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Abstract—In this paper, we propose a Hardware-in-the-Loop
(HIL) simulation testbed suitable for the implementation and
testing of realistic cyberattacks on grid-tied smart inverter
systems integrated with Distributed Energy Resources (DER)
that use the Distributed Network Protocol-3 (DNP3) protocol
for communications between grid components. Specifically, our
testbed combines a Real-Time Digital Simulator (RTDS) NovaCor
device, outfitted with GNETx2 network interface cards, a grid-
tied DER topology implemented via the RTDS software package
RSCAD, and a custom virtual network that emulates a man in the
middle attacker. The Man-in-the-Middle (MITM) attacker cap-
tures DNP3 traffic and falsifies telemetry data in DNP3 packets
to trigger unwarranted commands from a DNP3 controller that
exploit smart inverter grid support functions. We choose DNP3
and implement grid support functions according to the IEEE Std.
1547-2018 mandated for the interconnection and interoperability
of DER power systems with associated power components.

Furthermore, we develop a protocol payload agnostic attack
detection framework that leverages the round-trip time (RTT)
anomalies between DNP3 requests and responses and can detect
the presence of attacks without having to analyze the payload’s
contents, while balancing trade-offs between false alarm counts,
missed detections, and time to detection. To facilitate further
research, we publicly release benign and attack network traffic
exchanged between various sensors, controllers, and actuators in
our grid-tied inverter testbed.

Index Terms—DNP3, DER, Smart Inverters, Cybersecurity,
Smart Grid Communications

I. INTRODUCTION

Smart grids support communication of various signals be-
tween sensors, controllers, and actuators in addition to power
flows. This communication enables supervisory control and
data acquisition (SCADA) control systems to effectively mon-
itor and manage DERs (e.g., wind turbines, photovoltaic sys-
tems, battery storage units) using control and communication
components such as grid-tied smart inverters, remote terminal
units (RTUs) and intelligent electronic devices (IEDs). Smart
inverters specifically facilitate the seamless integration and
management of DERs [1]. In a smart inverter supported
grid, real-time telemetry data (e.g. voltage, current, and trip-
ping signals) are typically sent from field-level measurement
devices (e.g., IEDs, RTUs) to the SCADA controller. The
SCADA controller processes such telemetry data and issues
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control commands to the smart inverter. The smart inverter
participates in the reactive power control and stabilizes an
unbalanced grid. Hence, a change in the telemetry data can
change the state of the grid to affect the stability of the
grid and power efficiency [2]. The communication between
RTUs, SCADA controllers, and smart inverters is supported
by network communication protocols.

Motivation Communication protocols such as Distributed
Network Protocol-3 (DNP3) have been recently mandated by
the IEEE Std. 1547-2018 as one of the protocols for grid tied
smart inverter communications [3]. DNP3 clients/outstations
(field-level devices) collect and send telemetry data to the
DNP3 master station co-located in the SCADA system. Natu-
rally, cyber attackers would seek to exploit DNP3 vulnerabili-
ties to breach the communication network to impact the grid-
tied smart inverter. While there are implementations on generic
DNP3 attacks, currently there is no detailed documented
research on the realization of Hardware in the Loop (HIL)
testbeds for cybersecurity research in DER-integrated smart
inverter systems that use DNP3 [7].

Real-time simulation is a high-fidelity approach that pro-
duces realistic datasets for network security assessment and to
test intrusion detection methods. There is a lack of attack and
benign datasets using real-time simulation of DNP3 communi-
cation in the context of DER-integrated grids. Attacking a real
grid is not feasible because of the cost and dangers associated.
Therefore, a real-time testbed is the closest approximation
that mimics the behavior of a real grid in a controlled, safe
environment. This paper aims to fill this gap.

