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ABSTRACT In a subset of SARS-CoV-2-infected individuals treated with the antiviral 
nirmatrelvir-ritonavir, the virus rebounds following treatment. The mechanisms driving 
this rebound are not well understood. We used a mathematical model to describe the 
longitudinal viral load dynamics of 51 individuals treated with nirmatrelvir-ritonavir, 
20 of whom rebounded. Target cell preservation, either by a robust innate immune 
response or initiation of N-R near the time of symptom onset, coupled with incomplete 
viral clearance, appears to be the main factor leading to viral rebound. Moreover, the 
occurrence of viral rebound is likely influenced by the time of treatment initiation relative 
to the progression of the infection, with earlier treatments leading to a higher chance 
of rebound. A comparison with an untreated cohort suggests that early treatments with 
nirmatrelvir-ritonavir may be associated with a delay in the onset of an adaptive immune 
response. Nevertheless, our model demonstrates that extending the course of nirmatrel­
vir-ritonavir treatment to a 10-day regimen may greatly diminish the chance of rebound 
in people with mild-to-moderate COVID-19 and who are at high risk of progression 
to severe disease. Altogether, our results suggest that in some individuals, a standard 
5-day course of nirmatrelvir-ritonavir starting around the time of symptom onset may 
not completely eliminate the virus. Thus, after treatment ends, the virus can rebound 
if an effective adaptive immune response has not fully developed. These findings on 
the role of target cell preservation and incomplete viral clearance also offer a possible 
explanation for viral rebounds following other antiviral treatments for SARS-CoV-2.

IMPORTANCE Nirmatrelvir-ritonavir is an effective treatment for SARS-CoV-2. In a subset 
of individuals treated with nirmatrelvir-ritonavir, the initial reduction in viral load is 
followed by viral rebound once treatment is stopped. We show that the timing of 
treatment initiation with nirmatrelvir-ritonavir may influence the risk of viral rebound. 
Nirmatrelvir-ritonavir stops viral growth and preserves target cells but may not lead to 
full clearance of the virus. Thus, once treatment ends, if an effective adaptive immune 
response has not adequately developed, the remaining virus can lead to rebound. Our 
results provide insights into the mechanisms of rebound and can help develop better 
treatment strategies to minimize this possibility.

KEYWORDS SARS-CoV-2, viral rebound, nirmatrelvir-ritonavir, antiviral therapy, target 
cell preservation, mathematical model, viral dynamics, adaptive immune response, 
incomplete viral clearance, treatment timing
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A 5-day course of nirmatrelvir-ritonavir (N-R) is recommended for individuals who 
test positive for SARS-CoV-2 with mild-to-moderate symptoms and a high risk of 

progression to severe disease (1). Treatment with two doses (300 mg of nirmatrelvir 
and 100 mg of ritonavir) per day is suggested to be initiated as soon as possible 
and within 5 days of symptom onset. Nirmatrelvir is a protease inhibitor, targeting 
the SARS-CoV-2 main protease 3-chymotrypsin–like cysteine protease enzyme (3CLpro), 
blocking SARS-CoV-2 replication. Ritonavir reduces the liver catabolism of nirmatrelvir 
and thus prolongs the half-life of nirmatrelvir (1). Although N-R substantially reduces 
the risk of progression to severe COVID-19 and can shorten the duration of disease in 
high-risk individuals (2–4), in some cases, viral rebound and recurring symptoms occur 
after the 5-day treatment course, including in individuals who have been vaccinated 
and/or boosted (5, 6). Some individuals with viral rebound are reported to have 
culturable virus up to 16 days after the initial diagnosis (6, 7); thus, potential transmission 
to close contacts during the rebound period is a concern (5). Although virus resistance to 
N-R in vitro (8, 9) and treatment-emergent 3CLpro substitutions in vivo (1, 10) have been 
observed, viral rebound in the case of N-R in vivo does not seem to be caused by the 
emergence of drug-resistant mutants (5–7, 11–14). However, two immunocompromised 
individuals, who were treated with extended duration of N-R in combination with other 
treatments, experienced viral rebound associated with resistant mutations E166 A/V and 
L50F in the NSP5 region where 3CLpro is located (15, 16).

The precise proportion of individuals treated with N-R that exhibit viral rebound is 
unclear, and estimates could vary based on a range of factors, including the definition 
used to classify rebound and viral characteristics. For example, in the N-R phase 3 clinical 
trial, EPIC-HR, the fraction of individuals with viral rebound (positive PCR test) and 
recurring symptoms was 1%–2% (17). However, this study was limited by the relatively 
infrequent viral RNA measurements after the completion of N-R. Other studies have 
reported rebound in 0.8%–27% of N-R treated individuals (6, 18–23). Viral rebound has 
also been described in untreated individuals (24, 25), but often at a lower frequency 
compared with N-R treated individuals regardless of rebound definition (6, 17, 19, 20, 22, 
23, 26, 27).

