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ABSTRACT In a subset of SARS-CoV-2-infected individuals treated with the antiviral
nirmatrelvir-ritonavir, the virus rebounds following treatment. The mechanisms driving
this rebound are not well understood. We used a mathematical model to describe the
longitudinal viral load dynamics of 51 individuals treated with nirmatrelvir-ritonavir,
20 of whom rebounded. Target cell preservation, either by a robust innate immune
response or initiation of N-R near the time of symptom onset, coupled with incomplete
viral clearance, appears to be the main factor leading to viral rebound. Moreover, the
occurrence of viral rebound is likely influenced by the time of treatment initiation relative
to the progression of the infection, with earlier treatments leading to a higher chance
of rebound. A comparison with an untreated cohort suggests that early treatments with
nirmatrelvir-ritonavir may be associated with a delay in the onset of an adaptive immune
response. Nevertheless, our model demonstrates that extending the course of nirmatrel-
vir-ritonavir treatment to a 10-day regimen may greatly diminish the chance of rebound
in people with mild-to-moderate COVID-19 and who are at high risk of progression
to severe disease. Altogether, our results suggest that in some individuals, a standard
5-day course of nirmatrelvir-ritonavir starting around the time of symptom onset may
not completely eliminate the virus. Thus, after treatment ends, the virus can rebound
if an effective adaptive immune response has not fully developed. These findings on
the role of target cell preservation and incomplete viral clearance also offer a possible
explanation for viral rebounds following other antiviral treatments for SARS-CoV-2.

IMPORTANCE  Nirmatrelvir-ritonavir is an effective treatment for SARS-CoV-2. In a subset
of individuals treated with nirmatrelvir-ritonavir, the initial reduction in viral load is
followed by viral rebound once treatment is stopped. We show that the timing of
treatment initiation with nirmatrelvir-ritonavir may influence the risk of viral rebound.
Nirmatrelvir-ritonavir stops viral growth and preserves target cells but may not lead to
full clearance of the virus. Thus, once treatment ends, if an effective adaptive immune
response has not adequately developed, the remaining virus can lead to rebound. Our
results provide insights into the mechanisms of rebound and can help develop better
treatment strategies to minimize this possibility.

KEYWORDS SARS-CoV-2, viral rebound, nirmatrelvir-ritonavir, antiviral therapy, target
cell preservation, mathematical model, viral dynamics, adaptive immune response,
incomplete viral clearance, treatment timing
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5-day course of nirmatrelvir-ritonavir (N-R) is recommended for individuals who

test positive for SARS-CoV-2 with mild-to-moderate symptoms and a high risk of
progression to severe disease (1). Treatment with two doses (300 mg of nirmatrelvir
and 100 mg of ritonavir) per day is suggested to be initiated as soon as possible
and within 5 days of symptom onset. Nirmatrelvir is a protease inhibitor, targeting
the SARS-CoV-2 main protease 3-chymotrypsin-like cysteine protease enzyme (3CLpro),
blocking SARS-CoV-2 replication. Ritonavir reduces the liver catabolism of nirmatrelvir
and thus prolongs the half-life of nirmatrelvir (1). Although N-R substantially reduces
the risk of progression to severe COVID-19 and can shorten the duration of disease in
high-risk individuals (2-4), in some cases, viral rebound and recurring symptoms occur
after the 5-day treatment course, including in individuals who have been vaccinated
and/or boosted (5, 6). Some individuals with viral rebound are reported to have
culturable virus up to 16 days after the initial diagnosis (6, 7); thus, potential transmission
to close contacts during the rebound period is a concern (5). Although virus resistance to
N-R in vitro (8, 9) and treatment-emergent 3CLpro substitutions in vivo (1, 10) have been
observed, viral rebound in the case of N-R in vivo does not seem to be caused by the
emergence of drug-resistant mutants (5-7, 11-14). However, two immunocompromised
individuals, who were treated with extended duration of N-R in combination with other
treatments, experienced viral rebound associated with resistant mutations E166 A/V and
L50F in the NSP5 region where 3CLpro is located (15, 16).

The precise proportion of individuals treated with N-R that exhibit viral rebound is
unclear, and estimates could vary based on a range of factors, including the definition
used to classify rebound and viral characteristics. For example, in the N-R phase 3 clinical
trial, EPIC-HR, the fraction of individuals with viral rebound (positive PCR test) and
recurring symptoms was 1%-2% (17). However, this study was limited by the relatively
infrequent viral RNA measurements after the completion of N-R. Other studies have
reported rebound in 0.8%-27% of N-R treated individuals (6, 18-23). Viral rebound has
also been described in untreated individuals (24, 25), but often at a lower frequency
compared with N-R treated individuals regardless of rebound definition (6, 17, 19, 20, 22,
23,26, 27).

