote them as NV2+3 through-
out the reminder of this work. The associated elec-
tromagnetic currents – derived within the same χEFT
framework with pions, nucleons, and virtual intermedi-
ate ∆’s – were most recently reported in Refs. [6, 7],
where they were obtained up to next-to-next-to-next-to-
leading order (N3LO) in the chiral expansion. The LO
contribution consists of the standard single-nucleon con-
vection and spin-magnetization terms, while sub-leading
two-nucleon currents include contributions of one- and
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two-pion range, as well as contact terms encoding short-
range dynamics [6].

Previous QMC calculations of magnetic moments and
transitions in A ≤ 9 systems [8] highlighted the impor-
tance of sub-leading two-nucleon currents to reach agree-
ment with the available experimental data. The studies
of Ref. [8] adopt the so-called ‘hybrid approach’ where nu-
clear wave functions were determined from realistic two-
and three-nucleon interactions, specifically the Argonne
AV18 [9] and the Illinois-7 [10], respectively. Mean-
while, the electromagnetic currents were derived from
χEFT [11–14], thus under-utilizing the full potential of
the χEFT framework to make systematic determinations
of model dependencies. For instance, recent calculations
of magnetic moments, based on both χEFT Hamiltonians
and consistently derived χEFT electromagnetic current
operators [7, 15, 16], indicated a sizable sensitivity to the
regulators inherent in the theoretical approach. Further,
the studies in Ref. [7, 15] also showed that the N3LO con-
tribution to the magnetic moment is enhanced relative to
the size expected from naive dimensional analysis.

By reexamining the evaluation of the magnetic struc-
ture of light nuclei using the NV2+3 model, in combina-
tion with consistent chiral electromagnetic currents, we
aim to verify the accuracy of our χEFT approach, un-
derstand its kinematic regime of applicability, and exam-
ine the convergence of the power expansion. As in the
study of Gamow-Teller β-decays reported in Ref. [17],
we similarly perform an in-depth analysis of two-nucleon
magnetic densities. These quantities prove again to be
instrumental in determining model dependencies, iden-
tifying universal short-range behaviors, and understand-
ing the role played by inherent parameters in the models,
such as low-energy constants and regulators.

Along with magnetic moments, the framework de-
scribed above also allows for the study of magnetic form
factors, as has already been performed for A ≤ 3 sys-
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tems [7]. In particular, the work of Ref. [7], based on
the hyperspherical harmonics method, showed excellent
agreement with data for magnetic form factors of A ≤ 3
nuclei up to momentum transfers q ∼ 4 fm−1, which is
well beyond the region of convergence for χEFT. Here, we
extend these calculations to nuclei with mass number up
to A = 10 with the VMC method to further investigate
this high-momentum behavior. We note that these are
the first QMC calculations of form factors in A = 7− 10
systems.

All together, the studies of electromagnetic proper-
ties in this work provide a benchmark of electroweak
current models against readily available data over a
wide range of kinematics. Such a wide-ranging valida-
tion is necessary, as an accurate electromagnetic current
model is needed for studies of electromagnetic transi-
tions [8, 18–21], electron-nucleus scattering [22–28], and
radiative corrections to super-allowed beta decays [29–
31]. These models are also needed to interpret future
searches for new physics [32], including precision beta-
decay at low energy- and momentum-transfer [32–37],
neutrinoless double beta decay at moderate momentum-
transfers [38–41], and long-baseline neutrino oscillation
experiments that will involve both high energy- and
momentum-transfer neutrino-nucleus scattering [42–48].
These analyses rely on theoretical inputs in order to dis-
entangle signals of new physics from nuclear physics ef-
fects; thus, an accurate understanding of the underlying
nuclear dynamics is necessary. Therefore, the compu-
tation of electromagnetic properties for light nuclei and
detailed analysis of model dependencies are pivotal for
the future of programs in both nuclear and fundamental
science.

This work is organized as follows: In Section II, we de-
tail the theoretical basis for the calculation. We review
the QMC computational technique in Section IIA and
report on the NV2+3 interaction models and associated
electromagnetic current used in this work in Sections II B
and IIC, respectively. Section IID contains the multi-
pole analysis relating QMC matrix elements to electro-
magnetic observables. Magnetic moments and two-body
magnetic densities computed in this formalism are pre-
sented in Section IIIA. This is followed, in Section III B,
by a detailed discussion of magnetic form factors that
supplements the results and extends the analysis of a
PRL submitted concurrently to this article [49]. Finally,
we give concluding remarks in Section IV.

II. THEORY

A. Quantum Monte Carlo methods

Quantum Monte Carlo (QMC) approaches [50] are a
suite of computational methods used to stochastically
solve the Schrödinger equation

HΨ(Jπ;T, Tz) = EΨ(Jπ;T, Tz) , (1)

where Ψ(Jπ;T, Tz) is a nuclear wave function with spe-
cific spin-parity Jπ, isospin T , and charge state Tz. The
Hamiltonian has the form

H =
∑
i

Ki +
∑
i<j

vij +
∑

i<j<k

Vijk , (2)

whereKi is the non-relativistic kinetic energy and vij and
Vijk are respectively two- and three-nucleon potentials.
The QMC approach of this work is a two-step pro-

cess that begins with the variational Monte Carlo (VMC)
method. In nuclear VMC calculations, the variational
ansatz taken for the many-body wave function is [51]

|ΨT ⟩ = S
∏
i<j

1 + Uij +
∑

i<j ̸=k

ŨTNI
ijk

 |ΨJ⟩ (3)

where S is the symmetrization operator, Uij is a two-

body correlation operator, ŨTNI
ijk is a three-body cor-

relation operator, and ΨJ is a Jastrow-like wave func-
tion. The antisymmetric state ΨJ encodes the long-range
structure of the system and is constructed by acting on a
Slater determinant that places nucleons in s- and p-shell
orbitals with correlation functions that encode the appro-
priate cluster structure (e.g., 6Li ∼ α + d) of the system.
The design of the two- and three-body correlation func-
tions in Eq. 3 reflects the influence of the short-distance
nuclear interaction in the medium. The correlation oper-
ators contain embedded variational parameters that one
then optimizes to find a best variational state, ΨV , by
minimizing the expectation value

EV =
⟨ΨV |H|ΨV ⟩
⟨ΨV |ΨV ⟩

≥ E0 (4)

where E0 is the true ground state energy of the system.
The VMC result is then further improved upon by us-

ing the Green’s function Monte Carlo (GFMC) method.
The method leverages the fact that the real time (t)
Schrödinger Equation

i
∂

∂t
|Ψ(t)⟩ = (H − ET ) |Ψ(t)⟩ , (5)

may be recast as a diffusion equation in imaginary time
τ = it

− ∂

∂τ
|Ψ(τ)⟩ = (H − ET ) |Ψ(τ)⟩ , (6)

where ET is an energy offset that controls the normaliza-
tion of the wave function. Noting that one may expand
any state in a complete orthonormal basis, we can write
ΨV as a sum of the true eigenstates ψi of the Hamiltonian

|ΨV ⟩ =
∞∑
i=1

ci |ψi⟩ . (7)

From Eq. (6), if the energy offset ET is taken to be the
exact energy of the ground state E0, it is clear that in
the limit τ → ∞

lim
τ→∞

e−(H−E0)τ |ΨV ⟩ ∝ c0ψ0 , (8)
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making it possible to project the true ground state out of
ΨV . In practice, the propagation is performed in n small
steps in imaginary time ∆τ ,

|Ψ(τ)⟩ =
[
e−(H−E0)∆τ

]n
|ΨV ⟩ , (9)

until spurious contamination is removed from the wave
function and convergence is reached.

In this work, we will study matrix elements of oper-
ators O acting on the VMC wave function. To obtain
expectation values in GFMC, we compute the so-called
“mixed-estimate,”

⟨O(τ)⟩ ≈ 2
⟨ΨV |O|Ψ(τ)⟩
⟨ΨV |Ψ(τ)⟩

− ⟨ΨV |O|ΨV ⟩
⟨ΨV |ΨV ⟩

, (10)

derived assuming the GFMC wave function at τ is a small
improvement over the VMC state; i.e., Ψ(τ) = ΨV + δΨ.
Since the variational wave functions are typically good
descriptions of light nuclei, this a valid approximation.
In principle, it is possible to calculate a matrix element
between two propagated states in GFMC; however, this
requires performing separate imaginary time propaga-
tions for each matrix element that one would like to com-
pute [52], which makes an order-by-order analysis of the
magnetic moments and form factors quite costly. Thus,
the mixed estimate is a necessary approximation to sys-
tematically analyze the convergence of χEFT predictions
for the magnetic structure of nuclei over a range of mo-
menta.

B. The Norfolk interaction model

We base our calculations on electromagnetic many-
body currents [6, 7, 11, 12] derived consistently with the
Norfolk two- and three-body (NV2+3) nuclear interac-
tions [1–5]. The Norfolk two-body potential (NV2) is
a fully local interaction – hence suitable to be utilized
within QMC methods – and includes terms up to N3LO
in the χEFT expansion. To this order, the NV2 consists
of one- (OPE) and two-pion-exchange (TPE) contribu-
tions, as well as contact interactions with strengths spec-
ified by unknown low-energy constants (LECs). Non-
localities emerging from the contact terms entering at
N3LO have been eliminated by i) leveraging Fierz trans-
formations to develop a minimally non-local interaction
to order N3LO [1]; and ii) constraining the LECs asso-
ciated with the leftover N3LO non-local terms to van-
ish [2]. This choice is motivated by the consideration
that the LECs associated with the non-local terms are of
natural size, as opposed to those associated with the local
isovector and isotensor operators required to obtain good
agreement with nucleon-nucleon (NN) scattering data.

Schematically, the NV2 interaction can be broken
down into three parts as

v12 = vL12 + vS12 + vEM
12 , (11)

FIG. 1: Diagrams illustrating the contributions to the
electromagnetic current up to N2LO. Nucleons,

∆-isobars, pions, and external fields are denoted by
solid, thick-solid, dashed, and wavy lines, respectively.

The square in panel (d) represents relativistic
corrections to the LO current. Figure from Ref. [6].

where vL12 is the long-range term consisting of OPE and
TPE contributions to order N2LO, vS12 is the short-range
term consisting of contact interactions, and vEM

12 is an
electromagnetic contribution. The electromagnetic term
retains second-order Coulomb, Darwin-Foldy, vacuum
polarization, and magnetic moment interaction terms [9].
The radial functions in vL12 have ∼1/rn (with n ≤ 6)

singularities at the origin that are regulated with the
function

CRL
(r) = 1− 1

(r/RL)6e2(r−RL)/RL + 1
, (12)

where RL is the long-range cutoff. The short-range regu-
lator comes from a Gaussian smearing of the δ-functions
in coordinate space, expressed as

CRS
(r) =

1

π3/2R3
S

e−(r/RS)2 , (13)

where RS is the Gaussian parameter governing the width
of the smearing. Consequently, two regulator parameters
need to be specified in the model.
Embedded within vS12 are 26 unknown LECs that pa-

rameterize the strengths of the contact terms, adjusted
to fit NN scattering data [53–55]. There are four classes
of models for the NV2. Model classes denoted by I
(II) are fit to NN scattering data up to 125 (200) MeV
with a χ2/datum ≈ 1.1 (1.4). For model classes de-
noted by a (b), the regulators used in the potential are
[RL, RS ] = [1.2 fm, 0.8 fm] ([RL, RS ] = [1.0 fm, 0.7 fm]).
In addition to the NV2, the Norfolk models incorpo-

rate a three-body force (NV3) [56, 57] that requires the
determination of two additional LECs; namely, cD and
cE . These are fit either to the triton ground state en-
ergy and nd doublet scattering length [3] or to the triton
ground state energy and Gamow-Teller matrix element
for β-decay [4]. The latter fitting procedure corresponds
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FIG. 2: Diagrams illustrating the contributions to the
electromagnetic current at N3LO adopted in this work.
Nucleons, pions, and external fields are denoted by
solid, dashed, and wavy lines, respectively. The solid

circle in panel (f) is associated with a sub-leading γπN
interaction. Figure from Ref. [6].

to the model classes denoted with a star, which are the
ones used in this work.