Throughout the COVID-19 pandemic, viral dynamics models have played an integral 
part in shedding light on viral infection kinetics, responses to different treatments (28–
36), and the implications for epidemiological control (37–39). Moreover, a few studies 
also analyzed the occurrence of rebounds in untreated (33) and treated infections (40–
42). In particular, we previously analyzed the data presented in Charness et al. (5), where 
quantitative PCR is available for three individuals who experienced viral and symptom 
rebound after taking N-R. In all three individuals, no resistance mutations in the gene 
encoding the protease targeted by nirmatrelvir (3CLpro) developed during treatment, 
and there was no evidence of reinfection by a different variant. The viral dynamic models 
in our study adequately captured the viral rebound dynamics in all three individuals 
(43). One hypothesis we tested was that a 5-day N-R treatment course started near the 
time of symptom onset reduces the depletion of target cells but does not fully eliminate 
the virus, thus allowing the virus to rebound once treatment is stopped. The occurrence 
of viral rebound was shown to be sensitive to model parameters, especially the time 
therapy is started, and the time an adaptive immune response begins to emerge. This 
suggested that a delay in the treatment initiation can lower the chance of rebound. 
However, our results were only supported by a limited data set comprised of three 
individuals (43).

Here, we expand upon this previous study using data from an ongoing observational 
cohort study, including 51 individuals treated with N-R, 20 of whom were classified as 
having viral rebound per the definition by Edelstein et al. (6) (additional details in “Data” 
section, below). Our model accurately captured the viral dynamics of all 51 individu­
als and provided further evidence that target cell preservation plays a central role in 
the occurrence of large-amplitude viral rebounds. Our model predicts that target cell 
preservation was achieved by a robust innate immune response or by early treatment. 
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As treatment only stops viral replication but does not directly eliminate existing viruses, 
residual viruses may remain after treatment has ended and can infect the remaining 
target cells and rebound. Interestingly, our model also suggests that N-R treatment 
may slightly delay the development of the adaptive immune response. Nonetheless, 
extending the course of N-R treatment to a 10-day regimen may greatly diminish the 
risk of rebound. Although we use N-R as a case study, our theory can also explain the 
viral rebound observed after treatment with molnupiravir (21), another oral antiviral with 
FDA emergency use authorization, simnotrelvir/ritonavir (44), a protease inhibitor that 
also targets the SARS-CoV-2 main protease 3CLpro but has a shorter half-life (45) than 
nirmatrelvir, and VV116 or mindeudesivir (46), an inhibitor of the viral RNA-dependent 
RNA polymerase that is not inferior to N-R in reducing time to recovery (47).

RESULTS

Model of viral dynamics in the upper respiratory tract

We used an extension of a viral dynamic model that has been applied to study SARS-
CoV-2 infection dynamics (28, 29, 32, 41, 48). In this model (depicted in Fig. 1), viral 
infection of target cells in the upper respiratory tract (URT) occurs with rate constant β. After spending an average time of 1/k in an eclipse phase, E, infected cells enter a 
productively infected state, I, where they produce virus at rate p (in the absence of N-R) 
and die at per capita rate δ. SARS-CoV-2 is cleared at per capita rate c.

SARS-CoV-2 infection induces both innate and adaptive immune responses (49–52). 
As in previous models (29, 48, 53, 54), we simplified these responses and focused only 
on key aspects, such as the induction of an antiviral state by the interferon response 
that is commonly seen in acute viral infections. Type-I and type-III interferons (IFNs) 
are produced both by infected cells and innate immune cells, such as plasmacytoid 
dendritic cells, which are recruited in response to cell infection. Rather than modeling 
IFN directly, we assumed the amount of type-I and type-III IFN in the URT is proportional 
to the number of infected cells, I, and that interferon puts target cells into a temporary 
antiviral state (refractory to infection) (28, 48, 55–58) at rate ϕ. Refractory cells become 

susceptible to infection again at rate ρ I = ρ KρI + Kρ , where ρ is the maximum rate at 

which refractory cells return to being susceptible (59), and Kρ denotes the density of 
infected cells at which the rate of return is half-maximal. (Note if I≫Kρ, i.e., if the amount 
of interferon is very high, ρ(I)→0, and cells remain in an antiviral state. However, as 
infection resolves and I becomes much less than Kρ, the antiviral state is lost at rate 
close to ρ.) Following Pawelek et al. (60), the adaptive immune response is modeled 
as causing an exponential increase in the death rate of infected cells (δ) at rate σ for a 

FIG 1 Schematic of the viral dynamic model. The model includes pharmacokinetic (PK) and pharmacodynamic (PD) sub-models, specifying how the drug 

concentration C and drug effectiveness ϵ C  change over time (model details in Materials and Methods and Text S1).
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short time after its emergence at time t*. This choice was motivated by the observation 
of the exponential expansion of virus-specific CD8+ T cells after SARS-CoV-2 infection 
(61). Antibodies also increase exponentially shortly before viral control (49) and can 
contribute to infected cell death via processes such as antibody-dependent cellular 
cytotoxicity and antibody-dependent cellular phagocytosis. This makes the death rate of 
infected cells a function of time δ t . Finally, the concentration-dependent action of N-R 
is incorporated using a pharmacokinetic-pharmacodynamic (PK-PD) model. Additional 
details of the model formulation are provided in Materials and Methods, Text S1, and Fig. 
S1.

