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The aminoacyl-tRNA synthetases (AaRSs) are an ancient family of structurally diverse
enzymes that are divided into two major classes. The functionalities of most AaRSs are
inextricably linked to their oligomeric states. While GluRSs were previously classified
as monomers, the current investigation reveals that the form expressed in Pseudomonas
aeruginosa is a rotationally pseudosymmetrical homodimer featuring intersubunit tRNA
binding sites. Both subunits display a highly bent, “pipe strap” conformation, with the
anticodon binding domain directed toward the active site. The tRNA binding sites are
similar in shape to those of the monomeric GluRSs, but are formed through an approx-
imately 180-degree rotation of the anticodon binding domains and dimerization via the
anticodon and D-arm binding domains. As a result, each anticodon binding domain
is poised to recognize the anticodon loop of a tRNA bound to the adjacent protomer.
Additionally, the anticodon binding domain has an a-helical C-terminal extension contain-
ing a conserved lysine-rich consensus motif positioned near the predicted location of the
acceptor arm, suggesting dual functions in tRNA recognition. The unique architecture of
PaGluRS broadens the structural diversity of the GluRS family, and member synthetases
of all bacterial AaRS subclasses have now been identified that exhibit oligomerization.

protein translation | aminoacyl-tRNA synthetase | oligomerization

The aminoacyl-tRNA synthetases (AaRSs) use diverse architectures to accurately pair
tRNAs and amino acids for faithful translation of the genetic code (1, 2). This is achieved
through an activated form of the amino acid, the aminoacyl-adenylate, which donates the
aminoacyl functionality to the 2’ or 3" hydroxyl group of tRNA (3-6). A subset of the
AaRSs also catalyzes editing reactions to reverse noncognate substrate misactivation or
tRNA misaminoacylation (7-12).

The AaRSs are grouped into one of two classes (I and II) based on the core fold of their
catalytic domains, Rossmann or antiparallel B-sheet (13—16), respectively, which contain
particular consensus sequence motifs used for binding ATP (17-21). The two classes are
further partitioned into six or seven subclasses, Ia-c and ITa-c(d), based on additional
sequence and structural homology (21-23). All of the AaRSs except AlaRS also contain
an anticodon arm binding domain. Seven AaRSs have posttransfer editing domains (24),
and the synthetases found in higher organisms commonly contain additional structural
elements used for tRNA binding and multisynthetase complex formation (2).

Oligomerization is vital to the functioning of the majority of AaRSs. Nearly all of
the class II synthetases form o, homodimers (1, 16, 19) or (af), heterotetramers
(25-28). A key element of these architectures is a conserved interfacial motif (motif 1)
in the core fold, which was shown through mutational studies of AspRS to be essential
for the catalytic function (29). Many class II synthetases have also clearly evolved ways
of enhancing their interaction with tRNA leveraging oligomerization. This has been
demonstrated for the class Ila enzymes, which make numerous contacts with a given
tRNA substrate using both subunits (30-34). This has not been observed, however, for
class IIb structures, with the tRNA-bound AspRS showing only glancing interactions
involving the distal catalytic chain (35). AlaRS, a dimeric class IIa/d enzyme, binds the
tRNA D-, T-, and acceptor arms through a C-terminal domain that is intertwined with
its neighboring counterpart, which also contributes to the tRNA binding surface (36).
In the case of the heterotetrameric GlyRS and PheRS synthetases, which differ struc-
turally and belong to different subclasses, minimal catalytic subunits are employed and
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Significance

Pseudomonas aeruginosa is a
common cause of hospital-
related infections and a
formidable health threat due to
its evolving antibiotic resistance.
PaGIuRsS is homologous to other
bacterial GIuRSs in its domain
architecture, but has evolved a
distinct fold in its anticodon
binding domain that introduces
two interchain transfer
ribonucleic acid (tRNA) binding
sites through an unanticipated
dimeric subunit arrangement.
The structure is used to predict
other members of the a2-type
class Ib AaRS family, including
GIuRSs from pathogenic
organisms such as Acinetobacter
baumannii, Moraxella catarrhalis,
and Chlamydia trachomatis,
making the novel architecture an
attractive molecular target.

Author contributions: M.K.F,, T.E.E., PJ.M., and B.L.S.
designed research; M.K.F, S. Seibold, AED. S.
Subramanian, 1.Q.P., D.M.D., D.D.L., AB.A,, R.C,, S.N.H.,
J.M.B,, K.P.B,, and S.L. performed research; ].M.B., LK.W.,
and J.W. contributed new reagents/analytic tools; M.K.F.,
SJM., J.M.B., A.CS,, S.ET,, and S.L. analyzed data; P.J.M.
procured funding; and M.K.F., A.E.D., S. Subramanian,
S.L., and B.L.S. wrote the paper.

The authors declare no competing interest.
This article is a PNAS Direct Submission.

Copyright © 2025 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).

'To whom correspondence may be addressed. Email:
Michael.Fenwick@seattlechildrens.org, Peter.Myler@
seattlechildrens.org, wowerja@auburn.edu, or Bart.
Staker@seattlechildrens.org.

This article contains supporting information online at
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2504757122/-/DCSupplemental.