C. The electromagnetic current operator

The electromagnetic current operator, j, is expressed
as an expansion in many-body terms as

j =
∑
i

ji(q) +
∑
i<j

jij(q) + . . . , (14)

where q is the momentum transferred to the nucleus. In
this work we include up to two-nucleon contributions.

Electromagnetic currents have been extensively stud-
ied within several implementations of χEFT, including
covariant perturbation theory [58], the unitary transfor-
mation method [59–62], and time-ordered perturbation
theory [6, 7, 11–14]. In this work, we adopt the op-
erators developed using time-ordered perturbation the-
ory [6, 7, 11–14] whose expressions in momentum space
are summarized in Ref. [7]. For ease of reading, we detail
the corresponding coordinate space expressions in Ap-
pendix A.

Figs. 1 and 2 display schematic representations of the
electromagnetic current operator. One-body operators
appear at LO and N2LO. These are generated by the
disconnected diagrams displayed in panels (a) and (d) of
Fig. 1, respectively. The LO one-body operator consists
of the convection and the spin-magnetization currents
associated with an individual nucleon. This operator is
derived from the non-relativistic reduction of the covari-
ant single-nucleon current; that is to say, by expanding
the operator in powers of pi/mN , where pi and mN are
the momentum and mass of a nucleon, respectively. Its
expression in coordinate space is given in Eq. (A1) and is
denoted with ‘LO’ in the tables. The one-body operator
at N2LO accounts for relativistic corrections to the LO
one-body operator, and its expression can be found in
Eq. (A11).

Two-body operators first appear at NLO in the expan-
sion. At this order, they consist of a purely isovector (IV)
contribution generated by the seagull and pion-flight di-
agrams illustrated in panels (b) and (c) of Fig. 1. The
NLO two-body current is denoted with ‘NLO’ in the ta-
bles, and its expression is provided in Eq (A7).

At N2LO, there is the two-body OPE current involv-
ing the excitation of an intermediate ∆-isobar shown in
panel (e) of Fig. 1. In the tables, we report the cumu-
lative contribution at N2LO, that is the sum panels (d)
and (e), and denote it with ‘N2LO’. When discussing the
two-body magnetic densities, we analyze the N2LO OPE
current involving the intermediate ∆-isobar separately,
and denote its contribution with ‘N2LO(∆)’. This OPE
term is purely IV and transverse, thus unconstrained by
current conservation with the NV2 interaction.

The contributions at N3LO are shown in Fig. 2. Panel
(a) displays the OPE current involving a sub-leading
term in the γπN chiral Lagrangian that generates both
an isoscalar (IS) and an IV current. These N3LO contri-
butions of one-pion range are cumulatively denoted with
‘N3LO(OPE)’ in the tables. When discussing the two-
body magnetic densities, we analyze separately the ef-
fect of its individual components. Specifically, the IS
component—given in Eq. (A16)—is proportional to the
unknown LEC d′9, and is denoted with ‘N3LO(OPE) IS’
in the figures. The IV component involves two unknown
LECs, namely, d′8 and d

′
21. The term associated with d′8 is

given in Eq. (A19), and is labeled with ‘N3LO(OPE) IV
d′8’. While the term involving d′21 is given in Eq. (A20),
and is labeled with ‘N3LO(OPE) IV d′21’.

Currents of two-pion range (without ∆-isobars) are
shown in panels (g)–(k) of Fig. 2 and are denoted with
‘N3LO(LOOP)’ in the tables and in the figures.

The last contribution at N3LO is represented by the
contact term in panel (l) of Fig. 2. We distinguish be-
tween two kinds of contact contributions, namely the
minimal (MIN) and non-minimal (NM) contact currents.
The former is linked to the NV2 contact potential at
NLO via current conservation; therefore it involves the
same LECs entering the NV2. This contribution is de-
noted with ‘N3LO(MIN)’ in the tables. The N3LO(MIN)
term is broken down into its IS and IV components—
denoted as ‘N3LO(MIN) IS’ and ‘N3LO(MIN) IV’—
given in Eqs. (A29) and (A30), respectively.

Non-minimal contact currents are unconstrained by
current conservation and are denoted with ‘N3LO(NM)’
in the tables. The non-minimal contact currents are pro-
portional to two unknown LECs, C ′

15 and C ′
16. The for-

mer enters the IS current given in Eq. (A34) that gener-
ates a contribution labeled as ‘N3LO(NM) IS’. The latter
enters the IV current given in Eq. (A35) that gives rise
to a contribution labeled as ‘N3LO(NM) IV’.

The operators described above involve five unknown
LECs, d′8, d

′
9, d

′
21, C

′
15 and C ′

16 for which we adopt
the values obtained from the analysis of Ref. [7]. In
particular, these LECs are constrained to reproduce
the magnetic moments of the deuteron and the trinu-
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cleon systems, as well as backward-angle deuteron photo-
disintegration data. This fitting strategy, denoted as
“fit A” in Ref. [7], provides excellent agreement with
the data, even at large values of momentum transfer,
when used to compute magnetic form factors in the hy-
perspherical harmonics approach. For convenience, we
report the values of these LECs in Appendix A.

D. Magnetic form factors and moments

The magnetic form factors are extracted from elas-
tic electron scattering differential cross section data (see
Ref. [63] for a review). For this work we use the definition
given in Ref. [63], i.e.,

F 2
M (q) =

1

2J + 1

∞∑
L=1

|⟨J ||ML(q)||J⟩|2 , (15)

where we express the magnetic form factor as a function
of the reduced matrix elements (RMEs) of the magnetic
multipole operators (ML), and J is the total angular mo-
mentum of the nucleus.

The calculation of the magnetic multipole expansion is
carried out using standard techniques [64] implemented
to expand the current operator j(q). As the reference
frame, we adopt the one where ẑ is the spin-quantization
axis of the nucleus, and the direction of q̂ is defined by
the angles θ and ϕ, the polar and azimuthal angles with
respect to this axis, respectively. In what follows, we
define q = |q|. The current, in terms of the magnetic
and electric multipoles, MLML

and ELML
, reads

jλ(q) =

∫
dx eiq·xêλ · j(x)

=−
∑

L≥1,ML

√
2π(2L+ 1)iLDL

ML,λ(−ϕ,−θ, ϕ)

× [λMLML
(q) + ELML

(q)] ,
(16)

where λ = ±1, and DL
ML,λ are the rotation matrices [65].

The unit vector êqλ indicates the linear combination

êλ=±1 = ∓ ê1 ± ê2√
2

, (17)

where ê3 = q̂, ê2 = ẑ×q̂, and ê1 = ê2×ê3. Note that, for
elastic scattering, the electric multipole operators (EL)
vanish because of time reversal invariance [66], and the
sum over L runs only on odd values because of parity
conservation.

As observed in Ref. [67], in VMC and GFMC calcula-
tions, it is more efficient to compute the matrix elements
of j(q) between states of a specific spin configurationMJ

(usually MJ = J) and then adjust the direction of q̂ to
isolate the single RME contributions. In our case, it is
very convenient to select q to be in the x− z plane. This
makes ϕ = 0, and ê2 = ŷ. Leveraging this selection and

Jπ Nuclei Multipoles
1/2+ 3He,3H M1

1+ 6Li M1

3/2− 7Li, 7Be M1, M3

2+ 8Li, 8B M1, M3

3/2− 9Li, 9C, 9Be, 9B M1, M3

3+ 10B M1, M3, M5

TABLE I: Multipole contributions to the magnetic form
factors for the nuclei considered in this work.

making use of the Wigner-Eckart theorem in Eq. (16),
the matrix element reduces to [67]

⟨JJ |jy(q)| JJ⟩ =
√
4π

∑
L≥1

iL+1 ⟨JJ, J −J |L0⟩√
L(L+ 1)

× P 1
L(cos θ) ⟨J ||ML(q)∥J⟩ .

(18)

The various multipole contribution to the magnetic
form factor for the nuclei considered in this work are sum-
marized in Table I. The number of independent matrix
elements with different directions of q (i.e., of different
θ’s) that have to be computed is equal to the number of
multipoles allowed. Clearly, any independent choice of
the directions are equivalent; in Appendix B we present
the explicit formulas obtained for our specific choices.
From the small q behaviour of the magnetic form factor

it is possible to extract the magnetic (dipole) moment of
the nucleus. Starting from the definition of the magnetic
moment, it is possible to show that [67]

⟨J ||M1(q)||J⟩ ≃
i√

2π⟨JJ, J −J |10⟩
q

2mN
µ . (19)

Therefore, considering that the higher-order multipoles
have a negligible contribution to the magnetic moment
at small q we can select the matrix element computed for
θ = π/2 (any choice is equivalent) and so the magnetic
moment becomes

µ = lim
q→0

−i2mN

q
⟨JJ |jy(qx̂)|JJ⟩ . (20)

To extract µ, we evaluate ⟨JJ |jy(qx̂)|JJ⟩ for q ∈
[0.00, 0.25] fm−1 and fit the results to a polynomial, sim-
ilarly to what was done for the multipole analysis of the
6He β-decay spectrum in Ref. [35]. The linear coefficient
is then used to determine the quantity of interest.

