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Abstract: We extend the Virtual Element Method to a two-dimensional unsteady nonlinear
convection-diffusion equation characterized by a fractional-order derivative with respect to the time
variable. Our methodology is based on three fundamental technical components: a fractional version
of the Grunwald-Letnikov approximation, discrete maximal regularity, and the regularity theory
associated with non-linearity. We prove the method’s well-posedness, i.e., the approximate solution’s
existence and uniqueness to the time-fractional convection-diffusion equation with a Lipschitz
nonlinear source term. The fully discrete scheme inherently maintains stability and consistency by
leveraging the discrete maximal regularity and the energy projection operator. The convergence in the
L2-norm and H1-norm to various mesh configurations is validated by numerical results, underlining
the practical effectiveness of the proposed method.
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1. Introduction

Fractional calculus, the study of derivatives and integrals of non-integer orders, has increasingly
become a powerful tool in modeling physical phenomena that defy conventional descriptions under
ideal conditions [51]. It addresses the limitations inherent in classical models by providing a more
accurate representation of systems with anomalous properties. Despite a relatively slow historical
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progression, the past decade has seen a renaissance, with fractional-order models advancing alongside
traditional integer-order counterparts.

These fractional-order models, encompassing both ordinary and partial differential equations with
non-integer order terms have been instrumental in advancing our understanding of a diverse array of
physical phenomena. They have been successfully applied in fields ranging from signal processing
and control theory to more complex systems in diffusion processes, thermodynamics, biophysics, and
blood-flow dynamics, as well as in electrodynamic, electrochemical, and electromagnetic theories,
not to mention their significant roles in continuum and statistical mechanics, along with dynamical
systems, see References [5, 12, 48, 56].

Substantial progress in the numerical approximation of fractional-order models have been made,
enhancing the precision and applicability of these models in computational simulations. Beyond the
traditional finite difference schemes for fractional equations [11, 54], noteworthy advancements have
been made in the Finite Element Methods (FEM). For instance, the work by Acosta and Borthagaray [2]
shed light on regularity results for the analytic solution of the fractional Poisson problem and delineated
convergence rates for FEM approximations, with these findings further substantiated by computational
examples in [1]. Additionally, Ervin and Roop [32] contributed to this field by employing the FEM
approach to steady-state fractional advection dispersion equations,

−Da(p 0D−βx + q xD−β1 )Du + b(x)Du + c(x)u = f ,

where D represents the first-order spatial derivative, 0D−βx , xD−β1 represent the left and right fractional
integral operators with 0 ≤ β < 1 and 0 ≤ p, q ≤ 1 satisfying p + q = 1. The FEM with Galerkin
framework was used in [33] to solve fractional diffusion wave equations. Jin et al. described the
Petrov-Galerkin FEM for the fractional convection-diffusion equations [35], where they considered
the 1D fractional boundary value problem{

0Dα
x u + bu′ + qu = f in D = (0, 1),

u(0) = u(1) = 0,

where f ∈ L2(D) and 0Dα
x u denotes Caputo fractional derivative of order α ∈ (3/2, 2).

A comprehensive review of numerical approximations for fractional models is available in [30] and
the references cited therein. Recently, focussing on the polygonal approximation techniques, Zhang
et al. [58] studied a local projection stabilization Virtual Element Method (VEM) for the time-fractional
Burger’s equation with higher Reynold’s number. Recent attempts with the VEM approximation for
time-fractional Partial Differential Equations (PDEs) [31, 57, 58] highlight the need to further develop
the studies to more general nonlinear problems.

Our research extends the VEM to such a time-fractional nonlinear partial differential equation,
providing both theoretical analysis and validation through numerical experiments. In this work, we
consider the 2D time-fractional nonlinear convection-diffusion equation

c
0Dα

t u − ∆u + b(x) · ∇u + f (u) = g(x, t), (x, t) ∈ Ω × (0,T ),
u(x, 0) = 0, x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × (0,T ),
(1.1)

where Ω ⊂ R2 denotes a bounded polygon region with boundary ∂Ω and the order of time derivative
varies such that 0 < α < 1. The convective field is represented by b(x) = (b1(x), b2(x))T , the
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function f (u) encapsulates the nonlinear term or terms of interest, while g(x, t) is a forcing term. To
show theoretical estimates, suitable regularities of the terms in (1.1) will be discussed in Section 3.
According to [38], notation c

0Dα
t denotes the Caputo fractional derivative of order α and is defined as,

c
0Dα

t u(t) :=
1

Γ(1 − α)

∫ t

0
(t − s)−α

∂u(s)
∂s

ds.

Background material on the VEM. The VEM is used for approximation of the solution of PDEs on
general polygonal and polyhedral meshes. It is an extension of the finite element method and shares
some similarities with it. Like the FEM, VEM also formulates the problem in a weak form, which
involves multiplying the PDE by a test function and integrating by parts over the domain. The weak
form allows for the use of piecewise smooth approximations and leads to a system of linear equations
that can be solved numerically. Differently from FEM, the VEM introduces the concept of “virtual
element spaces”, which are sets of functions that approximate the exact solution of the PDEs at both
the local (elementwise) and global level. Such functions are implicitly defined as the solution to a
local PDE problem, and are never explicitly used to compute the coefficients of the global matrix. The
global spaces are defined on polygonal or polyhedral meshes and are constructed to be compatible with
the underlying mesh structure and possess some degree of global regularity. In depth examinations of
the parallelism between the VEM and finite elements for polygonal/polyhedral meshes are provided
in [25, 45], and its relationship with BEM-influenced FEM approaches in [24]. The VEM is also a
variational reinterpretation of the Mimetic Finite Difference (MFD) approach, specifically its nodal
variant introduced in [15, 17, 22, 42]. An extensive discussion on MFD is found in the comprehensive
review article [41] and the book [20]. A major advantage of the VEM is its ability to handle arbitrary
polygonal and polyhedral meshes. Unlike the “traditional” FEM, which typically requires triangular
or quadrilateral elements in 2D and tetrahedral or hexahedral elements in 3D, the VEM can handle
meshes composed of elements with any number of sides with an upper bound from theoretical level.
This flexibility is particularly useful when dealing with complex geometries. The VEM is designed
to provide stable and accurate solutions for a wide range of problems. The method incorporates
stabilization techniques to handle challenges associated with irregular meshes and distorted elements.
Additionally, the VEM can achieve high-order accuracy by incorporating polynomial approximation
spaces of higher degree in the virtual element space definition. Initially introduced to address elliptic
problems such as the Poisson equation, cf. [6, 19], the VEM was later applied to linear and nonlinear
diffusion, convection-diffusion, and convection-reaction-diffusion problems [3, 4, 10, 14] the Stokes
equations [13, 16, 43, 44], the polyharmonic equation [9], and many other models. Meanwhile,
the nonconforming formulation for diffusion problems was proposed in [29] as the finite element
reformulation of [40] and later extended to general elliptic problems [26], Stokes problem [23], and
the biharmonic equation [8, 59]. A recent contributed book documents the state of the art of this
methodology, cf. [7].

Paper’s outline. The structure of this paper is as follows. Section 2 outlines some preliminary
and established results, the model problem with weak formulation framework is given in Section 3.
Section 4 presents the discrete formulation, well-posedness and convergence analysis of a fully discrete
VEM. Section 5 offers numerical examples that substantiate our theoretical findings. Section 6
concludes the paper with a summary of our work.
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2. Definitions and notations

The concept of fractional derivatives has been explored and delineated extensively within the
mathematical literature. In this section, we recall some definitions and background results that will
be useful in the paper. For a comprehensive exposition of these concepts, the reader is directed to
refer [49, 50].

2.1. Riemann-Liouville fractional derivatives

Let α be a positive real number, m a non-negative integer, and f (x) a univariate function defined on
x ∈ [a, b]. The left and right hand Riemann-Liouville (R-L) fractional derivatives of f (x) of order α,
with m − 1 < α ≤ m, are defined as

RDα
a+ f (x) =

1
Γ(m − α)

dm

dxm

∫ x

a

f (t)
(x − t)α−m+1 dt,

RDα
b− f (x) =

(−1)m

Γ(m − α)
dm

dxm

∫ b

x

f (t)
(x − t)α−m+1 dt,

where Γ denotes, as usual, the Gamma function [53].