Throughout the COVID-19 pandemic, viral dynamics models have played an integral
part in shedding light on viral infection kinetics, responses to different treatments (28—
36), and the implications for epidemiological control (37-39). Moreover, a few studies
also analyzed the occurrence of rebounds in untreated (33) and treated infections (40—
42). In particular, we previously analyzed the data presented in Charness et al. (5), where
quantitative PCR is available for three individuals who experienced viral and symptom
rebound after taking N-R. In all three individuals, no resistance mutations in the gene
encoding the protease targeted by nirmatrelvir (3CLpro) developed during treatment,
and there was no evidence of reinfection by a different variant. The viral dynamic models
in our study adequately captured the viral rebound dynamics in all three individuals
(43). One hypothesis we tested was that a 5-day N-R treatment course started near the
time of symptom onset reduces the depletion of target cells but does not fully eliminate
the virus, thus allowing the virus to rebound once treatment is stopped. The occurrence
of viral rebound was shown to be sensitive to model parameters, especially the time
therapy is started, and the time an adaptive immune response begins to emerge. This
suggested that a delay in the treatment initiation can lower the chance of rebound.
However, our results were only supported by a limited data set comprised of three
individuals (43).

Here, we expand upon this previous study using data from an ongoing observational
cohort study, including 51 individuals treated with N-R, 20 of whom were classified as
having viral rebound per the definition by Edelstein et al. (6) (additional details in “Data”
section, below). Our model accurately captured the viral dynamics of all 51 individu-
als and provided further evidence that target cell preservation plays a central role in
the occurrence of large-amplitude viral rebounds. Our model predicts that target cell
preservation was achieved by a robust innate immune response or by early treatment.
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As treatment only stops viral replication but does not directly eliminate existing viruses,
residual viruses may remain after treatment has ended and can infect the remaining
target cells and rebound. Interestingly, our model also suggests that N-R treatment
may slightly delay the development of the adaptive immune response. Nonetheless,
extending the course of N-R treatment to a 10-day regimen may greatly diminish the
risk of rebound. Although we use N-R as a case study, our theory can also explain the
viral rebound observed after treatment with molnupiravir (21), another oral antiviral with
FDA emergency use authorization, simnotrelvir/ritonavir (44), a protease inhibitor that
also targets the SARS-CoV-2 main protease 3CLpro but has a shorter half-life (45) than
nirmatrelvir, and VV116 or mindeudesivir (46), an inhibitor of the viral RNA-dependent
RNA polymerase that is not inferior to N-R in reducing time to recovery (47).

RESULTS
Model of viral dynamics in the upper respiratory tract

We used an extension of a viral dynamic model that has been applied to study SARS-
CoV-2 infection dynamics (28, 29, 32, 41, 48). In this model (depicted in Fig. 1), viral
infection of target cells in the upper respiratory tract (URT) occurs with rate constant
B. After spending an average time of 1/k in an eclipse phase, E, infected cells enter a
productively infected state, I, where they produce virus at rate p (in the absence of N-R)
and die at per capita rate 8. SARS-CoV-2 is cleared at per capita rate c.

SARS-CoV-2 infection induces both innate and adaptive immune responses (49-52).
As in previous models (29, 48, 53, 54), we simplified these responses and focused only
on key aspects, such as the induction of an antiviral state by the interferon response
that is commonly seen in acute viral infections. Type-l and type-lll interferons (IFNs)
are produced both by infected cells and innate immune cells, such as plasmacytoid
dendritic cells, which are recruited in response to cell infection. Rather than modeling
IFN directly, we assumed the amount of type-I and type-IIl IFN in the URT is proportional
to the number of infected cells, I, and that interferon puts target cells into a temporary
antiviral state (refractory to infection) (28, 48, 55-58) at rate ¢. Refractory cells become

susceptible to infection again at rate p (I) = pﬁ, where p is the maximum rate at

which refractory cells return to being susceptible (59), and K, denotes the density of
infected cells at which the rate of return is half-maximal. (Note if K, i.e., if the amount
of interferon is very high, p(I)~0, and cells remain in an antiviral state. However, as
infection resolves and I becomes much less than K, the antiviral state is lost at rate
close to p.) Following Pawelek et al. (60), the adaptive immune response is modeled
as causing an exponential increase in the death rate of infected cells () at rate o for a
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FIG 1 Schematic of the viral dynamic model. The model includes pharmacokinetic (PK) and pharmacodynamic (PD) sub-models, specifying how the drug

concentration C and drug effectiveness ¢ (C) change over time (model details in Materials and Methods and Text S1).
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short time after its emergence at time t*. This choice was motivated by the observation
of the exponential expansion of virus-specific CD8" T cells after SARS-CoV-2 infection
(61). Antibodies also increase exponentially shortly before viral control (49) and can
contribute to infected cell death via processes such as antibody-dependent cellular
cytotoxicity and antibody-dependent cellular phagocytosis. This makes the death rate of
infected cells a function of time & (¢) . Finally, the concentration-dependent action of N-R
is incorporated using a pharmacokinetic-pharmacodynamic (PK-PD) model. Additional
details of the model formulation are provided in Materials and Methods, Text S1, and Fig.
ST.