Model describes the viral dynamics in all treated individuals

Our viral dynamic model describes the observed data for treated participants with and 
without rebound (Fig. 2a). By fitting the model to the data, we obtain population (Table 
S1 in Text S2) and individual (Table S2 in Text S2) estimates of the model parameters, 
which are stratified by rebound vs. non-rebound (Fig. 2b). The estimated time of infection 
relative to the time of symptom onset as reported by participants and the time of N-R 
initiation relative to infection and to symptom onset are also shown in Fig. 2b. We 
found that the parameters (ρ, ϕ, and Kρ) governing the dynamics of refractory cells, 
that is, those cells that are protected from infection, are significantly different between 
individuals who rebound and those who do not. The differences in all of these parame­
ters between the two groups were such that they favored the maintenance of cells in the 
refractory state in non-rebounders, who had a larger rate of cell entry into refractoriness 
ϕ (P = 0.0004), a smaller maximum rate of cells returning to target status ρ (P = 0.0047), 
and a smaller half-saturation constant for this process Kρ (P = 0.0056).

In addition, the baseline infected cell death rate (δ0) was also significantly lower in 
non-rebounders (P = 0.0027). When we used the previous classification of rebounder 
or non-rebounder for the participants in this study used by Edelstein et al. (6) and 
tested “rebounder” as a covariate on each parameter to improve the model fit and 
better understand factors distinguishing rebounders from non-rebounders, a covariate 
in δ0 provided the lowest corrected Bayesian Information Criterion (BICc) (62). However, 
the BICc difference was small (less than 4 points) compared with the model without a 
covariate (Table S3 in Text S3). Therefore, we did not include any covariates in the model 
used to characterize rebound vs. non-rebound (Fig. 2). Additionally, when we considered 
a variation of our best fit model with proliferation of target cells (details and model fit 
in Fig. S2a in Text S4), the baseline infected cell death rate was not significantly different 
between rebounders and non-rebounders (Fig. S2b). On the other hand, there were still 
differences that are significant in the innate immune response parameters ϕ (P = 0.0222) 
and Kρ (P = 0.0201). Specifically, in both models, the rebounders tend to have a larger 
value of ϕ, indicating a more rapid loss of target cells by going into the refractory state 
initially, and a larger value of Kρ, resulting in an earlier replenishment of target cells that 
can support viral rebound (40).

The time of N-R treatment relative to the estimated time of infection was about 1 
day shorter in participants who rebounded vs. those who did not (median 3.75 days vs 
4.72 days, P = 0.0003). This is consistent with the significant difference (P = 0.0009) in the 
time of N-R initiation relative to the time of symptom onset in rebound vs. non-rebound 
individuals, as suggested before (6, 40, 43, 63). These differences in parameter estimates 
manifest in clear distinctions in model dynamics (viral load, target cells, infected cells) 
between rebounders and non-rebounders, as discussed and demonstrated in Fig. S3 and 
S4; Text S5. A model variation that includes logistic proliferation of target cells discussed 
in Text S4 also predicts similar model dynamics (Fig. S5 in Text S5).

Finally, the model also recapitulates the data in untreated individuals from the same 
ongoing clinical cohort (Fig. S6a in Text S6). We also find that the parameter distribution 
between the treated and untreated groups is statistically similar (Fig. S6b in Text S6). 
The one exception is the average difference of 1.23 days (95% CI [0.44, 2.03], P = 0.0026) 
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in the estimated onset time of the adaptive immune response, which is later in treated 
individuals compared with untreated individuals.

FIG 2 Model fits recapitulate viral dynamics and quantify differences in the characteristics between viral rebound and non-rebound individuals. (a) Model fits 

to nasal viral loads of rebound (pink) and non-rebound (blue) individuals. The shaded area is the duration of N-R treatment. The dotted horizontal line is the 

limit of detection (LoD) for the RT-qPCR assay. Filled and open circles are data above and below the LoD, respectively. The dotted black vertical line indicates the 

reported time of symptom onset relative to the estimated time of infection. (b) Box plots of best fit parameters and timing of N-R stratified by individuals who 

rebound vs. those who do not. The lower and upper limits of the box represent the first and third quartiles, respectively. The line inside the box is the median, 

and the whiskers connect the top/bottom of the box to the max/min values that are not outliers (data points further than 1.5 times the interquartile range). 

Overlaid circles are individual parameter values. Time of N-R initiation relative to symptom onset was recorded for each individual (except non-rebounder PID 23, 

whose symptom onset is imputed 1 day prior to their first positive test). P-values are calculated using the Mann-Whitney U test.
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Sensitivity of viral rebound to treatment initiation time and the duration of 
treatment

Our results suggest that the time of N-R treatment initiation and the availability of target 
cells at that time are critical to defining whether a rebound occurs. To further explore 
this, we used simulation experiments to show that delaying or extending the period 
of treatment with N-R can decrease the probability of rebound. We simulated n = 20 
treatment cohorts, each with 100 randomly generated in silico individuals treated with 
N-R (see Materials and Methods for details), and assessed what percentage of individuals 

in each cohort exhibited rebound, defined as the viral load returning above 104 RNA 
copies per mL (6). Samples of the simulated viral dynamics for individuals in the in silico 
cohorts are presented in Fig. S7a-c in Text S8. Without treatment, our cohorts of in silico 
individuals have similar rebound statistics as those reported in the eight clinical studies 
(6, 17, 19, 20, 24–27) (Fig. S7d in Text S8).