2.2. Caputo fractional derivatives

At the end of the sixties, Caputo introduced the formulation for fractional derivatives, which jointly
with Minardi was then applied in their research on viscoelasticity theory [27]. Caputo’s definition of
the fractional derivative is given by

cDα
x = Im−αDm for m − 1 < α ≤ m,

where Im−α is a corresponding integral of m − α fractional order. This derivative can be interpreted as:

cDα
x f (x) =


1

Γ(m − α)

∫ x

0

f (m)(t)
(x − t)α+1−m dt for m − 1 < α < m,

dm

dxm f (x) for α = m.

2.3. Notation

On a domain Ω and v ∈ L2(Ω), the L2 inner product is defined by 〈v, v〉 =
∫
Ω

v(x)v(x)dx and the

associated L2(Ω) norm is defined by ||v|| = (
∫
Ω

|v(x)|2dx)1/2. For any non-negative integer n, Hn(Ω)

denotes a Sobolev space with the related norm

||w||n =

 ∑
0≤s≤n

∣∣∣∣∣∣∣∣∣∣∂sw
∂xs

∣∣∣∣∣∣∣∣∣∣2 dx

1/2

and seminorm | · |n. Let C∞0 (Ω) be a space of infinitely differentiable functions with compact support in
Ω and Hm

0 (Ω) is a closure of C∞0 (Ω) with respect to norm || · ||m. Finally, we denote by Pk(Ω) the space
of all polynomials over Ω of degree up to k. Also, C is independent of mesh sizes, denotes a generic
constant that may vary at different occurrences.

Mathematics in Engineering Volume 7, Issue 2, 96–129.



100

3. Model problem

We consider the following time-fractional nonlinear convection-diffusion-reaction equation:
c
0Dα

t u − ∆u + b(x) · ∇u + f (u) = g(x, t) in Ω × (0,T ],
u(x, 0) = 0, x ∈ Ω,

u = 0, (x, t) ∈ ∂Ω × (0,T ].

(3.1)

Here, 0 < α < 1, c
0Dα

t u denotes the α-th order Caputo fractional derivative of u, and g(x, t) ∈ L2(Ω) is
a forcing/load term. For the purpose of theoretical analysis, we make the assumptions:
(H1) Let f : R→ R be a Lipschitz continuous function, that is, there exists L > 0 such that,

| f (v1) − f (v2)| ≤ L|v1 − v2| ∀ v1, v2 ∈ R.

(H2) We also suppose that ∇ · b ∈ L∞(Ω) and there exists µ0 ≥ 0 such that for almost every x ∈ Ω,

µ(x) := 1 −
1
2
∇ · b(x) ≥ µ0 ≥ 0.

Then, the following wellposedness theorem states the existence and uniqueness of the solution to
problem (3.1). The proof of these results can be found in [36].

Theorem 1 (Wellposedness). Under Assumption (H1), problem (3.1) admits a unique solution u for
0 < α < 1, such that,

(i) u ∈ Cα
(
[0,T ]; L2(Ω)

)
∩C

(
[0,T ]; H1

0(Ω) ∩ H2(Ω)
)
,

(ii) cDα
t u ∈ C

(
[0,T ]; L2(Ω)

)
,
∂u(t)
∂t
∈ L2(Ω),

(iii)
∣∣∣∣∣∣∣∣∣∣∂u(t)
∂t

∣∣∣∣∣∣∣∣∣∣ ≤ Ctα−1 for t ∈ (0,T ],

where C is a strictly positive, real constant (independent of u).

Li et al. [39] established a discrete fractional Grönwall type inequality for Caputo type fractional
derivative. Taking the motivation from this work, we here establish a discrete fractional Grönwall type
inequality (Grunwald-Letnikov approximation) to R-L type fractional derivative. To do so, we consider
the relation between Caputo and R-L fractional derivatives expressed as

c
0Dα

t u = R
0 Dα

t
(
u − u(x, 0)

)
.

Since u(x, 0) = 0, we find that c
0Dα

t u(·, t) = R
0 Dα

t u(·, t). As our initial model has the Caputo
type derivative, it is important to take zero initial conditions to use the Caputo and R-L type
interchangeably because they are equal when initial conditions are zero. It is noteworthy that
the methodology (Grünwald equality) for a time-fractional derivative used is specific for the R-L
type [35, 37]. The reason to start with the Caputo-type derivative is because of its versatile and
meaningful interpretation of physical phenomena and allows for clear formulations of initial and
boundary conditions. Furthermore, the literature indicates that there are no inherent limitations on
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the initial conditions, as the Grünwald approximation can be extended to the Caputo-type derivative
with inhomogeneous initial values. This extension is achieved by adding appropriate correction terms,
as referenced in the work by Scherer et al. [52]. Now, we write the model problem (3.1) in terms of the
R-L fractional derivative reads as

R
0 Dα

t u − ∆u + b(x) · ∇u + f (u) = g(x, t), (x, t) ∈ Ω × (0,T ],
u(x, 0) = 0, x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × (0,T ].

(3.2)

The weak/variational formulation of the model fractional elliptic problem (3.2) is:
Find u(t) ∈ H1

0(Ω) for almost all t ∈ (0,T ) such thatm(R
0 Dα

t u,w) + a(u,w) + b(u,w) + 〈 f (u),w〉 = 〈g,w〉 ∀ w ∈ H1
0(Ω), t ∈ (0,T ],

u(x, 0) = 0, x ∈ Ω,
(3.3)

where the bilinear forms m(·, ·), a(·, ·) and b(·, ·) are defined as:

m(w, v) =

∫
Ω

wv dx, a(w, v) =

∫
Ω

∇w · ∇v dx, b(w, v) =

∫
Ω

(b · ∇w)v dx,

and 〈·, ·〉 is the duality product in L2(Ω). The wellposedness of the weak form can be proved along
similar lines of the work by Jin et al. [35, 36] for the time-fractional nonlinear subdiffusion equation.

4. Virtual element discretization

Let {Th}h>0 be a family of polygonal meshes covering Ω, each labelled by the mesh size parameter
h which is the maximum of the element diameters hE associated with the mesh Th, i.e., h := max

E∈Th
hE.

For mesh regularity, we assume there exists ρ > 0 such that for every E ∈ Th :

• E is star shaped for a ball of radius ≥ ρhE,
• distance between any two vertices of E is ≥ ρhE.

Referring to [6], for k ≥ N, the local virtual element space VE
h of order k is defined as,

VE
h =

{
vh ∈ H1(E) : ∆vh ∈ Pk(E), vh|∂E ∈ C0(∂E), vh|e ∈ Pk(e)∀e ⊂ ∂E

}
,

where ∂E is the polygonal boundary of E and e ⊂ ∂E denotes a generic edge.
Next, we define some useful polynomial projection operators. We consider the elliptic projection

operator Π∇,Ek : H1(E)→ Pk(E), which is the orthogonal projector onto the space of polynomials of
degree k with respect to the H1 semi-norm. Formally, for every v ∈ H1(E), the k-degree polynomial
Π∇,Ek v is the solution to the variational problem∫

E

∇
(
Π∇,Ek v − v

)
· ∇qk dx = 0 ∀ qk ∈ Pk(E),
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∂E

(
Π∇,Ek v − v

)
ds = 0,

where the second condition is needed to fix the gradient kernel. We also define the L2-orthogonal
projection operator Π0,E

k : H1(E)→ Pk(E), such that for any v ∈ H1(E), the polynomial Π0,E
k v satisfies:∫

E

(
Π0,E

k v − v
)

qk dx = 0 ∀ qk ∈ Pk(E).

Using the elliptic projection operator, we define the “enhanced” local virtual element space denoted
WE

h by

WE
h =

wh ∈ VE
h :

∫
E

(Π∇,Ek wh) qk dx =

∫
E

wh qk dx ∀ qk ∈ Pk/Pk−2(E)

 , (4.1)

where Pk/Pk−2(E) denotes the quotient space of equivalence classes of polynomials, where two
polynomials are equivalent if their difference is a polynomial of degree at most k−2 (roughly speaking,
in the implementation, we can consider the union of the linear spaces of homogeneous polynomials of
degree exactly k and k − 1). Accordingly, we define the global virtual element space of order k as:

Wh =
{
w ∈ H1

0(Ω) : w|E ∈ WE
h ∀ E ∈ Th

}
.

A function wh ∈ WE
h is uniquely described by the following sets of values that we can take as the local

Degrees of Freedom (DoFs):

(D1) For k ≥ 1, the vertex values wh(Vi), where Vi are the vertices of element E;
(D2) For k > 1, the values of wh at the (k − 1) internal Gauss-Lobatto quadrature points on each edge e

subset of ∂E;
(D3) For k > 1, the polynomial moments up to order k − 2,∫

E

vh pk−2 dx ∀ pk−2 ∈ Pk−2(E).