III. RESULTS AND DISCUSSION

In this section, we summarize our calculations. Specif-
ically, we report the results for i) magnetic moments; ii)
two-body magnetic densities; and iii) magnetic form fac-
tors of light nuclei.
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Model LO NLO N2LO N3LO(MIN) N3LO(NM) N3LO(OPE) N3LO(LOOP) TOT TOT-LO
3H( 1

2

+
; 1
2
) Ia⋆(IIa⋆) 2.588(2.588) 0.196(0.197) 0.036(0.035) 0.042(0.038) 0.089(0.125) −0.005(−0.038) 0.027(0.027) 2.973(2.972) 0.385(0.384)

Ib⋆(IIb⋆) 2.589(2.592) 0.224(0.226) 0.061(0.059) 0.042(0.033) 0.076(0.072) −0.030(−0.014) 0.021(0.020) 2.972(2.986) 0.394(0.394)
Exp 2.979

3He( 1
2

+
; 1
2
) Ia⋆(IIa⋆) −1.766(−1.767) −0.193(−0.194) −0.042(−0.043) 0.030(0.029) −0.117(−0.146) −0.002(0.032) −0.027(−0.026) −2.116(−2.116) −0.350(−0.358)
Ib⋆(IIb⋆) −1.770(−1.769) −0.220(−0.222) −0.066(−0.066) 0.033(0.026) −0.124(−0.102) 0.045(0.026) −0.026(−0.019) −2.124(−2.127) −0.358(−0.349)
Exp −2.127

6Li(1+; 0) Ia⋆(IIa⋆) 0.826(0.823) 0.000(0.000) −0.010(−0.010) 0.046(0.043) −0.019(−0.016) −0.003(−0.002) 0.000(0.000) 0.840(0.838) 0.014(0.016)
Ib⋆(IIb⋆) 0.820(0.825) 0.000(0.000) −0.010(−0.010) 0.037(0.034) −0.015(−0.019) 0.001(0.008) 0.000(0.000) 0.833(0.838) 0.015(0.013)
Exp 0.822

7Li( 3
2

−
; 1
2
) Ia⋆(IIa⋆) 2.923(2.895) 0.184(0.187) 0.021(0.021) 0.046(0.043) 0.103(0.141) −0.007(−0.038) 0.033(0.032) 3.301(3.280) 0.379(0.385)

Ib⋆(IIb⋆) 2.905(2.928) 0.224(0.220) 0.052(0.043) 0.046(0.037) 0.092(0.083) −0.032(−0.014) 0.029(0.026) 3.317(3.322) 0.413(0.394)
Exp 3.256

7Be( 3
2

−
; 1
2
) Ia⋆(IIa⋆) −1.094(−1.070) −0.183(−0.187) −0.033(−0.035) 0.030(0.032) −0.132(−0.169) 0.002(0.032) −0.033(−0.031) −1.443(−1.465) −0.349(−0.359)
Ib⋆(IIb⋆) −1.083(−1.098) −0.222(−0.221) −0.065(−0.060) 0.037(0.030) −0.148(−0.119) 0.049(0.027) −0.029(−0.025) −1.461(−1.464) −0.359(−0.367)
Exp −1.465

TABLE II: VMC results in units of µN for magnetic moments of nuclei with mass number A = 3− 7, computed
with the NV2+3 interaction and consistent electromagnetic current broken down order-by-order in the chiral

expansion. The column denoted by TOT is the sum of all contributions to the magnetic moment. The columns
denoted with LO and TOT-LO indicate the contribution to the magnetic moment from the electromagnetic current

at LO and the cumulative contribution from sub-leading electromagnetic currents, respectively. Statistical
uncertainties from the Monte Carlo integration, which are ≲ 2% for all contributions listed, have been omitted. The

experimental data are from the evaluations of Refs. [68–71].

Model LO NLO N2LO N3LO(MIN) N3LO(NM) N3LO(OPE) N3LO(LOOP) TOT TOT-LO
8Li(2+; 1) Ia⋆ 1.332 0.183 0.016 0.064 0.080 −0.046 0.031 1.660 0.328

IIb⋆ 1.325 0.208 0.035 0.049 0.057 −0.018 0.022 1.678 0.353
Exp 1.654

8B(2+; 1) Ia⋆ 1.330 −0.176 −0.047 0.054 −0.127 0.026 −0.032 1.028 −0.302
IIb⋆ 1.274 −0.206 −0.065 0.040 −0.108 0.031 −0.023 0.943 −0.331
Exp 1.036

9Li( 3
2

−
; 3
2
) Ia⋆ 2.933 0.271 0.031 0.094 0.113 0.026 0.027 3.494 0.561

IIb⋆ 3.058 0.310 0.055 0.068 0.084 −0.005 0.006 3.574 0.517
Exp 3.437

9Be( 3
2

−
; 1
2
) Ia⋆ −0.964 −0.041 0.011 0.010 −0.053 0.018 −0.010 −1.030 −0.066
IIb⋆ −1.049 −0.049 0.004 0.011 −0.044 0.011 −0.007 −1.123 −0.074
Exp −1.178

9B( 3
2

−
; 1
2
)† Ia⋆ 2.690 0.040 −0.024 0.024 0.039 −0.015 0.010 2.763 0.073

IIb⋆ 2.821 0.049 −0.017 0.015 0.029 −0.005 0.007 2.900 0.079
Exp –

9C( 3
2

−
; 3
2
)† Ia⋆ −1.070 −0.264 −0.047 0.002 −0.150 −0.033 −0.028 −1.590 −0.520

IIb⋆ −0.983 −0.329 −0.079 0.003 −0.131 0.020 −0.007 −1.505 −0.523
Exp −1.391

10B(3+; 0) Ia⋆ 1.816 0.000 −0.019 0.069 −0.028 0.000 0.000 1.839 0.023
IIb⋆ 1.819 0.000 −0.019 0.048 −0.027 0.012 0.000 1.833 0.014
Exp 1.801

TABLE III: Same as Tab. III but for nuclei with mass number A = 8− 10.

A. Magnetic moments

We perform QMC calculations of magnetic moments
for several light nuclei with the NV2+3 interactions and
associated electromagnetic currents. For nuclei with
mass number A = 3 − 7, we present VMC results based
on four NV2+3 model classes; namely, models Ia⋆, IIa⋆,
Ib⋆, and IIb⋆. In the cases of nuclei with mass number
A = 8− 10, we base our studies on two models– models
Ia⋆ and IIb⋆. This approach allows us to determine the

impacts resulting from variations in the cutoff parameters
and energy range utilized for fitting the NV2 potential
on the calculated magnetic moments. The VMC results,
along with a breakdown into the various contributions
from the one- and two-body chiral currents described in
Sec. II C, are summarized in Fig. 3 and Tables II and III
for systems with A = 3 − 7, and A = 8 − 10, respec-
tively. Fig. 3 displays our results for VMC and GFMC
magnetic moments with circles and stars, respectively.
Calculations based on the one-body operator alone are
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FIG. 3: VMC magnetic moments calculated with the
NV2+3-Ia⋆ (blue circles) and NV2+3-IIb⋆ (red circles)
compared with experiment (black dots). GFMC results

based on NV2+3-Ia⋆ are given by the green stars.
Empty symbols denote the calculation up to LO in the
current, while filled symbols include all contributions

through N3LO.

indicated with empty symbols, while those that include
two-body currents up to N3LO are indicated with filled
symbols. Pink arrows indicate the major shifts induced
by the two-body currents, which are positive (negative)
for neutron-rich (proton-rich) nuclei. Finally, for compar-
ison, we plot the experimental data with black squares.

1. VMC magnetic moments of A = 3− 7 nuclei

The computation of the 3H and 3He magnetic moments
represents a benchmark with the exact hyperspherical
harmonics calculation of Ref. [7]. The VMC calcula-
tions are in excellent agreement with the previous re-
sults, and thus we do not summarize again the findings
contained therein. The salient features of these systems
are a strong two-body component of ∼ 13% (16%) to the
overall 3H (3He) magnetic moments, as well as a ≲ 0.5%
model dependence due to the inclusion of trinucleon mag-
netic moments in the fit to determine the unknown elec-
tromagnetic currents LECs.

Given that the A = 7 nuclei are composed of two
symmetric subgroups in the Young Scheme [72], having
a dominant [43] spatial symmetry pattern, there is an
α + 3H(3He) cluster structure in 7Li (7Be). The nature
of that clustering leads to the order-by-order breakdown
of their magnetic moments being approximately the same
as for 3H (3He). This is because the contribution to the
magnetic moment within the α structure (Jα = 0) is
small and any two-body contribution between the clus-
ters is weak due the relatively weak OPE NN strength in
relative P waves [72] suppressing meson-exchange contri-
butions, and Pauli blocking suppressing inter-cluster con-

tact contributions. This is made evident by the similarity
of the two-body magnetic densities in Fig. 4, defined as

µ2b =

∫
drij 4π r

2
ij ρ

2b
M (rij) . (21)

Here, µ2b denotes a generic two-body current contribu-
tion to the magnetic moment, obtained upon integration
of the two-body magnetic density over the interparticle
distance rij . In Fig. 4, we plot the IV magnetic densities
for A = 3, 7, and 8 nuclei for model IIb⋆. In the panels
of this figure, the NLO and N2LO(∆) terms of one-pion
range, given respectively in Eqs. (A7) and (A12), are rep-
resented by blue circles and red squares. The minimal
and non-minimal contact currents, N3LO(MIN) IV and
N3LO(NM) IV, given in Eqs. (A30) and (A35), are indi-
cated with olive green stars and cyan diamonds, respec-
tively. The ‘N3LO OPE IV d′8’ and ‘N3LO OPE IV d′21’
one-pion range contributions of Eqs. (A19) and (A20),
are represented by light brown triangles and green oc-
tagons, respectively. Finally, the LOOP IV contribution
at N3LO is represented by brown hexagons, and its ex-
pression is given by the IV terms in Eq. (A23).
Comparing across models, we note that the NLO and

N2LO contributions for A = 3 and A = 7 exhibit a de-
pendence on the choice of the NV2+3 model. These con-
tributions are found to be more sensitive to changes in
the cutoff parameters (class “a” vs. class “b”) than to
changes in the energy range used to fit the NN potential
(class “I” vs. class “II”). At N3LO, the N3LO(NM) and
N3LO(OPE) contributions show a significant model de-
pendence, which we attribute to the fact that the LECs
appearing in these currents are fit to data. In partic-
ular, similarly to the findings in Refs. [7, 15], we ob-
serve that the N3LO contribution is enhanced relative
to naive power counting expectations, largely driven by
the N3LO(NM) term which is similar in size to the NLO
term. At this order, the other non-minimal term, namely
the N3LO(OPE) term, typically provides a contribution
consistent in magnitude with N2LO in the power count-
ing, except for model Ia⋆. For this specific model, a
nearly exact cancellation between the two terms enter-
ing the N3LO(OPE) IV current–see panel (f) in Fig. 2
and Eq. (A18)–leads to this accidental suppression of the
matrix element. This competition is made clear in the
plot of ρ2bM in Fig. 4.
Similarly, 6Li, with its dominant [42] spatial symmetry,

displays a strong α+d cluster structure. At leading order,
the contribution to the magnetic moment in this system
is approximately the value of the deuteron’s magnetic
moment (µd = 0.857438 µN [73]), exhibiting minimal
model dependence. Further, as 6Li is a purely IS (T = 0)
nucleus, the matrix elements for IV components of the
current operator vanish. Consequently, some contribu-
tions from the current are suppressed beyond what one
would expect from power counting considerations. For
instance, the NLO contribution to the current is purely
IV and thus does not contribute to the magnetic mo-
ment of 6Li. The N3LO(MIN) and N3LO(NM) contribu-
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(Jπ;T ) Method LO TOT-LO TOT Expt.
3H( 1

