

BNL-228357-2025-JAAM

CO₂ Adsorption and Hydrogenation on Inverse InOx/Cu(111) Catalysts: Active Role of the Oxide-Metal Interface

P. Reddy Kasala, J. A. Rodriguez

To be published in "ACS Applied Materials & Interfaces"

June 2025

Chemistry Department
Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC), Basic Energy Sciences (BES)

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CO₂ Adsorption and Hydrogenation on Inverse InO_x/Cu(111) Catalysts: Active Role of the Oxide-Metal Interface

Kasala Prabhakar Reddy,¹ Hojoon Lim,³ Arephin Islam,¹ Yi Tian,² Adrian Hunt,³ Iradwikanari Waluyo,³ and José A. Rodriguez^{1, 2 *}

¹*Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973 (USA)*

²*Department of Chemistry, Stony Brook University, Stony Brook, New York 11794 (USA)*

³*National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (USA)*

* To whom correspondence should be addressed, rodriguez@bnl.gov
Tel. 631-344-2246

Abstract

The direct conversion of carbon dioxide (CO_2) into methanol via hydrogenation is essential for industrial applications. Recent studies on catalysts that contain an inverse oxide/metal configuration have shown very good catalytic performance for the CO_2 hydrogenation to methanol process. In this study, we investigated the behavior of indium oxide- $\text{Cu}(111)$ interfaces under pure CO_2 and CO_2/H_2 mixtures using synchrotron-based ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). Initially, a single layer of copper oxide (Cu_xO) was grown on the $\text{Cu}(111)$ surface by controlled oxidation. On this surface, indium was deposited at room temperature. Oxygen atoms transferred from $\text{Cu}_x\text{O}/\text{Cu}(111)$ to the indium metal upon deposition, forming $\text{In}-\text{O}-\text{Cu}$ bonds and active interfaces. Although $\text{Cu}(111)$ is not very active for the binding and activation of CO_2 , the formed $\text{InO}_x\text{-Cu}(111)$ interfaces had no problem adsorbing and dissociating the molecule at room temperature. Reaction of CO_2 with H_2 on $\text{InO}_x\text{-Cu}(111)$ yielded surface-bound H_3CO , $\text{CO}_2^{\delta-}$, CO_3 , and CH_x species that are typical intermediates in the production of methanol and other oxygenates. The $\text{InO}_x\text{-Cu}(111)$ interface underwent dynamic chemical changes under reaction conditions, forming $\text{In}-\text{Cu}$ alloys at low indium coverages (< 0.05 monolayer), while at higher indium coverages a mixture of an $\text{In}-\text{Cu}$ and InO_x was detected in XPS. These findings indicate that $\text{InO}_x/\text{In}-\text{Cu}$ interfaces can play a key role in processes aimed at the trapping and valorization of CO_2 .

Keywords: Indium oxide – copper interfaces; Copper; Indium oxide; CO_2 activation; Methanol production.

Introduction

A substantial growth of energy demand combined with climate challenges caused by excessive CO₂ emissions into the atmosphere have led to a general interest in the valorization of this molecule. Thus, various approaches have been adopted to achieve "carbon neutrality" including carbon capture, utilization, and storage (CCUS) technologies.¹⁻³ Among these, utilization of CO₂ as a precursor in the synthesis of methanol (CO₂ + 3H₂ → CH₃OH + H₂O) is a key reaction in C1 catalysis and a vital process in the chemical industry. CH₃OH is particularly advantageous, as it can be used as a direct fuel or can blend with gasoline.⁴⁻⁵ Thus, the CO₂ hydrogenation to CH₃OH process offers a promising pathway to address the growing energy demands while helping to control climate changes.

Copper-based catalysts with a Cu-ZnO-Al₂O₃ formulation are commonly used for producing CH₃OH from syngas, and a small amount of CO₂ (<5 vol %) is added to the reaction mixture for enhancing the reaction rate.⁶⁻⁷ When it comes to direct CO₂ hydrogenation to CH₃OH process, the same catalyst has a limited CO₂ conversion that forces operation at high temperatures (500-550 K) where the selectivity for CH₃OH conversion is not large (~60 %).⁶⁻¹⁴ Thus, the development of new copper-based catalysts is essential for improving the CO₂→CH₃OH conversion efficiency. Recently, indium oxide (In₂O₃)-based catalysts showed good selectivity for CH₃OH under moderate CO₂ hydrogenation conditions. Both theoretical and experimental studies suggest that oxygen vacancies on the In₂O₃ surface play an important role in activating CO₂ and H₂, and in promoting CH₃OH synthesis.⁸⁻¹⁰ Further deposition of metals (Pd, Au, Ir, Pt, Rh, Ni, Ag, and Cu) onto the In₂O₃ surface creates metal-oxide interfaces that enhance H₂ dissociation and the overall hydrogenation capacity of the catalytic system.¹¹⁻¹² Notably, the deposition of non-expensive metals, such as copper (Cu), on the In₂O₃ surface offers a promising approach for improving process efficiency.¹³ According to previous works in the literature, the Cu/In₂O₃ catalyst exhibits excellent CH₃OH selectivity (~ 90%) in CO₂ hydrogenation.^{13, 15-16} In spite of substantial research, it is not well known the intrinsic reactivity of Cu-InO_x interfaces towards CO₂ and CO₂/H₂ mixtures. Over-reduction of InO_x-Cu interfaces by hydrogen could lead to the generation of Cu-In alloy phases with distinctive chemical and catalytic properties.¹⁷

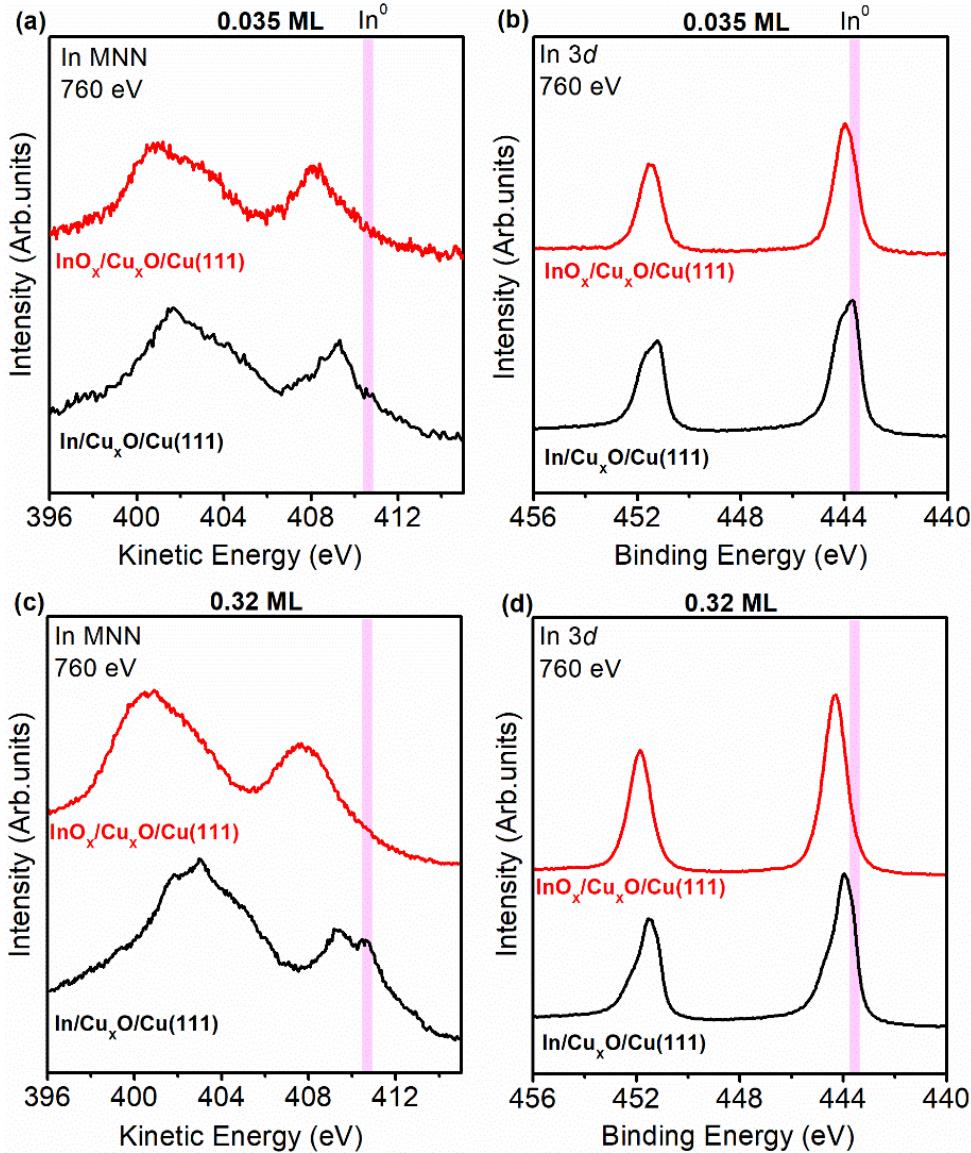
In heterogeneous catalysis, inverse oxide/metal systems are receiving a lot of attention as catalysts for the valorization of CO₂^{12, 18-21} and perhaps are the best approach to understand the links between structure, chemical composition, and reaction mechanism.²¹⁻²³ In simple terms, their

interface contains oxide nanostructures in contact with a metal component.²²⁻²³ These types of systems often display higher levels of catalytic activity compared to traditional metal/oxide catalysts as reactants can easily be accessible to active sites involving the oxide. In addition, conventional Cu/ZnO/Al₂O₃ catalysts show a ZnO overlayer on Cu particles during CO₂ hydrogenation to CH₃OH, suggesting that an inverse oxide/metal catalyst configuration is a likely active phase.²⁴ Indeed, the addition of ZnO nanostructures to Cu(111) or Cu(100) produces very active systems for the binding and valorization of CO₂.²⁵⁻²⁷ Hence, here we used synchrotron-based ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) to study the intrinsic chemistry of CO₂ and CO₂/H₂ mixtures on interfaces generated by the deposition of InO_x on Cu(111). The article is organized as follows: First, we will examine the formation of InO_x overlayers on the copper substrate, and then we will describe systematic studies for reaction of the oxide-metal interfaces with H₂, CO₂ and CO₂/H₂ mixtures. It is shown that these interfaces have a unique chemical behavior not seen for pure copper or indium oxide.