The DoFs of the global virtual element space of order k are given by collecting the local DoFs of the
elemental spaces WE

h from all elements E ∈ Th that are glued with C0 continuity. The unisolvence of
these degrees of freedom is proved in [6]. A crucial property of definition (4.1) is that the projections
Π∇,Ek wh and Π0,E

k wh are computable using only the DoFs (D1)–(D3) of wh ∈ WE
h .

The semi-discrete VEM approximation of the weak formulation (3.3) is given as:
Find uh(t) ∈ Wh, for almost all t ∈ (0,T ) such thatmh(R

0 Dα
t uh,wh) + ah(uh,wh) + bh(uh,wh) + 〈 fh(uh),wh〉 = 〈gh,wh〉 ∀ wh ∈ Wh,

uh(x, 0) = 0, x ∈ Ω.

Here, the global discrete bilinear forms ah(·, ·) : Wh ×Wh → R, bh(·, ·) : Wh ×Wh → R and mh(·, ·) :
Wh ×Wh → R are defined as:

ah(vh,wh) =
∑
E∈Th

aE
h (vh,wh) ∀ vh,wh ∈ Wh,
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bh(vh,wh) =
∑
E∈Th

bE
h (vh,wh) ∀ vh,wh ∈ Wh,

mh(vh,wh) =
∑
E∈Th

mE
h (vh,wh) ∀ vh,wh ∈ Wh,

where the computable discrete local bilinear forms aE
h (·, ·) : WE

h ×WE
h → R, bE

h (·, ·) : WE
h ×WE

h → R,
and mE

h (·, ·) : WE
h ×WE

h → R are defined over every E ∈ Th as follows:

aE
h (uh, vh) = aE(Π∇,Ek uh,Π

∇,E
k vh) + sE

a ((I − Π∇,Ek )uh, (I − Π∇,Ek )vh) ∀ uh, vh ∈ WE
h ,

mE
h (uh, vh) = mE(Π0,E

k uh,Π
0,E
k vh) + sE

m((I − Π0,E
k )uh, (I − Π0,E

k )vh) ∀ uh, vh ∈ WE
h ,

bE
h (uh, vh) = bE(Π0,E

k−1∇uh,Π
0,E
k vh) ∀ uh, vh ∈ WE

h ,

where the bilinear forms sE
a : VE

h × VE
h → R and sE

m : VE
h × VE

h → R are a locally admissible stabilizing
terms that are symmetric positive definite and satisfy

c0aE(vh, vh) ≤ sE
a (vh, vh) ≤ c1aE(vh, vh) ∀vh ∈ VE

h ,

d0mE(vh, vh) ≤ sE
m(vh, vh) ≤ d1mE(vh, vh) ∀vh ∈ VE

h ,

for some positive constants c0, c1, d0 and d1 independent of h and E.
These stabilization terms ensure the local stability of the corresponding elemental bilinear forms

aE
h (·, ·) and mE

h (·, ·) (a formal definition follows below). For the computational purpose, we consider the
“dofi-dofi” stabilization, see [46]. For the sake of completeness, we refer to various specific choices of
the computable definitions for the stabilizers available in the literature [18, 19, 21, 28].

We recall that the bilinear forms aE
h (·, ·) and mE

h (·, ·) possess the fundamental properties of
polynomial consistency and stability, that are useful for theoretical estimation.

Polynomial consistency: ∀ E ∈ Th and for any wh ∈ WE
h , it holds that

aE
h (p,wh) = aE(p,wh) ∀ p ∈ Pk(E),

mE
h (p,wh) = mE(p,wh) ∀ p ∈ Pk(E).

Stability: There exist two pairs of constants independent of h, say, (α∗, α∗) and (γ∗, γ∗) with 0 < α∗ ≤

α∗ and 0 < γ∗ ≤ γ∗, such that for all wh ∈ WE
h , the two following equivalence holds:

α∗aE(wh,wh) ≤ aE
h (wh,wh) ≤ α∗aE(wh,wh),

γ∗mE(wh,wh) ≤ mE
h (wh,wh) ≤ γ∗mE(wh,wh).

The conditions above ensure that the non-polynomial parts sE
a (·, ·) and sE

m(·, ·) scale as the
polynomial parts of aE

h (·, ·) and mE
h (·, ·), respectively.

To compute the nonlinear forcing term, we use the L2-orthogonal projector Π0,E
k previously defined.

For each element E, we first define fh(uh) as

fh(uh)|E := Π0,E
k

(
f (Π0,E

k uh)
)

on each E ∈ Th.
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The orthogonality of Π0,E
k implies that

〈 fh(uh), vh〉 =
∑
E∈Th

∫
E

fh(uh)vh dx =
∑
E∈Th

∫
E

Π0,E
k

(
f (Π0,E

k uh)
)

vh dx =
∑
E∈Th

∫
E

f (Π0,E
k uh)Π0,E

k vh dx.

Hence, for f (uh) ∈ L2(Ω) and uh ∈ Wh, we state that

fh(uh) := Π0
k

(
f (Π0

kuh)
)
,

by introducing a global L2-orthogonal projection operator Π0
k : L2(Ω) → Pk(Th) onto the piecewise

polynomial space of degree k built on the mesh partition Th. The global projection operator is such that

Π0
k

(
f (Π0

kuh)
)
|E = Π0,E

k

(
f (Π0,E

k uh)
)
∀ E ∈ Th.

We outlined that this approximation of the forcing term is computable since the projection Π0,E
k uh is

computable from the degrees of freedom of uh in the enhanced space WE
h .

4.1. Fully-discrete VEM

To develop a fully discrete VEM, the next step is to approximate the fractional derivative in the
temporal direction. Let 0 = t0 < t1 < . . . < tK = T be a uniform partition of the interval (0,T ]
with time step size τ = T/K for some positive integer K. By employing the Grunwald-Letnikov
approximation, we effectively calculate the R-L type fractional derivative as obtained in the work of
Kumar et al. [37]. This computation yields

RDα
tnu = τ−α

n∑
i=0

w(α)
n−iu(x, ti) + Rn. (4.2)

Here, the weights are given by

w(α)
i = (−1)i Γ(α + 1)

Γ(i + 1)Γ(α − i + 1)
,

where Rn satisfies the estimate ||Rn|| ≤ cτ, and the approximation (4.2) is also O(τ) accurate.
Denote

Un,θ
h =

(
1 −

θ

2

)
Un

h +
θ

2
Un−1

h ,

where 0 ≤ θ ≤ 1. For any arbitrary choice of θ ∈ [0, 1] in the discrete scheme, the numerical results
show no significant effect on the accuracy, independent of the fractional-order α ∈ (0, 1). Hence,
for convenience and reduced simplified notation, we fix θ = α in the following fully discrete VEM
formulation:

Find Un
h ∈ Wh, n = 1, 2, . . . ,K, such thatmh(R

0 Dα
t Un

h , vh) + ah(Un,α
h , vh) + bh(Un,α

h , vh) +
〈

f (Un,α
h ), vh)

〉
= 〈gh, vh〉 ∀ vh ∈ Wh,

U0
h(x) = 0, x ∈ Ω.
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Using the definition of operator RDα
tn from (4.2), we rewrite the equation above as:

τ−αw(α)
0 mh(Un

h , vh) + ah(Un,α
h , vh) + bh(Un,α

h , vh) +
〈

fh(Un,α
h ), vh

〉
= 〈gh, vh〉 − τ

−α
n−1∑
j=1

w(α)
n− jmh(U j

h, vh). (4.3)

This discrete formulation provides a system of algebraic equations that we solve to compute the virtual
element approximation.

To prove the well-posedness of the fully discrete VEM (i.e., the uniqueness and existence of the
virtual element approximation), we need the following proposition, which results from an application
of the Brouwer’s fixed point theorem, see, e.g., [55] for the details.

Proposition 1. LetH be a finite-dimensional Hilbert space with inner product 〈·, ·〉 and norm || · || and
let S : H → H be a continuous map such that,

〈S (v), v〉 > 0 ∀ v ∈ H with ||v|| = ρ > 0.

Then, there exists w ∈ H such that,

S (w) = 0 and ||w|| < ρ.

Applying Proposition 1, we can derive the wellposedness result that we state in the next theorem.

Theorem 2 (Wellposedness). Let U0
h , · · · ,U

n−1
h be the first n virtual element fields solving the fully

discrete VEM for some given initial and boundary condition. Then, a unique solution Un
h of the fully

discrete VEM exists.