Published May 9, 2025.

https://doi.org/10.1073/pnas.2504757122 1 of 12


https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Michael.Fenwick@seattlechildrens.org
mailto:Peter.Myler@seattlechildrens.org
mailto:Peter.Myler@seattlechildrens.org
mailto:wowerja@auburn.edu
mailto:Bart.Staker@seattlechildrens.org
mailto:Bart.Staker@seattlechildrens.org
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2504757122/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2504757122/-/DCSupplemental
mailto:
https://orcid.org/0000-0001-5066-4962
https://orcid.org/0000-0003-1205-7920
https://orcid.org/0000-0001-6873-3401
https://orcid.org/0000-0002-0474-8003
https://orcid.org/0000-0002-3068-3717
https://orcid.org/0000-0003-0833-3259
https://orcid.org/0009-0003-7259-7985
https://orcid.org/0000-0002-4918-4571
https://orcid.org/0000-0002-3215-4472
mailto:
https://orcid.org/0000-0002-0056-0513
mailto:
https://orcid.org/0000-0001-8096-7745
mailto:
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2504757122&domain=pdf&date_stamp=2025-5-8

Downloaded from https://www.pnas.org by Lawrence Berkeley National Laboratory LBNL on June 23, 2025 from IP address 131.243.159.118.

20f12

much of the tRNA recognition occurs through the noncatalytic
p-subunits (37-39).

Within class I, the smaller AaRSs of subclass Ic dimerize through
a conserved a-helical insertion in their catalytic domains and utilize
the C-terminal domain of the opposite chain for anticodon arm
recognition; the configuration, however, requires that the tRNA
uncharacteristically engages the catalytic domain from the major
groove side (13, 15, 40—44). Dimerization is less prevalent in class
la (45-47), and the class Ib enzymes are generally considered
to be monomeric outside their participation in multisynthetase
complexes (2).

GluRS, a class Ib synthetase, typically adopts an extended con-
formation that enables interaction with the tRNA’s acceptor and
anticodon arms. However, its paralogs display remarkable diversity
in their anticodon binding domains. Whereas bacterial and orga-
nellar GluRSs utilize a-helical subdomains (48) evolutionarily
related to ones found in the class I LysRSs (49), archaebacterial
and eukaryotic cytosolic GluRSs use tandem six-stranded p-barrels
(50) homologous to those found in GInRSs (51). Diversity in the
anticodon binding domain also contributes to the nondiscrimi-
nating glutamylation of tRNA(GIn) within the transamidation
pathway (52-55). Additionally, Glu-Q-RS, a paralog of GluRS
that glutamylates queuosine at the wobble position of tRNA(Asp),
lacks an anticodon binding domain (56, 57).

An unresolved anomaly in the phylogeny of the GluRS family
involves the misalignment of the natural species phylogeny with
that of a noncanonical subfamily of GluRSs, which includes sev-
eral infectious disease targets such as Pseudomonas aeruginosa,
Acinetobacter baumannii, Moraxella catarrhalis, and Chlamydia
trachomatis (58). Intriguingly, the sequences of the target GIuRSs
are homologous to canonical GluRSs (58), including that of
Escherichia coli GIuRS, which is known to be monomeric and to
display the classic elongated conformation (59). The presence of
a single chromosomal g/tX gene rules out the possibility of paral-
ogy, and previous work showed that the P aeruginosa enzyme
displays the canonical biochemical activity (60), thus raising ques-
tions about the underlying structural basis of its irregular branch-
ing pattern.

Here, the structural features of P aeruginosa PAOI GluRS that
resolve the anomaly are elucidated using X-ray crystallography.
The anticodon binding domain is demonstrated to be of the
a-helical type, but has diverged from the canonical forms of
GIuRS in both of its subdomains. Remarkably, dimerization via
symmetric intermolecular three helix bundles brings about
~180-degree rotations of much of the anticodon binding domains.
Consequently, the subunits are arched rather than elongated, with
the C-terminal domain directed back toward the active site, form-
ing two potential intersubunit tRNA binding sites. Additionally,
the C-terminal domain contains a novel a-helical extension rich
in lysine residues situated in close proximity to the active site.
Based on a conserved consensus motif within the extension, a
family of P2GluRS-like enzymes was identified that is expected
to display similar architectures, and which includes the GluRSs
of the aforementioned infectious disease targets.

Results and Discussion

o2 Oligomeric Architecture Revealed in Crystal Structure.
PaGIuRS is the product of the g/tX gene, which encodes 494
amino acid residues having an overall molecular weight of 56.7
kDa. Two crystal structures of an /V-terminally tagged P2GluRS
construct bound to or lacking zinc were determined by molecular
replacement and refined to resolutions of 2.30 and 2.45 A,
respectively (S Appendix, Table S1). The crystals belong to space
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group 2,2,2, and the asymmetric units contain two molecules
of PaGluRS. For the former, 488 residues of chain A and 482
residues of chain B were built into the electron density.