We tested treatment starting at days 1, 2, 3, and 4 post-symptom onset, with 
symptom onset assumed to be 3 days post-infection. Extending treatment could be a 
feasible method of preventing rebound (40, 43, 64); hence, we also examined a 5-, 6-, 7-, 
8-, and 10-day treatment courses. In one scenario, we assume N-R does not affect the 
development of adaptive immune response (Fig. 3). In a second scenario, we assume that 
the onset of the adaptive immune response is delayed more with longer treatments (Fig. 
S8 in Text S9). It is important to examine this possibility as it would make rebound more 
likely. The time of symptom onset is fixed at 3 days post-infection; however, assuming 
either 2 or 4 days does not change the general trend observed in Fig. 3 and Fig. S8 in 
Text S9 in which we observed a clear decrease in rebound percentage as treatment is 
initiated later. We also found that an increase in the duration of treatment with N-R tends 
to prevent viral rebound. In all scenarios, extending treatment to 10 days decreases the 
probability of rebound in our 20 simulated 100-person cohorts to a level so low that it 
does not occur for all practical purposes.

DISCUSSION

Here, we extended a viral dynamic model of SARS-CoV-2 infection to show that the main 
driver of viral rebound in the setting of treatment is the preservation of target cells, often 
as a result of a robust innate immune response or early treatment initiation. Our model 
shows that if N-R treatment is completed and the drug is washed out before an adaptive 
immune response develops, residual viable viruses can rebound if there are sufficient 
target cells remaining. These results support our initial hypothesis of the importance of 
target cell preservation and the time therapy is initiated in leading to viral rebound (43), 
and they also echo the findings of a modeling study by Esmaeili et al. (40) based on data 

FIG 3 Predicted rebound relative to the time and duration of treatment. Predicted rebound for 5-, 6-, 7-, 8-, and 10-day courses of N-R. Symptom onset is 

assumed to occur 3 days post-infection. Boxplots depict the percentage of rebound cases from 20 in silico cohorts, each with 100 individuals, for different 

treatment initiation times. Each open circle represents the rebound percentage from one cohort. The extended duration of N-R (beyond a 5-day treatment 

course) is assumed to not cause additional delay on the onset of the adaptive immune response.
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from the EPIC-HR and PLATCOV clinical trials, highlighting the robustness of these results 
obtained with different models and using different data sets.

Our best model is able to capture the viral dynamics observed in all participants. 
It suggests that the protective effects of innate immunity preserved the majority of 
target cells by putting them into an antiviral state shortly after the virus started growing 
exponentially (Fig. S3 and S4 in Text S5). During treatment, the viral load and the number 
of infected cells rapidly decline (Fig. 2a; Fig. S4c, f in Text S5) due to infected cell death 
and continuous viral clearance, concurrent with reduced viral production due to drug 
activity. This decline leads to a decrease in the interferon response, causing cells to exit 
more quickly from the refractory state (55–59). It is clear from the data of both rebound 
and non-rebound individuals that a 5-day course of N-R is likely to be insufficient to 
completely eliminate the virus. Indeed, there was a measurable virus (viral load >LoD) 
after the completion of treatment (the first data point after treatment) in 40 of the 51 
participants (Fig. 2a). Thus, if viable viruses remain after the drug is washed out and 
before an adaptive immune response can be mounted, virus can rebound. However, 
whether the virus rebounds to an observable level is also determined by the time 
between the end of treatment and the generation of an effective adaptive immune 
response, and to some degree, the differences in the maintenance of the cell refractory 
status (Fig. 2b). This conclusion is supported by the observation that the time between 
the end of treatment and the predicted onset time of an adaptive immune response 
in the model is statistically different between the rebound and non-rebound groups. 
For the rebound group, the estimated time [min, max] is 5.87 [3.34, 12.56] days, and for 
the non-rebound group, it is 3.53 [0.14, 10.35] days (P = 0.0012) (Fig. 2b). Note that this 
difference is not driven by the fitted onset time of the adaptive immune response t*
measured from the estimated time of infection, whose distribution is statistically similar 
between the two groups (Fig. 2b). Instead, the difference in the time between the end of 
treatment and the onset time of the adaptive immune response is mainly driven by the 
earlier time of treatment initiation in the rebound group (Fig. 2b).