Model describes the viral dynamics in all treated individuals

Our viral dynamic model describes the observed data for treated participants with and
without rebound (Fig. 2a). By fitting the model to the data, we obtain population (Table
S1 in Text S2) and individual (Table S2 in Text S2) estimates of the model parameters,
which are stratified by rebound vs. non-rebound (Fig. 2b). The estimated time of infection
relative to the time of symptom onset as reported by participants and the time of N-R
initiation relative to infection and to symptom onset are also shown in Fig. 2b. We
found that the parameters (p, ¢, and Ky) governing the dynamics of refractory cells,
that is, those cells that are protected from infection, are significantly different between
individuals who rebound and those who do not. The differences in all of these parame-
ters between the two groups were such that they favored the maintenance of cells in the
refractory state in non-rebounders, who had a larger rate of cell entry into refractoriness
@ (P =0.0004), a smaller maximum rate of cells returning to target status p (P = 0.0047),
and a smaller half-saturation constant for this process K, (P = 0.0056).

In addition, the baseline infected cell death rate (§,) was also significantly lower in
non-rebounders (P = 0.0027). When we used the previous classification of rebounder
or non-rebounder for the participants in this study used by Edelstein et al. (6) and
tested “rebounder” as a covariate on each parameter to improve the model fit and
better understand factors distinguishing rebounders from non-rebounders, a covariate
in &, provided the lowest corrected Bayesian Information Criterion (BICc) (62). However,
the BICc difference was small (less than 4 points) compared with the model without a
covariate (Table S3 in Text S3). Therefore, we did not include any covariates in the model
used to characterize rebound vs. non-rebound (Fig. 2). Additionally, when we considered
a variation of our best fit model with proliferation of target cells (details and model fit
in Fig. S2a in Text S4), the baseline infected cell death rate was not significantly different
between rebounders and non-rebounders (Fig. S2b). On the other hand, there were still
differences that are significant in the innate immune response parameters ¢ (P = 0.0222)
and K, (P = 0.0201). Specifically, in both models, the rebounders tend to have a larger
value of @, indicating a more rapid loss of target cells by going into the refractory state
initially, and a larger value of Ky, resulting in an earlier replenishment of target cells that
can support viral rebound (40).

The time of N-R treatment relative to the estimated time of infection was about 1
day shorter in participants who rebounded vs. those who did not (median 3.75 days vs
4.72 days, P = 0.0003). This is consistent with the significant difference (P = 0.0009) in the
time of N-R initiation relative to the time of symptom onset in rebound vs. non-rebound
individuals, as suggested before (6, 40, 43, 63). These differences in parameter estimates
manifest in clear distinctions in model dynamics (viral load, target cells, infected cells)
between rebounders and non-rebounders, as discussed and demonstrated in Fig. S3 and
S4; Text S5. A model variation that includes logistic proliferation of target cells discussed
in Text S4 also predicts similar model dynamics (Fig. S5 in Text S5).

Finally, the model also recapitulates the data in untreated individuals from the same
ongoing clinical cohort (Fig. S6a in Text S6). We also find that the parameter distribution
between the treated and untreated groups is statistically similar (Fig. S6b in Text S6).
The one exception is the average difference of 1.23 days (95% Cl [0.44, 2.03], P = 0.0026)
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FIG 2 Model fits recapitulate viral dynamics and quantify differences in the characteristics between viral rebound and non-rebound individuals. (a) Model fits
to nasal viral loads of rebound (pink) and non-rebound (blue) individuals. The shaded area is the duration of N-R treatment. The dotted horizontal line is the
limit of detection (LoD) for the RT-qPCR assay. Filled and open circles are data above and below the LoD, respectively. The dotted black vertical line indicates the
reported time of symptom onset relative to the estimated time of infection. (b) Box plots of best fit parameters and timing of N-R stratified by individuals who
rebound vs. those who do not. The lower and upper limits of the box represent the first and third quartiles, respectively. The line inside the box is the median,
and the whiskers connect the top/bottom of the box to the max/min values that are not outliers (data points further than 1.5 times the interquartile range).
Overlaid circles are individual parameter values. Time of N-R initiation relative to symptom onset was recorded for each individual (except non-rebounder PID 23,
whose symptom onset is imputed 1 day prior to their first positive test). P-values are calculated using the Mann-Whitney U test.

in the estimated onset time of the adaptive immune response, which is later in treated
individuals compared with untreated individuals.
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Sensitivity of viral rebound to treatment initiation time and the duration of
treatment

Our results suggest that the time of N-R treatment initiation and the availability of target
cells at that time are critical to defining whether a rebound occurs. To further explore
this, we used simulation experiments to show that delaying or extending the period
of treatment with N-R can decrease the probability of rebound. We simulated n = 20
treatment cohorts, each with 100 randomly generated in silico individuals treated with
N-R (see Materials and Methods for details), and assessed what percentage of individuals

in each cohort exhibited rebound, defined as the viral load returning above 10* RNA
copies per mL (6). Samples of the simulated viral dynamics for individuals in the in silico
cohorts are presented in Fig. S7a-c in Text S8. Without treatment, our cohorts of in silico
individuals have similar rebound statistics as those reported in the eight clinical studies
(6,17, 19, 20, 24-27) (Fig. S7d in Text S8).