Proof. We rewrite Eq (4.3) as

τ−αw(α)
0 mh(Un

h , vh) + ah(Un,α
h , vh) + bh(Un,α

h , vh) +
〈

fh(Un,α
h ), vh

〉
− 〈gh, vh〉 + τ−α

n−1∑
j=1

w(α)
n− jmh(U j

h, vh) = 0, (4.4)

and multiply each term by
(
1 − α

2

)
to obtain

τ−αw(α)
0 mh(Un

h , vh) +

(
1 −

α

2

)
ah(Un,α

h , vh) +

(
1 −

α

2

)
bh(Un,α

h , vh)

+

(
1 −

α

2

) 〈
fh(Un,α

h ), vh

〉
+ τ−α

(
1 −

α

2

) n−1∑
j=1

w(α)
n− jmh(U j

h, vh)

−

(
1 −

α

2

)
〈gh, vh〉 − τ

−α
(
α

2

)
mh(Un−1

h , vh) = 0. (4.5)

Equations (4.4) and (4.5) are equivalent, and their solutions coincide. Then, we define the continuous
operator G : Wh → Wh such that
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m(G(Wn,α),V) :=τ−αm(Wn,α,V) +

(
1 −

α

2

)
a(Wn,α,V) +

(
1 −

α

2

)
b(Wn,α,V)

+

(
1 −

α

2

)
〈 fh(Wn,α),V〉 + τ−α

(
1 −

α

2

) n−1∑
j=1

w(α)
n− jm(U j

h,V)

−

(
1 −

α

2

)
〈gh,V〉 − τ−α

(
α

2

)
m(Un−1

h ,V) (4.6)

for Wn,α and V in Wh. Setting V = Wn,α, we find that

m(G(Wn,α),Wn,α) :=τ−αm(Wn,α,Wn,α) +

(
1 −

α

2

)
a(Wn,α,Wn,α) +

(
1 −

α

2

)
b(Wn,α,Wn,α)

+

(
1 −

α

2

)
〈 fh(Wn,α),Wn,α〉 + τ−α

(
1 −

α

2

) n−1∑
j=1

w(α)
n− jm(U j

h,W
n,α)

−

(
1 −

α

2

)
〈gh,Wn,α〉 − τ−α

(
α

2

)
m(Un−1

h ,Wn,α). (4.7)

From Assumption (H1), we have that

|| fh(Wn,α)|| ≤ L||Wn,α|| + || f (0)||

from which it follows that

|| fh(Wn,α)|| ≤ a(1 + ||Wn,α||), a > 0. (4.8)

By using the Cauchy-Schwarz inequality in (4.7), Eq (4.8) and noting that w(α)
j < 0 for 1 ≤ j ≤ n, we

find that

m(G(Wn,α),Wn,α) ≥ ||Wn,α||2 +

(
1 −

α

2

)
τα||Wn,α||2 +

(
1 −

α

2

)
τα||Wn,α||2

+

(
1 −

α

2

)
ταa(1 + ||Wn,α||)||Wn,α|| +

(
1 −

α

2

) n−1∑
j=1

w(α)
n− j||U

j
h||||W

n,α||

−

(
1 −

α

2

)
ταb(1 + ||Wn,α||)||Wn,α|| −

(
α

2

)
||Un−1

h ||||W
n,α||. (4.9)

Since, τα||Wn,α|| > 0, we rewrite (4.9) as

m(G(Wn,α),Wn,α) ≥ (
(
1 − 2

(
1 −

α

2

)
ταa

)
||Wn,α|| +

(
1 −

α

2

)
τα(a − b)

+

(
1 −

α

2

) n−1∑
j=1

w(α)
n− j||U

j
h|| −

(
α

2

)
||Un−1

h ||)||W
n,α||.

Then, m(G(Wn,α),Wn,α) > 0, if and only if it holds that(
1 − 2

(
1 −

α

2

)
ταa

)
||Wn,α|| +

(
1 −

α

2

)
τα(a − b) +

(
1 −

α

2

) n−1∑
j=1

w(α)
n− j||U

j
h|| −

α

2
||Un−1

h || > 0.
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Choosing τα < 1
(1− α2 )a

, there exists a function Wn,α, such that

||Wn,α|| >
1(

1 − 2
(
1 − α

2

)
ταa

) (1 − α2
)
τα(a − b) −

(
1 −

α

2

) n−1∑
j=1

w(α)
n− j||U

j
h|| +

α

2
||Un−1

h ||

 .
This inequality implies that m(G(Wn,α),Wn,α) > 0. Thus, for ||Wn,α|| = ρ, we have that

m(G(Wn,α),Wn,α) > 0,

and Proposition 1 implies the existence of the virtual element approximation.

To prove the uniqueness of a virtual element function Un,α
h solving problem (4.3), assume that Un,α

h,1
and Un,α

h,2 are two solutions. To ease the notation, we denote U1 = Un,α
h,1 and U2 = Un,α

h,2 . Then, from (4.5)
it follows that

τ−αm(U1 − U2, vh) +

(
1 −

α

2

)
a(U1 − U2, vh) +

(
1 −

α

2

)
b(U1 − U2, vh)

= −

(
1 −

α

2

)
〈 f (U1) − f (U2), vh〉 . (4.10)

Setting vh = U1 − U2 = r in (4.10) and using Assumption (H1), we find that

||r||2 ≤
(
1 −

α

2

)
ταL(||r||)||r||, (4.11)

and choosing τα < 1
(1− α2 )L

sufficiently small, with L > 0 being the Lipschitz constant, we find that

||r2|| ≤ 0, which implies the uniqueness of the solution. �

4.2. Convergence and a priori error bounds

From the theoretical results that we prove in this subsection, some important aspects of the VEM
and the fully discrete scheme (4.3) are achieved. These points are given as follows:

• The efficiency with which the VEM is combined with a finite difference scheme to form a fully
discrete scheme.
• The dependence of force/load term and reaction term on both the spatial and temporal domains

and extended VEM to such terms nested with both domain discretizations.
• The optimal convergence order for a fully discrete scheme is achieved with theoretical analysis

and supported with numerical results on several sets of meshes, including non-convex meshes.

To prove the convergence of the VEM, we derive suitable a priori error bounds. To this end, we need
the fractional Grönwall type inequality discussed here. The Grönwall weights w(α)

i can be computed as

w(α)
0 = 1 and w(α)

i =

(
1 −

α + 1
i

)
w(α)

i−1 for i ≥ 1.

Let g(α)
n =

∑n
i=1 w(α)

i , so that

g(α)
0 = w(α)

0 and w(α)
i = g(α)

i − g(α)
i−1 for 1 ≤ i ≤ n.
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Note that w(α)
i satisfy

w(α)
0 = 1, − 1 < w(α)

1 < w(α)
2 < · · · < w(α)

i < · · · < 0,
∞∑

i=0

w(α)
i = 0.

Therefore, g(α)
i−1 > g(α)

i for i = 1, . . . , n. Using such a definition of g(α)
n , we rewrite the R-L derivative

expansion as

RDα
τu(x, tn) = τ−α

n∑
i=1

(g(α)
i − g(α)

i−1)u(x, tn−i) + τ−αg(α)
0 u(x, tn).

Since u(x, t0) = 0, we have that

RDα
τu(x, tn) = τ−α

n∑
i=1

g(α)
n−iδu(x, ti),

where δu(x, ti) = u(x, ti) − u(x, ti−1) for every i = 1, . . . , n.

Furthermore, we consider the following technical lemmas that we will use in the next derivations.
Their proof can be found in [39].

Lemma 1. Consider the sequence {φn} defined by

φ0 = 1, φn =

n∑
i=1

(
g(α)

i−1 − g(α)
i

)
φn−i for n ≥ 1. (4.12)

Then, {φn} satisfies

0 < φn < 1,
n∑

i= j

φn−ig
(α)
i− j = 1, 1 ≤ j ≤ n, (4.13)

and the following inequalities:

1
Γ(α)

n∑
i=1

φn−i ≤
nα

Γ(1 + α)
, (4.14)

1
Γ(α)Γ(1 + (k − 1)α)

n−1∑
i=1

φn−ii(k−1)α ≤
nkα

Γ(1 + kα)
(4.15)

for any integer k ≥ 1.