The time of treatment initiation also plays a crucial role in determining if a rebound 
is observed, as was also seen by Esmaeili et al. (40). If treatment is initiated early after 
infection, before a time we denote tcritical, a substantial number of target cells remain 
unprotected after the 5-day treatment and viral rebound is likely to occur. After tcritical,
too few target cells remain available to support viral growth; however, target cells still 
return from the refractory state as the virus is eliminated. Since viral growth switches 
to viral decay at the time of the viral peak in an untreated individual, this means tcritical
is the time the viral peak is reached. In more technical terms tcritical corresponds to the 
time the effective reproductive number ℜ equals 1, so that on average, each infected 
cell produces one new infected cell, leading to neither growth nor decay in the number 
of infected cells. In several observational/retrospective studies focusing on Omicron 
subvariants, the time to the viral peak is suggested to be 2–5 days post-symptom onset 
(65–67). We observed that for the participants in this study, who were all infected with 
Omicron subvariants, rebound is associated with treatment initiated within 2 days of 
symptom onset (6). This suggests treatment might have been initiated prior to tcritical, 
when the virus level is still expanding. Delaying treatment may be a strategy to reduce 
the possibility of viral rebound (Fig. 3; Fig. S8 in Text S9); however, delaying treatment 
could have a negative impact on the severity of disease in the high-risk individuals for 
whom N-R is recommended, and this question deserves more study (37). In addition, N-R 
treatment accelerates viral clearance and hence potentially can reduce viral transmission. 
See Fig. 4 for a summary description of our results.

Interestingly, all individuals studied here were vaccinated and boosted, and nonethe­
less had breakthrough infections with Omicron sub-variants (6). Thus, although adaptive 
B and T cell immune responses did not prevent infection, they might have been present 
at the time of infection and could have affected the level of preserved target cells. The 
timing of the adaptive immune response and its expansion may play a crucial role in the 
occurrence of viral rebound. In particular, without a strong adaptive immune response, 
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even a longer course of N-R still resulted in viral rebound in immunocompromised 
patients with severe disease (15, 16, 68). Delaying the initiation of N-R may also provide 
more time for the priming of the adaptive immune response and shorten the time 
between the end of treatment and the emergence of the adaptive immune response, 
which would reduce the chance of rebound.

Our model predicted that the 20 rebound participants in the studied set have 
both innate and adaptive immune responses comparable with those of non-rebound 
participants (Fig. 2b). This intriguing finding is supported by the clinical observations 
that most viral rebounds quickly resolve within several days (69), and this correlates 
with a strong antibody and T-cell immune response (13). There is also contradictory 
evidence suggesting that N-R may delay the development of the adaptive immune 
response (70, 71). We found an average of 1.23 day delay in the estimated onset 
time of the adaptive immune response in the treated vs. untreated groups (Text S6). 
Even so, the rebound participants quickly cleared the rebounding virus. This suggests 
that although early initiation of N-R may slightly delay the onset of the adaptive 
immune response, perhaps due to lower levels of antigens, it does not stop the 
development of an adaptive immune response in non-immunocompromised individu­
als. Thus, if the adaptive immune response is not significantly impeded by treatment, 
prolonging treatment can be beneficial in reducing rebound and does not have the 
possible detrimental effects on disease severity or increase viral transmission by delaying 
treatment (63). Indeed, using an in silico cohort, we show that even a modest extension 
to a 6-day treatment course can significantly reduce viral rebound incidence (Fig. 3; Fig. 
S8 in Text S9). Extensions beyond a 6-day treatment course can further reduce rebound 

FIG 4 How early treatment correlates with higher rebound probability. (a) Early treatments preserve more target cells and result in a longer duration between 

the end of N-R and the onset of an adaptive immune response, leading to a higher probability of an individual being classified as experiencing a rebound. (b) 

Later treatments preserve fewer target cells and result in a shorter duration between the end of N-R and the onset of an adaptive immune response, leading to a 

lower probability of an individual being classified as experiencing rebound.
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incidence with a 10-day treatment course almost totally eliminating the possibility of 
rebound in our in silico patient cohorts (Fig. 3; Fig. S8 in Text S9). A recent clinical 
trial compared 5 vs. 10 vs. 15 days of treatment with N-R given to immunocompro­
mised patients with COVID-19 (ClinicalTrials.gov: NCT05438602). The final analysis of 150 
participants showed that extending treatment to 10 or 15 days can minimize the risk 
of rebound (72). Although 9 of 52 participants treated with 5 days of N-R rebounded, 
only one participant rebounded in the 10-day (n = 48) and 15-day (n = 50) treatment 
groups. Although the clinical trial was carried out with immunocompromised patients, 
the single rebound incidence in the 10-day treated group supports our simulation results 
for a theoretical 10-day treatment for mild-to-moderate individuals with a high risk of 
progression (Fig. 3). When the cost of the drug is accounted for, the optimal treatment 
duration to minimize rebound and cost falls between 7 and 8 days (Fig. S9 in Text S10). 
However, because N-R is packaged as a 5-day course of treatment, extending treatment 
to 10 or 15 days may be more practical. Additionally, we previously suggested that 
the success of a second course of N-R once viral rebound occurs will also depend on 
the timing of an effective adaptive immune response in a similar manner (43). This is 
corroborated by observations of recurring viral rebounds in an immunocompromised 
individual at the end of each treatment period, which eventually leads to the devel­
opment of the resistance mutation E166V/L50F (15). An ongoing clinical trial aims to 
investigate this possibility (ClinicalTrials.gov: NCT05567952).

Rather than extend treatment duration, the use of a drug with a longer half-life 
may be helpful, especially if infectious forms of SARS-CoV-2 can persist during anti­
viral treatment (8, 9, 73). An ongoing clinical trial of ensitrelvir (ClinicalTrials.gov: 
NCT05305547) (74), a protease inhibitor that also targets SARS-CoV-2 3CLpro but with a 
longer half-life than nirmatrelvir (75), yielded results suggesting that this new drug was 
virologically active and did not significantly increase the risk of viral rebound (64).