We tested treatment starting at days 1, 2, 3, and 4 post-symptom onset, with
symptom onset assumed to be 3 days post-infection. Extending treatment could be a
feasible method of preventing rebound (40, 43, 64); hence, we also examined a 5-, 6-, 7-,
8-, and 10-day treatment courses. In one scenario, we assume N-R does not affect the
development of adaptive immune response (Fig. 3). In a second scenario, we assume that
the onset of the adaptive immune response is delayed more with longer treatments (Fig.
S8 in Text S9). It is important to examine this possibility as it would make rebound more
likely. The time of symptom onset is fixed at 3 days post-infection; however, assuming
either 2 or 4 days does not change the general trend observed in Fig. 3 and Fig. S8 in
Text S9 in which we observed a clear decrease in rebound percentage as treatment is
initiated later. We also found that an increase in the duration of treatment with N-R tends
to prevent viral rebound. In all scenarios, extending treatment to 10 days decreases the
probability of rebound in our 20 simulated 100-person cohorts to a level so low that it
does not occur for all practical purposes.

DISCUSSION

Here, we extended a viral dynamic model of SARS-CoV-2 infection to show that the main
driver of viral rebound in the setting of treatment is the preservation of target cells, often
as a result of a robust innate immune response or early treatment initiation. Our model
shows that if N-R treatment is completed and the drug is washed out before an adaptive
immune response develops, residual viable viruses can rebound if there are sufficient
target cells remaining. These results support our initial hypothesis of the importance of
target cell preservation and the time therapy is initiated in leading to viral rebound (43),
and they also echo the findings of a modeling study by Esmaeili et al. (40) based on data
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from the EPIC-HR and PLATCOV clinical trials, highlighting the robustness of these results
obtained with different models and using different data sets.

Our best model is able to capture the viral dynamics observed in all participants.
It suggests that the protective effects of innate immunity preserved the majority of
target cells by putting them into an antiviral state shortly after the virus started growing
exponentially (Fig. S3 and S4 in Text S5). During treatment, the viral load and the number
of infected cells rapidly decline (Fig. 2a; Fig. S4c, f in Text S5) due to infected cell death
and continuous viral clearance, concurrent with reduced viral production due to drug
activity. This decline leads to a decrease in the interferon response, causing cells to exit
more quickly from the refractory state (55-59). It is clear from the data of both rebound
and non-rebound individuals that a 5-day course of N-R is likely to be insufficient to
completely eliminate the virus. Indeed, there was a measurable virus (viral load >LoD)
after the completion of treatment (the first data point after treatment) in 40 of the 51
participants (Fig. 2a). Thus, if viable viruses remain after the drug is washed out and
before an adaptive immune response can be mounted, virus can rebound. However,
whether the virus rebounds to an observable level is also determined by the time
between the end of treatment and the generation of an effective adaptive immune
response, and to some degree, the differences in the maintenance of the cell refractory
status (Fig. 2b). This conclusion is supported by the observation that the time between
the end of treatment and the predicted onset time of an adaptive immune response
in the model is statistically different between the rebound and non-rebound groups.
For the rebound group, the estimated time [min, max] is 5.87 [3.34, 12.56] days, and for
the non-rebound group, it is 3.53 [0.14, 10.35] days (P = 0.0012) (Fig. 2b). Note that this
difference is not driven by the fitted onset time of the adaptive immune response t*
measured from the estimated time of infection, whose distribution is statistically similar
between the two groups (Fig. 2b). Instead, the difference in the time between the end of
treatment and the onset time of the adaptive immune response is mainly driven by the
earlier time of treatment initiation in the rebound group (Fig. 2b).

The time of treatment initiation also plays a crucial role in determining if a rebound
is observed, as was also seen by Esmaeili et al. (40). If treatment is initiated early after
infection, before a time we denote f,;.q, @ substantial number of target cells remain
unprotected after the 5-day treatment and viral rebound is likely to occur. After ¢, iicars
too few target cells remain available to support viral growth; however, target cells still
return from the refractory state as the virus is eliminated. Since viral growth switches
to viral decay at the time of the viral peak in an untreated individual, this means a1
is the time the viral peak is reached. In more technical terms t,,;;i.q; COrresponds to the
time the effective reproductive number R equals 1, so that on average, each infected
cell produces one new infected cell, leading to neither growth nor decay in the number
of infected cells. In several observational/retrospective studies focusing on Omicron
subvariants, the time to the viral peak is suggested to be 2-5 days post-symptom onset
(65-67). We observed that for the participants in this study, who were all infected with
Omicron subvariants, rebound is associated with treatment initiated within 2 days of
symptom onset (6). This suggests treatment might have been initiated prior to f..sical
when the virus level is still expanding. Delaying treatment may be a strategy to reduce
the possibility of viral rebound (Fig. 3; Fig. S8 in Text S9); however, delaying treatment
could have a negative impact on the severity of disease in the high-risk individuals for
whom N-R is recommended, and this question deserves more study (37). In addition, N-R
treatment accelerates viral clearance and hence potentially can reduce viral transmission.
See Fig. 4 for a summary description of our results.