While previous work on DNP3 testbeds and datasets [12]
is available, they commonly provide traditional cyber net-
work emulation and implement traditional attacks without an
attempt to emulate a DER-integrated smart inverter system,
real time HIL, or attacks that target a certain smart inverter
functionality. Since all the aforementioned factors affect net-
work traffic patterns and DNP3 payloads, any intrusion detec-
tion model trained on such datasets will lack the specificity
required to capture unique operational behaviors inherent to
DER-integrated grids, as observed by [13].

Contributions This paper addresses the aforementioned
needs by providing a HIL testbed design to simulate both cyber
and physical components of grid-linked smart inverters, and
an attacker in the loop that intercepts communication between



DNP3 outstations and DNP3 master station. Specifically, we
make the following salient contributions:

(i) We developed an RSCAD model that emulates a DER-
connected balanced grid topology containing a wind turbine,
a smart inverter, two transformers, and a Thevenin equivalent
grid connected by a point of common coupling (PCC).

(i) We integrated this model with external devices to
establish a realistic HIL environment. Specifically, we used
the RTDS NovaCor platform equipped with GNETx2 network
interface cards to facilitate real-time communication between
the simulated grid components and the SCADA controllers.
Furthermore, we used a network simulator 3 (NS-3) to create
a virtual network to emulate a realistic communication channel
that implements a Man-in-the-Middle (MITM) attack between
DNP3 master and outstations.

(iii) We propose a proof-of-concept false data injection
attack that aims to exploit the fault ride-through functionality
as defined in IEEE Std. 1547-2018. Specifically, we devise
multiplicative attack strategy on the sinusoidal instantaneous
voltage at the PCC that emulates a fake three phase to ground
fault to induce unwarranted actions from the controller.

(iv) We collected and publicly released the benign and
attacked DNP3 datasets using multiple polling intervals, scan
commands, and time durations that capture a diverse range
of communication patterns which effect the performance of
data-driven attack detection methods.

(v) We developed a detection method based on timing
patterns in the DNP3 network traffic to identify anomalies
without inspecting the packet payloads.
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Fig. 2: Functional topology of a DER-interconnected smart
inverter system

II. BACKGROUND AND PRELIMINARIES

Here we discuss DNP3’s operations and vulnerabilities.
DNP3: This protocol supports communication between a
DNP3 master and outstation devices like Remote Terminal

Units (RTUs) [4] that send telemetry sensing data and receive
commands from the DNP3 master. Despite its functionality
and widespread adoption, DNP3 is an application layer proto-
col that runs over TCP/IP/Ethernet and inherits vulnerabilities
such as MITM attacks.

Although the DNP3 protocol popularly does not support en-
cryption, recent versions such as DNP3 Secure Authentication
Version 5 (SAvS) [5] provisions for symmetric encryption, key
distribution, and challenge-response mechanisms to add a layer
of security using the following sub-protocols: (1) Session Key
Update, (2) Critical Application Service Data Units (ASDU)
Authentication Protocol, and (3) Update Key Change Protocol
(in symmetric and asymmetric modes).

DNP3 Vulnerabilities to Data Falsification Attacks: One
significant threat facing smart grids is the risk of data falsi-
fication attacks, which can severely affect critical infrastruc-
ture operations. In smart grid environments, due to stringent
real-time operational requirements, encryption is often not
adopted/preferred due to latency and processing overheads
that conflict with the performance constraints of grid oper-
ations [6]. Even if encryption is adopted, it does not give
complete security. For example, even with the advancements in
DNP3SaV5, which provisions for encryption, a vulnerability
still exists that keeps the door open for data falsification
by a MITM attacker. Specifically, the “Update Key Change
(UKC) Protocol” is responsible for distributing update keys to
outstations. In its symmetric mode, the Update Key Change
message lacks an explicit identification of the intended outsta-
tion. An attacker can impersonate one outstation and intercept
update keys meant for another, thus compromising the UKC
protocol’s integrity. By manipulating this flaw, an attacker can
force one outstation to accept a fake key. Then, by means of
an ARP spoof (or similar) to intercept this data, it uses the
fake key for unauthorized decryption of DNP3 packets [5].
Once this is done, the attacker can falsify such data and then
re-send it to the DNP3 master. Consequently, the DNP3 master
would issue inaccurate commands. Finally, the most successful
attacks are insider attacks or social-engineering exploits that
gain privileged access to bypass encryption controls and then
launch false data. As such, the true essence of cyber-physical
security, i.e., what happens to the operations and how we can
develop detection methods and prevent attacks when the first
line of defense (encryption) is bypassed, is the main concern.
However, before detection methods can be developed, we need
realistic testbeds and datasets that emulate real DNP3 traffic
exchange for DER-integrated smart inverter systems.