Experimental Section

Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) experiments were carried out at the 23-ID-2 (IOS) beamline of the National Synchrotron Light Source-II (NSLS-II) at Brookhaven National Laboratory, USA. The detailed specifications and performance of this beamline was previously discussed elsewhere.²⁸ The XPS spectra of C 1s and Cu 2p regions were collected using photon energies of 380 and 1142 eV, respectively, while In 3d, In MNN, and O 1s regions were collected at 760 eV photon energy. All spectra were acquired with a step size of 0.05 eV. Obtained spectra were calibrated using the Cu Fermi edge in the valence band for each photon energy.

The Cu(111) crystal was cleaned by continuous cycles of Ar⁺ ion sputtering (2×10⁻⁵ Torr of Ar gas, 1 keV, 20 min, 300 K) and UHV annealing (850 K, 10 min). These cycles were repeated until the carbon and oxygen peaks had completely disappeared from the C 1s and O 1s region. A single layer of copper oxide (Cu_xO) was grown on the Cu(111) surface by exposing it to 1×10⁻⁶ Torr of O₂ at 600 K for 20 minutes, followed by cooling to 300 K in the same oxygen background. Various coverages of InO_x nanostructures were deposited on the pristine copper oxide at 300 K using a SPECS EBE-4 e-beam evaporator, and coverages were estimated using XPS. Initially, the In/Cu_xO/Cu(111) surface was pretreated under 1×10⁻⁶ Torr of O₂ at 600 K for 20 minutes to facilitate the full oxidation of indium, followed by exposure to 750 mTorr of H₂ at 400 K for 10

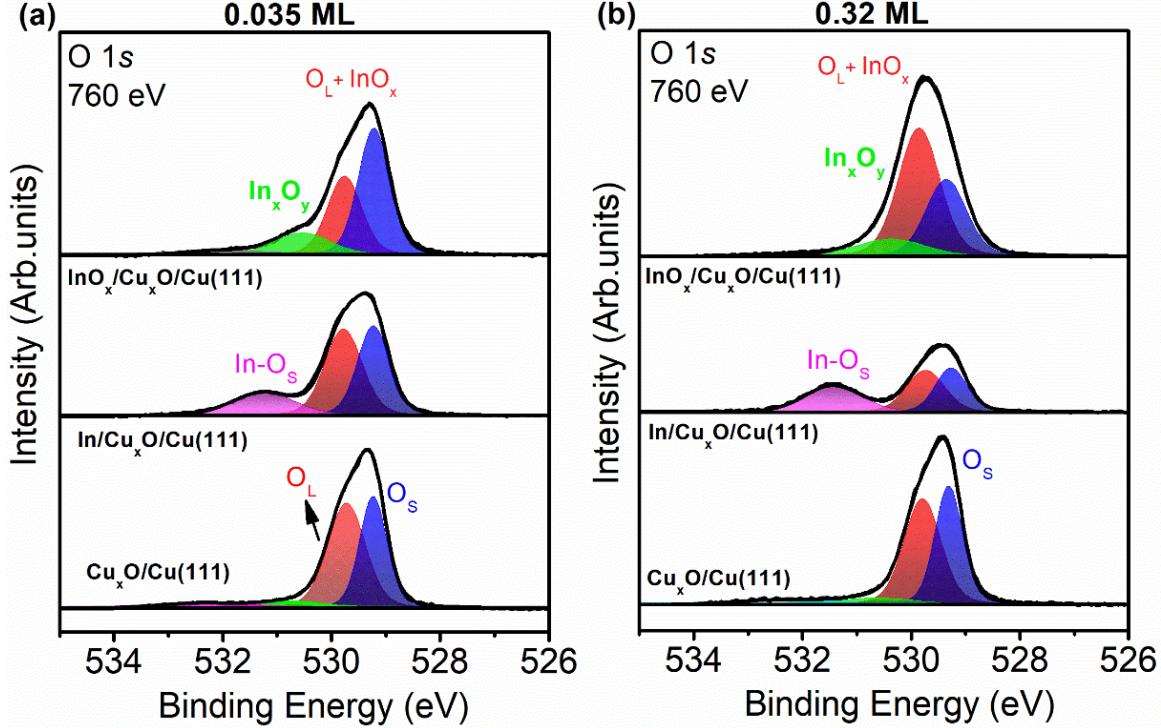

minutes to remove the copper oxide and produce InO_x/Cu (111) surfaces.

CO_2 was gradually introduced to the generated InO_x -Cu interfaces at 300 K with increasing pressure (1×10^{-6} Torr, 1 mTorr, 10 mTorr, 50 mTorr, 100 mTorr and 250 mTorr), followed by a stepwise rise of the temperature (i.e., 300 K, 400 K, and 500 K). XPS spectra of the Cu 2p, In 3d, In MNN Auger, O 1s and C 1s regions plus the valence band were acquired at each stage. Finally, 750 mTorr of H_2 were added to the 250 mTorr of CO_2 at 300 K to perform the CO_2 hydrogenation experiments across the temperature range of 300 to 500 K.

Results

A. InO_x formation on a $\text{Cu}_x\text{O}/\text{Cu}(111)$ surface

Overlayers of indium oxide were generated on Cu(111) to eventually examine the reaction of H_2 , CO_2 and CO_2/H_2 mixtures with InO_x -copper interfaces. Initially, the Cu(111) crystal was oxidized with 1×10^{-6} Torr of O_2 at 600 K for 20 minutes, followed by a cool down to 300 K in the same oxygen environment. This led to the formation of a single-layer of copper oxide (Cu_xO) on the surface.²⁹ On the $\text{Cu}_x\text{O}/\text{Cu}(111)$ surface, In metal was vapor-deposited under UHV conditions at 300 K. Figure 1 shows the XPS spectra of In 3d and In MNN Auger for the 0.035 and 0.32 ML of indium deposited on the $\text{Cu}_x\text{O}/\text{Cu}(111)$ surface (black), and after oxidation with 1×10^{-6} Torr of O_2 at 600 K for 20 minutes (red). The 0.035 ML of Indium (black) shows the In 3d spectrum with a mixture of In metal (443.8 eV) and the InO_x phase.³⁰ The corresponding In MNN region shows a broad spectrum ranging from 409-412 eV in kinetic energy, confirming the formation of InO_x which co-exist with In metal on the surface. These peak positions are consistent with those reported in the literature.^{11-12, 30} Formation of InO_x indicates the oxygen atom being transferred from the $\text{Cu}_x\text{O}/\text{Cu}(111)$ surface to the Indium metal, forming In-O-Cu bond. Cu 2p spectra (Figure S1a) show a slight decrease in intensity after indium deposition that attenuates the signal from the $\text{Cu}_x\text{O}/\text{Cu}(111)$ system. The In/ $\text{Cu}_x\text{O}/\text{Cu}(111)$ surface was further treated with 1×10^{-6} Torr of O_2 at 600 K for 20 minutes to maximize the oxidation of indium on the surface,


Figure 1. Photoemission spectra of the In MNN Auger (a, c) and In 3d core-level (b, d) regions for 0.035 (top panels) and 0.32 ML (bottom panels) of indium deposited on Cu_xO/Cu(111). The black traces correspond to the plain deposition of In at room temperature, while the red traces are for subsequent exposure to 1×10^{-6} Torr of O₂ at 600 K for 20 minutes. All the displayed XPS spectra were collected under UHV at 300 K.

as most In-based catalysts are being used in the form of In₂O₃ for CO₂ hydrogenation.³¹⁻³² A lower binding energy hump seen for Indium metal (448.3 eV) in the In 3d spectra (Figure 1b,d black traces) completely disappeared, and in the In MNN spectra a peak appeared at 408 eV in kinetic energy, indicating the presence of partially oxidized indium. The valence band spectra (Fig. S1b) of the clean Cu(111) surface shows the 3d valence band features between binding

energies of 2 to 4 eV with a distinct E_F (grey color). After oxidizing the Cu(111) surface, a new valence band feature develops at 1.7 eV, which is characteristic of Cu₂O (Cu¹⁺) (blue color).³³ Indium deposition (black) and further oxidation did not cause any significant changes in the valence band spectrum (red).

An increase of In coverage to 0.32 ML leads to the formation of both In metal and InO_x phases, as observed in In 3d (Figure 1c) and In MNN (Figure 1d) spectra. The Cu 2p spectrum intensity (Figure S1b) decreased with increase of In coverage. After oxidation, the Indium becomes more oxidized, and the extent of oxidation increases with increase of In coverage. Notably, an increase in intensity of In 3d (Figure 1c) and In MNN (Figure 1d) spectra and decrease of Cu 2p intensity (Figure S1c), suggests a redistribution of indium on the surface, forming more dispersed particles. A similar phenomenon has been seen for the InO_x/TiO₂ surface.³⁴ The typical valence band feature seen for Cu¹⁺ in Cu_xO/Cu(111) decreased (Fig. S1d) at 0.32 ML coverage, confirming the oxygen atom transfer from Cu_xO/Cu(111) to Indium. Further oxidation of the InO_x/Cu_xO/Cu(111) surface regenerate the Cu¹⁺ valence band feature (Fig.S1d, red).