The phenomenon of viral rebound has also been observed for monoclonal antibody 
treatments for SARS-CoV-2 (76–80). One example is bamlanivimab, the first monoclonal 
antibody that received FDA emergency use authorization for the treatment of COVID-19 
(78–80). However, rebounds in the case of monoclonal antibodies are associated with the 
emergence of resistance mutations (76–80), which contrasts with the lack of evidence 
for resistant mutants in vivo in the majority of cases for the current antiviral treatments 
(5–7, 11–13). However, the emergence of resistance mutations to monoclonal antibodies 
does not always lead to viral rebound (76, 77), suggesting other mechanisms besides 
selection pressure due to treatment may contribute to observable viral rebounds. Our 
previous modeling studies suggested that target cell regeneration mechanisms, such 
as homeostatic proliferation of epithelial cells (81–83) or refractory cells returning to a 
susceptible state, are necessary to explain the high amplitude viral rebounds observed in 
bamlanivimab treated participants (41). Here, our model with logistic proliferation (Text 
S4) also recapitulates the viral load dynamics in rebound and non-rebound participants 
(Fig. S2a in Text S4), and the stratified parameter values also support the conclusion 
that early N-R initiations correlate with a higher probability of rebound (Fig. S2b in 
Text S4). However, the net regeneration effect of target cells is similar to that in the 
innate immune response model (Fig. S5 compared with Fig. S3 in Text S5). This is likely 
because potent target cell preservation limits the proliferation rate, which is related to 
the number of cells that are lost by infection and need to be replaced. Moreover, because 
rebound occurs within days after the end of treatment, there is also not sufficient time 
for the proliferation effect to be more evident. In addition to explaining viral rebound, 
target cell regeneration mechanisms may also explain the observations of low-ampli­
tude viral rebounds/persistence in untreated individuals prior to the development of an 
effective adaptive immune response (84, 85).

Our study has some limitations, the principal of which is not knowing the precise 
date of infection of each individual. This is a very common situation when dealing 
with infectious diseases (86, 87), and it is ameliorated by using well-established viral 
dynamical models (29, 32, 33, 48), which in most cases allow us to infer the time of 
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infection better than may be known clinically. Another important issue is that we do 
not have data on the immune response in the study participants, although we include 
both innate and acquired immune factors in our model. In the context of vaccinated 
individuals, this could be even more important, although it has been shown before that 
the viral dynamics of breakthrough infections may be similar to that in unvaccinated 
individuals (88, 89). Our study could be strengthened and validated by incorporating 
detailed longitudinal immune response data, similar to those collected in the human 
challenge study for SARS-CoV-2 (49). Furthermore, for the logistical proliferation model, 
markers of target cell proliferation or re-population could be used to support the 
model. We should also re-emphasize that although delaying treatment leads to a lower 
probability of rebound, we do not evaluate the effect on the severity of the disease.

In summary, our results suggest the occurrence of viral rebound following a complete 
course of N-R may be due to the level of preserved target cells in the setting of incom­
plete elimination of the virus. Delaying initiation of treatment for a day or a few days 
following the first signs of infection should have some benefit in reducing the possibility 
of rebound, but at the cost of allowing viral growth to continue and the possibility of 
increased disease severity. On the other hand, extending treatments by several days 
may also reduce the likelihood of rebound, but at an increased cost of the drug. We 
remark that viral rebound is not an intrinsic feature of our model, but rather a possibility 
within the model dynamical landscape. This is clearly demonstrated by the model fits 
to non-rebound individuals (treated and untreated). Finally, rebound following antiviral 
treatments is not unique to N-R (21, 44). In particular, rebound without evidence of 
resistance has also been observed for the protease inhibitor simnotrelvir (44), which has 
a similar mechanism of action to nirmatrelvir and a shorter half-life (45). Thus, these 
findings may provide an explanation for rebound following other antiviral treatments 
besides N-R.

MATERIALS AND METHODS

Data

The data in this study come from an ongoing observational cohort study. Full details 
of the study design and observations have been reported previously (6). In summary, 
participants are adult outpatients selected from those who took part in the POSITIVES 
study (Post-vaccination Viral Characteristics Study) (7, 90) within 5 days of an initial 
positive diagnostic test for COVID-19, had not yet completed a 5-day course of N-R, 
and had not received other antiviral or monoclonal antibody treatments (6). Time of 
symptom onset was reported by participants and infection was confirmed with an initial 
PCR or rapid antigen test. Anterior nasal swabs were self-collected about three times 
a week for 2 weeks, then weekly until persistent undetectable results. The data were 
originally reported relative to the time of the initial diagnostic test (6); however, we 
shifted the data to be “Days post-infection” (Fig. 3) based on fitting the model to the data 
(see Data Fitting). The primary definition for viral rebound was either (a) a positive viral 
culture following prior negative results, or (b) nadir viral load dropping below 4 log10 
copies/mL, then increased by at least 1 log10 copies/mL above the nadir and sustained 
above 4 log10 copies/mL for two consecutive measurements (6).