III. TESTBED DESIGN AND IMPLEMENTATION

In this section, we describe the design of a grid-tied smart
inverter topology, followed by our HIL simulation testbed
design that emulates DNP3 in the grid. A logical grid topology
of our testbed is summarized in Figure 2, while the physical
network topology is given in Fig. 3.



A. Grid-tied Smart Inverter DER Model

Here we discuss the electrical, cyber, and communication
aspects of a typical grid-tied smart inverter system.

1) Electrical Model: The main components are below:

(1) Wind farm and conversion to regulated AC, including smart
inverter: The wind farm generates an unregulated alternating
current (AC) from the varying rotational energy of a generator
depending of wind conditions. Then an AC to AC converter
regulates the frequency, voltage, and phase so that the AC
power is suitable for the grid. This converter includes a Ac-
Dc rectifier, a DC link, and a DC-AC smart inverter.

(i1)) Main DER Breaker: This actuator interrupts or restores
the DER connection to the grid. DER Disconnection usually
happens when the terminal node senses abnormal voltage,
current or frequency measurements, signifying a fault or
malfunction in the system.

(iii) Point of Common Coupling (PCC): It represents the point
where the inverter’s AC voltage output couples to the grid.
(iv) Transformers: Two transformers step up the voltage be-
tween the inverter and the grid. Transformer 1 steps up from
0.69 kV to 35 kV, and transformer 2 further steps it up to 220
kV, which is the transmission voltage level of the grid.

(v) Grid Equivalent: This is modeled as a Thevenin equivalent
and emulates the impedance and voltage of the rest of the grid.

2) Cyber and Communication Model: The various cyber
components of the DER-integrated smart inverter system and
the communication between them are described below.

Cyber Network Devices: (a) Outstation: This is a net-
worked device that sends/receives DNP3 messages over
TCP/IP, enabling real-time data exchange between grid com-
ponents and the SCADA control center. The outstation typi-
cally sends telemetry sensing data to a DNP3 Master Device.
(b) Master Station: This holds the algorithms for real-time
monitoring and control. It receives and processes the telemetry
data received from one or more outstations or sensors. Based
on the analyzed grid conditions from the data received, the
master station issues control commands via the DNP3 protocol
back to the designated outstations. These outstations then
translate and forward these commands to actuators (e.g., smart
inverts) to execute specific operational adjustments.

Data Communication The testbed carries the following
data between DNP3 master and outstations: (i) Sensing Data:
The DNP3 Outstation responds with sensing data to the DNP3
master upon request. In our testbed, the DNP3 outstation
sends the line to neutral instantaneous voltages of each phase.
(i) Control Commands: Control commands are sent from the
DNP3 master to the DNP3 Outstation to manage essential
functions. Specifically, we implement the enabling/disabling
Low Voltage Ride-Through (LVRT) control capabilities and
adjusting reactive power setpoints.

B. Testbed Design

Here we discuss our proposed testbed and how it emulates
the cyber-physical and communication aspects of a DER-
integrated smart inverter. An overview of the testbed is shown

in Figure 3. The hardware and their corresponding software
components are defined below.
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Fig. 3: Testbed Physical Topology: This includes the sensing
and communication flows in the form of DNP3 packets.
Parallel to the physical flow, a cyber communication flow
monitors and controls the grid’s operation.