Interestingly, all individuals studied here were vaccinated and boosted, and nonethe-
less had breakthrough infections with Omicron sub-variants (6). Thus, although adaptive
B and T cell immune responses did not prevent infection, they might have been present
at the time of infection and could have affected the level of preserved target cells. The
timing of the adaptive immune response and its expansion may play a crucial role in the
occurrence of viral rebound. In particular, without a strong adaptive immune response,
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FIG 4 How early treatment correlates with higher rebound probability. (a) Early treatments preserve more target cells and result in a longer duration between

the end of N-R and the onset of an adaptive immune response, leading to a higher probability of an individual being classified as experiencing a rebound. (b)

Later treatments preserve fewer target cells and result in a shorter duration between the end of N-R and the onset of an adaptive immune response, leading to a

lower probability of an individual being classified as experiencing rebound.

even a longer course of N-R still resulted in viral rebound in immunocompromised
patients with severe disease (15, 16, 68). Delaying the initiation of N-R may also provide
more time for the priming of the adaptive immune response and shorten the time
between the end of treatment and the emergence of the adaptive immune response,
which would reduce the chance of rebound.

Our model predicted that the 20 rebound participants in the studied set have
both innate and adaptive immune responses comparable with those of non-rebound
participants (Fig. 2b). This intriguing finding is supported by the clinical observations
that most viral rebounds quickly resolve within several days (69), and this correlates
with a strong antibody and T-cell immune response (13). There is also contradictory
evidence suggesting that N-R may delay the development of the adaptive immune
response (70, 71). We found an average of 1.23 day delay in the estimated onset
time of the adaptive immune response in the treated vs. untreated groups (Text S6).
Even so, the rebound participants quickly cleared the rebounding virus. This suggests
that although early initiation of N-R may slightly delay the onset of the adaptive
immune response, perhaps due to lower levels of antigens, it does not stop the
development of an adaptive immune response in non-immunocompromised individu-
als. Thus, if the adaptive immune response is not significantly impeded by treatment,
prolonging treatment can be beneficial in reducing rebound and does not have the
possible detrimental effects on disease severity or increase viral transmission by delaying
treatment (63). Indeed, using an in silico cohort, we show that even a modest extension
to a 6-day treatment course can significantly reduce viral rebound incidence (Fig. 3; Fig.
S8 in Text S9). Extensions beyond a 6-day treatment course can further reduce rebound
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incidence with a 10-day treatment course almost totally eliminating the possibility of
rebound in our in silico patient cohorts (Fig. 3; Fig. S8 in Text S9). A recent clinical
trial compared 5 vs. 10 vs. 15 days of treatment with N-R given to immunocompro-
mised patients with COVID-19 (ClinicalTrials.gov: NCT05438602). The final analysis of 150
participants showed that extending treatment to 10 or 15 days can minimize the risk
of rebound (72). Although 9 of 52 participants treated with 5 days of N-R rebounded,
only one participant rebounded in the 10-day (n = 48) and 15-day (n = 50) treatment
groups. Although the clinical trial was carried out with immunocompromised patients,
the single rebound incidence in the 10-day treated group supports our simulation results
for a theoretical 10-day treatment for mild-to-moderate individuals with a high risk of
progression (Fig. 3). When the cost of the drug is accounted for, the optimal treatment
duration to minimize rebound and cost falls between 7 and 8 days (Fig. S9 in Text S10).
However, because N-R is packaged as a 5-day course of treatment, extending treatment
to 10 or 15 days may be more practical. Additionally, we previously suggested that
the success of a second course of N-R once viral rebound occurs will also depend on
the timing of an effective adaptive immune response in a similar manner (43). This is
corroborated by observations of recurring viral rebounds in an immunocompromised
individual at the end of each treatment period, which eventually leads to the devel-
opment of the resistance mutation E166V/L50F (15). An ongoing clinical trial aims to
investigate this possibility (ClinicalTrials.gov: NCT05567952).

Rather than extend treatment duration, the use of a drug with a longer half-life
may be helpful, especially if infectious forms of SARS-CoV-2 can persist during anti-
viral treatment (8, 9, 73). An ongoing clinical trial of ensitrelvir (ClinicalTrials.gov:
NCT05305547) (74), a protease inhibitor that also targets SARS-CoV-2 3CLpro but with a
longer half-life than nirmatrelvir (75), yielded results suggesting that this new drug was
virologically active and did not significantly increase the risk of viral rebound (64).