Lemma 2. Let
{
cn : n ≥ 0

}
and

{
dn : n ≥ 0

}
be two non-negative sequences and λ1 and λ2 be two

non-negative constants. Then, for

c0 = 0 and RDα
τcn ≤ λ1cn + λ2cn−1 + dn, n ≥ 1,

a positive constant τ∗ exists such that for τ ≤ τ∗ we have that

cn ≤ 2
(
tαn
α

max
1≤i≤n

d i

)
Eα(2Γ(α)λtαn ), 1 ≤ n ≤ K,

where Eα(z) =
∑∞

j=0
z j

Γ(1+α j) is the Mittag-Leffler function [34] and λ = λ1 + λ2.
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Lemma 3. For any sequence
{
ik}K

k=0 ⊂ Wh, the following inequality holds

mh

(
RDα

τ ik,
(
1 −

α

2

)
ik +

α

2
ik−1

)
≥

1
2

RDα
τ ||i

k||2 for 1 ≤ k ≤ K. (4.16)

Proof. We rewrite Eq (4.16) as

mh

(
RDα

τ ik,
(
1 −

α

2

)
ik +

α

2
ik−1

)
=

(
1 −

α

2

)
mh(RDα

τ ik, ik) +
α

2
mh(RDα

τ ik, ik−1)

= τ−α

(1 − α2
) k∑

j=0

w(α)
k− jmh(i j, ik) +

α

2

k∑
j=0

w(α)
k− jmh(i j, ik−1)


= τ−α

( (
1 −

α

2

)
w(α)

0 ||i
k||2 +

α

2
w(α)

1 ||i
k−1||2 +

((
1 −

α

2

)
w(α)

1 +
α

2
w(α)

0

)
mh(ik, ik−1)

+

(
1 −

α

2

) k−2∑
j=0

w(α)
k− jmh(i j, ik) +

α

2

k−2∑
j=0

w(α)
k− jmh(i j, ik−1)

)
≥ τ−α

( (
1 −

α

2

)
w(α)

0 ||i
k||2 +

α

2
w(α)

1 ||i
k−1||2 +

((
1 −

α

2

)
w(α)

1 +
α

2
w(α)

0

)
||ik||2 + ||ik−1||2

2

+

(
1 −

α

2

) k−2∑
j=0

w(α)
k− j

||i j||2 + ||ik||2

2
+
α

2

k−2∑
j=0

w(α)
k− j

||i j||2 + ||ik−1||2

2

)
.

Then, use the fact that,
(
1 − α

2

)
w(α)

1 + α
2 w(α)

0 < 0, and w(α)
j < 0 ∀ j ≥ 1, and we obtain

mh

(
RDα

τ ik,
(
1 −

α

2

)
ik +

α

2
ik−1

)
≥ τ−α

( ((
1 −

α

2

)
w(α)

0 +
1
2

(
1 −

α

2

)
w(α)

1 +
α

4
w(α)

0

)
||ik||2

+

(
α

2
w(α)

1 +
1
2

(
1 −

α

2

)
w(α)

1 +
α

4
w(α)

0

)
||ik−1||2 +

1
2

k−2∑
j=0

w(α)
k− j||i

j||2

+
1
2

(
1 −

α

2

) k−2∑
j=0

w(α)
k− j||i

k||2 +
α

4

k−2∑
j=0

w(α)
k− j||i

k−1||2
)

= τ−α
( ((

1 −
α

2

)
w(α)

0 −
1
2

(
1 −

α

2

)
w(α)

0 +
α

4
w(α)

0

)
||ik||2

+

(
α

2
w(α)

1 +
1
2

(
1 −

α

2

)
w(α)

1 −
α

4
w(α)

1

)
||ik−1||2 +

1
2

k−2∑
j=0

w(α)
k− j||i

j||2

+
1
2

(
1 −

α

2

) k∑
j=0

w(α)
k− j||i

k||2 +
α

4

k∑
j=0

w(α)
k− j||i

k−1||2
)

≥
τ−α

2

k∑
j=0

w(α)
k− j||i

j||2 =
1
2

RDα
τ ||i

k||2,
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which proves inequality (4.16). �

Now, we derive the a priori error bound for the virtual element approximation Un
h , which we state

in the following theorems.

Theorem 3 (A priori bound of discrete VEM). Let Un
h be the solution to the semi-discrete VEM. Then,

there exists a positive constant τ∗ such that for τ ≤ τ∗ the virtual element field Un
h satisfies

||Un
h || ≤ C, n = 1, . . . ,K, (4.17)

where C is a positive constant independent of h and τ.

Proof. The virtual element solution field Un
h must satisfy the variational condition

mh(RDα
τUn

h , vh) + ah(Un,α
h , vh) + bh(Un,α

h , vh) =
〈

f (Un,α
h ), vh

〉
∀ vh ∈ Wh.

Setting vh = Un,α
h , we obtain

mh(RDα
τUn

h ,U
n,α
h ) + 2||Un,α

h ||
2 ≤

1
2

(
|| f (Un,α

h )||2 + ||Un,α
h ||

2
)
.

Then, we use Assumption (H1) to find

mh(RDα
τUn

h ,U
n,α
h ) + 2||Un,α

h ||
2 ≤ C

((
1 + ||Un,α

h ||
2
)

+ ||Un,α
h ||

2
)
,

where C = max{1, L
2 }, L being the Lipschitz constant. We apply the standard inequality (a + b)2 ≤

2(a2 + b2), a, b ≥ 0, and we have that

mh(RDα
τUn

h ,U
n,α
h ) ≤ C

(
1 + ||Un,α

h ||
2
)
.

Using the results of Lemma 3 yields

RDα
τ ||U

n
h ||

2 ≤ C
(
1 + ||Un,α

h ||
2
)
,

which implies that

RDα
τ ||U

n
h ||

2 ≤ C
(
1 +

(
1 −

α

2

)2
||Un

h ||
2 +

(
α

2

)2
||Un−1

h ||
2
)
.

Finally, in view of Lemma 2, we find a positive constant τ∗ such that τ ≤ τ∗ and ||Un
h ||

2 ≤ C, which
proves the theorem’s assertion. Here C is a positive constant independent of the mesh size h and the
time step size τ, and it represents more specifically an upper bound on semi discrete VEM solution Un

h .
It depends on the assumption of Lipschitz continuity of function f and Lipschitz constant L. �

The last result of this section is about the convergence of the fully discrete VEM, which we prove
in the next theorem by deriving an a priori error estimate.

Theorem 4 (Convergence of the fully discrete VEM). Let u and Un
h be the solution to problem (3.1)

and the fully discrete VEM (4.3) under Assumption (H1) respectively, with convex regularity of all the
elements E ∈ Th. Then, there exists a positive constant τ∗ such that

||un − Un
h || ≤ C(τ + hk+1), n = 1, 2, . . . ,K, (4.18)

for τ ≤ τ∗, where C is a positive constant independent of τ and h.
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Proof. Let Πh be the projection operator that satisfies

ah(Πhv, vh) = ah(v, vh) ∀ v ∈ H1
0(Ω), vh ∈ Wh. (4.19)

According to Cangiani et al. [26] and the references therein, there exists a positive constant C
independent of h such that

||v − Πhv|| j ≤ Chi− j||v||i ∀ v ∈ Hi ∩ H1
0 , j = 0 . . . k − 1 and i = 1 . . . k. (4.20)

The regularity of the domain at j = 0 is implied from the convex regularity of the local elements. Now,
using this projection operator, we rewrite the approximation error as

un − Un
h = (un − Πhun) + (Πhun − Un

h) = ρn
h + Θn

h, (4.21)

with the obvious definition of ρn
h and Θn

h.
Assuming that

Ah(uh, vh) = ah(uh, vh) + bh(uh, vh),

for any arbitrary vh ∈ Wh, we find that Θn
h satisfies

mh(RDα
τΘ

n
h, vh) + Ah(Θn,α

h , vh)
= mh(RDα

τ (Πhun − Un
h), vh) + Ah((Πhun,α − Un,α

h ), vh)
= mh(RDα

τΠhun, vh) + Ah(Πhun,α, vh) − mh(RDα
τUn

h , vh) − Ah(Un,α
h , vh). (4.22)

Then, by using (4.3) and (4.19) in (4.22), we obtain that

mh(RDα
τΘ

n
h, vh) + Ah(Θn,α

h , vh) = mh(RDα
τΠhun, vh) + Ah(un,α, vh) − 〈 f (un,α), vh〉

+ 〈 f (un,α), vh〉 −
〈

f (Un,α
h ), vh

〉
. (4.23)

The weak form of (3.1) implies that

mh(RDα
tnu

n, vh) + Ah(un, vh) = 〈 f (un,α), vh〉 . (4.24)

Using (4.24) in (4.23) yields

mh(RDα
τΘ

n
h, vh) + Ah(Θn,α

h , vh) = mh((RDα
τΠhun − RDα

tnu), vh) + Ah((un,α − un), vh)