RSCAD Software and RTDS is a real-time power systems
modeling software for emulating a desired grid topology. We
implemented the physical DER, inverter and grid topology of
Fig. 2 using RSCAD software. An RSCAD representation of
the physical grid model is called a “draft case”. The draft
case is exported from the RSCAD software (running on the
Windows machine) to the NovaCor hardware.

NovaCor is the hardware that emulates power system mod-
els [8] to replicate the real-time response of a physical grid in
a controlled environment, which can be captured from output
sinks within the RSCAD model and emulate the networking
layer via the GTNETx2 card. The RTDS hardware allows for
interfacing with various network hardware devices as needed
(via a network chassis) and protection and control devices to
realistically simulate closed-loop cyber-physical systems.

The GTNETx2 Card is the hardware stack that packetizes
and allows for the transmission of DNP3 data over IP and
remote port connections. The GTNETxX2 card is analogous to a
Remote Terminal Unit (RTU), which is the digital communica-
tion gateway between the DER-integrated smart inverter model
and the DNP3 master in the SCADA system. In addition to
the above hardware, there are two essential components within
the RSCAD software: (i) the Protection and Automation Suite
(PASuite), and (ii) the DNP3 Database.

The PASuite is used to virtualize a DNP3 master station,
facilitating execution of control commands and gathering
telemetry data. This part of RSCAD communicates with the
physical GTNETx2 card. With this configuration, the PASuite
can send control commands and display telemetry data includ-
ing, but not limited to, analog and binary input/output data
with timestamps from the outstations.

DNP3 Database is an organized collection of analog and
binary inputs/outputs sent to/from a DNP3 outstation inside the
RSCAD model. The database represents signals for monitoring
and control. Specifically, we collect the voltage and current
signals on each phase (See sec IV-A) into the DNP3 database
to facilitate the monitoring and falsification of signals.

Wireshark is the network protocol analyzer we use to cap-
ture both benign and attacked network traffic during the MITM




attack on our DER operations. The Wireshark is installed on
the Windows machine and captures the DNP3 network traffic
between the GTNETx2 cards and the RSCAD model.

Linux Machine with NS-3 emulates a MITM attacker in
our testbed. Additionally, it is necessary to host the DNP3
master/outstations and the attacker on different machines to
simulate realistic attacks to the grid.

Ethernet Switches & Cables are used to connect the Nova-
Cor, GTNETxX2 cards, and the Linux and Windows machines
into one cyber-physical network with the attacker in the loop.
There are two Ethernet switches in the testbed. The first switch
routes traffic between the GTNETx2 (emulating outstation
hardware) and the Linux (attacker) machine, while the unman-
aged switch routes traffic from the Linux machine (attacker) to
the Windows machine (emulating the DNP3 master within the
PASuite) and the NovaCor, ensuring real-time communication
throughout the simulation process. In Fig. 3, the connection
of an unmanaged switch to the Windows machine allows
the Wireshark packet analyzer to observe all network traffic
traversing this switch, including attack data transmitted from
the Linux machine. This configuration facilitates the RSCAD
software in receiving signal transmissions and also enables
Wireshark to capture the network traffic.

Integration of NS-3 for Network and Attack Simulations
We installed NS-3 software, Python (for running NS-3 scripts),
GNU Compiler Collection (GCC), and CMake (for building
NS-3) on a Linux-based desktop computer running Ubuntu
22.04.4 LTS. We created a virtual Carrier-Sense Multiple
Access (CSMA) network within NS-3 to route DNP3 traffic
through the RSCAD and various physical devices. This
setup relies on NS-3’s Tap and Bridge components to enable
communication between the virtual attacker node within NS-3
and the external physical devices. Specifically, we configured
two Tap devices (tap0O and tapO1) and two Bridge devices
(br0 and brl) on the Linux host running NS-3.