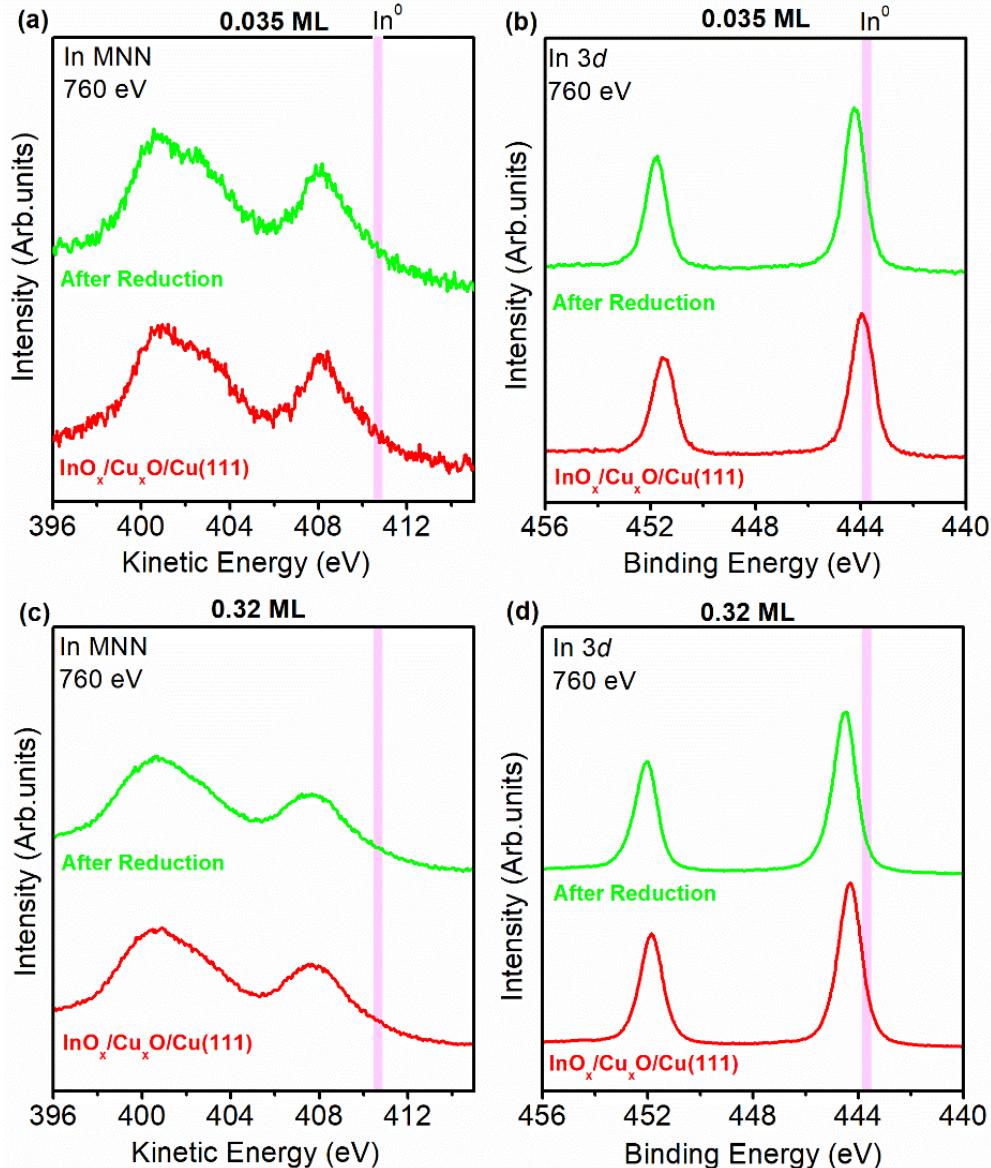

In Figure 2, the O 1s spectra of the Cu_xO/Cu(111) surface show an asymmetric peak, resulting from contributions of both surface (O_S) and lattice oxygen (O_L) atoms, as observed in previous reports.²⁹ Upon indium deposition, spectra in the middle of the panels in Figure 2, oxygen atoms were transferred from the Cu_xO/Cu(111) substrate to indium, in agreement with the oxidation of indium seen in Figure 1. In general, features that contained In-O or In-O-Cu units appeared in the range of 529.5 to 531.5 eV. They reflect systems with different In/O stoichiometries as seen in the case of InO_x/Au(111).³⁰ A peak around 531.3-531.5 eV was observed in the MgO/Cu(111) system.³⁵ Further, oxidation of the In/Cu_xO/Cu(111) surface (top spectra in Figure 2) led to dominant features observed between 529.5 and 530.5 eV, attributed to a mixture of Cu_xO/Cu (111) and InO_x/Cu_xO/Cu(111).

Figure 2. XPS spectra of O 1s core levels for $\text{Cu}_x\text{O}/\text{Cu}(111)$ (bottom), after 0.035 (a) and 0.32 ML (b) of indium deposition on $\text{Cu}_x\text{O}/\text{Cu}(111)$ (middle), and after oxidation with 1×10^{-6} Torr O_2 at 600 K (top). All the displayed XPS spectra were collected under UHV at 300 K.

B. Reduction with H_2 of $\text{InO}_x/\text{Cu}_x\text{O}/\text{Cu}(111)$

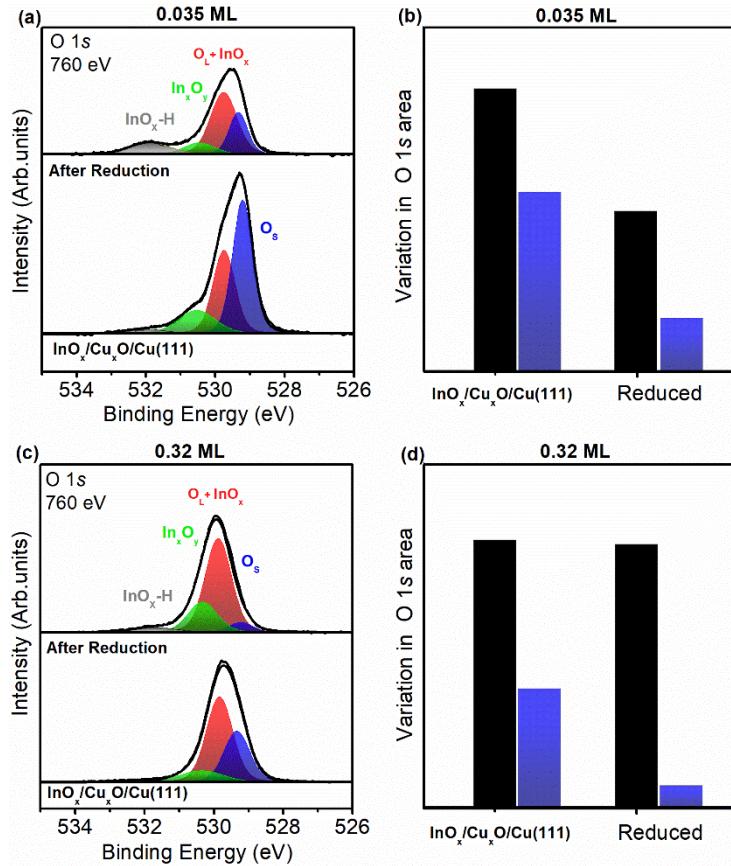

Indium oxide-based catalysts for CO_2 hydrogenation are usually activated by pre-treatment in H_2 at elevated temperatures (400-500 K).^{8-12,36} Thus, as-prepared $\text{InO}_x/\text{Cu}_x\text{O}/\text{Cu}(111)$ surfaces were pretreated with 750 mTorr of H_2 at 400 K. Figure 3 displays typical results for the In 3d and In MNN regions, before and after H_2 treatment. A slight positive shift in binding energy and an increase in intensity of the In 3d spectrum were observed. Interestingly, the Cu 2p spectrum (Figure S2a and S2c) also showed an increase in intensity after reduction, which implies that oxygen atoms were removed from both the In and Cu sites. A similar phenomenon was observed for the reduction of the $\text{CeO}_x/\text{CuO}_x/\text{Cu}(111)$ system³⁷ and CeO_2/CuO powders,³⁸ where the hydrogen reduced the copper oxide and also removed oxygen from the ceria overlayer. In Figure 4, the H-induced chemical changes were more pronounced at lower indium coverage (0.035 ML) than at higher coverage (0.32 ML). This may reflect a reduction in the structural stability of the InO_x when their size decreases.³⁰

Figure 3. XPS spectra of In MNN (a, c) and In 3d (b, d) core levels for 0.035 and 0.32 ML of $\text{InO}_x/\text{Cu}_x\text{O}/\text{Cu}(111)$ (Red), and after reduction at 750 mTorr of H_2 , 400 K for 10 min (Green). All the displayed XPS spectra were collected under UHV at 300 K.

The corresponding O 1s spectra (Figure 4) show a reduction in the peak intensity at ~ 529.1 eV (blue trace, Os), which comes from the removal oxygen bound to copper due to the formation of water.²⁹ H_2 is probably dissociating on the InO_x islands and then spilling to the copper oxide to form water.²⁹ Nevertheless, a small fraction of the copper oxide is not reduced by H_2 . This is likely due to the presence of stable In-O-Cu units on the surface. In contrast, no large changes in the amount of O bound to Indium were seen after reduction. This is expected since CuO ($\Delta H_f^\circ = -56.06$ kJ/mol) or Cu_2O ($\Delta H_f^\circ = -170.71$ kJ/mol) are thermodynamically less stable than the

In_2O_3 ($\Delta H_f^\circ = -923.5$ kJ/mol) under standard conditions.³⁹⁻⁴⁰ A noticeable hydroxide peak (~532 eV)⁴¹ was also seen after H_2 treatment at lower coverages. In the case of the $\text{Cu}_x\text{O}/\text{Cu}(111)$ surface with the higher indium coverage (0.32 ML), reaction with hydrogen induces a redistribution of the O species on the surface that is probably mediated by the generation of OH groups. The O purely bonded to copper decreases (O_s), but other species in which O also interacts with In sites and H increase in intensity. As we will see below, this is consistent with the idea of a dynamic interface that can change as a result of variations in the chemical environment.