+
〈

f (un) − f (Un,α
h ), vh

〉
. (4.25)

Setting vh = Θn,α
h in (4.25) and using Cauchy-Schwarz inequality, we obtain

mh(RDα
τΘ

n
h,Θ

n,α
h ) + ||Θn,α

h ||
2

≤ ||RDα
τΠhun − RDα

tnu|| ||Θ
n,α
h || + ||(u

n,α − un)|| ||Θn,α
h || + || f (un) − f (Un,α

h )|| ||Θn,α
h ||

≤
L
2
||un − Un,α

h ||
2 +

L
2
||Θn,α

h ||
2 +

L
2
||Θn,α

h ||
2 +

1
2
||RDα

τΠhun − RDα
tnu||

2 +
1
2
||Θn,α

h ||
2
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+
1
2
||(un,α − un)||2

≤
L
2
||un − Un,α

h ||
2 +

(
L + 1

2

)
||Θn,α

h ||
2 +

1
2
||RDα

τΠhun − RDα
tnu||

2 +
1
2
||(un,α − un)||2

+
1
2
||Θn,α

h ||
2. (4.26)

We add and subtract un,α and Πhun to the argument of ||un − Un,α
h ||; then, we apply the triangular

inequality twice and use the definition of ρn
h and Θn

h from (4.21), and we obtain

||un − Un,α
h || ≤ ||u

n − un,α|| + ||ρn,α
h || + ||Θ

n,α
h || ≤ ||Θ

n,α
h || + C(τ + hk+1). (4.27)

We also note that

||RDα
τΠhun − RDα

tnu|| ≤ ||
RDα

τΠhun − RDα
tnΠhu|| + || RDα

tnΠhu − RDα
tnu|| ≤ C(τ + hk+1), (4.28)

and

||un − un,α|| ≤

(
1 −

α

2

) (
α

2

)
τ

∫ tn

tn−1

||utt(s)||ds ≤ Cτ. (4.29)

Using (4.27)–(4.29) in (4.26), we obtain

mh(RDα
τΘ

n
h,Θ

n,α
h ) ≤

3L + 1
2
||Θn,α

h ||
2 + C(τ + hk+1)

2
, (4.30)

which gives

RDα
τ ||Θ

n
h||

2 ≤ (3L + 1)||Θn,α
h ||

2 + C(τ + hk+1)
2
. (4.31)

From (4.31), we can get

RDα
τ ||Θ

n
h||

2 ≤ C∗||Θn,α
h ||

2 + C(τ + hk+1)
2
,

where C∗ = 3L + 1. Furthermore, we also can write

RDα
τ ||Θ

n
h||

2 ≤ 2C∗
(
1 −

α

2

)2
||Θn

h||
2 + 2C∗

(
α

2

)2
||Θn−1

h ||
2 + C(τ + hk+1)

2
. (4.32)

Applying Lemma 2, there exists a positive constant τ∗ such that ||Θn
h||

2 ≤ C(τ + hk+1)2 for τ ≤ τ∗, which
implies that ||Θn

h|| ≤ C(τ + hk+1). The theorem’s assertion follows on applying the triangular inequality
along with (4.20) and the definition of Θn

h from (4.21). �

4.3. Implementation details

A short note on the implementation is discussed in this subsection. We solve the resulting system
of nonlinear algebraic equations from (4.3) by incorporating Newton’s method.
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Let N be the dimension and {φi}
N
i=1 be the canonical basis for the global virtual element space Wh.

For some βn
i ∈ R, i = 1, 2, . . . ,N, we can write the solution of Un

h ∈ Wh of (4.3) as

Un
h =

N∑
i=1

βn
i φi. (4.33)

After defining βn := (βn
1, β

n
2, . . . , β

n
N)T , using the value of Un

h from (4.33) in (4.3), we get the following
nonlinear algebraic equation

Hi(Un
h) = 0, 1 ≤ i ≤ N, (4.34)

where

Hi(Un
h) = τ−αw(α)

0 mh(Un
h , φi) + ah(Un,α

h , φi) + bh(Un,α
h , φi) +

〈
f (Un,α

h ), φi

〉
+ τ−α

n−1∑
j=1

w(α)
n− jmh(U j

h, φi) − 〈g, φi〉 .

Using the Newton’s method in (4.34), we obtain the matrix system

Jβn = H,

where H = (H1,H2, . . . ,HN)T and the entries of the (N × N) Jacobian matrix J are given by

(J)li =
∂Hi

∂βn
l

(Un
h) = τ−αw(α)

0 mh(φl, φi) +

(
1 −

α

2

)
ah(φl, φi) +

(
1 −

α

2

)
bh(φl, φi)

+

(
1 −

α

2

) 〈∂ f (Un,α
h )

∂Un
h

φl, φi

〉
,

where 1 ≤ i, l ≤ N.

5. Numerical experiments

In this section, we assess the performance of our approximation method by solving problem (3.1) on
three different test cases and by using a sequence of refined uniform square, regular Voronoi meshes,
and non-convex meshes (sample mesh configurations given in Figure 1). There are a few reasons to
choose the different sets of meshes, including the non-convex meshes.

• To check the efficiency of the constructed VEM as it is mentioned that the VEM is a generalization
of FEM over polygonal meshes.
• The use of square meshes was to provide an explanation that VEM can adjust the triangular or

quadrilateral elements as well and can provide the accuracy of classical FEMs on these meshes.
• The use of non-convex meshes provides the explanation of the point that in VEM, the basis

functions are constructed virtually as compared to the implicit definition of basis function in
classical FEMs.
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Figure 1. (a) Uniform square meshes; (b) Regular Voronoi meshes; (c) Non-convex meshes.

To this end, we measure the approximation errors as the difference between the exact solution u, the
L2 orthogonal projection Π0

kuh, and the elliptic projection Π∇k uh of the virtual element approximation
uh through the formulas

e2
h,0 =

∑
E∈Th

||u − Π0
kuh||

2
E and e2

h,1 =
∑
E∈Th

||∇(u − Π∇k uh)||2E.

By comparing the errors at two subsequent mesh refinements, we compute the convergence rate. From
the theoretical results of Section 3, we expect to see the optimal convergence rates e2

h,0 = O(hk+1) and
e2

h,1 = O(hk), assuming that the exact solution is smooth enough. Also, the error values in spatial
directions for all examples are calculated at T = 1 and constant time steps with K = 100 that is
τ = 1/100 wherein time-step τ obeys the CFL condition τ ≈ O(hk+1).

The purpose of introducing VEM is to take care of the two-dimensional spatial domain, where it
is efficiently combined with a finite difference approach for the temporal direction, and we get a fully
discrete scheme. In all the example cases, we have taken zero initial condition then only we are able to
use the Grunwald-Letnikov approximation for Caputo type derivatives because with zero initial value,
the Caputo type coincides with R-L type, and we can use the Grunwald approximation designed for
R-L type derivatives. However, it is important to mention that in Section 5.2, we have taken a case of a
non-smooth analytical solution in the temporal direction, which affects the convergence optimality of
the temporal direction.

5.1. Example 1

Consider the two-dimensional time-fractional nonlinear convection-diffusion equation (3.1), which
models the anomalous processes, that is, the processes governed by random walks against the ideal
Brownian motion [47] by applying the VEM scheme (4.3).

We let Ω = (0, 1) × (0, 1), J = [0, 1] with b = (1, 1)T with the nonlinear term f (u) = u + u2 and the
RHS function g(x, t) given by

g(x, t) =

(
6t3−α

Γ(4 − α)
+ (2π2 + 1)t3

)
sin(πx)sin(πy) + πt3(cos(πx)sin(πy)

+ sin(πx)cos(πy)) + (t3sin(πx)sin(πy))2.

The virtual element solution and error plots at α = 0.8, over the family of uniform square meshes and
regular Voronoi meshes are shown in Figures 2 and 3 for k = 1, and likewise, for k = 2 in Figures 4
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and 5. The L2 norm and H1 semi-norm error obtained along with the convergence rates for linear order
VEM are presented in Tables 1 and 2 for the uniform square meshes and in Tables 3 and 4 for the
regular Voronoi meshes, wherein Table 3 presents the error values in spatial direction with respect to
different time step lengths and for different α values. We report the corresponding results for k = 2 in
Tables 5–8. In addition, Table 9 demonstrates that the VEM (4.3) is of global order O(τ) at time T = 1
and T = 0.1. The error and convergence in temporal direction are calculated by refining τ within a
range of 1

2n , n = 1, . . . , 4 for fixed mesh size h = 10−3, wherein convergence rate in the time direction
is calculated by rate = log2 (e(τn)

(e(τn+1)) .