2

+
; 1
2
) VMC 2.582 0.383 2.970 2.9790

GFMC 2.556 0.368 2.924
3He( 1

2

+
; 1
2
) VMC −1.766 −0.350 −2.116 −2.1275

GFMC −1.740 −0.349 −2.089
6Li(1+; 0) VMC 0.826 0.014 0.840 0.8221

GFMC 0.821 0.016 0.837
7Li( 3

2

−
; 1
2
) VMC 2.923 0.379 3.301 3.2564

GFMC 2.879 0.429 3.307
7Be( 3

2

−
; 1
2
) VMC −1.094 −0.349 −1.443 −1.465

GFMC −1.019(3) −0.35(2) −1.37(2)
8Li(2+; 1) VMC 1.332 0.328 1.660 1.654

GFMC 1.12(3) 0.43(8) 1.55(8)
8B(2+; 1) VMC 1.479 −0.302 1.028 1.036

GFMC 1.48(2) −0.39(8) 1.09(11)
9Li( 3

2

−
; 3
2
) VMC 2.9331 0.5609 3.4939 3.4391

GFMC 2.59(2) 0.70(16) 3.29(16)
9Be( 3

2

−
; 1
2
) VMC −0.964 −0.066 −1.030 −1.178

GFMC −1.214(5) 0.02(3) −1.19(3)
9B( 3

2

−
; 1
2
) VMC 2.690 0.073 2.763 –

GFMC 3.054(7) −0.01(3) 3.05(3)
9C( 3

2

−
; 3
2
) VMC −1.070 −0.520 −1.590 −1.391

GFMC −0.85(3) −0.53(19) −1.38(20)

TABLE IV: GFMC calculations of magnetic moments of A ≤ 9 nuclei in units of µN computed for the NV2+3-Ia⋆

model and consistent electromagnetic current. The column denoted by TOT is the sum of all contributions to the
magnetic moment, while TOT-LO indicates the sub-leading current contribution to the result. The experimental

data are from the evaluations of [68–71].

tions in this case are still enhanced, making few percent
contributions to the overall magnetic moment. There
is a ∼15% model dependence on the N3LO(MIN) con-
tribution that is driven by changing the cutoff, whereas
the N3LO(NM) contribution is much more stable across
models.

The N3LO(OPE), contrary to its behavior for A = 3
and A = 7, contributes with a size that is consistent with
its power counting. The N3LO(OPE) term also displays
a large model dependence in 6Li, though this term makes
a rather small contribution to the overall matrix element.
This model dependence is readily understood by looking
at Eq. (A16). As observed in Ref. [6], the N3LO(OPE) IS
contribution exhibits a node stemming from the opposite
signs of the correlation functions, I1(x) and I2(x), ap-
pearing in the current. This, combined with the cancel-
lation of the N3LO(MIN) IS and N3LO(NM) IS contact
terms, leads to an overall small contribution from two-
body IS currents to the total magnetic moment. Similar
observations persist when extending our analysis to the
two-body IS magnetic densities across the remaining nu-
clei examined in this study, which are plotted in Fig. 5.
The three IS terms plotted are the ‘N3LO(OPE) IS,’ as
well as the ‘N3LO(MIN) IS’ and ‘N3LO(NM) IS’ contact
currents of Eqs. (A29) and (A34). These are represented
in the figure with the yellow crosses, pink triangles, and
purple “x” symbols, respectively.

Finally, the summed magnetic moment for 6Li displays

very little model dependence. Now, two-body currents
only account for ∼2% of the total magnetic moment.

2. VMC magnetic moments of A = 8− 10 nuclei

Due to the cutoff dependence found in the one-pion
range terms at NLO and N2LO, and the general model
dependence observed in the N3LO terms, we focus on two
representative model classes, Ia⋆ and IIb⋆, for the heavier
nuclei with A = 8− 10 to streamline computations.
The VMC results for the A = 8− 10 systems are sum-

marized in Table III. Referring to this table, we begin
our discussion with the case of the purely IS 10B ground
state. Similar to 6Li, the IV terms are suppressed relative
to their expected power counting. The LO contribution
is once again rather stable, albeit differing slightly from
that of the deuteron at the same order primarily due to
additional contributions from the orbital magnetic mo-
ments of the protons. The N3LO(MIN) and N3LO(OPE)
contributions display model dependence and have a mag-
nitude that would be consistent with one order lower in
the power counting. However, this model dependence
cancels out in the summed result, leading to an overall
consistency between the two investigated model classes.
As for 6Li, two-body currents only play a small role and
make up ∼1% of the total magnetic moment.
The addition of an unpaired p-shell neutron (proton)
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to 7Li (7Be) forms the predominantly [431] spatial sym-
metry ground state of 8Li (8B). At LO, the uncoupled
valence nucleon quenches the magnitude of the magnetic
moment. Interestingly, the NLO and N2LO contribu-
tions are not greatly altered by this additional nucleon.
In these nuclei, there is little additional binding from
the OPE NN interaction with the added nucleon [72].
Consequently, the dominant one-pion range current con-
tribution at NLO stays roughly the same in A = 8 as in
A = 7 systems. The similarity is also true for the two-
body density, as seen in Fig. 4. This carries over also into
the long-range N2LO and N3LO contributions, while the

short-range contributions at N3LO remain enhanced rel-
ative to their power counting, and are found to be model
dependent. For 8B, two-body currents quench the mag-
netic moment by ∼ 30%. In 8Li, instead, they enhance
it by ∼ 20%.
For A = 9 systems, the differences between the T =

3/2 ground state of 9Li and the T = 1/2 ground state
of 9Be lead to interesting physics in the two-body cur-
rents’ effect. As discussed in the previous QMC evalu-
ation within the hybrid approach [8], the [432] spatial
symmetry dominates the 9Li ground state, giving it a
α + t + 2n cluster structure. On the other hand, 9Be
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FIG. 6: Same as Fig. 4 but for A = 9 systems.

is dominated by a [441] spatial symmetry and clusters
as 2α + n. A single valence neutron outside of the 2α
cluster experiences almost no binding from the OPE NN
interaction [72]. Consequently, in this system, the two-
body current contribution at NLO is suppressed relative
to its power counting. This is reflected in the two-body
densities of Fig. 6.

Before considering mixing from the tensor force, note
that the ratio of p-shell IS pairs to IV pairs in 9Be is en-
hanced by a factor of 2 relative to 9Li. Since the IS pairs
will not couple to the IV two-body current at NLO, this
brings down its contribution to the magnetic moment
in 9Be relative to 9Li. This suppression, due to purely
nuclear structure effects, accounts for the small (∼6%)
two-body current contribution to the magnetic moment
of 9Be. In 9Li, instead, there is binding from the OPE
NN interaction felt both within the triton-cluster and be-
tween the triton-cluster and the valence neutrons. Here,
two-body currents play a much larger role and make a
contribution of ∼15% to the total calculated magnetic
moment.

The cluster structure also explains the suppression of
the contact contributions in 9Be relative to 9Li. Pauli
blocking suppresses contributions between the valence
nucleon in 9Be and the α clusters. Instead, the two va-
lence nucleons in the [432] cluster structure of 9Li form
a spatially symmetric and IV pair. Thus, the long-
range currents contributions are enhanced by this pair
over the values for nuclei [43] and [431] cluster struc-
tures. The spatial symmetry also allows the additional
pair of nucleons a non-zero overlap at shorter distances in
their relative wave function. This explains the increased
N3LO(NM) and N3LO(MIN) contribution in 9Li relative
to 8Li.

The wave functions for the mirror nuclei of 9Li and 9Be,
specifically 9C and 9B, respectively, were generated by
swapping the numbers of protons and neutrons without
re-optimizing the variational parameters. Consequently,
and for similar reasons, the two-body current contribu-
tion in 9B is suppressed, while in 9C, it significantly im-

pacts the magnetic moment, accounting for ∼ 33% of
the total calculated value. As observed in the A ≤ 8
nuclei, the N3LO contributions in A = 9 also show de-
pendence on the specific NV2+3 model employed. For
T = 3/2 nuclei, the N3LO(NM) contribution whose mag-
nitude would be more consistent with roughly NLO in
the power counting. Comparatively, in T = 1/2 systems,
the N3LO(NM) contribution is at a level that would be
more consistent with an N2LO term in the power count-
ing scheme.
Analyzing the trends in the systematic order-by-order

calculations of the magnetic moment for several nuclei,
we see that the N3LO(NM) term tends to be enhanced
by roughly two orders for nuclei where the IV currents
do not vanish. In the IS case, the enhancement is only
by approximately one order. Another standout case is
the A = 9, T = 1/2 system, where both the NLO(OPE)
and N3LO(NM) terms are significantly suppressed due
to 2α+N cluster structures.
It is worth noting that the electromagnetic currents of

one-pion range entering at NLO and N2LO also vary with
the cutoff. An evaluation using two models is certainly
not enough to claim a systematic cutoff dependence; how-
ever, given the hints of cutoff sensitivity and the enhance-
ment of the non-minimal contact terms that are fit to re-
produce A ≤ 3 experimental data, it is worth rigorously
investigating the renormalization of the NLO and N2LO
contributions to the magnetic moment. While specula-
tive at this point, it is possible that such an evaluation
could indicate the need to promote a contact operator to
higher orders to explain the lack of convergence in the
power counting observed in this study and in the studies
of Refs. [7, 15]. Further, the authors of Ref. [74] previ-
ously argued, on the basis of the wave function anoma-
lous dimension, that the contact operator contributing to
the magnetic moment should have a power counting that
places it roughly between N2LO and NLO, consistent
with the enhancement observed here and in Refs. [7, 15];
however, such an effect could also be due to the imple-
mentation of cutoffs that are too soft, causing an uncon-
trolled sensitivity to the short-range physics [75]. Either
case has important implications for the convergence of
the power counting and for future studies of electromag-
netic observables. As such, studies of the renormaliza-
tion of simple two-body observables are presently being
pursued to further understand these observations and to
determine the nature of this enhancement.

3. GFMC magnetic moments of A = 3− 9 nuclei

We now turn our attention to the GFMC results sum-
marized in Table IV. Due to the relatively small model
dependence found in the summed contributions, we per-
form GFMC propagation only for model Ia⋆. Typically,
we extracted the GFMC result for the magnetic moment
by averaging ∼30 mixed estimates after convergence is
reached. However, for the 8B (8Li) ground state we ob-
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serve a behaviour consistent with the findings of Ref. [17].
During the GFMC propagation, the point proton (neu-
tron) radius increases monotonically even after conver-
gence is reached for the energy calculation, which typi-
cally occurs at τ ≈ 0.1 MeV−1. This may be interpreted
as the nucleus dissolving into a 7Be (7Li) and a proton
(neutron). For these systems, we treat τ = 0.1 MeV−1

as the imaginary time at which spurious contamination
has been removed from the VMC wave function, and av-
erage for a small number of time steps around this point;
namely, in the windows τ ∈ [0.06, 0.14] MeV−1. We es-
timated the systematic uncertainty by doubling the size
of the window to find the change in the average.