Unlike the canonical GluRSs, which are monomeric, P2GluRS
forms a stable homodimer, as demonstrated by its crystal structure
and size exclusion chromatograph. Analysis of the protein inter-
faces in the crystal reveals two molecules of PzGIuRS related by
noncrystallographic twofold pseudosymmetry, with a buried sur-
face area of 2,961.3 A? (theoretical AG for complex dissociation
of 17.4 kcal/mol) (Fig. 14) (61, 62). Sizing column profiles of
UV light absorbance at 280 nm and molecular weight derived
from multiangle light scattering (MALS) show a major peak hav-
ing a mass of 117 kDa (Fig. 24 and SI Appendix, Fig. S1). SAXS
experiments confirm that the shape of the scattering species in
solution is consistent with the crystal structure (x* < 0.5;
SI Appendix, Fig. S2 and Table S2), a gel shift assay demonstrates
that the protein binds tRNA (87 Appendix, Fig. S3), and the enzy-
matic activity is similar to that measured for a previously published
construct of PzGluRS having a C-terminal purification sequence
(60) (S Appendix, Fig. S4).

The PaGIuRS subunits display a sequential arrangement of
catalytic and anticodon binding domains like the canonical
GluRSs. However, the overall subunit conformation is shaped like
a horseshoe or pipe clamp, and the two subunits pack in a
back-to-back arrangement with the two active sites separated by
~80 A (Fig. 14). The catalytic domain consists of a Rossmann-like
core fold with an acceptor arm binding domain insertion, followed
by an a-helical D-arm binding domain (domains I-IIT). The first
conserved ATP binding motif is an “HVGT” variant that also
occurs in some canonical GluRSs such as Thermus thermophilus
GluRS, and the second motifis a common “KLSKR” variant. The
acceptor arm binding domain contains a CxCx,,C motif, com-
monly found in bacterial as well as eukaryotic GluRSs, that forms
an a-helix and coordinates zinc using the three cysteines and a
tyrosine (63-66). Catalytic domain superposition shows asym-
metry, with much of domain II in chain B rotated inward by 10
degrees (Fig. 1 B, Bottom) (67).

The anticodon binding domain comprises all a-helical subdo-
mains (domains IV and V). Domain IV is structurally homologous
to the helical bundles observed in other structurally characterized
GluRSs, but, as described below, exhibits an irregular folding pat-
tern. Domain V contains the conserved a-helical cage fold com-
monly found in bacterial and organellar GIuRSs but, strikingly,
has a novel 21-residue extension at its C-terminus. The extension
contains a 12-residue o-helix (residues 479 to 491) rich in lysine
residues that is directed back toward the active site (Fig. 1 Band C).

The PaGluRS homodimer is formed by interactions involving
domains IIT and IV (Fig. 2B). The core of the interface contains
a pair of rotationally symmetric three-helix bundles that are each
assembled intermolecularly, with helix a12 of one chain paired
with helices ®13 and ®14 of the other chain. The three-helix
bundles interact weakly through the side chains of Leu343,
Leu348, Ala366, and Phe373 (Fig. 2C). Additional interchain
contacts are formed through the region containing helices 13
and a14 of one chain and, in the opposite chain, helix a11 and
the loop connecting helices a8 and ®9. The helices forming each
bundle pack via hydrophobic interactions, whereas domains III
and IV interact via both hydrophobic and hydrogen bonding
interactions; altogether, the dimer interface contains twelve hydro-
gen bonds on the basis of a 3.5 A cutoff. (Fig. 2 Cand D).

Uniquely Bent Subunit Conformation. The bent subunit

conformation of P2GluRS contrasts remarkably with extended
conformations adopted by the other structurally characterized

pnas.org
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Fig. 1. Crystal structure of PaGIuRS. (A) Homodimeric architecture displaying noncrystallographic twofold pseudosymmetry. (B) Subunit architecture. Chain A
of the asymmetric unit is shown in ribbon representation with secondary structural elements labeled. The catalytic and anticodon binding domains comprise
subdomains I-Ill and IV-V, respectively. Domain V contains a twenty-one residue C-terminal extension. At the Bottom, the subunits are superimposed to highlight
the asymmetry. (C) Secondary structural topology, with f-strands depicted as thick arrows and a- and 3;, helices as cylinders. Below, the amino acid sequence
of the C-terminal extension is aligned with other PDB entries (Fig. 34), with aligned sites showing absolute conservation and similarity near the C termini colored

red and yellow, respectively.

bacterial GluRSs (Fig. 3 A, Lef?). The closest structural ortholog
is 1" thermophilus GIuRS (TtGluRS, PDB code 2CV1), which has
a DALI Z-score of 42.2, corresponding to the alignment of the
catalytic domains (68). However, the structures also overlay closely
when alignments are performed instead based on the anticodon
recognition domains, through helix a13 (Fig. 3 A4, Right).

With the catalytic domains overlayed, the anticodon recogni-
tion domains of P2GluRS and 77GluRS are related by a screw-like
displacement with a rotation and translation of 177.9° and -4.5
A, respectively (67) (Fig. 3B). The bending region maps to the
residues connecting the first and second helices (12 and a13)
of the intermolecular three-helix bundles of P2GIuRS, which
recapitulate the intramolecular three-helix bundle of 77GIuRS.
In the canonical GIuRSs, this region contains amino acid

PNAS 2025 Vol.122 No.19 2504757122

insertions of various lengths (Fig. 3C) and is structurally diverse.
Leu343 of chain A and Asn344 of chain B of P2GIuRS, which
span the canonical insertions, are separated by 10.5 A. Thus, the
unique folding pattern of the bending region of P2GluRS, which
enables the formation of the symmetric helical bundles within
the dimer, is one of the distinguishing features of the noncanon-
ical architecture.