The phenomenon of viral rebound has also been observed for monoclonal antibody
treatments for SARS-CoV-2 (76-80). One example is bamlanivimab, the first monoclonal
antibody that received FDA emergency use authorization for the treatment of COVID-19
(78-80). However, rebounds in the case of monoclonal antibodies are associated with the
emergence of resistance mutations (76-80), which contrasts with the lack of evidence
for resistant mutants in vivo in the majority of cases for the current antiviral treatments
(5-7, 11-13). However, the emergence of resistance mutations to monoclonal antibodies
does not always lead to viral rebound (76, 77), suggesting other mechanisms besides
selection pressure due to treatment may contribute to observable viral rebounds. Our
previous modeling studies suggested that target cell regeneration mechanisms, such
as homeostatic proliferation of epithelial cells (81-83) or refractory cells returning to a
susceptible state, are necessary to explain the high amplitude viral rebounds observed in
bamlanivimab treated participants (41). Here, our model with logistic proliferation (Text
S4) also recapitulates the viral load dynamics in rebound and non-rebound participants
(Fig. S2a in Text S4), and the stratified parameter values also support the conclusion
that early N-R initiations correlate with a higher probability of rebound (Fig. S2b in
Text S4). However, the net regeneration effect of target cells is similar to that in the
innate immune response model (Fig. S5 compared with Fig. S3 in Text S5). This is likely
because potent target cell preservation limits the proliferation rate, which is related to
the number of cells that are lost by infection and need to be replaced. Moreover, because
rebound occurs within days after the end of treatment, there is also not sufficient time
for the proliferation effect to be more evident. In addition to explaining viral rebound,
target cell regeneration mechanisms may also explain the observations of low-ampli-
tude viral rebounds/persistence in untreated individuals prior to the development of an
effective adaptive immune response (84, 85).

Our study has some limitations, the principal of which is not knowing the precise
date of infection of each individual. This is a very common situation when dealing
with infectious diseases (86, 87), and it is ameliorated by using well-established viral
dynamical models (29, 32, 33, 48), which in most cases allow us to infer the time of
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infection better than may be known clinically. Another important issue is that we do
not have data on the immune response in the study participants, although we include
both innate and acquired immune factors in our model. In the context of vaccinated
individuals, this could be even more important, although it has been shown before that
the viral dynamics of breakthrough infections may be similar to that in unvaccinated
individuals (88, 89). Our study could be strengthened and validated by incorporating
detailed longitudinal immune response data, similar to those collected in the human
challenge study for SARS-CoV-2 (49). Furthermore, for the logistical proliferation model,
markers of target cell proliferation or re-population could be used to support the
model. We should also re-emphasize that although delaying treatment leads to a lower
probability of rebound, we do not evaluate the effect on the severity of the disease.

In summary, our results suggest the occurrence of viral rebound following a complete
course of N-R may be due to the level of preserved target cells in the setting of incom-
plete elimination of the virus. Delaying initiation of treatment for a day or a few days
following the first signs of infection should have some benefit in reducing the possibility
of rebound, but at the cost of allowing viral growth to continue and the possibility of
increased disease severity. On the other hand, extending treatments by several days
may also reduce the likelihood of rebound, but at an increased cost of the drug. We
remark that viral rebound is not an intrinsic feature of our model, but rather a possibility
within the model dynamical landscape. This is clearly demonstrated by the model fits
to non-rebound individuals (treated and untreated). Finally, rebound following antiviral
treatments is not unique to N-R (21, 44). In particular, rebound without evidence of
resistance has also been observed for the protease inhibitor simnotrelvir (44), which has
a similar mechanism of action to nirmatrelvir and a shorter half-life (45). Thus, these
findings may provide an explanation for rebound following other antiviral treatments
besides N-R.

MATERIALS AND METHODS
Data

The data in this study come from an ongoing observational cohort study. Full details
of the study design and observations have been reported previously (6). In summary,
participants are adult outpatients selected from those who took part in the POSITIVES
study (Post-vaccination Viral Characteristics Study) (7, 90) within 5 days of an initial
positive diagnostic test for COVID-19, had not yet completed a 5-day course of N-R,
and had not received other antiviral or monoclonal antibody treatments (6). Time of
symptom onset was reported by participants and infection was confirmed with an initial
PCR or rapid antigen test. Anterior nasal swabs were self-collected about three times
a week for 2 weeks, then weekly until persistent undetectable results. The data were
originally reported relative to the time of the initial diagnostic test (6); however, we
shifted the data to be “Days post-infection” (Fig. 3) based on fitting the model to the data
(see Data Fitting). The primary definition for viral rebound was either (a) a positive viral
culture following prior negative results, or (b) nadir viral load dropping below 4 log10
copies/mL, then increased by at least 1 log10 copies/mL above the nadir and sustained
above 4 log10 copies/mL for two consecutive measurements (6).

For this analysis, we selected all participants who took N-R and met two criteria: (i)
had at least five data points, with (ii) at least 4 of those data points above LOD. There
were 51 participants that met these criteria (20 showing rebound and 31 showing no
rebound).