For the A = 9, T = 3/2 cases, we also have a large un-
certainty on the GFMC calculations. In this case, how-
ever, the uncertainty is statistical rather than system-
atic. While the total and beyond leading order results are
stable after convergence, there is a large error on these
matrix elements. Two matrix elements–namely the NLO
and N3LO(MIN)– have large uncertainties while the sum
of the subleading currents is stable. This results in a 5%
error for 9Li, but for 9C, there is a more striking 14% er-
ror. In the later case, the LO contribution only has a 3%
error but the overall uncertainty is dominated by the two-
body term; however, as we treat the uncertainties on the
total and total subleading matrix elements as a quadra-
ture sum of the component uncertainties, the summed
matrix elements also have a large uncertainty. Of course,
this assumes that the errors on the components are un-
correlated, which may not necessarily be the case. Thus,
this may be a rather conservative estimate of the total
uncertainty. These magnetic moments could make inter-
esting cases to investigate with more rigorous uncertainty
quantification and advanced statistical techniques in the
future. While immense effort is being carried out in this
direction by the nuclear theory community [76–79], this
is beyond the scope of the present work, and as such, we
assume the conservative estimate here.

The GFMC magnetic moments are displayed for A ≤ 9
nuclei in Fig. 3 and are presented in Table IV. On aver-
age, the GFMC propagation changes the VMC magnetic
moments by ≲ 1.5% for light systems. In heavier nu-
clei, the change can be more drastic and ranges from
5% to 15%. Overall, our calculations agree with experi-
ment on average at the 4% level, ranging from ≲ 1% to
7%. In this range, only four cases have central values
with worse than ∼2% agreement with the experimental
data; namely, 7Be, 8Li, 8B, and 9Li. The discrepancy
for A = 8 is most likely due to the previously mentioned
difficulty modelling these nuclei with model Ia⋆, as the
chiral potential tends to be unstable to breakup into an
A = 7 nucleus plus a free nucleon. For the remaining
cases, the change from VMC to GFMC is driven primar-
ily by the one-body term, which is most sensitive to the
nucleon spin distributions. Since the VMC already pro-
vided extremely good agreement with the data in these
cases, it may be unsurprising that GFMC propagation
could produce worse agreement, since it alters the spin-

spin correlations in the system. We stress that while the
GFMC provides the most accurate calculation within a
model, this does not imply it will provide better agree-
ment with data than the VMC. Thus, further attention is
merited to understand the inability of the Norfolk model
to obtain few percent agreement with the data in these
specific cases and to improve nuclear models based on
χEFT moving forward.
We note that two-body currents still play a large role

in the total GFMC magnetic moments for all but the
IS nuclei, where, as expected, the overall two-body cor-
rection still provides a small change to the LO result.
The IV two-body currents are dominated by the LO
OPE term, in fact calculations of magnetic moments of
medium mass nuclei retain this main contribution only [].
Finally, in some cases, the two-body current contribution
can change sign. These cases all correspond to currents
whose two-body densities show the presence of a node
due to an interplay of operators with opposite signs.

4. Scaled two-body magnetic densities
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FIG. 7: Scaled two-body VMC IS magnetic densities for
different nuclei computed with model IIb⋆ as a function
of interparticle spacing rij . Different colors represent

different nuclei.

The study of scaled two-body magnetic densities is rel-
evant to identify universal behaviours in both short- and
long-range two-nucleon dynamics. To examine the shape
of the two-body magnetic densities, we scale them by the
maximum value of |r2ijρ2bM |, and analyze the scaled den-

sities, defined as r2ijρ
2b
M/|r2ijρ2bM |. In Figs. 7 and 8, we

plot the scaled IS and IV two-body magnetic densities,
respectively, for all the nuclei considered in the present
work.
Referring to these figures, we note that the scaled IS

magnetic densities display a striking universal behavior
across rij . On the other hand, the scaled IV densities
are universal at short range and display a tail which de-
pends on the particular nucleus understudy. In Ref. [17],
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FIG. 8: Scaled two-body VMC IV magnetic densities for different nuclei computed with model IIb⋆ as a function of
interparticle spacing rij . Different colors represent different nuclei.

a similar behavior was observed for axial transition densi-
ties in a study of Gamow-Teller β-decay matrix elements.
The explanation for the universal behavior of the mag-
netic densities follows a similar logic. At short distances
(rij ≲ 1/mπ), there are very few pairs in relative P -waves
due to the repulsive nature of the nuclear force in odd
partial waves and the centrifugal barrier. Thus, IS pairs
at short distances tend to be predominantly ST = 10
and IV pairs ST = 01. Both the ST = 01 and ST = 10
pair distributions in nuclei have similar shapes and dif-
fer only by an overall scaling factor [80, 81]. Therefore,
this universal behavior is a result of the short-range cor-
relations in nuclei that are driven by the tensor compo-
nent of the nuclear force [82]. At larger distances, since
there is less suppression of P -wave pairs, and because
the ST = 00 and 11 pair distributions do not scale, the
two-body magnetic density is sensitive to the structure
of the ground state; however, because ST = 00 pairs
are formed rather infrequently in light systems [72, 83],
the long-range tail of the N3LO(OPE) IS term does not
strongly deviate from universal behavior. Instead, due to
tensor correlations in the wave function, it is possible to
form a large number of ST = 11 pairs in light systems,
which spoils universality for the total IV term at long
distances. The near universal behavior of the total IS
contribution, the short range universality of the IV term,

and the long-range nucleus dependence of the IV term
are well understood on the basis of pair formation inside
of the nucleus.

5. Model dependencies in two-body magnetic densities

Up to this point, we have analyzed the densities only
for one model; however, it is important to assess the cut-
off dependence, which is evidently important in the inte-
grated two-body contributions. To that end, we compare
the dominant IV contributions to the 3H magnetic mo-
ment in Fig. 9. The effect of the softer cutoff in the Ia⋆

regulator on the NLO(OPE) and N2LO(∆) currents is,
unsurprisingly, to reduce the two-body magnetic density
at short distances; however, the tail of the density is un-
affected by the cutoff function. Thus, taking a softer
cutoff quenches the overall magnitude of the matrix el-
ement. This particularly impacts the N2LO(∆) current
which is of shorter-range than the NLO contribution due
to the presence of the intermediate ∆-isobar. The soft
cutoff removes strength from the N2LO(∆) magnetic mo-
ment around its peak, resulting in a large quenching of
the contribution in model Ia⋆ relative to model IIb⋆. The
N3LO(NM) contribution, however, is enhanced when us-
ing the softer cutoff of model Ia⋆. The contact density
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is broadened for the softer cutoff while preserving the
overall magnitude. This effect is likely due to a combina-
tion of having a broader Gaussian representation of the
δ-function and a larger density of short-range IV pairs.

A similar broadening of the contact densities is ob-
served in Fig. 10 which shows the IS densities plotted
for 6Li. For the long-range N3LO(OPE) IS contribution,
the correlation functions I1(x) and I2(x) are particularly
sensitive to the choice of regulator, as was previously ob-
served in Ref. [6]. This can move the node in the density
and change the overall sign of the contribution to the
magnetic moment from this current, as shown in the fig-
ure.

From the model comparison, it is clear that altering
the short-range dynamics with different cutoffs signifi-

cantly impacts two-body magnetic moments. Clearly,
if one takes a cutoff that is too small, it will spoil the
convergence behavior of the higher-order contributions
due to significant quenching of the NLO and N2LO(∆)
terms. This quenching is compensated for by a larger
N3LO(NM) IV fit contribution and thus is not seen if
one looks only at the total magnetic moment; however,
if one were to perform the calculation up to NLO in the
current, evidently the model dependence would induce an
error much larger than the naive expectation from power
counting. Given this significant model dependence of the
two-body contributions and the particular importance of
the IV piece in predicting magnetic structure, it is crucial
to investigate this cutoff dependence more rigorously in
the future.

B. Magnetic form factors and high-momentum
structure

The magnetic form factor has been computed using
the same interactions and currents used for the magnetic
moments. In Fig. 11, we present the results for all the
nuclei showing the contributions of the currents order-by-
order for the NV2+3-IIb⋆ interaction compared to data
where available. We also include predicted magnetic form
factors of radioactive isotopes, because while there are
presently are no data for comparison, novel techniques
have recently made it possible to study electron scatter-
ing from radioactive nuclei [84].
In Fig. 12 we present the multipole contributions to

the magnetic form factors for the nuclei with J > 1 com-
puted with the full currents at N3LO and the NV2+3-
IIb⋆. Similar results are obtained for the other interac-
tion and current models considered.
Finally, we estimated the truncation error, limiting our

analysis to the error associated with the chiral expan-
sion of the electromagnetic currents, assuming the power
counting adopted in Refs. [6, 7, 11–14]. The calculation
of the full chiral truncation error would require an anal-
ysis of the chiral expansion in both the interaction and
currents, together; however, for the nuclear interactions
considered in this work, this is not presently possible.
In order to estimate the truncation error we use the

prescription of Ref. [85, 86] applied to

F̃M (q) =
√
2π(2J + 1)

2mN

q
⟨JJ, J −J |10⟩FM (q) . (22)

For this analysis, we select a value of Λb = 700 MeV and,
for the characteristic scale of momentum Q, we follow
Ref. [87] by setting it to the typical momentum trans-
fer (A − 1)/A q, to the nucleus of mass number A. In
Fig. 13, we plot the error bands at LO (orange), NLO
(green), N2LO (blue) and N3LO(red). Note that we do
not renormalize the results to a specific value of the mag-
netic moment.
Below we discuss in detail the results obtained for each

nucleus studied.
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FIG. 11: Magnetic form factors computed with the NV2+3-IIb⋆ interaction and consistent electromagnetic current.
In the figure we show the contribution of the currents up to LO (dotted blue), NLO (dashed yellow), N2LO (dot
dashed green) and N3LO (full red) in the chiral expansion. We compare our calculations with the available world

experimental data. See the text for more details.
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FIG. 12: Multipole contribution to the form factors computed with the NV2+3-IIb∗ interaction and consistent
electromagnetic current at N3LO for nuclei with J > 1. In the figure we show the contribution of the multipoles M1

(dashed blue line), M3 (dotted green), and M5 (dashed dot purple). The red line represents the full result.
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1. Tritium and Helium-3

The experimental magnetic form factors (shortened to
f.f.’s, throughout the reminder of this section) of 3H and
3He [88, 89] are well reproduced by the VMC calculation
as can be seen in Figs. 11a and 11b. The contribution of
the N3LO(NM) and N3LO(OPE) fitted terms are able to
fill in the diffraction minimum appearing at q ≃ 3 fm−1

in the magnetic f.f.’s of 3He. The 3H diffraction is not
visible in the figure but a similar effect is present. We
refer to Ref. [7] for a more detailed discussion. Similar
results are obtained for all the other NV2+3 interactions.
Note that the VMC calculations are in perfect agreement
with the Hyperspherical Harmonics results of Ref. [7].

2. Lithium-6

The 6Li experimental magnetic form factor presents
two peaks at q ≃ 0.5 and 2 fm−1 [90–94]. Our calcu-
lations are able to reproduce the two peaks even if, for
all the interactions considered, the zero tends to come a
little too early, and the second peak contains too much
strength. This is evidenced when comparing the theoret-
ical error bands with the experimental data in Fig. 13c.
This is in line with the results of Ref. [18] obtained using
VMC together with phenomenological interactions and
currents; however, the phenomenological interactions are
able to reproduce the strength of the first peak [18], while
all the models used in this work underpredict the strength
of the first peak (see Fig. 11c). Since 6Li is a T = 0 nu-
cleus, only two-body IS currents contribute to the mag-
netic f.f.. These contributions are negligible in the low
q region (see Ref. [18, 63]) and become sizable only at
large values of q; indeed the IS corrections at N3LO are
visible only for q ≳ 1.5 fm−1, seen in Fig. 11c.