The subunit conformation of 2zGIuRS is stabilized through a
complex array of nonbonded interactions near the bending region
and meeting point of domains III-V, including the adjacent chain
(Fig. 3D). The side chain of Trp341, the central residue of the
bending region and last residue of helix al2, is stabilized via
hydrogen bonding with the backbone of Arg266 of domain III.
Interestingly, a-helical backbone hydrogen bonding is prevented

https://doi.org/10.1073/pnas.2504757122 3 of 12
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Fig. 2. Evidence for dimerization of PaGIuRS. (A) Dimer formation in solution. Size exclusion chromatogram is shown with UV absorbance trace at 280 nm
(primary axis) and MALS-derived molecular weight (secondary axis). (B) Dimer interface architecture. Symmetric 3-helix bundles formed by domain IV comprise
the interface core and interact with domain Ill. (C) Hydrophobic interactions. Close contacts between carbon atoms of hydrophobic groups in half the interface
(separation distances < 4.7 A) are indicated with blue lines. (D) Hydrogen bonding interactions. Six potential hydrogen bonds in half the interface are shown as

dashed lines. In panels (B-D) chain B residues are colored using darker tones.

by the presence of Pro345. Trp341 adopts a t90°-like rotamer
(74) with the indole moiety packed closely against the methyl
group of Ala342, an insertion, and wedged between the side
chains of Phe373 of the same subunit and Phe362 of the opposite
chain. The reach of the indole moiety appears to provide enough
of a platform for Phe373 stacking, allowing its interaction with
Tyr347. In this conformation, the Tyr347 hydroxyl group can
hydrogen bond with the guanidinium of Arg266, which, in turn,
is ideally oriented to form two additional hydrogen bonds with
the backbone of Leu458 of domain V. Within the kink separating
helices @12 and al13, Asn344 forms helix-bridging hydrogen
bonds via its side chain with the backbone carbonyl oxygen of
GIn339 and the amide nitrogen of Tyr347. Additionally, back-
bone—backbone hydrogen bonding occurs between the amide
nitrogen of Leu343 and the carbonyl oxygen of Val338.

Intersubunit tRNA Binding Sites Identifiable in Dimer. The genome

of P aeruginosa PAO1 contains open reading frames encoding
both P2GIuRS and P2GInRS, obviating the need to produce

https://doi.org/10.1073/pnas.2504757122

GIn-tRNA(GlIn) via a mischarged Glu-tRNA(GIn) (75). tRNA(Glu)
plays a cofactor role in aminoacyl-adenylate intermediate formation,
common to class Ib synthetases and ArgRS (60, 76-80). Although
tRNA(Glu) may have CUC and UUC anticodons in general, the
P aeruginosa genome encodes only a single tRNA(Glu; U;,U55C50)
isotype (81) ((RNA numbering according to ref. 82).

Novel modes of recognition of one or two tRNAs by 22GluRS
may be readily predicted based on superpositions with
high-resolution crystal structures of 7#RNA(Glu; CUC)-bound
TtGluRS (55, 73, 83). Notably, the location of the anticodon bind-
ing domain in the conformation of P2GluRS prohibits its binding
to the anticodon of a tRNA having its acceptor arm bound at the
active site of the same subunit (Fig. 44). This contrasts with com-
plexes formed by 7¥GluRS in which the tRNA interacts with all
five domains (Fig. 4B). However, through the ~180-degree rotation
of the anticodon binding domain and dimerization, each catalytic
domain of P2GluRS, together with the anticodon binding domain
of the twofold related chain, forms an intersubunit tRNA binding
site similar in shape to the one formed by the extended

pnas.org
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Fig. 3. Noncanonical subunit conformation of PaGIuRS. (A) The catalytic domain and much of the anticodon binding domain (sticks) align closely with the
corresponding domains of other bacterial GIuRSs (gray wires). Shown are Ca atom superpositions of GIURSs of the following organisms onto domains I-1V (Left) and
domains IV-V (Right) of PaGIURS: Thermosynechococcus vestitus, Thermotoga maritima, Mycobacterium tuberculosis, Burkholderia thailandensis, Xanthomonas oryzae,
Borrelia burgdorferi, Helicobacter pylori, Elizabethkingia anophelis, Stenotrophomonas maltophilia, T. thermophilus, and E. coli [PDB entries 2CFO (69), 205R, 2JA2,
4G6Z (65), 5H4V (70), 4GRI (65), 6B1P (71), 6B1Z (72), 7K86, and 1N78 (73), 8191 (59), respectively]. (B) Ca atom traces of PaGluRS and TtGIuRS aligned in reference
with a screw axis that relates the anticodon binding domains (67). Inset: Close-up view of domain IV. (C) Insertions (manually aligned structurally, orange) near
the bending region in other structurally characterized bacterial GIuRSs. (D) Nonbonded interactions. Potential hydrogen bonds are shown as dashed lines and

hydrophobic contacts involving Trp341 as blue lines.

conformation of 7*GluRS (Fig. 4 B and C). Remarkably, the con-
formational change in helix a13 relative to ®12 and the amino acid
insertions in 7*GluRS (Fig. 3B) result in an overlapping of the
helical bundles with the consequence of conserving the spatial dis-
position (via the dimer in P2GIuRS) of Arg358, the C36 binding
residue (Fig. 4D).