Details regarding the statistics of rebound in untreated individuals are presented in
Table S4 in Text S7.

Mathematical model

We used an extension of the viral dynamic model, originally developed by Baccam et al.
(91), Saenz et al. (92), and Pawelek et al. (60) to study acute influenza infections, which
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has previously been adapted to study SARS-CoV-2 infection dynamics (28, 32, 41, 48). The

model below statistically outperformed the simpler versions used by Perelson et al. (43)

(see Table S3 in Text S3). lyaniwura et al. (29) recently studied the kinetics of SARS-CoV-2

infection using a variation of this model that considers both infectious and total virus.
Our model is described by the following set of ordinary differential equations:

KP
T'= — VT = ®IT + p3—%R
p

KP
R =®IT-p R

T+K,
E' =pBVT —kE
I' = kE — 8(t)I

V' =1 -¢eC)pl —cV

In this model, T is the number of target cells in the URT, E is the number of infected
cells that have not yet started to produce virus, that is, are in the eclipse phase, I is
the number of productively infected cells, and V is the viral load. Target cells become
infected with rate constant 3. After being infected for an average time of 1/k, infected
cells in the absence of therapy start producing virus at an adjusted rate p that accounts
for sampling via a swab (28, 48) and die at per capita rate §, which we allow to be
time dependent as described below. SARS-CoV-2 is cleared at per capita rate c. The viral
production rate, baseline infected cell death rate, and viral clearance rate are influenced
by the innate immune response. For example, NK cells can eliminate infected cells,
thereby contributing to the infected cell death rate. Activation of the complement
system enhances viral clearance, affecting the viral clearance rate. Additionally, the
release of cytokines, chemokines, and antiviral restriction factors could have an effect
on viral production and promote the clearance of infected cells. However, the specific
actions and distinct effects of the innate immune response components are not explicitly
modeled here beyond the effects of type-l and type-Ill interferons.

For the innate immune response, we assume (48, 60) the level of type-l and type-lll
interferons in the URT is proportional to the number of infected cells, /, because these
cells produce IFN and recruit other IFN-producing cells, such as plasmacytoid dendritic
cells. We also assume that interferon puts target cells in an antiviral state that is refractory
to infection at rate ¢ (55-58). The number of cells refractory to infection is denoted as R.
Refractory cells lose their protection and become susceptible to infection (59) at a rate

pr}P. The density dependence of this rate on the number of infected cells I reflects the

idea that when infected cells are abundant, they stimulate a strong interferon response,
which keeps uninfected cells in a refractory state; but when infected cells decay below
a critical threshold, they no longer sustain a sufficient interferon response to maintain
cells in a refractory state and these cells return to being susceptible again (55-59). Note
that promoting a refractory state is just one possible mechanism of the innate immune
system to fight SARS-CoV-2 infection (93). A previous study by Ke et al. (48) examined
various formulations (e.g., reduction in infection or viral production rate) that reflect
different mechanisms of the innate immune response and found this formulation to be
superior in capturing viral dynamics data.

We added to this model an adaptive immune response, since rebounds tend to
occur late after infection, when adaptive immune responses have been observed (13).
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As modeled by Pawelek et al. (60), we added this response to the model starting at
time t*. We assumed that the adaptive response increases exponentially at rate o for
the short time period we model and causes an increase in the death rate of infected
cells. This increased death rate could be due to the increasing presence of cytotoxic T
cells or of viral-specific antibodies that bind to infected cells and cause their death by
processes such as antibody-dependent cytotoxicity, antibody-dependent phagocytosis,
or complement-mediated death. For simplicity, we fixed o = 0.5 per day, which means
that 1, 2, 3, and 5 days after t¥, the adaptive immune response will be at approximately
45%, 67%, 80%, and 93% of its maximum strength. The time-dependent infected cell
death rate §(¢) takes the form:

8o fort < t*
S — (B — 80)e =) fort >t*

5(t) = {

The effectiveness of nirmatrelvir in blocking viral replication and subsequent
production of virions is given by ¢ (C) = emaxﬁ, an Emax model (94) where Cis the
concentration of nirmatrelvir, ECsq is the concentration at which the drug effectiveness
is half-maximal, and e, is the maximum effectiveness. When ¢ (C) = 0, the drug has
no effect, and when ¢ (C) = 1, the drug is 100% effective at blocking virion production.

Based on the complete model, viral growth occurs only when the fraction of remaining
5(t)c .
A= @OITO) corresponding to the
effective reproduction number R being larger than 1.
As it is impossible to know the number of viruses that initiated infection, we use a

method suggested by Smith et al. (95) in which we assume the initiating virus is either

target cells is above a critical threshold, which is

cleared or rapidly infects cells. Thus, for initial conditions, we use: T (0) = 8 x 10’ cells,
E(0) =1 cell, 1(0) =0,V (0) =0, and R(0) =0 as explained in Ke et al. (48). They
also noted that the infection dynamics are relatively insensitive to increasing the initial
number of infected cells to 10.