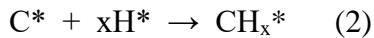
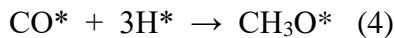
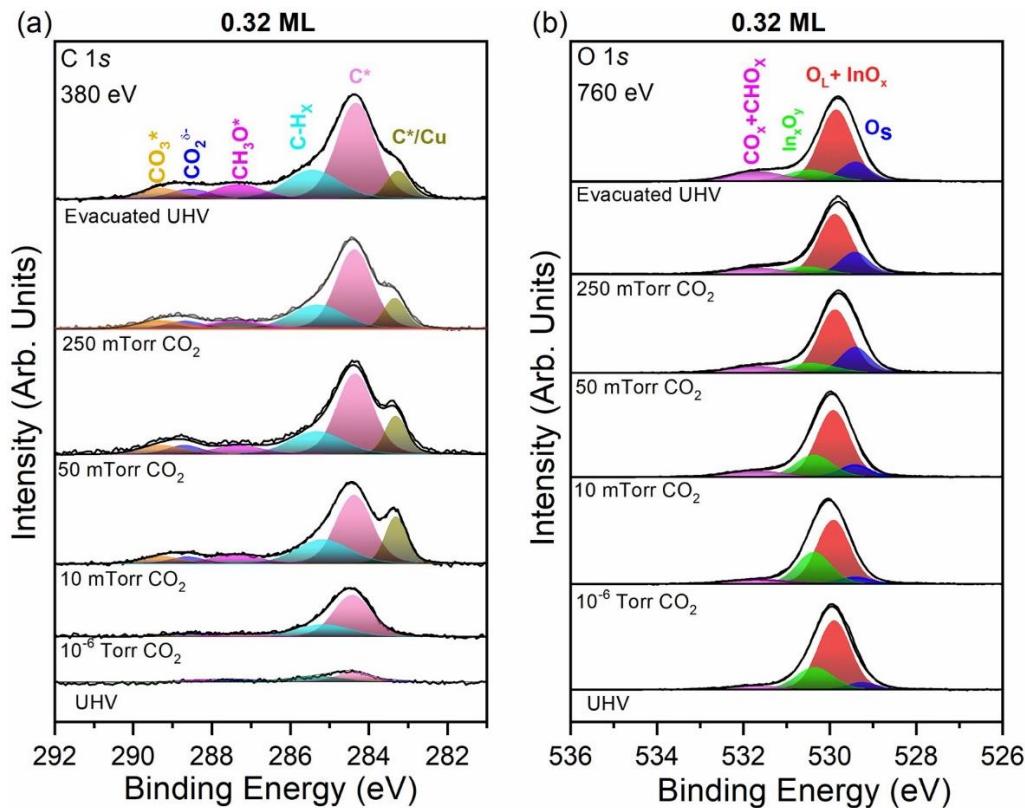


Figure 4. XPS spectra of O 1s core levels (a, c) and corresponding O 1s peak area variation (b, d) for 0.035 and 0.32 ML of $\text{InO}_x/\text{Cu}_x\text{O}/\text{Cu}(111)$ (bottom) and after reduction at 750 mTorr H_2 , 400 K for 10 min (up). The black color bars (b, d) represent the total amount of oxygen present on the surface and the blue color bars (b, d) correspond to the oxygen present only on the copper. All the displayed XPS spectra were collected under UHV at 300 K.


C. Reaction with CO_2 of reduced $\text{InO}_x/\text{Cu}_x\text{O}/\text{Cu}(111)$

$\text{Cu}(111)$ reacts poorly with carbon dioxide.²⁵⁻²⁷ A minor amount of CO_2 dissociates on defect sites of this copper surface.²⁵⁻²⁷ The deposition of InO_x leads to a big enhancement in chemical reactivity. The reduced $\text{InO}_x/\text{Cu}_x\text{O}/\text{Cu}(111)$ surfaces, shown in Figures 3 and 4, were

gradually exposed to varying partial pressures of CO₂ at room temperature. C 1s and O 1s spectra were collected to track CO₂ chemisorption and the formation of possible surface-bound species following CO₂ dissociation on the InO_x/Cu_xO/Cu(111) surfaces. The 0.32 ML coverage (Figure 5) shows pressure-dependent CO₂ dissociation at room temperature. At lower pressures (1×10⁻⁶ Torr), CO₂ dissociation predominantly produced C 1s peaks at 284.4 and 285.1 eV, attributed to adsorbed carbon (C*) and a small amount of CH_x bonded to InO_x or Cu, respectively.^{30, 42} These adsorbates were produced by the reactions:


Reaction (1) clearly dominated and the H adatoms for reaction (2) were probably produced during the pre-reduction of the sample or by dissociation of H₂ molecules from the background gas. At higher CO₂ pressures (1 mTorr and above), additional peaks were observed at 283.3, 287.2, 288.6, and 289.1 eV, likely due to formation of C*/Cu, methoxy, CO₂^{δ-}, and CO₃²⁻ species, respectively.^{43, 44} The source of hydrogen for methoxy formation, expected near a binding energy of 287 eV,⁴⁵⁻⁴⁷ could again be coming from background H₂ gas or H adatoms generated during the pre-reduction process.

In general, CO₂ adsorption on the Cu(111) surface resulted in an intense, negatively charged chemisorbed CO₂^{δ-} peak seen in both the O 1s and C 1s regions.⁴⁴ However, on the 0.32 ML InO_x/Cu_xO/Cu(111) surface, these peaks were significantly reduced. Instead, carbonate species formed on the surface, suggesting that CO₂ directly interacts with lower-coordinated surface oxygen atoms, leading to carbonate formation. Upon further increasing of CO₂ pressure to 250 mTorr and subsequent evacuation, the CO₂ dissociation products intensity remained unchanged.

In Figure 5b, the O 1s spectra showed a peak around 529.9-529.7 eV, corresponding to both InO_x and lattice oxygen from Cu_xO (O_L). A small peak around 529.3 eV (dark blue peak), attributed to surface oxygen atoms from Cu_xO was also observed.²⁹ The intensity of this peak increased with rising CO₂ pressure, indicating the oxidation of the Cu surface at room temperature by oxygen atoms coming from CO₂ dissociation. At higher CO₂ pressures, additional peaks ~530.3 eV and 531.3 eV appeared, corresponding to In_xO_y and a mixture of CH₃O*, CO₂^{δ-}, CO₃²⁻

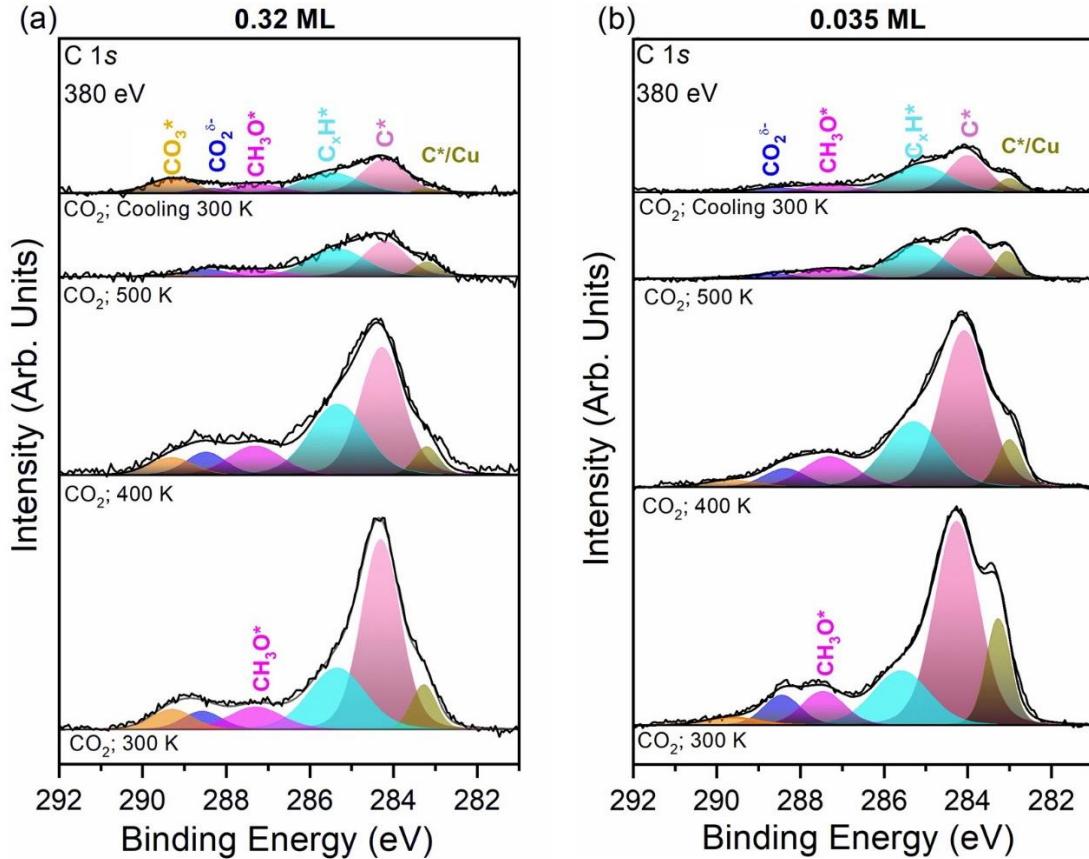

species, respectively. Figures S3 and S4 show the corresponding In 3d, In MNN, and Cu 2p spectra, respectively. The fact that the green trace for O atoms in In_xO_y drops in intensity indicates that CO_2 is probably reacting with these centers to generate methoxy and carbonate-like species. Desorption of C-containing species at 500 K, Figure S5, led to an increase in the green trace for In_xO_y . As in the case of reaction with H_2 , Figure 4c,d, such a behavior reflects a dynamic interface which responds to changes in the chemical environment and temperature.

Figure 5. AP-XPS spectra of the (a) C 1s and (b) O 1s core levels for a 0.32 ML $\text{InO}_x/\text{Cu}_x\text{O}/\text{Cu}(111)$ surface under various partial pressure of CO_2 at 300 K. In a preliminary step, the sample was reduced in H_2 at 400 K (Figures 3 and 4).

Reintroducing 250 mTorr of CO_2 at 300 K (Figure 6a, bottom) had no effect on the spectra, which remained like in the evacuated case (Figure 5, top). A stepwise increase in sample temperature i.e., 300, 400, 500 K, under 250 mTorr of CO_2 led to removal of C^* , CH_x , C^*/Cu , methoxy, $\text{CO}_2^{\delta-}$, and CO_3^{2-} species from the surface. The C^* probably reacted with O from dissociated CO_2 . Interestingly, the CH_x species exhibited greater stability compared to the other species and desorbed to a lesser extent. Similarly, the O 1s spectrum showed a decrease in the

peak at 531.3 eV, corresponding to a reduction in formate, $\text{CO}_2^{\delta-}$, CO_3^{2-} species. No changes were seen in the indium oxidation state (Figure S5).