The placement of the C-terminal a-helix also suggests a func-
tion of acceptor arm recognition through the anticodon binding
domain (Fig. 4E). The helix contains four lysine residues (Lys479,
Lys480, Lys483, and Lys487), shown below to be conserved, hav-
ing disordered side chains lacking any interaction with the pro-
tein. Three are directed into the opening of the active site. After
subdomain V is rigidly overlayed onto tRNA-bound 77GluRS

PNAS 2025 Vol.122 No.19 2504757122

(which was first superimposed onto a P2GluRS catalytic domain
within the dimer) to recognize the anticodon loop, the C-terminal
helix resides within closer reach of the acceptor arm, although the
nature of the interaction cannot be predicted based on this simple
representation (S/ Appendix, Fig. S5). (That Lys480 is oriented
away from the active site suggests that a significant structural
change must take place.) Whether the helix can disengage from
domain V is also unclear, and the presence of two conserved
glycine residues in the loop preceding the helix is intriguing.
Despite this, the structure shows that the helix can pack tightly
against domain V electrostatically via residues at its N- and
C-terminal ends and via hydrophobic contacts formed through
its C-terminal amphipathic face.

https://doi.org/10.1073/pnas.2504757122 5 of 12
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as additional acceptor arm recognition site. Domains forming one tRNA binding site are colored to highlight canonical-like substructure. (D) Spatial conservation
of Arg358 through dimer formation. (E) C-terminal extension and its disposition near the acceptor arm. Disordered side chains are modeled based on their
high-probability rotamers. (F) Potential anticodon recognition site formed by domain V.

The structure of the putative anticodon binding site in domain
V is similar to that of 7#GluRS in secondary structure, but shows
considerable differences in amino acid usage (Fig. 4F). A shallow
cleft is formed by 3 helices (®16-a18), and several hydrophobic
residues (Leu431, Met435, Val451, and Leu452, which align with
Leu427, Ala431, Leu447, and Phe448, respectively, of 7:GluRS)
form the base of the putative U34 binding site. Phe439, which is
positioned near U35, replaces a highly conserved arginine residue
that stacks against the uracil moiety of U35 and forms a hydrogen

60of 12 https://doi.org/10.1073/pnas.2504757122

bond with the cytosine moiety of C34 of 7Tn#RNA(Glu;CUC)
(55). Other residues having notable spatial locations within the
anticodon binding site include Arg432 and Lys413.

Conserved Signature Sequences Suggest a Structurally Homol-
ogous GIuRS Subfamily. The amino acid sequence of the P2GluRS
C-terminal extension was used to search databases of bacterial GIuRSs
for orthologs closely related to PaGIuRS (Materials and Methods).
These proteins are found across Chlamydiia, which interestingly, in
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the context of tRNA recognition, lack a glutaminyl-tRNA synthetase
and specific tRNA modification enzymes, including the wobble base
modification biosynthetic enzyme MnmCD. Numerous putative
noncanonical orthologs are also found in y-proteobacteria, and a
smaller number exist in o and 8-proteobacteria, Holophagae, and
“Candidatus Uabimicrobiia” (Fig. 54). Notable bacterial pathogens
among these various classes include A. baumannii, M. catarrhalis,
C. trachomatis, and Chlamydia pnewmoniae. A multiple sequence
alignment of the noncanonical GluRSs shows a conserved consensus
motif, LGGOSKKxxKx®EK, within the C-terminal extension,
where @ and x denote hydrophobic residues and lack of conservation,
respectively (Fig. 5C and SI Appendix, Fig. S6). The motif maps to
the first nine residues of the C-terminal a-helix and the preceding
loop (Fig. 5B).

The multiple sequence alignment of the noncanonical bacterial
GluRSs reveals several additional conserved sequence sites that
appear to be strongly conserved in this family of enzymes. One
such site in the catalytic domain is PzAsp15, located near the first
ATP binding motif (Fig. 64). In the structure, its carboxylate
forms an interdomain salt bridge with Arg464 of domain V, which
is also significantly conserved (Fig. 6B). In the canonical GluRSs,
the corresponding sites are separated by ~50 A. An additional
highly conserved site is 22Gln184, located near the binding site
of tRNA A76.

Within domain 1V, P#Trp341 is the most strongly conserved
residue among those unique to the noncanonical subset (Fig. 64
and ST Appendix, Fig. S6). Asn344 is not absolutely conserved but
is utilized by the majority of these enzymes. Interestingly, the
number of amino acid residues corresponding to the three helical
segments of domain IV is nearly constant (Fig. 6A).

Within domain 'V, in addition to the PZ2GIuRS Arg464 site noted
above, P2GIn399, Leu402, Trp403, and Glu406, all show a high
degree of sequence conservation (Fig. 64). Structurally, these res-
idues compose a supporting substructure beneath the C-terminal
extension. Glu406 forms an interhelical salt bridge with Arg468,
which is conserved in the aligned o-, y-, and &-proteobacterial
orthologs (Fig. 6B and SI Appendix, Fig. S6). The side chain of
Trp403 is inserted between helix a15 and the C-terminal a-helix,
where it packs with several domain V residues, including the highly
conserved GIn399. Conservation also includes sites on the opposite
side of the domain V, namely Palys413, Arg432, and Phe439,
which reside within the putative anticodon binding site (Fig. 6C).
In most species of Chlamydiia, Phe439 is replaced with a tyrosine,
which is also observed in the class I LysRSs (49). Collectively, the
presence of highly conserved residues on the two sides of domain
V (including the C-terminal extension) poised to bind the acceptor
and anticodon arms of tRNA strongly supports a dual functioning
in tRNA recognition.