A Tap device is a virtual network kernel driver that can
send/receive Layer 2 packets. We add a Tap on a Linux
machine to create a virtual network adapter that interacts
with user-space program (i.e., the NS-3). In Fig. 3, the tap00
captures the telemetry data and connects the physical network
(where the DNP3 Outstation resides) to the NS-3 (shown in
Fig 3). Inside NS-3, the data is manipulated by an attacker
node for an MITM attack. The modified DNP3 data exits NS-
3 through the tapOl and is forwarded to the DNP3 Master.
Once Tap devices are created they need to be bridged with
physical Ethernet interfaces via the bridge interfaces (brO and
brl). Bridge brO connects tap00 to the rest of the testbed
linking NS-3 with the DNP3 outstation. In contrast, the Bridge
brl connects tapOl to the rest of the testbed facilitating
communication between the DNP3 master and the NS-3. This
bridge interface ensures that data can be processed within the
NS-3 virtual network and transmitted back and forth to the
physical network, emulating a MITM attacker in a real system.

IV. CYBERSECURITY ATTACK SIMULATION

In this section we outline the objective of the attack and
the methodology. The goal is to compromise the communi-
cation between outstations and the master station by altering
telemetry data via a MITM to trigger an unwarranted control
command from the DNP3 master.

We performed an MITM attack by ARP spoofing. The
attacker node within NS-3 launches an ARP spoofing attack by
linking its MAC address to the IP of the GTNETx2 card. This
poisoned the ARP caches of outstation devices, causing them
to send data to the attacker instead of the intended recipient.
NS-3 was able to capture all network traffic regardless of the
destination MAC address. Once we capture the traffic, we
modify the packets before sending them to the master station.
Next, we discuss the parameters modified to impair a certain
inverter functionality. It should be noted that a malicious
insider (e.g., compromised employee, operator or technician)
within the SCADA network could carry out a similar MITM
attack with their privileged position within the internal network
without relying on external ARP spoofing techniques.

A. Targeted Telemetry Variables

We seek to examine the impact of falsifying one or more
instantaneous voltage measurements on the PCC, which causes
the smart inverter to react. However, the testbed has the
ability to be further extended to study the impact of current
measurement falsification too, which would exploit over and
undercurrent protection. In general, the DNP3 communication
between the outstation and the master carries continuous val-
ued analog signals representing set-points to the smart inverter
or sensed values from terminal nodes, and often digital or
discrete signals such as trip signals, enabling FRT, or reactive
power compensation. In our model, WF1VGA, WF1VGB, and
WF1VGC are the sensed voltage measurements for phases A,
B, and C of the terminal node, respectively.

B. Attack Strategy

After setting up the testbed, the simulation begins by
executing the RSCAD model, which replicates the system
dynamics. Simultaneously, NS-3 was launched to simulate the
network containing the attacker node. The initial step involved
capturing and disassembling the DNP3 packets to extract the
analog signals transmitted within the communication frame-
work. Once the signal values were identified, we launched the
following attack model.

Attack Strength refers to the extent of data manipulation
applied to each phase. In our work, we applied a multiplicative
attack of strength 0.5, which reduces the instantaneous voltage
magnitudes by half of their original value. The rationale behind
a multiplicative attack as opposed to a additive/subtractive
attack is that additive/deductive types applied on sinusoidal
signals will show a DC bias in the final signal, which is not
a typical reaction seen in transmission systems. Hence, it can
be more easily identified by model driven/bad data detectors.