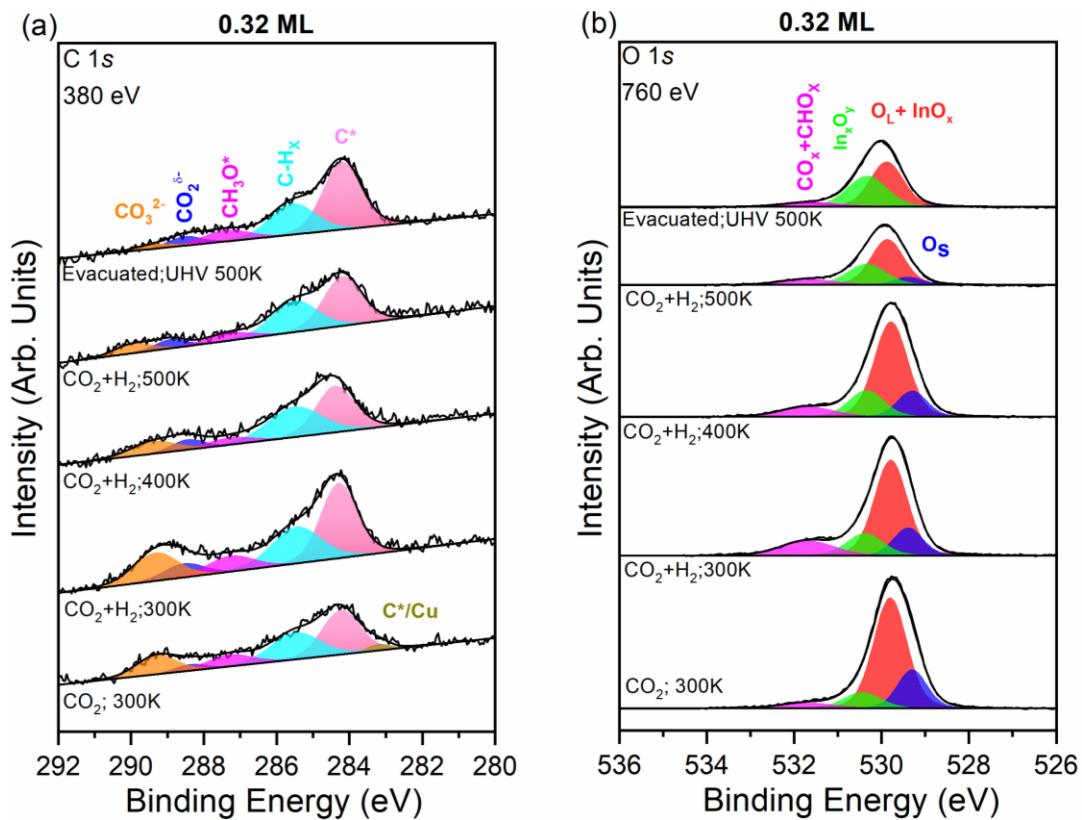

Figure 6. C 1s AP-XPS spectra collected for $\text{InO}_x/\text{Cu}_x\text{O}/\text{Cu}(111)$ surfaces with 0.32 (a) and 0.035 ML (b) of InO_x under 250 mTorr of CO_2 at various temperatures.

Figure 6 compares the trends observed for the dissociation of CO_2 on $\text{InO}_x/\text{CuOx}/\text{Cu}(111)$ surfaces with 0.32 and 0.035 ML of indium oxide. More AP-XPS data for the interaction of CO_2 with the surface with 0.035 ML of InO_x are shown in Figures S8-S13. On both surfaces, exposure to CO_2 resulted in the formation of C^*/Cu , C^* , CH_x , CH_3O and $\text{CO}_2^{\delta-}$ -species.^{30, 42-47} Interestingly, a somewhat more prominent C^*/Cu peak was observed on the 0.035 ML $\text{InO}_x/\text{Cu}_x\text{O}/\text{Cu}(111)$ surface when compared to the 0.32 ML $\text{InO}_x/\text{Cu}_x\text{O}/\text{Cu}(111)$ surface. In contrast, the amount of carbonate formed on the surface with 0.035 ML of InO_x was negligible. As we will see below, the InO_x -Cu interfaces of these systems responded in a different way to CO_2/H_2 mixtures.

D. Reaction of CO_2 and H_2 mixtures with $\text{InO}_x/\text{Cu}_x\text{O}/\text{Cu}(111)$: Dynamics of the interface

composition

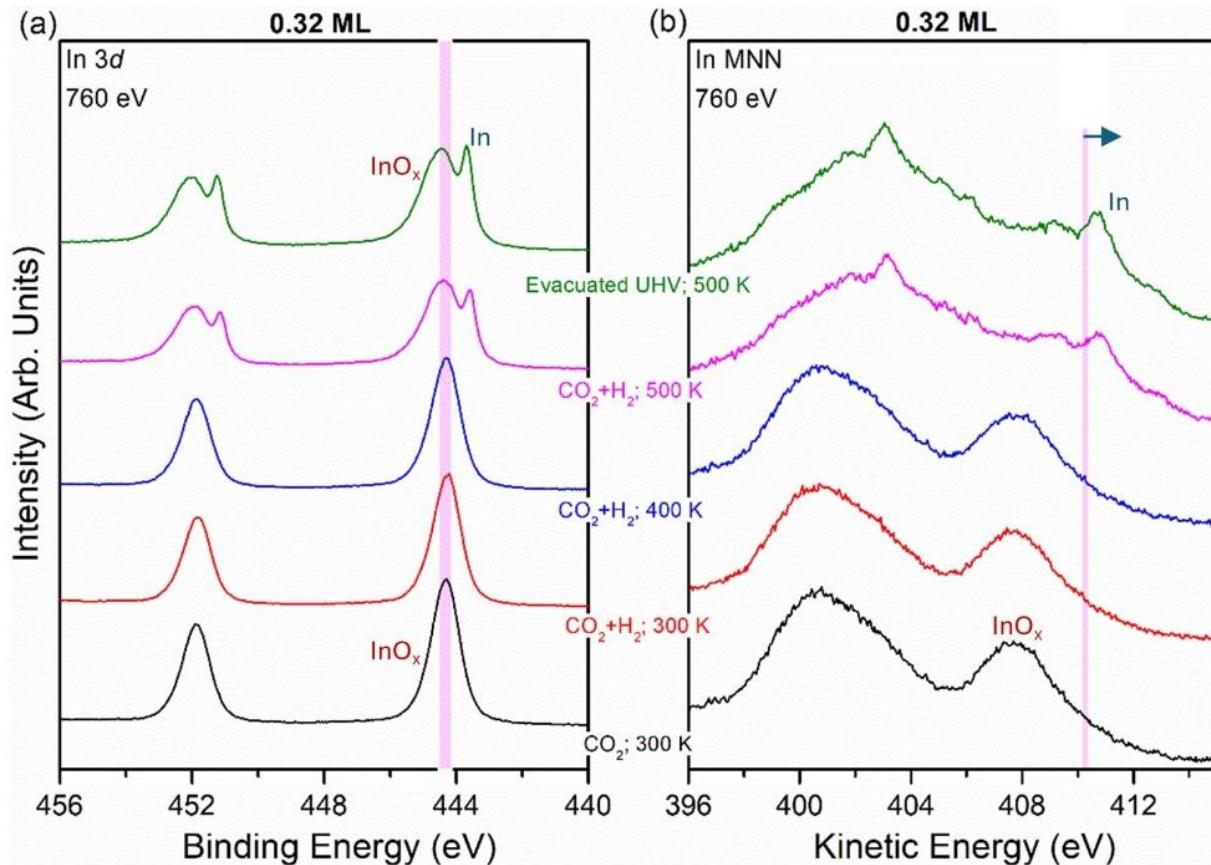

The pre-reduced $\text{InO}_x/\text{Cu}_x\text{O}/\text{Cu}(111)$ surfaces were exposed to CO_2/H_2 mixtures (1:3 ratio as in CH_3OH synthesis) at temperatures ranging from 300 to 500 K. As discussed above, dosing 250 mTorr of CO_2 on the 0.32 ML $\text{InO}_x/\text{Cu}_x\text{O}/\text{Cu}(111)$ surface led to CO_2 dissociation, forming various surface species (bottom of Figure 7). Introducing 750 mTorr of H_2 at 300 K produced more C^* (~284.2 eV), CH_x (~285 eV), CH_3O (~287 eV), and CO_3^{2-} (289.5 eV) species in the C 1s region.^{30, 42-47} The increased peak at 531.5 eV in the O 1s region supports the formation of more $\text{CH}_x\text{O}^{\delta-}$, and CO_3^{2-} species on the surface. In addition, a slight decrease in the intensity of the Cu_xO peak at 300 K suggests that hydrogen atoms activated on the surface remove part of this oxide.

Figure 7. AP-XPS spectra of the (a) C 1s and (b) O 1s core levels for a 0.32 ML of $\text{InO}_x/\text{Cu}_x\text{O}/\text{Cu}(111)$ surface under 250 mTorr of CO_2 and 750 mTorr of H_2 at various temperatures. In preliminary steps, the sample was initially reduced in H_2 at 400 K for 10 minutes (Figure 3) and after that treated with CO_2 at various temperatures (Figure 6).

Further increasing the temperature to 400 K caused a significant decrease of formate, $\text{CO}_2^{\delta-}$, and CO_3^{2-} species, while the CH_x and C^* species remained relatively stable on the surface. This effect is more dominant at 500 K,⁸⁻¹² a typical temperature used for CO_2 hydrogenation using $\text{Cu-In}_2\text{O}_3$

catalysts. At this temperature, the Cu_xO phase is completely reduced to copper metal (Figures 7b, Fig. S14). Indium oxide also further reduced, yielding a mixture of both In metal and InO_x (Figure 8) near the copper substrate. These results point to the existence of a dynamic interface that varies composition depending on temperature and chemical environment. At medium temperatures (< 450 K), the oxidizing power of CO_2 wins and the indium is present as InO_x . An increase in temperature accelerates reduction by hydrogen and now the interface contains InO_x and an alloy of indium and copper. Adsorbed, C^* (284.2 eV) and CH_x (285 eV) species remained present on the surface at 500 K.