For this analysis, we selected all participants who took N-R and met two criteria: (i) 
had at least five data points, with (ii) at least 4 of those data points above LOD. There 
were 51 participants that met these criteria (20 showing rebound and 31 showing no 
rebound).

Details regarding the statistics of rebound in untreated individuals are presented in 
Table S4 in Text S7.

Mathematical model

We used an extension of the viral dynamic model, originally developed by Baccam et al. 
(91), Saenz et al. (92), and Pawelek et al. (60) to study acute influenza infections, which 
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has previously been adapted to study SARS-CoV-2 infection dynamics (28, 32, 41, 48). The 
model below statistically outperformed the simpler versions used by Perelson et al. (43) 
(see Table S3 in Text S3). Iyaniwura et al. (29) recently studied the kinetics of SARS-CoV-2 
infection using a variation of this model that considers both infectious and total virus.

Our model is described by the following set of ordinary differential equations:

T′ = − βVT − ΦIT + ρ KpI + KpR

R′ = ΦIT − ρ KpI + KpR
E′ = βVT − kE
I′ = kE − δ(t)I

V′ = (1 − ϵ(C))pI − cV
In this model, T is the number of target cells in the URT, E is the number of infected 

cells that have not yet started to produce virus, that is, are in the eclipse phase, I is 
the number of productively infected cells, and V  is the viral load. Target cells become 
infected with rate constant β. After being infected for an average time of 1/k, infected 
cells in the absence of therapy start producing virus at an adjusted rate p that accounts 
for sampling via a swab (28, 48) and die at per capita rate δ, which we allow to be 
time dependent as described below. SARS-CoV-2 is cleared at per capita rate c. The viral 
production rate, baseline infected cell death rate, and viral clearance rate are influenced 
by the innate immune response. For example, NK cells can eliminate infected cells, 
thereby contributing to the infected cell death rate. Activation of the complement 
system enhances viral clearance, affecting the viral clearance rate. Additionally, the 
release of cytokines, chemokines, and antiviral restriction factors could have an effect 
on viral production and promote the clearance of infected cells. However, the specific 
actions and distinct effects of the innate immune response components are not explicitly 
modeled here beyond the effects of type-I and type-III interferons.

For the innate immune response, we assume (48, 60) the level of type-I and type-III 
interferons in the URT is proportional to the number of infected cells, I, because these 
cells produce IFN and recruit other IFN-producing cells, such as plasmacytoid dendritic 
cells. We also assume that interferon puts target cells in an antiviral state that is refractory 
to infection at rate ϕ (55–58). The number of cells refractory to infection is denoted as R. 
Refractory cells lose their protection and become susceptible to infection (59) at a rate ρ KρI + Kρ . The density dependence of this rate on the number of infected cells I reflects the 

idea that when infected cells are abundant, they stimulate a strong interferon response, 
which keeps uninfected cells in a refractory state; but when infected cells decay below 
a critical threshold, they no longer sustain a sufficient interferon response to maintain 
cells in a refractory state and these cells return to being susceptible again (55–59). Note 
that promoting a refractory state is just one possible mechanism of the innate immune 
system to fight SARS-CoV-2 infection (93). A previous study by Ke et al. (48) examined 
various formulations (e.g., reduction in infection or viral production rate) that reflect 
different mechanisms of the innate immune response and found this formulation to be 
superior in capturing viral dynamics data.

We added to this model an adaptive immune response, since rebounds tend to 
occur late after infection, when adaptive immune responses have been observed (13). 
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As modeled by Pawelek et al. (60), we added this response to the model starting at 
time t*. We assumed that the adaptive response increases exponentially at rate σ for 
the short time period we model and causes an increase in the death rate of infected 
cells. This increased death rate could be due to the increasing presence of cytotoxic T 
cells or of viral-specific antibodies that bind to infected cells and cause their death by 
processes such as antibody-dependent cytotoxicity, antibody-dependent phagocytosis, 
or complement-mediated death. For simplicity, we fixed σ = 0.5 per day, which means 
that 1, 2, 3, and 5 days after t*, the adaptive immune response will be at approximately 
45%, 67%, 80%, and 93% of its maximum strength. The time-dependent infected cell 
death rate δ t  takes the form:

δ t = δ0  for t < t∗δm − δm − δ0 e−σ t − t∗ for t ≥ t∗
The effectiveness of nirmatrelvir in blocking viral replication and subsequent 

production of virions is given by ϵ C = ϵmax CC + EC50 , an Emax model (94) where C is the 

concentration of nirmatrelvir, EC50 is the concentration at which the drug effectiveness 
is half-maximal, and ϵmax is the maximum effectiveness. When ϵ C = 0, the drug has 
no effect, and when ϵ C = 1, the drug is 100% effective at blocking virion production. 
Based on the complete model, viral growth occurs only when the fraction of remaining 

target cells is above a critical threshold, which is δ t cβp 1 − ϵ C T 0 , corresponding to the 

effective reproduction number ℜ being larger than 1.
As it is impossible to know the number of viruses that initiated infection, we use a 

method suggested by Smith et al. (95) in which we assume the initiating virus is either 

cleared or rapidly infects cells. Thus, for initial conditions, we use: T 0 = 8 × 107 cells, E 0 = 1 cell, I 0 = 0, V 0 = 0,  and R 0 = 0 as explained in Ke et al. (48). They 
also noted that the infection dynamics are relatively insensitive to increasing the initial 
number of infected cells to 10.