Concluding Remarks. For the majority of AaRSs, oligomerization
constitutes an essential component of the tRNA recognition
framework. The prokaryotic class Ib enzymes are typically larger
than the class Ic enzymes and are classified as monomers (2)
having extended chain conformations that enable interaction with
both the acceptor and anticodon arms of tRNA (18, 48, 49).
Thus, the unusual dimeric architecture displayed by P2GIuRS,
which represents a novel family of a2 class Ib AaRSs, is especially
noteworthy given the homology of its five subdomains with
those of canonical GluRSs such as 7¢#GluRS. While the dimer
interestingly is formed through a packing of helical bundles
similar to dimer formation in class Ic synthetases (15, 40),
domain IV instead functions as the core dimerization module,
and the catalytic domain is predicted to bind the minor groove
of the acceptor arm of tRNA.

PNAS 2025 Vol.122 No.19 2504757122

The distinguishing features of the 22GIuRS fold relative to other
GluRSs are its use of intermolecular helical bundles and a
C-terminal extension placed near the active site through an arched
subunit conformation. The rotation of helix a13 within the sym-
metrical packing of domain IV of the two chains maintains the
spatial location of Arg358, which is known to bind nucleotide 36
in monomeric GluRSs (55). The canonical fold of domain IV
typically positions this residue via an intramolecular three-helix
bundle. However, as noted in Fig. 3, there is a variable region
between the first two helices that in other bacteria [e.g., Glocobacter
violaceus (84)] is expanded considerably. The lack of a C-terminal
extension in the GluRSs of deeply branching extant bacteria,
including the canonical 7hermotoga maritima GluRS (PDB entry
205R), which has an a-helical cage domain that branches more
closely to the class I LysRSs (SI Appendix, Fig. S8), suggests that
the PaGluRS architecture represents an adaptation that enhances
interaction with tRNA.

Consideration of a hypothetical extended conformation of
PaGIuRS introduces two apparent structural anomalies. First, an
overlay of domain V onto the extended conformation places the
conserved C-terminal helix at the very back of the enzyme, at a
considerable distance from the anticodon arm (S/ Appendix,
Fig. S7 A and B). Because Arg358 in domain IV is placed at its
canonical location via the dimerization, the tRNA likely adopts
the canonical binding arrangement in that region. The C-terminal
helix would not be expected then to wrap around domain V to
bind the anticodon arm. Such a disposition would only further
obscure the unknown function of the helix and motif, which
might otherwise be presumed to be one of acceptor arm binding
based on its positioning near the catalytic domain. This also fol-
lows from the known tRNA binding functions of N-terminal
helical extensions in Eukaryotic class IIb AaRSs having similar
motifs (85, 86).

Second, superpositioning helices a12 and al3 onto the
extended conformation of 7#GluRS reveals a gap of 10 A
between residues 343 and 344 related to the absence of the
insertions observed in the canonical GluRSs (87 Appendix,
Fig. S7 A and B). Interestingly, a template-based solution that
forces adoption of the extended conformation recapitulates the
structure through a shortening of helix @12 and burial of Trp341
(ST Appendix, Fig. S7C). While this fold may be feasible in prin-
ciple, we have not yet identified conditions that yield such a
conformation. What is unlikely, however, is the persistence in
solution of the monomeric, bent conformation (Fig. 44), as
numerous hydrophobic residues in helices a12-a14 would be
exposed to the solvent.

The crystal structure of P2GluRS was determined through
structural genomics efforts at the Seattle Structural Genomics
Center for Infectious Disease to facilitate structure-guided drug
discovery (87-89). The essential role AaRSs play in protein trans-
lation (90, 91) establishes the two classes of synthetases as prom-
ising drug targets, and structural differences between the
PaGluRS-type synthetases of pathogenic bacteria and their human
cytosolic and mitochondrial homologs may be considered for
achieving target selectivity.

Materials and Methods

Protein Expression, Purification, and Analysis. Cloning, expression, and
purification followed standard protocols previously described (92, 93). The full-
length GIuRS gene from P. aeruginosa (UniProt accession ID Q9XCL6) encoding
amino acids 1to 494 was PCR-amplified from genomic DNA using forward primer
5’-CTCACCACCACCACCACCATATGACCACTGITCGTACTCGCAT-3" and reverse primer
5'-ATCCTATCTTACTCACTTAGCCGGGAATGGCGTCGCGG-3'. The gene was cloned
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Fig. 5. Noncanonical GIuRSs and their C-terminal extensions. (A) Bacteria possessing a putative noncanonical GIURS represented using a phylogenetic tree
based on amino acid sequences, with branches colored by class. (B) Mapping of conserved amino acid residue sites in C-terminal extensions onto the structure
of PaGIuRS. Sites having consensus hydrophobic, basic, and acidic residues are colored green, cyan, and pink, respectively. Sites rich in glycines or serines are
colored goldenrod. (€) Consensus motif from multiple sequence alignment of GIuRSs in panel (A). Conserved sites within the motif are colored according to
panel (B) whereas proximal sites outside the motif showing absolute conservation are colored red.