Pharmacokinetic and pharmacodynamic models for N-R

We assume the drug effectiveness € (C) depends on the concentration of nirmatrelvir,
C(t), according to an E,,, model with EC50 = 62 nM, as presented in the FDA Emer-
gency Use Authorization (1). In S3 text, we explore the possibility that the in vivo EC50
may differ from the in vitro EC50 of 62 nM (12, 40). However, estimating the in vivo EC50
and its individual variability only slightly improves the model fit but worsens the BICc
score as additional parameters are fit (Table S3). Due to the lack of individual PK data,
we also could not estimate the in vivo EC50 directly. Thus, for the analysis in the main
text, we assume the EC50 value reported by the FDA. Following a single dose of 300 mg
nirmatrelvir with 100 mg ritonavir, the observed maximum nirmatrelvir concentration is

Cmax = 2.2142 (1). As nirmatrelvir has a molecular weight (96) of 499.54-£-, this value

of Cppayx can also be expressed as 4.4 x 10°nM. The half-life of nirmatrelvir when taken
with ritonavir is about 6 h (1), which corresponds to an elimination rate of 2.8 /day.
Additionally, dosing twice-daily achieved steady state on day 2 with approximately
2-fold accumulation (1). Using a simple multidose absorption-elimination model, the
pharmacokinetics of nirmatrelvir is given by (94)

~ kg o ket
CkE — ka(ekafd _ 1)
c@t) =
[1 _ ke ka)t(l _ eNdkaId) + (ekeld _ ekald)(

e(Ndl)keId _1

((Ng = Dk + ka)lg
kelq _ ) e ] :

e 1
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Here, k, is the elimination rate (2.8 /day), k, is the absorption rate (17.5 /day), I is the
dosing interval (1/2 day),and N, = integer (ﬁ) + 1 is the number of doses until time ¢,

with the first dose at time t = 0. In Text S1, we estimate C = 1:/—D = (6.25x 10°nM)...
d

Details on the implementation of the pharmacokinetic model and the parameter values
used can be found in Text S1. With these assumptions, the drug effectiveness ¢ (C)
hovers around 0.98 during treatment and then falls to zero rapidly after treatment stops
(Fig. S1in Text S1).

Data fitting

We used a nonlinear mixed effects modeling approach (software Monolix 2023R1, Lixoft,
SA, Antony, France) to fit the model to viral load data for all 51 individuals simultane-
ously. We applied left censoring to data points under LOD.

We assumed that the parameters p, &, time of infection, and K|, follow a log-normal
distribution. Parameters -log1g ¢, -logqg 8, p, and t* were assumed to follow a logit-nor-
mal distribution, with ranges closely following literature values (28, 48). We constrained
—log,, 8 between 7.5 and 9. Parameter p was constrained between 0 and 1 per day,
—log;, ¢ between 5 and12, and t* between 7 and 28 days. No covariate was used during
the initial fitting. A covariate based on whether a participant is classified as rebound or
non-rebound was used later with the best fit model to determine the parameters that are
different between these two groups.

The viral load data were originally reported relative to the number days since the
initial PCR confirmation test. To estimate the time of infection, we shifted the data to
be relative to the reported time of symptom onset. We then estimated the interval from
the time of infection, or more precisely the time interval from when virus begins to
grow exponentially as estimated by our model fitting, to when the participant reported
symptoms. We then shifted the viral load data to be relative to this estimated time of
infection.

The process to optimize the initial guesses of fitting parameters was done manually
within the given parameter ranges to avoid unrealistic model dynamics. Whenever two
models share a fitting parameter, the same initial guess for that parameter would be
used in the fitting of both models. Model comparisons were done using the BICc (62) as
reported by Monolix.

Construction of an in silico cohort

To quantify the chance of viral rebound after a 5-day (or longer) course of treatment with
N-R, we simulated a cohort of in silico patients. We used the following selection criteria
to construct the cohort of in silico patients with typical viral load patterns: (i) the viral
load must peak above 10° copies per mL; (i) the peak must be reached between days

2 and 7 after infection; and (iii) the viral load must decline below 10* copies per mL by
day 28. This algorithm is akin to a rejection algorithm, where we sample each parameter
from the best fit population estimates (i.e., the estimated distribution) and only accept
parameter sets that satisfy conditions (i) — (3). We fixed the time the adaptive immune
response starts, t*, to the population estimate of 13 days, and set §,,, = 20 /day to prevent
unrealistic rebound once an effective immune response has been developed. Additional
details of the in silico cohort are presented in Text S8.

We used these admissible parameter sets to simulate treatment of different durations
(5, 6,7, 8, and 10 days of N-R) starting at different times (1-4 days post-symptom onset)
and calculate the probability of rebound. We also examined how a potential delay in the
development of the adaptive immune response with longer treatment may affect the
likelihood of rebound (Text S9).
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