3. Lithium-7 and Beryllium-7

The 7Li and 7Be magnetic f.f.’s receive contributions
from M1 and M3 multipoles, as can be seen in Figs. 12a
and 12b. The M3 contribution becomes dominant in the
region 1.0 ≤ q ≤ 2.5 fm−1 where it fills in the diffraction
minimum appearing in M1. This is consistent with the
findings of Ref. [63] and references there in, where 7Li is
analyzed using phenomenological models. The M1 and
M3 contributions are different in the two mirror nuclei.
In 7Be, M3 has more strength than M1, in contrast to
what is observed in 7Li.
The available data for 7Li are obtained from Refs. [90,

91, 95, 96]. As can be seen in Fig. 11d, we are able
to explain the shape and magnitude of the experimental
magnetic f.f.’s. The cumulative contribution from LO
and NLO currents is sufficient to reproduce the peak
at q ≃ 0.5 fm−1. Conversely, the region where q ≥ 1
fm−1 is significantly underestimated, unless N3LO cur-
rents are incorporated. The N3LO contributions are re-

quired to describe the tail of the magnetic f.f.; however,
they generate too much strength for the M1 peak, de-
spite accurately predicting the magnetic moment. In the
region with q ≥ 1 fm−1, the magnetic f.f. is reasonably
reproduced, taking into account the theoretical errors.
We note that, with none of the NV2+3 models consid-
ered are we able to reproduce the experimental strength
of the first peak (see Fig. 11d), which we overpredict by
∼25−40%. For all the interactions considered, two-body
currents give a correction of ∼25% in the region of the
first peak, and up to over ∼50% in the tail. This is in
line with the findings of Ref. [63], which are based on
phenomenological models. In that study, contributions
from two-body meson exchange are found to be of the
order of 7− 15% over most of the q region.
In 7Be, the contribution from NLO two-body currents

enhances the LO magnetic f.f. by a factor of ∼2, this
enhancement is even more pronounced when adding the
N3LO currents, almost uniformly across the 0.5 ≲ q ≲
2.5 fm−1 region. This would make the 7Be magnetic f.f.
a perfect candidate for validating models of two-body
currents, if that experimental data were available.

4. Lithium-8 and Boron-8

There are no experimental data for the magnetic f.f.’s
of the A = 8 systems; however, from our calculations, we
observe again a large contribution from two-body cur-
rents (Figs. 11, panels (f) and (g)). This is particu-
larly striking in 8B, where two-body currents reduce the
strength of the form factor for all q. It is also worth not-
ing the difference in the structure imprinted on the calcu-
lations. 8B only has a single dominant peak at low q gen-
erated by theM1 multipole and a quenchedM3 contribu-
tion at higher q with a double peak structure. Instead,
8Li exhibits a slightly two-peaked structure, where the
second peak generated by the M3 multipole is strongly
suppressed. Should advancements in electron scattering
on radioisotopes progress enough to measure these form
factors, they would also provide interesting cases to bet-
ter understand two-body currents.

5. A = 9 nuclei

For A = 9 systems, there are data only for the 9Be
magnetic f.f. [91, 92, 97, 98]. The data present a plateau
in the 0.3 ≲ q ≲ 1 fm−1 region, and a peak around
q ∼ 1.7 fm−1. In Fig. 11i, we compare our results with
the data. Referring to this figure, we note that the NLO
and N3LO two-body currents correct the strength of the
plateau obtained with the LO current alone, leading to
an improved agreement with the data. This finding con-
firms the hypothesis that two body currents are crucial
to describe the plateau as conjectured in Ref. [63]. On
the other hand, they (in particular, the NLO current) sig-
nificantly contribute to the second peak, resulting in an
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FIG. 13: Errors generated by the truncation of the chiral current (only) for the magnetic form factors computed with
the NV2+3-IIb∗ interaction. In the figure the bands represent the error computed at LO (orange), NLO (green),
N2LO (blue) and N3LO (red). Note that for this figure we used the definition of the form factor as in Eq. 22.
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overestimation of its maximum. Several phenomenolog-
ical models based on Woods-Saxon-type wave functions
(see Ref. [63] and reference there in) are able to repro-
duce the second peak, though they underestimate the
plateau. On the other hand, a projected Hartree-Fock
calculation [99] shows a result very similar to ours where
the secondary peak is overestimated even when two-body
currents are not included.

In Figs. 11i, 11j, and 11k, we show the results for the
remaining A = 9 nuclei. While in 9B the two-body cor-
rections are minimal over all the q range, both 9Li and 9C
receive large contributions form the NLO and N3LO two-
body currents, and, therefore, these systems are good
candidates for studies of higher order corrections in the
currents.

As per the multipole contributions displayed in
Figs. 12e–12h, we note that all the A = 9 present a sim-
ilar structure. A first peak, dominated by M1, is found
around q ∼ 0.5 fm−1, and a second peak, dominated by
M3, appears at q ∼ 1.5 − 1.8 fm−1. The latter fills in
the diffraction minimum observed in M1. The strength
of the second peak is larger for 9Be and 9C, while in 9Li
and 9B the first peak is dominant. A similar feature is
also observed for the mirror systems 7Li and 7Be, where
the former is dominated by M1 and the latter by M3.

This pattern is generated by the interference between
the spin and the orbital terms at LO (see Eq. (A1)) in
theM1 multipole. In Fig. 14, as an example, we compare
the individual contributions to theM1 andM3 multipoles
for the 9Be (unpaired neutron) and 9B (unpaired proton)
mirror systems. The spin terms (solid lines) for both the
M1 (blue curves) and M3 (red curves) multipoles carry
opposite sign in mirror nuclei due to the sign difference
between the magnetic moments of the unpaired neutron
and proton, respectively. At the same time, the M1 mul-
tipole receives a substantial orbital contribution (dashed
line) that has the same sign for both nuclei, though it is
slightly suppressed when all protons are paired. Thus,
the interference is destructive when only one neutron is
unpaired, generating a suppression of theM1; meanwhile,
the case of an unpaired proton has constructive inter-
ference that generates an enhancement of the M1 peak.
Note that this effect is not present for the M3 multipole
because the orbital term gives a negligible contribution
and thus there are no interference effects. Similar find-
ings have been observed for the other pairs mirror nuclei,
7Li-7Be and 9Li-9C.

6. Boron-10

The experimental data for the 10B magnetic f.f. are
provided for 0.5 ≲ q ≲ 2.0 fm−1 region [91–93, 98, 100].
We did not include the data of Refs. [91, 100] in the plots
because of the strong disagreement with the more recent
experimental results reported in Ref. [63]. The VMC
calculation has a very nice agreement with the data in
the region of the main peak (see Fig. 11l). Contributions
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FIG. 14: Contributions of the spin (full) and orbit
(dashed) terms to the M1 (blue) and M3 (red)
multipoles at LO for the 9Be/9B mirror system.

coming from two-body currents are very small because
they are purely IS. As shown in Fig. 12i, the main peak is
dominated by theM1 multiple, while the secondary peak
in the q ∼ 2.5 − 3 fm−1 region is generated by the M5

multipole that also contributes to the filling in of theM1’s
diffraction minimum. Note that this secondary peak was
hypothesized in Ref. [63], but it was not found in shell-
model calculations performed in that reference. The M3

peak that dominates all the other nuclei in the q ∼ 1.5
fm−1 region is barely visible, confirming the findings of
Ref. [63].

IV. CONCLUSIONS

In this work we presented the QMC calculations of
magnetic moments and magnetic form factors of nuclei
for A ≤ 10 based on chiral effective field theory. For
the calculation we used the Norfolk two- and three- body
interaction and consistent one- and two-body current op-
erators.
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The computation of magnetic moments in light nuclei
displayed the important role of two-body contributions.
Consistent with previous QMC studies [8, 15], two-body
currents can make up a significant fraction (≈30% – 40%)
of the total magnetic moments in light systems. The
analysis of two-body currents in this work was supple-
mented by the computation of two-body magnetic densi-
ties in a microscopic framework. These densities not only
corroborated the understanding of the two-body contri-
butions on the basis of the dominant cluster structures
in nuclear systems, but also further illuminated our un-
derstanding of how the short-range dynamics impact the
system. As for transition densities associated with β-
decay [17], magnetic densities display a striking univer-
sal behavior at short distances. The long-range structure,
however, is sensitive to the details of pair formation inside
the nucleus which is driven by the tensor component of
the nuclear force. Finally, these densities displayed how
changing the cutoff in the Norfolk model influences the
short-range dynamics associated with this observable.

Consistent with the studies of Refs. [7, 15], we find that
fitting the LECs appearing at N3LO in the electromag-
netic current can lead to unnaturally large contributions
compared to the expectation from naive dimensional
analysis. In the Norfolk model, this is driven by a rather
large contribution from the short-range N3LO(NM) dia-
gram. This enhancement spoils the order-by-order con-
vergence in these calculation in the Norfolk model, as is
also the case for the other chiral potentials appearing in
the previous QMC studies.

We investigated the impact of different regulators in
the χEFT approach by looking at different Norfolk mod-
els. As in the calculations performed in Ref. [16], a regu-
lator dependence at NLO also appears in our calcula-
tions. Combined with the lack of convergence in the
power counting, these results merit further scrutiny to
better understand the physics responsible for these phe-
nomena. A detailed investigation of the regulator depen-
dence in long-range terms could illuminate whether this
behavior is due to power corrections from the choice of
cutoff or to a lack of renormalization in the framework.

To validate away from zero momentum transfer, we
performed the calculation of magnetic form factors. In
A = 3 systems, our results represent a benchmark with
Ref. [7] and we find good agreement with the previous
evaluation and the data. We additionally performed the
first microscopic calculations of magnetic form factors in
6 ≤ A ≤ 10 nuclei using a χEFT model, which we pre-
sented in a companion [49]. We observed good qualita-
tive agreement with the data in most cases, reproducing
the strength and position of peaks in the measured form
factor. We also observed for the first time that, in the
mirror nuclei, there is an inversion of the strength of the
M1 and M3 multipoles. Here, we supplemented the dis-
cussion of Ref. [49] by demonstrating that this inversion
is due to an interference between the LO orbital and spin-
magnetization contributions to the M1 multipole. As no
experiments or previous calculations exist for these mir-

ror systems, this represents a prediction of this effect.
Finally, our calculations of the magnetic form factor

also included an analysis of the contributions from two-
body currents. As for the magnetic moments, two-body
currents make a sizeable contribution to the form factors.
Over the range of momenta studied, two-body currents
can be as large as ≈20% – 50%.
Because of the interesting structural features and the

insights provided on two-body currents, it is our view
that a renewed interest in studying elastic magnetic form
factors would spark further improvements in the χEFT
framework. Until recently, it was only possible to mea-
sure these data for stable systems; however, novel tech-
niques were recently used to perform the first electron
scattering measurement for a radioisotope [84]. In the
future, a synergy between experimentalists and theorists
could identify which systems represent feasible and inter-
esting candidates for such a study. This type of effort,
aided by the current and future capabilities of state-of-
the-art rare isotope beam facilities, will only serve to en-
hance our understanding of models of nuclear structure,
interactions, and currents.
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Appendix A: Electromagnetic currents in
configuration space

In this appendix, we collect the r-space expressions
of the electromagnetic current operators used in this
work, which are currently dispersed across various ref-
erences [6, 7, 11–14]. The electromagnetic current oper-
ators are written as an expansion in a generic low mo-
mentum scale Q.