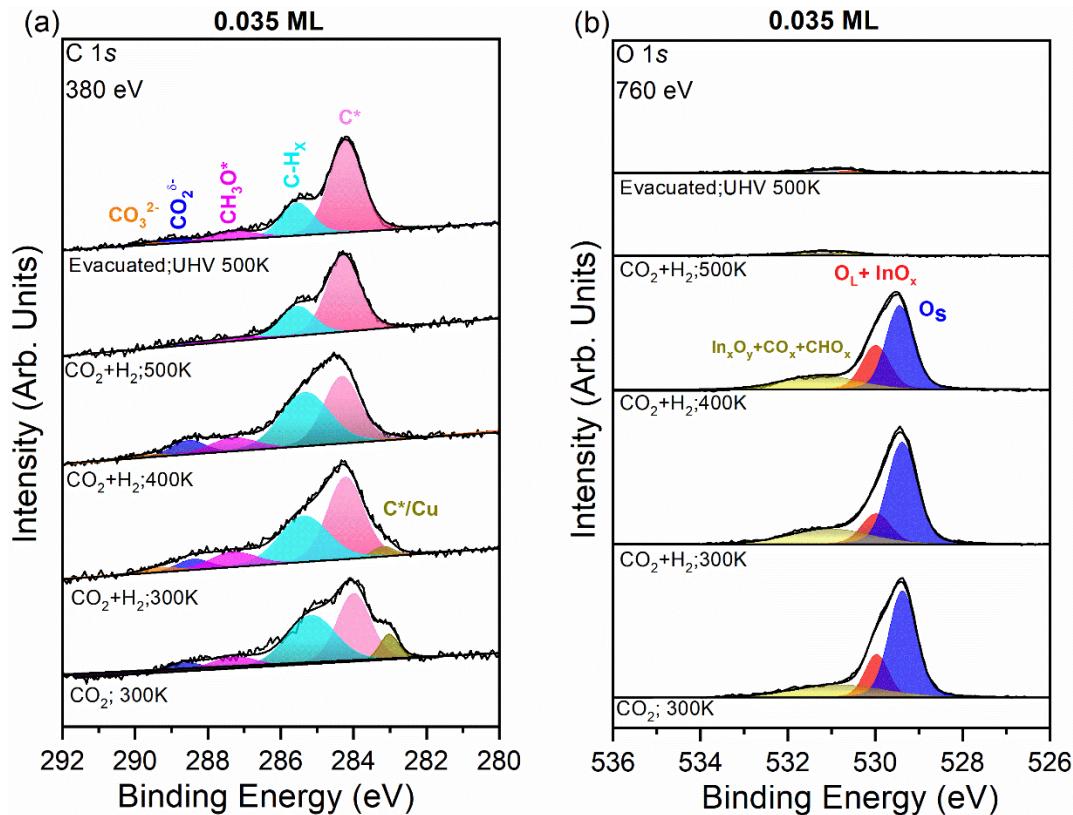


Figure 8. AP-XPS spectra of the (a) In 3d and (b) In MNN regions for a 0.32 ML of $\text{InO}_x/\text{Cu}_x\text{O}/\text{Cu}(111)$ surface under 250 mTorr of CO_2 + 750 mTorr of H_2 at various temperatures. In preliminary steps, the sample was initially reduced in H_2 at 400 K for 10 minutes (Figure 3) and after that treated with CO_2 at various temperatures (Figure S5).

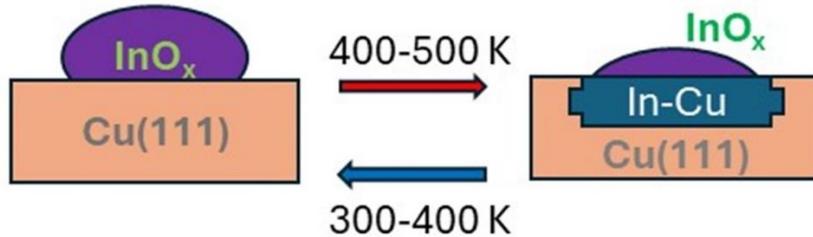
The C 1s region of the 0.035 ML In coverage (bottom of Figure 9) shows prominent peaks for C^* (284.1 eV) and CH_x^* (285.0 eV), along with small signals for CH_3O^* (287.1 eV) and CO_3^*

(289.5 eV).^{30,42-47} The corresponding O 1s spectra reveals the presence of Cu_xO , InO_x , and a set of CO_x and CHO_x species. Similar to the 0.32 ML InO_x coverage, the addition of 750 mTorr of H_2 to the 0.035 ML $\text{InO}_x/\text{Cu}_x\text{O}/\text{Cu}(111)$ surface at room temperature leads to the formation of more C^* (284.2 eV), CH_x (285 eV), CH_3O (287 eV), $\text{CO}_2^{\delta-}$, and CO_3^{2-} species in the C and O 1s regions. However, the C^*/Cu features decreased. No changes were seen in the In 3d, In MNN and Cu 2p spectrum.

Raising the temperature to 400 K led to an increase in CH_x species. At the same time, CH_3O , $\text{CO}_2^{\delta-}$, and CO_3^{2-} species decreased in intensity. Further raising the temperature to 500 K resulted in the complete reduction of both InO_x and Cu_xO (Figures S15 and S16). The complete disappearance of O 1s spectra further confirms the reduction of both InO_x , and Cu_xO (Figure 9b, top). Thus, we are dealing with a dynamic InO_x -Cu interface that at high temperatures, when the synthesis of methanol occurs, transforms into a In-Cu(111) alloy. At 500 K, adsorbed C^* is a dominant species along with CH_x on the In-Cu surface. After comparing the two coverages, the 0.035 ML produced more C^* species than the 0.32 ML by dissociating more C=O bonds in CO_2 gas. In contrast, the 0.32 ML surface formed more carbonate and formate species than the 0.035 ML. Nonetheless, both coverages followed a similar trend in CO_2 adsorption and hydrogenation.

Figure 9. AP-XPS spectra of (a) the C 1s and (b) O 1s core levels of a 0.035 ML of $\text{InO}_x/\text{Cu}_x\text{O}/\text{Cu}(111)$ surface under 250 mTorr of CO_2 and 750 mTorr of H_2 at various temperatures. In preliminary steps, the sample was initially reduced in H_2 at 400 K for 10 minutes (Figure 3) and after that treated with CO_2 at various temperatures (Figure 6).

Discussion


A. Reactivity of $\text{InO}_x\text{-Cu}(111)$ interfaces towards CO_2 .

An important parameter to consider when dealing with an efficient $\text{CO}_2 \rightarrow \text{CH}_3\text{OH}$ conversion is the intrinsic reactivity of the oxide-metal interface towards CO_2 . The non-polar nature and the high stability of CO_2 make the activation of this molecule difficult on surfaces of late transition or noble metals.⁴⁸⁻⁵⁰ For example, in DFT studies, the binding energy of CO_2 on a flat or perfect $\text{Cu}(111)$ surface is extremely small.^{48-49, 51} This prediction has been corroborated by previous AP-XPS results which show that the molecule interacts weakly with $\text{Cu}(111)$ and partial dissociation ($\text{CO}_{2,\text{gas}} \rightarrow \text{O}_{\text{ads}} + \text{CO}_{\text{gas}}$) is only observed when the density of steps and surface defects is high.⁵²⁻⁵³ Our AP-XPS studies show that the addition of InO_x to $\text{Cu}(111)$ produces oxide-metal interfaces that have no problem binding and dissociating CO_2 at room temperature. In fact, these $\text{InO}_x\text{-Cu}$ interfaces are also much more chemically active than bulk $\text{In}_2\text{O}_{3-x}$ where the predominant product for the adsorption of CO_2 are carbonate species.³⁰ Here, copper surfaces with small and medium coverages of InO_x were able to fully dissociate CO_2 at room temperature and the adsorbed species reacted with H_2 from the background to yield methoxy (a key intermediate in CH_3OH synthesis)⁸ and CH_x species. Theoretical calculations have shown substantial electronic perturbations in the oxide and metal components after forming $\text{InO}_x\text{-Cu}(111)$ interfaces.⁵⁴ These electronic perturbations could enhance the reactivity of copper and InO_x towards CO_2 . On the other hand, in an oxide-metal interface, centers located in the indium oxide and copper could work in a cooperative way during the binding and transformation of CO_2 .⁵⁵ The qualitative trends shown in our AP-XPS results agree with the fact that $\text{Cu}/\text{In}_2\text{O}_3$ catalysts exhibits good activity and excellent CH_3OH selectivity (~ 90%) in CO_2 hydrogenation.¹³ Overall, our studies highlight the promotional effects of In_2O_3 in enhancing the reactivity of Cu surfaces for CO_2 hydrogenation.

B. Dynamic formation of an In-Cu(111) alloy under CO_2 hydrogenation

A very interesting finding in our studies is the dynamic character of the $\text{InO}_x\text{-Cu}$ interface as a function of temperature and reaction conditions, Figure 10. At low temperature (< 400K), CO_2 can oxidize an In-Cu alloy, but the formed InO_x is not stable at high temperatures (> 500 K) under a

hydrogen rich atmosphere. In the case of a low coverage of InO_x (< 0.05 ML), we saw complete transformations of InO_x/Cu into an In-Cu alloy (Figure 9b and S12). On the other hand, for a

Dynamics of the interface composition

Figure 10. Scheme showing changes in the composition of the interface under an atmosphere of CO_2/H_2 at different temperatures. At medium temperatures (< 400 K), the In-Cu alloy can be oxidized by reaction with CO_2 , but at high temperature (> 400 K), the InO_x is reduced by hydrogen. The extent of the InO_x reduction depends on the coverage of the oxide overlayer.

sizable coverage of InO_x , only a fraction of the oxide was reduced by hydrogen at high temperature (Figure 8). The stability of an InO_x nanoparticle under hydrogen probably depends on its size: The larger the particle, the more stable it is. This basic principle could explain the trends seen in Figures 7-9 and S12. But, copper is far from being an innocent support.⁵⁴ It may interact strongly with the InO_x to facilitate the dissociation of H_2 ^{29,54} or form a stable alloy with In.⁵⁴ Both phenomena could facilitate the reduction of InO_x . In contrast, after depositing 0.3 ML of InO_x on $\text{Au}(111)$, there was no full reduction of the oxide at 500 K under a CO_2/H_2 atmosphere,³⁰ while partial reduction was observed in the case of $\text{InO}_x/\text{Cu}(111)$ (Figures 7b and 8). Overall, the CO_2 hydrogenation process on a pre-reduced InO_x -Cu interface could be seen as a redox process,⁵⁶⁻⁵⁷ where CO_2 oxidizes the active sites in a first step, and then hydrogen reduces them in subsequent steps.