Figure 2. Example 1: (a) virtual element solution; (b) plots of the error curves for α = 0.8
over uniform square meshes for VEM of order k = 1.

Figure 3. Example 1: (a) virtual element solution; (b) plots of the error curves for α = 0.8
over regular Voronoi meshes for VEM of order k = 1.

Figure 4. Example 1: (a) virtual element solution; (b) plots of the error curves for α = 0.8
over uniform square meshes for VEM of order k = 2.
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Figure 5. Example 1: (a) virtual element solution; (b) plots of the error curves for α = 0.8
over regular Voronoi meshes for VEM of order k = 2.

Table 1. Example 1: L2(Ω)-norm of the approximation error and convergence rate for α = 0.4
and 0.8 using uniform square meshes with mesh size h = 2−` for the VEM of order k = 1.

α = 0.4 α = 0.8

` DoFs L2-norm rate L2-norm rate
2 25 4.856 e-02 – 4.889 e-02 –
3 81 1.123 e-02 2.11 1.116 e-02 2.13
4 289 2.577 e-03 2.12 2.601 e-03 2.10
5 1089 5.037 e-04 2.35 5.375 e-04 2.27

Table 2. Example 1: H1(Ω)-norm of the approximation error and convergence rate of
convergence for α = 0.4 and 0.8 using uniform square meshes with mesh size h = 2−`

for the VEM of order k = 1.

α = 0.4 α = 0.8

` DoFs H1-norm rate H1-norm rate
2 25 6.992 e-01 – 6.994 e-01 –
3 81 3.543 e-01 0.98 3.542 e-01 0.98
4 289 1.778 e-01 0.99 1.778 e-01 0.99
5 1089 8.901 e-02 0.99 8.901 e-02 0.99
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Table 3. Example 1: L2(Ω)-norm of the approximation error over regular Voronoi mesh
configuration of unit square domain with mesh size h = 2−` for the VEM of order k = 1 at
different time step sizes.

α = 0.4 α = 0.8

` DoF τ = 1/50 τ = 1/100 τ = 1/50 τ = 1/100
2 66 2.195 e-02 2.195 e-02 2.178 e-02 2.178 e-02
3 256 5.003 e-03 5.005 e-03 4.921 e-03 4.923 e-03
4 999 1.206 e-03 1.208 e-03 1.183 e-03 1.186 e-03
5 3998 2.895 e-04 2.915 e-04 2.832 e-04 2.858 e-04

Table 4. Example 1: H1(Ω)-norm of the approximation error and convergence rate of
convergence for α = 0.4 and 0.8 using regular Voronoi meshes with mesh size h = 2−`

for the VEM of order k = 1.

α = 0.4 α = 0.8

` DoFs H1-norm rate H1-norm rate
2 66 5.000 e-01 – 5.000 e-01 –
3 256 2.512 e-01 0.99 2.512 e-01 0.99
4 999 1.260 e-01 0.99 1.260 e-01 0.99
5 3998 6.296 e-02 1.00 6.295 e-02 1.00

Table 5. Example 1: L2(Ω)-norm of the approximation error and convergence rate for α = 0.4
and 0.8 using uniform square meshes with mesh size h = 2−` for the VEM of order k = 2.

α = 0.4 α = 0.8

` DoFs L2-norm rate L2-norm rate
2 81 4.079e-03 – 4.076e-03 –
3 289 5.196e-04 2.97 5.195e-04 2.97
4 1089 6.521e-05 2.99 6.521e-05 2.99
5 4225 8.169e-06 3.00 8.178e-06 3.00

Table 6. Example 1: H1(Ω)-norm of the approximation error and convergence rate of
convergence for α = 0.4 and 0.8 using uniform square meshes with mesh size h = 2−`

for the VEM of order k = 2.

α = 0.4 α = 0.8

` DoFs H1-norm rate H1-norm rate
2 81 1.319e-01 – 1.319e-01 –
3 289 3.358e-02 1.97 3.358e-02 1.97
4 1089 8.432e-03 1.99 8.432e-03 1.99
5 4225 2.110e-03 2.00 2.110e-03 2.00
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Table 7. Example 1: L2(Ω)-norm of the approximation error and convergence rate of
convergence for α = 0.4 and 0.8 using regular Voronoi meshes with mesh size h = 2−`

for the VEM of order k = 2.

α = 0.4 α = 0.8

` DoFs L2-norm rate L2-norm rate
2 195 1.433e-03 – 1.433e-03 –
3 767 1.792e-04 3.00 1.792e-04 3.00
4 2997 2.232e-05 3.00 2.232e-05 3.00
5 11995 2.776e-06 3.01 2.802e-06 2.99

Table 8. Example 1: H1(Ω)-norm of the approximation error and convergence rate of
convergence for α = 0.4 and 0.8 using regular Voronoi meshes with mesh size h = 2−`

for the VEM of order k = 2.

α = 0.4 α = 0.8

` DoFs H1-norm rate H1-norm rate
2 195 6.067e-02 – 6.068e-02 –
3 767 1.479e-02 2.04 1.479e-02 2.04
4 2997 3.691e-03 2.00 3.691e-03 2.00
5 11995 9.079e-04 2.02 9.079e-04 2.02

Table 9. Example 1: The error and convergence rates at time T = 1 and T = 0.1, for different
values of α in time direction with regular Voronoi mesh configuration in the spatial domain
and fixed mesh size h = 10−3.

α = 0.4 α = 0.8

T τ L2-norm rate L2-norm rate
1 1/2 1.265e-03 – 1.252e-03 –

1/22 6.743e-04 0.91 6.603e-04 0.92
1/23 3.513e-04 0.94 3.487e-04 0.92
1/24 1.819e-04 0.95 1.798e-04 0.96

0.1 1/2 1.652e-03 – 1.681e-03 –
1/22 8.851e-04 0.90 8.932e-04 0.91
1/23 4.725e-04 0.91 4.683e-04 0.93
1/24 2.472e-04 0.93 2.405e-04 0.96

5.2. Example 2

Consider the nonlinear term f (u) = u + u3 with b = (1, 1)T and define the function g(x, t) such that
the exact solution is given by,

u = (tα)sin(x)(1 − x)sin(y)(1 − y)
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over domain Ω = (0, 1) × (0, 1) and time interval J = [0, 1]. Figure 6 and 7 show the virtual element
solution and error plots at α = 0.6, over the uniform square and regular Voronoi meshes for k = 1.
Figure 8 and 9 show the virtual element solution and error plots at α = 0.8, over uniform square and
regular Voronoi meshes for k = 2. We report the approximation errors measured using the L2 norm and
H1 semi-norm and the convergence rates for k = 1 when applying the VEM for k = 1 on the uniform
square meshes in Tables 11 and 12, and on the regular Voronoi meshes in Tables 13 and 14, wherein
Table 13 presents the error values in spatial direction with respect to different time step lengths and
for different α values. We report the results for k = 2 in Tables 15–18. This example is different in
a sense, as in we have assumed the analytical solution in time direction as tα. The optimal order of
convergence, that is O(τ), is achieved. The error table 10 provides the corresponding values.

Figure 6. Example 2: (a) virtual element solution; (b) plots of the error curves for α = 0.6
over uniform square meshes for VEM of order k = 1.

Figure 7. Example 2: (a) virtual element solution; (b) plots of the error curves for α = 0.6
over regular Voronoi meshes for VEM of order k = 1.

Figure 8. Example 2: (a) virtual element solution; (b) plots of the error curves for α = 0.6
over uniform square meshes for VEM of order k = 2.
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Figure 9. Example 2: (a) virtual element solution; (b) plots of the error curves for α = 0.6
over regular Voronoi meshes for VEM of order k = 2.

Table 10. Example 2: The error and convergence rates with fixed T for different values of α
in time direction with regular Voronoi mesh configuration in spatial domain and fixed mesh
size h = 10−3.

α = 0.4 α = 0.8

T τ L2-norm rate L2-norm rate
1 1/2 1.463e-03 – 1.432e-03 –

1/22 7.821e-04 0.90 7.576e-04 0.92
1/23 4.112e-04 0.93 4.011e-04 0.92
1/24 2.134e-04 0.95 2.104e-04 0.93

0.1 1/2 1.846e-03 – 1.823e-03 –
1/22 9.853e-04 0.91 9.689e-04 0.91
1/23 5.176e-04 0.93 5.074e-04 0.93
1/24 2.687e-04 0.95 2.607e-04 0.96

Table 11. Example 2: L2(Ω)-norm of the approximation error and convergence rate for
α = 0.4 and 0.8 using uniform square meshes with mesh size h = 2−` for the VEM of order
k = 1.