The LO (Q−2) one-body current operator, displayed
in panel (a) of Fig. 1, is given by

jLO(q) =
ϵi(q

2
µ)

2m

[
pi , e

iq·ri
]
+
+ i

µi(q
2
µ)

2m
eiq·ri σi × q ,

(A1)
where pi =−i∇i, ri is the single-nucleon coordinate, and
m is the average nucleon mass. The brackets [. . . , . . .]+
indicate the anticommutator and the operators ϵi and µi

are isospin dependent operators defined as

ϵi =
1

2

(
GS

E(q
2
µ) +GV

E(q
2
µ)τi,z

)
, (A2)

µi =
1

2

(
GS

M (q2µ) +GV
M (q2µ)τi,z

)
. (A3)

The isoscalar/isovector combinations of the proton (p)
and neutron (n) electric (E) and magnetic (M) form fac-
tors are defined as

G
S/V
E/M = Gp

E/M (q2µ)±Gn
E/M (q2µ) , (A4)

which depend on qµ = q2 − ω2, with ω being the energy
transfer. Though the form factors, which appear in all
order of the the current, themselves have a power series
expansion in Q, this is typically neglected and they are
treated as multiplicative factors. The form factors in this
work are not taken from chiral perturbation theory, but
rather from experimental fits of elastic scattering on the
proton and deuteron. We adopt the same form factors as

in Ref. [7], which are given by

Gp
E(q

2
µ) = GD(q2µ) ,

Gn
E(q

2
µ) = −µnχGD(q2µ)(1 + 4χ)−1 ,

Gp
M (q2µ) = µpGD(q2µ) ,

Gn
M (q2µ) = µnGD(q2µ) ,

where µp and µn are the proton and neutron magnetic
moments, respectively, χ ≡ q2µ/(4m

2
N ), and the dipole

form factor is defined as

GD(q2µ) = (1 + q2µ/Λ
2)−2 , (A5)

for Λ = 0.83 GeV.
At NLO (Q−1), the currents receive a purely IV, long-

range OPE contribution–see panels (b) and (c) of Fig. 1–
given by

jNLO
OPE(q) = GV

E(q
2
µ)× (A6)[

eiq·ri (τi × τj)z I
π
0 (xij)σi σj · r̂ij +(i⇌ j)

+ eiq·Rij (τi × τj)z σi ·
(
∇x

ij + i
q

2mπ

)
×σj ·

(
∇x

ij − i
q

2mπ

)
∇x

ij L
π
0 (xij ,q)

]
, (A7)

where xij = ri − rj and Rij = (ri + rj)/2 are the rel-
ative and center of mass coordinates of nucleons i and
j, respectively, while mπ denotes the pion mass. The
gradients ∇x

ij are taken with respect to the adimensional
variables xij = mπrij . The correlation functions Iπ0 (x)
and Lπ

0 (x,q), where we dropped the indices ij for brevity,
are defined as

Iπ0 (x) = − g2A
16π

m2
π

f2π
(1 + x)

e−x

x2
, (A8)

Lπ
0 (x,q) =

g2A
16π

m2
π

f2π∫ 1/2

−1/2

dz e−i( z
mπ

)q·x e−xL(z,q)

L(z, q)
, (A9)

with

L(z, q) =

√
1 +

q2

4m2
π

(1− 4 z2) . (A10)

In the preceding expressions, gA = 1.29 is the nu-
cleon axial coupling constant corrected to account for
the Goldberger-Treiman discrepancy [101, 102].
The N2LO (Q0) current involves a one-body relativis-

tic correction (RC), shown in panel (d) of Fig. 1, and an
IV term of one-pion range involving the excitation of an
intermediate ∆-isobar, displayed in panel (e) of Fig. 1.
Their expressions are
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jN2LO
RC (q) = −

ϵi(q
2
µ)

16m3

[
2

(
p2i +

q2

4

)(
2pi + iσi × q

)
+ pi · q (q+ 2 iσi × pi) , e

iq·ri
]
+

−i
µi(q

2
µ)− ϵi(q

2
µ)

16m3

[
pi · q

(
4σi × pi − iq

)
− (2 ipi − σi × q)

q2

2
+ 2 (pi × q) σi · pi , e

iq·ri
]
+

, (A11)

jN2LO
∆ (q) = −iGγN∆(q

2
mu)

{
eiq·ri τj,z

[
I∆1 (xij)σj + I∆2 (xij) σj · r̂ij r̂ij

]
−1

4
eiq·ri (τi × τj)z

[
I∆1 (xij)σi × σj + I∆2 (xij)σj · r̂ij σi × r̂ij

]}
× q

mπ

+(i⇌ j) , (A12)

with the correlation functions I∆k (x) defined as follows,

I∆1 (x) = −
(
gA hA
18π

1

2m

m2
π

m∆N

m2
π

f2π

)
×(1 + x)

e−x

x3
, (A13)

I∆2 (x) =

(
gA hA
18π

1

2m

m2
π

m∆N

m2
π

f2π

)
×(3 + 3x+ x2)

e−x

x3
, (A14)

where m∆N = 0.2931 GeV is the delta-nucleon mass dif-
ference and hA = 2.73 is the πN∆ coupling constant.
The N -to-∆ transition form factor is defined as,

GγN∆(q
2
mu) =

µγN∆

(1 + q2µ/Λ
2
∆,1)

√
1 + q2µ/Λ

2
∆,2

, (A15)

where the transition magnetic moment µγN∆ = 3µN is
taken from an analysis of γN data in the ∆ resonance
region [103] and we adopt Λ∆,1 = 0.84 GeV and Λ∆,2 =
1.2 GeV from the same analysis.

At N3LO (Q1), the long-range current operator con-
sists of an isocalar (IS) and an isovector (IV) OPE terms
generated by the diagram illustrated in panel (f) of Fig. 2.
The N3LO IS current of one-pion range is proportional
to the d′9 LEC, and it reads

jN3LO
IS OPE(q) = −i eiq·riGγπρ(q

2
µ) τi · τj

[
IS1 (xij)σj + IS2 (xij) σj · r̂ij r̂ij

]
× q

mπ
+ (i⇌ j) , (A16)

where the correlation functions, namely IS1 (x) and I
S
2 (x),

may be obtained from the following rescaling of the
N2LO(∆) correlation functions of Eqs. (A13)-(A14)(

gA hA
18π

1

2m

m2
π

m∆N

m2
π

f2π

)
−→

(
gA
16π

m2
π

f2π
m2

π d
′
9

)
,

and the transition form factor is defined as,

Gγπρ(q
2
µ) =

1

1 + q2µ/m
2
ω

, (A17)

where mω is the ω-meson mass.

The N3LO IV current of one-pion range is composed
by two terms proportional to the d′8 and d′21 LECs, re-
spectively:

jN3LO
IV OPE(q) = j

N3LO, d′
8

IV OPE (q) + j
N3LO, d′

21

IV OPE (q) , (A18)

where

j
N3LO, d′

8

IV OPE (q) = −i eiq·ri
GγN∆(q

2
µ)

µγN∆
τj,z

[
IV1 (xij)σj + IV2 (xij) σj · r̂ij r̂ij

]
× q

mπ
+ (i⇌ j) , (A19)

j
N3LO, d′

21

IV OPE (q) =
i

4
eiq·ri

GγN∆(q
2
µ)

µγN∆
(τi × τj)z

[
ĨV1 (xij)σi × σj + ĨV2 (xij)σj · r̂ij σi × r̂ij

]
× q

mπ

+(i⇌ j) . (A20)
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In the expressions above, the IV correlation functions
IV1 (x) and IV2 (x) are obtained from the correlation func-
tions of Eqs. (A13)-(A14) by substituting,

(
gA hA
18π

1

2m

m2
π

m∆N

m2
π

f2π

)
−→

(
gA
16π

m2
π

f2π
m2

π d
′
8

)
.

(A21)

while the correlation functions ĨV1 (x) and ĨV2 (x) can be
obtained by making the substitution,(

gA hA
18π

1

2m

m2
π

m∆N

m2
π

f2π

)
−→

(
gA
16π

m2
π

f2π
m2

π d
′
21

)
.

(A22)
The N3LO TPE loop term coming from the contribu-

tions shown in panels (g)-(k) of Fig. 2 has the following
form

jN3LO
LOOP(q) = i τj,z eiq·RijGV

E(q
2
µ)

{([
F

(0)
0 (λij) + F

(1)
2 (λij)

]
σi + F

(2)
2 (λij)σi · r̂ij r̂ij

)
× q

2mπ

−1

2
(τi × τj)z eiq·Rij r̂ij

[
λij

ṽ 2π(λij)

2mπ

]}
+ (i⇌ j) . (A23)

A detailed derivation of the loop functions F (n)(λij), where λij = 2mπrij , can be found in Ref. [6]. Here, we
limit ourselves to listing their expressions,

F
(0)
0 (λ) =

g4A
256π3

(2mπ)
4

f4π

{
e−λ

λ

[
1 +

1

2

∫ 1

0

dz
1− e−λ(αz−1)

α2
z − 1

]
−

[(
1

g2A
+ 1

)
1

λ
− 1

2

]
E

(−)
1 (λ)

−
[(

1

g2A
+ 1

)
1

λ
+

1

2

]
E

(+)
1 (λ)

}
,

F
(2)
1 (λ) =

g4A
256π3

(2mπ)
4

f4π

{
e−λ

(
1

λ3
+

1

λ2

)[
1 +

1

2

∫ 1

0

dz
1− e−λ(αz−1)

α2
z − 1

]
−
[(

1

g2A
+ 2

)(
1

λ3
+

1

λ2

)
− 1

2λ

]
E

(−)
1 (λ)−

[(
1

g2A
+ 2

)(
1

λ3
− 1

λ2

)
− 1

2λ

]
E

(+)
1 (λ)

+

(
1

g2A
− 2

)
1

λ3
E

(0)
1 (λ)−

∫ 1

0

dz

(
4

λ3
+

1

αz + 1

1

2λ2

)
e−λαz

}
,

F
(2)
2 (λ) = − g4A

256π3

(2mπ)
4

f4π

{
e−λ

(
3

λ3
+

3

λ2
+

1

λ

)[
1 +

1

2

∫ 1

0

dz
1− e−λ(αz−1)

α2
z − 1

]
−
[(

1

g2A
+ 2

)(
3

λ3
+

3

λ2
+

1

λ

)
− 1

2

(
1 +

1

λ

)]
E

(−)
1 (λ)

−
[(

1

g2A
+ 2

)(
3

λ3
− 3

λ2
+

1

λ

)
+

1

2

(
1− 1

λ

)]
E

(+)
1 (λ) +

(
1

g2A
− 2

)
3

λ3
E

(0)
1 (λ)

−
∫ 1

0

dz

[
16

λ3
+

(
4αz +

3

2

1

αz + 1

)
1

λ2

]
e−λαz

}
,

where the following definitions have been employed,

αz = (1− z2)−1/2 , (A24)

E1(x) =

∫ ∞

x

dt
e−t

t
, (A25)

E
(±)
1 (λ) =

e±λ

2

∫ 1

0

dzE1(λαz + λ) (A26)

E
(0)
1 (λ) =

∫ 1

0

dzE1(λαz) (A27)

The N3LO LOOP two-body currents satisfy the con-
tinuity equation with the NV2 potential at N2LO in the
limit of momentum transfer going to zero. This is re-
flected by the presence of the ṽ2π(λij) = v2π(λij)τi · τj
term in Eq. (A23). The v2π(λij) term indicates contribu-
tions to the NV2 potential coming from TPE diagrams.
In the present study, it accounts for TPE terms at both
NLO and N2LO, therefore it includes two-pion loops with
and without ∆-isobar intermediate states (see Ref. [6] for
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more details).