into the ligation-independent cloning (LIC) vector pBG1861 encoding a noncleav-
able hexahistidine tag (MAHHHHHH-ORF) (93, 94), and chemically competent
E. coli BL21(DE3)-R3-pRARE? cells were transformed with the plasmid (95). The
hexahistidine tagged PaGIuRS was expression-tested, and 2 L of culture were
grown using autoinduction media (96) in a LEX Bioreactor (Epiphyte Three Inc.).
The expression clone PsaeA.01348.a.81.GE38278 is available at https://www.
ssgcid.org/available-materials/expression-clones/.

PaGluRS was purified in a two-step protocol consisting of an immobilized metal
(Ni%*) affinity chromatography (IMAC) step and size-exclusion chromatography

https://doi.org/10.1073/pnas.2504757122

(SEC). All chromatography runs were performed on an AKTA Purifier 10 (GE
Healthcare) using automated IMAC and SEC programs (92). Thawed bacterial
pellets (~25 g) were lysed by sonication in 200 mL buffer containing 25 mM
HEPES, pH 7.0, 500 mM NaCl, 5% glycerol, 0.5% CHAPS, 30 mM imidazole, 10 mM
MgCl,, T mMTCEP, 250 pg/mLAEBSF, and 0.025% sodium azide. After sonication,
the crude lysate was supplemented with 20 pL of Benzonase (25 units/uL) and
incubated while mixing at room temperature for 45 min. The lysate was clarified
by centrifugation at 10,000 rev min~" for 1 h using a Sorvall centrifuge (Thermo
Scientific). The clarified supernatant was then passed over a Ni-NTA His-Trap FF
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Fig. 6. Additional signature sequence sites in noncanonical GIuRSs. (A) Multiple sequence alignment, with conserved hydrophobic, basic, acidic, and polar and
neutral sites colored green, cyan, pink, and yellow, respectively. (B and C) Conserved sites in domain V near the C-terminal extension and catalytic domain (B)
and within the putative anticodon binding site (C), colored according to panel (A). Potential hydrogen and ionic bonds are shown as dashed lines.

5 mL column (GE Healthcare) which was pre-equilibrated with loading buffer
composed of 25 mM HEPES, pH 7.0, 500 mM NaCl, 5% glycerol, 30 mM imi-
dazole, 1 mM TCEP, and 0.025% sodium azide. The column was washed with 20
column volumes of loading buffer and was eluted with loading buffer plus 250
mM imidazole in a linear gradient over seven column volumes. Peak fractions were
pooled and concentrated to 5 mL. SEC was then performed on a column (HiLoad
26/600 Superdex 75, GE Healthcare) that was equilibrated with running buffer
composed of 25 mM HEPES, pH 7.0, 500 mM NaCl, 5% glycerol, 2 mM DTT, and
0.025% sodium azide. The peak fractions were collected, analyzed via SDS-PAGE,
and concentrated to 48.2 mg/mL using an Amicon purification system (Millipore).
Aliquots of 110 uL were flash-frozen in liquid nitrogen and stored at —80 °C.

PNAS 2025 Vol.122 No.19 2504757122

The first indication of oligomerization in solution was obtained via analytical
SEC using the zinc-free protein (S/ Appendix, Fig. S1). A Superdex 200 Increase
10/300 GL column (Cytiva) was equilibrated in SEC buffer (20 mM HEPES, pH 7.0,
300 mM NaCl, 5% glycerol, and 1 mMTCEP). One hundred microliters of purified
protein was injected onto the column, and the UV absorbance of the column
eluate was monitored at 280 nm, with 0.5 mL fractions collected. Column sizing
was evaluated by comparing the retention times of size standards-beta amylase
(200 kDa), bovine serum albumin (66 kDa), carbonic anhydrase (29 kDa), and
cytochrome C(12.4 kDa)-with the retention time of PaGIuRS.

Determination of the absolute molecular weight of a zinc-treated sample was
also determined with SEC-MALS at the SIBYLS beamline 12.3.7 of the Advanced
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Light Source (ALS) (97). Zinc was added through a 7.5 dilution of the protein
with zinc reconstitution buffer (20 mM HEPES, 150 mM NaCl, 5 mM MgCl,,
pH 6.5, supplemented with 0.5 mM ZnSO, and 10 mM TCEP). The sample was
then diluted twofold with MALS running buffer (20 mM HEPES, 150 mM NaCl,
5 mM MgCl,, pH 7.5, supplemented with 1 mM TCEP) to bring the protein to
approximately 3.5 mg/mL, flash frozen in liquid nitrogen, and shipped on dry
ice to the beamline. There, the sample was thawed and injected into a Shodex
SEC column equilibrated with the MALS buffer and operated at a flow rate of
0.65 mL min~". The column was connected to an Agilent 1260 Infinity HPLC
system. MALS was measured using an 18-angle DAWN HELEOS Il light scatter-
ing detector connected with an Optilab refractive index concentration detector
(Wyatt).A55 pLsample of 7 mg/mLBSAmonomerin MALS buffer, and a refractive
index increment (dn/dc) value of 0.16, was used for system calibration.