The XPS studies described above clearly point to dynamic changes in the composition of the InO_x -Cu interface as a function of temperature and chemical environment around the sample. To fully understand this phenomenon, future research must be done to investigate the associated structural and morphological changes. A static view of the InO_x -Cu interface is not valid. The XPS results show variations in composition and chemical reactivity that deserve more attention due to their relevance for catalytic processes.

Conclusions

In summary, we deposited small and medium coverages of indium oxide on a $\text{Cu}_x\text{O}/\text{Cu}(111)$ substrate and, after pre-reduction in H_2 , investigated their ability to adsorb and hydrogenate CO_2 using synchrotron-based AP-XPS. Our finding indicates that the $\text{InO}_x\text{-Cu}(111)$ interfaces effectively adsorb and activate CO_2 at room temperature. Photoemission studies revealed that during CO_2 hydrogenation, a surface with 0.035 ML of In_2O_3 on $\text{Cu}(111)$ undergoes chemical changes at/above 500 K, forming a $\text{In-Cu}(111)$ alloy. An increase in indium coverage (0.32 ML) resulted in a $\text{InO}_x\text{/Cu}(111)$ system that was only partially reduced at high temperature, where InO_x and an In-Cu alloy coexisted at the interface. Reaction mechanistic studies showed that surface bound species like C^* , CH_x , CH_3O , $\text{CO}_2^{\delta^-}$, and CO_3^{2-} formed under CO_2 adsorption and hydrogenation conditions. These species were not observed on a bare $\text{Cu}(111)$ surface. Overall, our results clearly demonstrate the promotional effects of $\text{In}_2\text{O}_{3-x}$ for enhancing the reactivity of Cu surfaces for CO_2 hydrogenation and the dynamic character of the $\text{InO}_x\text{-Cu}$ interface as a function of temperature and chemical environment.

Supporting Information

XPS and Auger spectra for the characterization of $\text{InO}_x\text{/Cu}_x\text{O}/\text{Cu}(111)$ surfaces and their reaction with CO_2 , H_2 and CO_2/H_2 mixtures.

Acknowledgements

The research done at the Chemistry Division of Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Catalysis Science Program (Grant No DE-SC0012704). This research used resources of the 23-ID-2 (IOS) beamline of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.

References

1. Anderson, T. R.; Hawkins, E.; Jones, P. D. CO_2 , the Greenhouse Effect and Global Warming: from the Pioneering Work of Arrhenius and Callendar to Today's Earth System

Models. *Endeavour* **2016**, *40*, 178–187.

2. Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What Should We Make with CO₂ and How Can We Make It? *Joule* **2018**, *2*, 825–832.
3. Jones, W. D. Carbon Capture and Conversion. *J. Am. Chem. Soc.* **2020**, *142*, 4955–4957.
4. Verhelst, S.; Turner, J. W.; Sileghem, L.; Vancoillie, J. Methanol as a Fuel for Internal Combustion Engines. *Prog. Energy Combust. Sci.* **2019**, *70*, 43–88.
5. Olah, G. A. Beyond Oil and Gas: the Methanol Economy. *Angew. Chem., Int. Ed.* **2005**, *44*, 2636–2639.
6. Ott, J.; Gronemann, V.; Pontzen, F.; Fiedler, E.; Grossman, G.; Burkhard Kersebohm, K.; Weiss, G.; Witte, C. Methanol - An Industrial Review. *Ullmann's Encyclopedia of Industrial Chemistry*; Wiley-VCH Verlag GmbH & Co. KGaA, **2012**.
7. Shindell, D.; Borgford-Parnell, N.; Brauer, M.; Haines, A.; Kuylenstierna, J. C. I.; Leonard, S. A.; Ramanathan, V.; Ravishankara, A.; Amann, M.; Srivastava, L. A climate policy pathway for near- and long-term benefits. *Science* **2017**, *356*, 493–494.
8. Jianyang, W.; Zhang, G.; Zhu, J.; Xinbao, Z.; Ding, F.; Zhang, A.; Guo, X.; Song, C. CO₂ Hydrogenation to Methanol over In₂O₃-Based Catalysts: From Mechanism to Catalyst Development. *ACS Catal.* **2021**, *11*, 1406–1423.
9. Wang, W.; Huo, K.; Wang, Y.; Xie, J.; Sun, X.; He, Y.; Li, M.; Liang, J.; Gao, X. Rational Control of Oxygen Vacancy Density in In₂O₃ to Boost Methanol Synthesis from CO₂ Hydrogenation. *ACS Catal.* **2024**, *14*, 9887–9900.
10. Cao, A.; Wang, Z.; Li, H.; Nørskov, J. K. Relations between surface oxygen vacancies and activity of methanol formation from CO₂ hydrogenation over In₂O₃ surfaces. *ACS Catal.* **2021**, *11*, 1780–1786.
11. Rui, N.; Zhang, F.; Sun, K.; Liu, Z.; Xu, W.; Stavitski, E.; Senanayake, S. D.; Rodriguez, J. A.; Liu, C.-J. Hydrogenation of CO₂ to Methanol on a Au^{δ+}-In₂O_{3-x} Catalyst. *ACS Catal.* **2020**, *10*, 11307–11317.
12. Rui, N.; Wang, X.; Deng, K.; Moncada, J.; Rosales, R.; Zhang, F.; Xu, W.; Waluyo, I.; Hunt, A.; Stavitski, E.; Senanayake, S. D.; Liu, P.; Rodriguez, J. A. Atomic structural origin of the high methanol selectivity over In₂O₃-metal interfaces: metal-support interactions and the formation of a InO_x overlayer in Ru/In₂O₃ catalysts during CO₂ hydrogenation. *ACS Catal.* **2023**, *13*, 3187–3200.
13. Xie, S.; Luo, X.; Zhao, J.; Xu, M.; Chen, H.; Zhu, M.; Xu, J. Synergistic Effect of Copper and Indium Species for Highly Selective CO₂ Hydrogenation to Methanol. *ACS Sustainable Chem. Eng.* **2024**, *12*, 17925–17935.
14. Zhong, Z.; Etim, U. J.; Song, Y. Improving the Cu/ZnO-Based Catalysts for Carbon Dioxide Hydrogenation to Methanol, and the Use of Methanol as a Renewable Energy Storage Media. *Front. Energy Res.* **2020**, *8*, 545431.
15. Shi, Z.; Tan, Q.; Tian, C.; Pan, Y.; Sun, X.; Zhang, J.; Wu, D. CO₂ hydrogenation to methanol over Cu-In intermetallic catalysts: Effect of reduction temperature. *J.*

Catal. **2019**, *379*, 78–89.

16. Shi, Z.; Pan, M.; Wei, X.; Wu, D. Cu-In intermetallic compounds as highly active catalysts for CH₃OH formation from CO₂ hydrogenation. *Int. J. Energy Res.* **2022**, *46*, 1285–1298.
17. Li, M.; Luo, W.; Züttel, A. Near ambient-pressure X-ray photoelectron spectroscopy study of CO₂ activation and hydrogenation on indium/copper surface. *J. Catal.* **2021**, *395*, 315–324.
18. Kapiamba, K. F.; Otor, H. O.; Viamajala, S.; Alba-Rubio, A. C. Inverse oxide/metal catalysts for CO₂ hydrogenation to methanol. *Energy Fuels* **2022**, *36*, 11691–11711.
19. Kordus, D.; Widrinna, S.; Timoshenko, J.; Lopez Luna, M.; Rettenmaier, C.; Chee, S. W.; Ortega, E.; Karslioglu, O.; Kühl, S.; Roldan Cuenya, B. Enhanced Methanol Synthesis from CO₂ Hydrogenation Achieved by Tuning the Cu-ZnO Interaction in ZnO/Cu₂O Nanocube Catalysts Supported on ZrO₂ and SiO₂. *J. Am. Chem. Soc.* **2024**, *146*, 8677–8687.
20. Zhang, F. X.; Li, B. Y.; Quan, X.; Wang, K.; Xu, J. Y.; Wu, T. T.; Li, Z. L.; Yan, M.; Liu, S. J.; He, Y.; Shi, Y.; Su, Y. Q.; Xie, P. F. Revealing the Dynamics of Oxygen Vacancy in ZnO_{1-x}/Cu during Robust Methanol Synthesis from CO₂. *ACS Catal.* **2024**, *14*, 7136–7148.
21. Liu, X.; Luo, J.; Wang, H.; Huang, L.; Wang, S.; Li, S.; Sun, Z.; Sun, F.; Jiang, Z.; Wei, S.; Li, W.-X.; Lu, J. In situ spectroscopic characterization and theoretical calculations identify partially reduced ZnO_{1-x}/Cu interfaces for methanol synthesis from CO₂. *Angew. Chem. Inter. Ed.* **2022**, *61*, e202202330.
22. Zhang, J.; Medlin, J. W. Catalyst design using an inverse strategy: From mechanistic studies on inverted model catalysts to applications of oxide-coated metal nanoparticles. *Surf. Sci. Rep.* **2018**, *73*, 117–152.
23. Rodriguez, J. A.; Liu, P.; Graciani, J.; Senanayake, S. D.; Grinter, D. C.; Stacchiola, D.; Hrbek, J.; Fernández-Sanz, J. Inverse Oxide/Metal Catalysts in Fundamental Studies and Practical Applications: A Perspective of Recent Developments. *J. Phys. Chem. Lett.* **2016**, *7*, 2627–2639.
24. Lunkenbein, T.; Schumann, J.; Behrens, M.; Schlägl, R.; Willinger, M. G. Formation of a ZnO Overlay in Industrial Cu/ZnO/Al₂O₃ Catalysts Induced by Strong Metal-Support Interactions. *Angew. Chem., Int. Ed.* **2015**, *54*, 4544–4548.
25. Palomino, R. M.; Ramírez, P. J.; Liu, Z.; Hamlyn, R.; Waluyo, I.; Mahapatra, M.; Orozco, I.; Hunt, A.; Simonovis, J. P.; Senanayake, S. D.; Rodriguez, J. A. Hydrogenation of CO₂ on ZnO/Cu (100) and ZnO/Cu (111) catalysts: role of copper structure and metal–oxide interface in methanol synthesis. *J. Phys. Chem. B* **2018**, *122*, 794–800.
26. Kattel, S.; Ramirez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Active Sites for CO₂ Hydrogenation to Methanol on Cu/ZnO Catalysts. *Science* **2017**, *355*, 1296–1299.
27. Mahapatra, M.; Kang, J.; Ramírez, P. J.; Hamlyn, R.; Rui, N.; Liu, Z.; Orozco, I.; Senanayake, S. D.; Rodriguez, J. A. G. Growth, Structure, and Catalytic Properties of ZnO_x Grown on CuO_x/Cu(111) Surfaces. *J. Phys. Chem. C* **2018**, *122* (46), 26554–26562.
28. Waluyo, I.; Hunt, A. Ambient Pressure X-Ray Photoelectron Spectroscopy at the IOS (23-ID-2) Beamline at the National Synchrotron Light Source II. *Synchrotron Radiat. News* **2022**, *35*, 31–38.
29. Mehar, V.; Huang, E.; Shi, R.; Rosales, R.; Waluyo, I.; Hunt, A.; Liu, P.; Rodriguez, J.