The last contribution at N3LO is displayed in panel
(l) of Fig. 2. This short-range contribution is divided
into i) a term obtained via minimal substitution (MIN)
in the NV2 contact operators, ii) a non-minimal term
(NM), and iii) a term used to regularize the N3LO loop

contribution (CT).
The N3LO(MIN) contact term has IS and IV compo-

nents:

jN3LO
MIN (q) = jN3LO

MIN IS(q) + jN3LO
MIN IV(q) , (A28)

respectively given by

jN3LO
MIN IS(q) = −1

8
m4

π C5 e
iq·RijGS

E(q
2
µ)
[
i C

(0)
RS

(zij) (σi + σj)×
q

mπ

]
, (A29)

jN3LO
MIN IV(q) =

1

8
(τi × τj)z eiq·RijGV

E(q
2
µ) C

(1)
RS

(zij)
[
m4

π (C2 + 3C4 + C7) r̂ij

+m4
π (C2 − C4 − C7) r̂ij σi · σj + m4

π C7 (σi · r̂ij σj + σj · r̂ij σi)
]

−1

8
m4

π C5 e
iq·Rij

[
(τi,z − τj,z) C

(1)
RS

(zij) (σi + σj)× r̂ij

]
. (A30)

In the equations above

C
(0)
RS

=
e−z2

π3/2(mπRS)3
, (A31)

C
(1)
RS

=
1

mπRS

dC
(0)
RS

dz
, (A32)

where zij = rij/RS. The Ci LECs in Eqs. (A29)-(A30)

are the same that appear in the contact terms of the NV2
potential at N2LO.

The N3LO(NM) contact term is also broken into IS
and IV components as

jN3LO
NM (q) = jN3LO

NMIS(q) + jN3LO
NMIV(q) , (A33)

where

jN3LO
NMIS(q) = −i eiq·Rij C

(0)
RS

(zij)m
4
π G

S
E(q

2
µ)C

′
15 (σi + σj)×

q

mπ
, (A34)

jN3LO
NMIV(q) = −i eiq·Rij C

(0)
RS

(zij)m
4
π G

V
E(q

2
µ)C

′
16 (τi,z − τj,z) (σi − σj)×

q

mπ
. (A35)

The last N3LO contact term, originating from the regu- larization scheme in configuration space adopted for the
TPE currents [6], reads:

jN3LO
CT (q) = iGV

E(q
2
µ) τj,z eiq·Rij F

(0)
0 (zij ;∞) σi ×

q

2mπ
+ (i⇌ j) , (A36)

For the unknown LECs of non-minimal nature, namely,
d′8, d

′
9, d

′
21, C

′
15 and C ′

16, we take the values obtained
in Ref. [7] that use the deuteron and the three-nucleon
systems’ magnetic moments, as well as deuteron photo-
disintegration data at backward angles to constrain them.
These values are provided in Table V.

Appendix B: Evaluation of the magnetic multipoles

Using Eq. (18) we can evaluate the value of the reduced
matrix elements for the magnetic multipole operators. To
do that we need a number of linear equations equal to the
number of the multipoles allowed by the transition.
As stated in Ref. [67] for VMC and GFMC, in order

to obtain the linear equations we need for the extraction
of the reduced matrix elements, is more computationally
efficient to change the direction of q̂ rather than repeat-
ing the calculation of the matrix elements for different
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Class C′
16m

4
π d′8m

2
π d′21m

2
π C′

15m
4
π d′9m

2
π

NVIa⋆ −0.050(2) 0.49(7) 0.094(4) 0.012(1) 0.023(7)
NVIb⋆ −0.055(3) 0.09(5) 0.073(3) 0.025(2) 0.030(6)
NVIIa⋆ −0.066(2) 0.01(7) 0.069(4) 0.011(1) 0.019(7)
NVIIb⋆ −0.049(2) 0.09(4) 0.048(3) 0.017(1) 0.018(3)

TABLE V: Values of the LECs corresponding to the
NV2+3 Hamiltonians Ia⋆, Ib⋆, IIa⋆, and IIb⋆ obtained
in Ref. [7] from fits to the deuteron and the trinucleon

systems’ magnetic moments, as well as deuteron
photo-disintegration at backward angles data.

projection of the total angular momentum. Therefore, if
we have n possible multipoles, we select n values for the
angle θ (that is the angle between the ẑ axis and the di-
rection of q̂) obtaining n linear equations to invert. The
choice of θ is arbitrary: we choose the ones that simplify
as much as possible the solution of the linear equations.
Below we report the solution of the linear equations for
the cases studied in this work. To simplify the notation
we indicate the matrix element computed using Monte
Carlo as

XJ
θ = ⟨J J |jγ,y(q(θ))| J J⟩ , (B1)

and by

MJ
L = ⟨J ||ML||J⟩ , (B2)

the reduced matrix elements of the magnetic multipole
L among states J .

For nuclei with J = 1/2 and J = 1 only the multi-
pole with L = 1 is allowed. In this case we need only
one equation for which we chose θ = π/2 (q̂ ∥ x̂). The
resultant reduced matrix element for J = 1/2 and J = 1
is

M
1/2,1
1 =

1√
π
X

1/2,1
π/2 . (B3)

The situation for the J = 3
2 case is more involved since

both the M1 and M3 multipoles contributes to the mag-
netic f.f. In order to obtain the two magnetic multipoles
we have to compute two matrix elements changing the di-
rection of q̂. For this case we select θ = π/2 and θ = π/4.
By inverting the linear equations we obtain the magnetic
multipoles as function of the computed matrix elements,
as

M
3/2
1 =

√
2

5π

[
X

3/2
π/2 +

2
√
2

3
X

3/2
π/4

]
, (B4)

M
3/2
3 =

8√
15π

[
X

3/2
π/2 −

√
2X

3/2
π/4

]
. (B5)

For the J = 2 case we use the same angle as J = 3/2.

The final result reads

M2
1 =

3

2
√
5π

[
X2

π/2 +
2
√
2

3
X2

π/4

]
, (B6)

M2
3 =

4
√
2√

15π

[
X2

π/2 −
√
2X2

π/4

]
. (B7)

For J = 3 three different multipoles with L = 1, 3,
and 5 can be excited. Therefore, we need to have three
independent linear equations that we obtain selecting θ =
π/2, θ = π/4 and cos θ = 2

√
2/3. The solution of the

linear equations reads

M3
1 =

√
1

7π

[
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√
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]
,

(B8)
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M3
5 = 6

√
35

π

[√
2

35
X3

π/2 −
32
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X3

π/4 +
27
√
2

245
X3

1/3

]
,

(B10)

where X3
1/3 = ⟨3 3| jγ,y(q(cos θ = 1/3)) |3 3⟩.

Appendix C: Note on the magnetic form factors data

The experimental data of the magnetic form factors
shown in this work have been obtained directly the orig-
inal references. The definitions used in some of the ex-
perimental works for the magnetic f.f. are different com-
pared to the one used in this work, therefore we renor-
malize them with an appropriate factor given by the ratio
among the experimental values F 2∗

M (q) in the paper and
the one defined in Eq. (15). For example, in the cases of
Refs. [92, 95, 98], this ratio is given by

F 2
M (q)

F 2∗
M (q)

=
1

2π
µ2

( q

2M

)2 J + 1

3J
, (C1)

where µ is the magnetic moment and J the total angular
momentum of the nucleus.
Note that Refs. [90, 91, 97, 100] report only the elastic

scattering cross section data from which we obtain the
values of the magnetic f.f. with the following formula

F 2
M (q) =

(
dσ

dΩ

)
Exp

[
4π

(
α

2E0

)2
]−1

, (C2)

where α is the fine structure constant, and E0 the
energy of the electron beam. Note that the data of
Refs. [90, 91, 100] tend to overestimate the other experi-
mental data sets. Indeed we excluded them in the plots
of 10B magnetic f.f., following what was done in Ref. [63].
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Nucleus Reference Data type ratio/method
3H Sick 2001 [89] N 1

3He Sick 2001 [89] N 1

6Li Peterson 1962 [90] N Eq. (C2)
Goldemberg 1963 [91] N Eq. (C2)
Rand 1966 [92] N Eq. (C1)
Lapikas 1978 [93] D 1/4π
Bergstrom 1982 [94] N Z2/4π

7Li Peterson 1962 [90] N Eq. (C2)
Goldemberg 1963 [91] N Eq. (C2)
Van Niftrik 1971 [95] D Eq. (C1)
Lichtenstadt 1983 [96] N Z2/4π

9Be Goldemberg 1963 [91] N Eq. (C2)
Vanpraet 1965 [98] N Eq. (C1)
Rand 1966 [92] N Eq. (C1)
Lapikas 1975 [97] N Eq. (C2)

10B Goldemberg 1963 [91] N Eq. (C2)
Goldemberg 1965 [100] N Eq. (C2)
Vanpraet 1965 [98] N Eq. (C1)
Rand 1966 [92] N Eq. (C1)
Lapikas 1978 [93] D 1/4π

TABLE VI: Summary table of experimental data on
elastic magnetic electron scattering reported in this

work. For each nucleus and experimental data set the
reference, the normalization or method used to obtain
the form factor from to the original reference, and if the
data have been digitized (D) or taken as numeric (N) is
shown. We indicate the charge of the nucleus with Z.

The data for 3H and 3He are from a global fit per-
formed in Ref. [88] of the electron scattering cross sec-
tions at different angles applying the Rosenbluth separa-
tion, which was then reused in [89] where the data are
taken from. For Refs. [93, 95], no numerical values were
available, and therefore we digitized directly the plots on
the paper using Web Plot Digitizer [104]. In Table VI,
we report for each nucleus and experimental data set the
reference, the normalization compared to our definition
of the magnetic f.f. or the formula used to extract from
the cross section respect to the original reference, and
if the data have been digitized (D) or taken as numeric
(N). The digitized data sets are available as Supplemental
Material to this paper.
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