α = 0.4 α = 0.8

` DoFs L2-norm rate L2-norm rate
2 25 3.089e-03 – 3.090e-03 –
3 81 7.628e-04 2.02 7.626e-04 2.02
4 289 1.903e-04 2.00 1.901e-04 2.00
5 1089 4.772e-05 2.00 4.756e-05 2.00
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Table 12. Example 2: H1(Ω)-norm of the approximation error and convergence rate of
convergence for α = 0.4 and 0.8 using uniform square meshes with mesh size h = 2−` for the
VEM of order k = 1.

α = 0.4 α = 0.8

` DoFs H1-norm rate H1-norm rate
2 25 4.452e-02 – 4.452e-02 –
3 81 2.257e-02 0.98 2.257e-02 0.98
4 289 1.133e-02 0.99 1.133e-02 0.99
5 1089 5.668e-03 1.00 5.668e-03 1.00

Table 13. Example 2: L2(Ω)-norm of the approximation error over regular Voronoi mesh
configuration of unit square domain with mesh size h = 2−` for the VEM of order k = 1 at
different time step sizes.

α = 0.4 α = 0.8

` DoF τ = 1/50 τ = 1/100 τ = 1/50 τ = 1/100
2 66 1.481 e-03 1.481 e-03 1.479 e-03 1.479 e-03
3 256 3.360 e-04 3.358 e-04 3.353 e-04 3.353 e-04
4 999 8.175 e-05 8.156 e-05 8.132 e-05 8.132 e-05
5 3998 1.990 e-05 1.971 e-05 1.956 e-05 1.955 e-05

Table 14. Example 2: H1(Ω)-norm of the approximation error and convergence rate of
convergence for α = 0.4 and 0.8 using regular Voronoi meshes with mesh size h = 2−` for
the VEM of order k = 1.

α = 0.4 α = 0.8

` DoFs H1-norm rate H1-norm rate
2 66 3.187e-02 – 3.187e-02 –
3 256 1.604e-02 0.99 1.604e-02 0.99
4 999 8.032e-03 1.00 8.032e-03 1.00
5 3998 4.006e-03 1.00 4.006e-03 1.00

Table 15. Example 2: L2(Ω)-norm of the approximation error and convergence rate for
α = 0.4 and 0.8 using uniform square meshes with mesh size h = 2−` for the VEM of order
k = 2.

α = 0.4 α = 0.8

` DoFs L2-norm rate L2-norm rate
2 81 2.404e-04 – 2.404e-04 –
3 289 3.060e-05 2.97 3.060e-05 2.97
4 1089 3.846e-06 2.99 3.842e-06 2.99
5 4225 5.098e-07 2.92 4.830e-07 2.99
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Table 16. Example 2: H1(Ω)-norm of the approximation error and convergence rate of
convergence for α = 0.4 and 0.8 using uniform square meshes with mesh size h = 2−` for the
VEM of order k = 2.

α = 0.4 α = 0.8

` DoFs H1-norm rate H1-norm rate
2 81 8.140e-03 – 8.140e-03 –
3 289 2.071e-03 1.97 2.071e-03 1.97
4 1089 5.199e-04 1.99 5.199e-04 1.99
5 4225 1.301e-04 2.00 1.301e-04 2.00

Table 17. Example 2: L2(Ω)-norm of the approximation error and convergence rate of
convergence for α = 0.4 and 0.8 using regular Voronoi meshes with mesh size h = 2−`

for the VEM of order k = 2.

α = 0.4 α = 0.8

` DoFs L2-norm rate L2-norm rate
2 195 8.285e-05 – 8.284e-05 –
3 767 1.084e-05 2.93 1.084e-05 2.93
4 2997 1.332e-06 3.03 1.320e-06 3.04
5 11995 1.692e-07 2.98 1.671e-07 2.98

Table 18. Example 2: H1(Ω)-norm of the approximation error and convergence rate of
convergence for α = 0.4 and 0.8 using regular Voronoi meshes with mesh size h = 2−` for
the VEM of order k = 2.

α = 0.4 α = 0.8

` DoFs H1-norm rate H1-norm rate
2 195 3.814e-03 – 3.814e-03 –
3 767 9.617e-04 1.99 9.617e-04 1.99
4 2997 2.351e-04 2.03 2.351e-04 2.03
5 11995 5.701e-05 2.04 5.700e-05 2.04

5.3. Example 3

In this problem, we choose a variable velocity field b = (y, 0)T , the nonlinear term as f (u) = u3

and set g(x, t) from the non-smooth exact solution u = tx1.6 over unit square domain. We report the
L2 norm and H1 semi-norm and convergence rates over uniform square meshes using VEM of order
k = 1, in Tables 19 and 20 respectively, while over non-convex mesh configuration results are reported
in Tables 21 and 22. Figure 10 shows the VEM solution and an error plot at α = 0.8 for non-convex
meshes. Due to the weak regularity of the exact solution, an optimal convergence rate is not achieved
for higher-order VEM (k ≥ 2).

Tables 3 and 13 for Examples 1 and 2 respectively show how the error’s concur using VEM of
order k = 1 over regular Voronoi mesh configurations. For a suitable range of h (0.25-0.01) and τ
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(0.05-0.01) we see with increasing time steps/decreasing temporal mesh size the error values have very
slight changes that infers, as we keep on increasing time steps with constant spatial mesh sizes the
error values have very slight changes.

Figure 10. Example 3: (a) virtual element solution; (b) plots of the error curves for α = 0.8
over non-convex meshes for VEM of order k = 1.

Table 19. Example 3: L2(Ω)-norm of the approximation error and rate of convergence for
α = 0.4 and 0.8 using uniform square meshes with mesh size h = 2−` for the VEM of order
k = 1.

α = 0.4 α = 0.8

` DoFs L2-norm rate L2-norm rate
2 25 9.642e-03 – 9.642e-03 –
3 81 2.542e-03 1.92 2.542e-03 1.92
4 289 6.606e-04 1.94 6.606e-04 1.94
5 1089 1.702e-04 1.96 1.702e-04 1.96

Table 20. Example 3: H1(Ω)-norm of the approximation error and rate of convergence for
α = 0.4 and 0.8 using uniform square meshes with mesh size h = 2−` for the VEM of order
k = 1.

α = 0.4 α = 0.8

` DoFs L2-norm rate L2-norm rate
2 25 1.163e-01 – 1.163e-01 –
3 81 6.098e-02 0.93 6.098e-02 0.93
4 289 3.167e-02 0.95 3.167e-02 0.95
5 1089 1.634e-02 0.96 1.634e-02 0.96
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Table 21. Example 3: L2(Ω)-norm of the approximation error and rate of convergence for
α = 0.4 and 0.8 using non-convex meshes with mesh size h = 2−` for the VEM of order
k = 1.

α = 0.4 α = 0.8

` DoFs L2-norm rate L2-norm rate
2 76 5.900e-03 – 5.900e-03 –
3 301 1.504e-03 1.97 1.504e-03 1.97
4 1201 3.836e-04 1.97 3.836e-04 1.97
5 4801 9.763e-05 1.97 9.763e-05 1.97

Table 22. Example 3: H1(Ω)-norm of the approximation error and rate of convergence for
α = 0.4 and 0.8 using non-convex meshes with mesh size h = 2−` for the VEM of order
k = 1.

α = 0.4 α = 0.8

` DoFs L2-norm rate L2-norm rate
2 76 1.031e-01 – 1.031e-01 –
3 301 5.309e-02 0.96 5.309e-02 0.96
4 1201 2.725e-02 0.96 2.725e-02 0.96
5 4801 1.394e-02 0.97 1.394e-02 0.97

6. Conclusions

Time-fractional models are of great significance in process modeling, necessitating the development
of efficient numerical techniques for their approximation. This paper provides a comprehensive
study of the Virtual Element Method in the context of time-fractional nonlinear convection-diffusion
equations. We introduce the VEM, its formulation, and a thorough discretization scheme for the
aforementioned equations. Theoretical error estimates are rigorously derived and subsequently
validated through numerical examples. This work represents an extension of the VEM approach
to address time-fractional PDEs, offering a detailed analysis of both theoretical and computational
aspects. In the future, we plan to explore the application of VEM to various fractional models
and equations while also comparing their efficiency against existing numerical methods. Our
primary focus will be on approximating real-time application problems, including anomalous physical
processes, impulse, and fluid transport in complex geometries, and the impact of turbulence on design
considerations.
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