A. Microscopic Investigation of H₂ Reduced CuO_x/Cu(100) and ZnO/CuO_x/Cu(111) Inverse Catalysts: STM AP-XPS, and DFT Studies. *ACS Catal.* **2023**, *13*, 9857–9870.

30. Reddy, K. P.; Tian, Y.; Ramirez, P. J.; Islam, A.; Lim, H.; Rui, N.; Xie, Y.; Hunt, A.; Waluyo, I.; Rodriguez, J. A. Insights into the Surface Electronic Structure and Catalytic Activity of InO_x/Au(111) Inverse Catalysts for CO₂ Hydrogenation to Methanol. *ACS Catal.* **2024**, *14*, 17148–17158.

31. Zou, R.; Shen, C.; Sun, K.; Ma, X.; Li, Z.; Li, M.; Liu, C.-J. CO₂ hydrogenation to methanol over the copper promoted In₂O₃ catalyst. *J. Energy Chem.* **2024**, *93*, 135–145.

32. Yang, Y.; Wu, L.; Bingqing, Y.; Zhang, L.; Jung, M.; He, Q.; Yan, N.; Liu, C.-J. Gallium Cluster-Promoted In₂O₃ Catalyst for CO₂ Hydrogenation to Methanol. *ACS Catal.* **2024**, *14*, 13958–13972.

33. Roy, K.; Gopinath, C. S. UV Photoelectron Spectroscopy at Near Ambient Pressures: Mapping Valence Band Electronic Structure Changes from Cu to CuO. *Anal. Chem.* **2014**, *86*, 3683–3687.

34. Wang, J.; Li, R.; Zhang, G.; Dong, C.; Fan, Y.; Yang, S.; Chen, M.; Guo, X.; Mu, R.; Ning, Y.; Li, M.; Fu, Q.; Bao, X. Confinement-Induced Indium Oxide Nanolayers Formed on Oxide Support for Enhanced CO₂ Hydrogenation Reaction. *J. Am. Chem. Soc.* **2024**, *146*, 5523–5531.

35. Reddy, K. P.; Islam, A.; Tian, Y.; Lim, H.; Kim, J.; Kim, D.; Hunt, A.; Waluyo, I.; Rodriguez, J. A. MgO Nanostructures on Cu(111): Understanding Size- and Morphology-Dependent CO₂ Binding and Hydrogenation. *J. Phys. Chem. C* **2024**, *128*, 7149–7158.

36. Lv, J.; Sun, H.; Liu, G.; Liu, T.; Zhao, G.; Wang, Y.; Tu, X.; Yan, Z. Rational Design of Indium–Palladium Intermetallic Catalysts for Selective CO₂ Hydrogenation to Methanol. *ACS Catal.* **2025**, *15*, 1, 23–33.

37. Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A.E.; Evans, J.; Senanayake, S.D.; Stacchiola, D.J.; Liu, P.; Hrbek, J.; Fernandez Sanz, J.; Rodriguez, J. A. Highly Active Copper-Ceria Titania Catalysts for Methanol Synthesis from CO₂. *Science*, **2014**, *345*, 546–551.

38. Moncada, J.; Chen, X.; Deng, K.; Wang, Y.; Xu, W.; Marinkovic, N.; Zhou, G.; Martinez-Arias, A.; Rodriguez, J. A. Structural and Chemical Evolution of an Inverse CeO_x/Cu Catalyst under CO₂ Hydrogenation. *ACS Catal.* **2023**, *13*, 15248–15258.

39. Cordfunke, E. H. P.; Konings, R. J. M.; Ouweltjes, W. The Standard Enthalpy of Formation of In₂O₃. *J. Chem. Thermodyn.* **1991**, *23*, 451–454.

40. Linstrom, P. J.; Mallard, W. G., Eds. NIST Chemistry WebBook; NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, **2011**. <http://webbook.nist.gov>.

41. Idriss, H. On the Wrong Assignment of the XPS O1s Signal at 531–532 eV Attributed to Oxygen Vacancies in Photo- and Electro-Catalysts for Water Splitting and Other Materials Applications. *Surf. Sci.* **2021**, *712*, 121894.

42. Sock, M.; Eichler, A.; Surnev, S.; Andersen, J. N.; Klötzer, B.; Hayek, K.; Ramsey, M. G.; Netzer, F. P. High-resolution electron spectroscopy of different adsorption states of ethylene on Pd(111). *Surf. Sci.* **2003**, *545*, 122–136.

43. Mullins, D. R. The Surface Chemistry of Cerium Oxide. *Surf. Sci. Rep.* **2015**, *70*, 42–85.

44. Deng, X.; Verdaguer, A.; Herranz, T.; Weis, C.; Bluhm, H.; Salmeron, M. Surface chemistry of Cu in the presence of CO₂ and H₂O. *Langmuir* **2008**, *24*, 9474–9478.

45. Gamba, O.; Hulva, J.; Pavělec, J.; Bliem, R.; Schmid, M.; Diebold, U.; Parkinson, G. S. The Role of Surface Defects in the Adsorption of Methanol on Fe₃O₄(001). *Top. Catal.* **2017**, *60*, 420–430.

46. Tanaka, K.; Matsuzaki, S.; Toyoshima, I. Photodecomposition of Adsorbed Methoxy Species by UV-Light and Formaldehyde Adsorption on Si(111) Studied by XPS And UPS. *J. Phys. Chem.* **1993**, *97*, 5673–5677.

47. Mullins, D. R.; Robbins, M. D.; Zhou, J. Adsorption and Reaction of Methanol on Thin-film Cerium Oxide. *Surf. Sci.* **2006**, *600*, 1547–1558.

48. Jin, W.; Wang, Y.; Liu, T.; Ding, C.; Guo, H. CO₂ Chemisorption and Dissociation on Flat and Stepped Transition Metal Surfaces. *Appl. Surf. Sci.* **2022**, *599*, 154024.

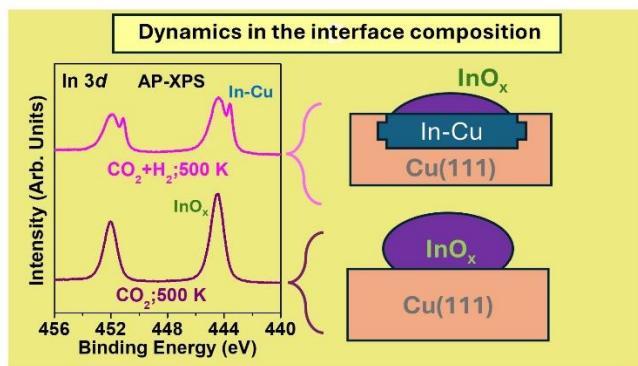
49. Liu, X.; Sun, L.; Deng, W.-Q. Theoretical Investigation of CO₂ Adsorption and Dissociation on Low Index Surfaces of Transition Metals. *J. Phys. Chem. C* **2018**, *122*, 8306–8314.

50. Freund, H. J.; Roberts, M. W. Surface chemistry of carbon dioxide. *Surf. Sci. Rep.* **1996**, *25*, 225–273.

51. Yang, Y.; Evans, J.; Rodriguez, J. A.; White, M. G.; Liu, P. Fundamental studies of methanol synthesis from CO₂ hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001). *Phys. Chem. Chem. Phys.* **2010**, *12*, 9909–9917.

52. Eren, B.; Weatherup, R. S.; Liakakos, N.; Somorjai, G. A.; Salmeron, M. Dissociative Carbon Dioxide Adsorption and Morphological Changes on Cu(100) and Cu(111) at Ambient Pressures. *J. Am. Chem. Soc.* **2016**, *138*, 8207–8211.

53. Hagman, B.; Posada-Borbon, A.; Schaefer, A.; Shipilin, M.; Zhang, C.; Merte, L. R.; Hellman, A.; Lundgreen, E.; Grönbeck, H.; Gustafson, J. Steps Control the Dissociation of CO₂ on Cu(100). *J. Am. Chem. Soc.* **2018**, *140*, 12974–12979.


54. Kempen, L.H.E., Andersen, M. Inverse catalysts: tuning the composition and structure of oxide clusters through the metal support. *npj Comput Mater* **2025**, *11*, 8.

55. Grinter, D. C.; Graciani, J.; Palomino, R. M.; Xu, F.; Waluyo, I.; Fdez Sanz, J.; Senanayake, S. D.; Rodriguez, J. A. Adsorption and Activation of CO₂ on Pt/CeO_x/TiO₂(110): Role of the Pt-CeO_x Interface. *Surf. Sci.* **2021**, *710*, 121852.

56. Mehar, V.; Kim, J.; Hunt, A.; Waluyo, I.; Rodriguez, J. A. AP-XPS Study of the Reaction of O₂ and CO₂ with Zn-Au(111) Alloys: Activation of O–O/C–O Bonds and the Formation of ZnO. *J. Phys. Chem. C* **2024**, *128*, 13852–13863.

57. Docherty, S. R.; Safonova, O. V.; Copéret, C. Surface Redox Dynamics in Gold–Zinc CO₂ Hydrogenation Catalysts. *J. Am. Chem. Soc.* **2023**, *145*, 13526–13530.

TOC