SAXS analysis of PaGIuRS was also conducted on the outlet stream from the
SEC column (S/ Appendix, Table S2). X-ray images were recorded continuously on
a Pilatus 3 2 M detector placed 2.1 m from the flow cell. The X-rays had a wave-
length of 1.127 A. Each frame corresponded to a 2 s exposure, and 660 intensity
profiles were provided by the beamline for a g range of 0.0109 to 0.4729 A-".
The LC analysis tool in Bioxtas-raw (98) was used to obtained base line corrected
profiles. An all-atom structural model based on the crystal structure of PaGIuRS
bound to zinc, with missing atoms added using ChimeraX and MODELLER (61,
99), was fitted to the experimental curve using FoxS (100). A profile of maximum
size was computed with background and offset corrections. Electron pair distance
distribution functions were determined by means of the DENSS inverse Fourier
transform method implemented in Bioxtas-raw (98, 101). Molecular weights
based on the SAXS data were estimated using the volume of correlation (V) and
Bayesian inference methods (102, 103).

Protein Crystallization and Structure Determination. All PaGIuRS crystalli-
zation experiments were carried out via sitting drop vapor diffusion at 17 °C.The
enzyme was initially crystallized in its zinc-free state and more recently bound
to zinc. Purified PaGIuRS lacking zinc (48.2 mg/mL), supplemented with 2 mM
of compound BT_04B09, a PaGIuRS inhibitor (60), was crystallized in 96-well
format in XJR compact junior plates with sample drops formed in a 1:1 ratio
(0.2 pL protein, 0.2 pL reservoir solution) against 80 ul reservoir solution. The
crystallant originated from the JCSG+ screen, formulation D9 (170 mM ammo-
nium sulfate, 25.5% polyethylene glycol 4000, and 15% glycerol). Crystals were
cryocooled directly via plunging into liquid nitrogen.

Forzinc site reconstitution, approximately 170 pL of thawed protein was com-
bined with 2 uLof 1 MTCEP and 8 L of 50 mM zinc sulfate, centrifuged, incubated
for approximately 18.5 h at 4 °C, and flash frozen in liquid nitrogen. The thawed
protein (46 mg/mL) was supplemented with 2.5 mM adenosine-5'-sulfamate,
7.5 mM L-glutamate, and 7.5 mM MgCl, and crystallized using UVYXPO MRC
(Molecular Dimensions) sitting drop vapor diffusion plates and Berkeley screen
(104)(Rigaku Reagents) condition D8 [20% (w/v) PEG 3350, 100 mM MES/sodium
hydroxide, pH 5.5, 700 mM ammonium citrate dibasic, and 5% (v/v) 2-propanol].
Drops formed from 0.1 pl of protein and 0.1 pL crystallization solution were
dispensed and equilibrated against 50 uL of the latter. Crystals were then cry-
oprotected by layering 2 pL of 80% (v/v) reservoir and 20% (v/v) ethylene glycol.

X-ray diffraction data were collected at APS beamline 21-ID-F and NSLS2 beam-
line 19-ID, respectively, where they were irradiated using X-rays having wavelengths
0f 0.97872 and 0.97950 A. Reflections were integrated and scaled using XDS (105)
via AUTOPROC (106). Initial phases for the zinc-free structure were determined by
molecular replacement using Phaser (107) with the crystal structure of Borrelia
burgdorferi GIuRS [PDB entry 4GRI (65)] as a search model. Manual model building,
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automated structural refinement, and model validation were performed using Coot
(108), PHENIX(109), and MolProbity (110), respectively. None of the added ligands
(BT_04B09 oradenosine-5'-sulfamate, L-glutamate, and MgCl,) were observed in
electron density maps. Details related to the X-ray diffraction and structural refine-
ment statistics are listed in SI Appendix, Table S1. Structural superpositions were
carried outand molecularillustrations were prepared using Chimera and ChimeraX
(61,111, 112). Domain motions were characterized with the aid of DynDom (67).
The template model was generated with SWISS MODEL(113).

Sequence Analysis. Amino acid sequence alignments were performed using
MUSCLE (114), adjusted based on structural alignments, and illustrated using
ESPript 3 (115). Amino acid sequences of noncanonical bacterial GIuRSs were
initially identified using the Aminoacyl-tRNA Synthetase Data Bank (AARSDB;
Release 2021_04) (116). Sequences of bacterial GIuRSs from NCBI were then
individually aligned with the initial set of sequences, and additional noncanon-
ical orthologs were identified using an ad hoc scoring function based on amino
acid usage within the C-terminal extension. The resulting set of sequences were
clustered using USEARCH (117) with a cutoff sequence identity of 66% and cen-
troid sequences were illustrated, for convenience of presentation, as a UPGMA
phylogenetic tree using MUSCLE (114) and iTol (118).

Data, Materials, and Software Availability. Three-dimensional coordinates
of PaGIuRS are available at the PDB (https://www.rcsh.org/) under accession
codes 5TGT (119) and 8VC5 (120). Accompanying SAXS data can be retrieved
from Simple Scattering (https://simplescattering.com/) under accession code
XSBHEVPH (121).
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