Pharmacokinetic and pharmacodynamic models for N-R

We assume the drug effectiveness ϵ C  depends on the concentration of nirmatrelvir, C t , according to an Emax model with EC50 = 62 nM, as presented in the FDA Emer­
gency Use Authorization (1). In S3 text, we explore the possibility that the in vivo EC50 
may differ from the in vitro EC50 of 62 nM (12, 40). However, estimating the in vivo EC50 
and its individual variability only slightly improves the model fit but worsens the BICc 
score as additional parameters are fit (Table S3). Due to the lack of individual PK data, 
we also could not estimate the in vivo EC50 directly. Thus, for the analysis in the main 
text, we assume the EC50 value reported by the FDA. Following a single dose of 300 mg 
nirmatrelvir with 100 mg ritonavir, the observed maximum nirmatrelvir concentration is Cmax = 2.21 μgmL  (1). As nirmatrelvir has a molecular weight (96) of 499.54 gmol , this value 

of Cmax can also be expressed as 4.4 × 103nM. The half-life of nirmatrelvir when taken 
with ritonavir is about 6 h (1), which corresponds to an elimination rate of 2.8 /day. 
Additionally, dosing twice-daily achieved steady state on day 2 with approximately 
2-fold accumulation (1). Using a simple multidose absorption-elimination model, the 
pharmacokinetics of nirmatrelvir is given by (94)

C(t) = C kake − ka ( e−ketekaId − 1
)

1 − e ke − ka t 1 − eNdkaId + ekeId − ekaId e Nd1 keId − 1ekeId − 1
− e Nd − 1 ke + ka Id .
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Here, ke is the elimination rate (2.8 /day), ka is the absorption rate (17.5 /day), Id is the 

dosing interval (1/2 day),and Nd = integer tId + 1 is the number of doses until time t, 
with the first dose at time t = 0 .  In Text S1, we estimate C = FDVd = 6.25 × 103 nM .. 
Details on the implementation of the pharmacokinetic model and the parameter values 
used can be found in Text S1. With these assumptions, the drug effectiveness ϵ C
hovers around 0.98 during treatment and then falls to zero rapidly after treatment stops 
(Fig. S1 in Text S1).

Data fitting

We used a nonlinear mixed effects modeling approach (software Monolix 2023R1, Lixoft, 
SA, Antony, France) to fit the model to viral load data for all 51 individuals simultane­
ously. We applied left censoring to data points under LOD.

We assumed that the parameters p, δ0, time of infection, and Kρ follow a log-normal 
distribution. Parameters -log10 ϕ, -log10 β, ρ,  and t* were assumed to follow a logit-nor­
mal distribution, with ranges closely following literature values (28, 48). We constrained −log10 β between 7.5 and 9. Parameter ρ was constrained between 0 and 1 per day, −log10ϕ between 5 and12, and t* between 7 and 28 days. No covariate was used during 
the initial fitting. A covariate based on whether a participant is classified as rebound or 
non-rebound was used later with the best fit model to determine the parameters that are 
different between these two groups.

The viral load data were originally reported relative to the number days since the 
initial PCR confirmation test. To estimate the time of infection, we shifted the data to 
be relative to the reported time of symptom onset. We then estimated the interval from 
the time of infection, or more precisely the time interval from when virus begins to 
grow exponentially as estimated by our model fitting, to when the participant reported 
symptoms. We then shifted the viral load data to be relative to this estimated time of 
infection.

The process to optimize the initial guesses of fitting parameters was done manually 
within the given parameter ranges to avoid unrealistic model dynamics. Whenever two 
models share a fitting parameter, the same initial guess for that parameter would be 
used in the fitting of both models. Model comparisons were done using the BICc (62) as 
reported by Monolix.

Construction of an in silico cohort

To quantify the chance of viral rebound after a 5-day (or longer) course of treatment with 
N-R, we simulated a cohort of in silico patients. We used the following selection criteria 
to construct the cohort of in silico patients with typical viral load patterns: (i) the viral 

load must peak above 106 copies per mL; (ii) the peak must be reached between days 

2 and 7 after infection; and (iii) the viral load must decline below 102 copies per mL by 
day 28. This algorithm is akin to a rejection algorithm, where we sample each parameter 
from the best fit population estimates (i.e., the estimated distribution) and only accept 
parameter sets that satisfy conditions (i) – (3). We fixed the time the adaptive immune 
response starts, t*, to the population estimate of 13 days, and set δm = 20 /day to prevent 
unrealistic rebound once an effective immune response has been developed. Additional 
details of the in silico cohort are presented in Text S8.

We used these admissible parameter sets to simulate treatment of different durations 
(5, 6, 7, 8, and 10 days of N-R) starting at different times (1–4 days post-symptom onset) 
and calculate the probability of rebound. We also examined how a potential delay in the 
development of the adaptive immune response with longer treatment may affect the 
likelihood of rebound (Text S9).
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