IEEE Std. 1547-2018 [3] mandates that DERs ride through
certain high and low voltage conditions. The DER control



system will delay ceasing grid supply until specific voltage
(or frequency) thresholds and time durations defined by the
standard are exceeded. If these conditions persist, the DER
breaker may trip. The allowable ride-through time before DER
tripping is inversely related to the severity of voltage deviation
from its nominal value. This ride-through time decreases
with the increase in the magnitude of the voltage deviation,
as defined by the voltage-time characteristic curves in the
standard shown in Figure 4. This figure summarizes the LVRT
functionality in IEEE-Std. 1547-2018 that is being exploited
by our attack. While IEEE Std. 1547-2018 allows configurable
parameters within specified bounds, the default value of 50%
in the deviation from the nominal voltage will cause the
controls to trip the breaker within 160 ms according to the
standard. This means that if the voltage at the PCC does not
fall to 50% of the nominal voltage, the attack will be easier to
detect by an operator. A multiplicative attack of strength 0.5
will cause the breaker to trip, so the attacker does not have to
emulate the transient condition into the attack to feign a true
fault. If the above multiplicative attack type is created, the
operator has no easy way of distinguishing the attack from a
real fault.
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Potential Attack Impacts The impact of this attack may vary
depending on the system configuration and grid dependence
on DERs. In this testbed scenario, the attack results in the
DER disconnecting from the grid and ceasing all support
functions. This grid support includes reactive power compen-
sation, which helps maintain voltage stability and improve the
system’s power factor. Without reactive power support from
the DER, voltage regulation may worsen, leading to decreased
power quality and increased transmission losses. These effects
can result in financial impacts for utilities and consumers.
Furthermore, without the DER contributing to voltage and
frequency support, the grid’s overall resilience may decrease,
particularly in systems with high DER penetration.

C. Key Configuration Settings

The following are the three configuration settings that affect
the dataset collected.

Polling Interval: The polling interval refers to how often the
DNP3 Master sends data requests to the outstations. According
to IEEE Std. 1547-2018 [3] it can be any value less than
30 s. In reality, it is up-to the administrator to decide the
actual polling interval. However, the polling interval affects

the timing and frequency of read and response packets. To
account for this diversity, we collected data under two possible
average polling intervals: 1 s and 10 s, as indicated in the
released dataset.

Polling Command: The data patterns and the dataset depend
on the polling command used. The dataset currently includes
data collected using both Integrity Polling, which returns static
data, and the Scan command in the PASuite, which returns
event data. [10].

Duration of Study: The longitudinal duration of the data
impacts the statistical patterns. For example, the accuracy of
probability distributions for features from benign and attack
traffic depends on the total study time. Longer durations pro-
vide more data for reliable patterns but may delay detection.
To help researchers and engineers account for this trade-off
and design a secure control mechanism, we publicly release
our dataset over different durations. First, we have 16 hours of
benign only data. Furthermore, we release segments of 1 hour,
20 min, 10 min, and 1 min durations of benign and attack data.

V. NETWORK TRAFFIC TIME-BASED DETECTION METHOD

In this section we discuss the method for attack detection.

A. Dataset Description

We first ran the simulation without attacks and then executed
the same simulation with the MITM attack. We captured the
DNP3 packets using Wireshark under both benign and attack
conditions. The captured packets include timestamp of packet,
source and destination IP address, protocol, packet length, and
payload. The dataset consists of raw .pcap and csv files, with
different variations publicly available for research [9].

For our detection model design and evaluation, we used
16.31 hours of benign data and 20.7 minutes of attack data.
We split the benign and attack datasets into training, cross-
validation, and test sets. Training set includes only benign data
from the first 8.2 hours. A long duration benign dataset helps
build an accurate model of normal behavior.

The remaining benign data (of 8.11 hours) is split into two
parts: 4.09 hours for cross-validation and 4.02 hours for test
set. The attack data is also divided in 10.92 minutes for cross-
validation and 9.86 minutes for testing. As a result, cross
validation and test sets contain both benign and attack data.
Test set contains 4.02 hours of benign data and 9.86 minutes of
attacks, with a benign to attack ratio split of 25:1. The smaller
attack portion reflects the real world scenario that attacks
happen less often in real life compared to benign data. This
imbalance between benign and attack traffic datasets allows
us to avoid base rate fallacy during security performance
evaluation of our detection method.

B. Extracting the Time Interval Data

We measure the time interval between each DNP3 Read
request and its corresponding Response from .pcap files col-
lected via Wireshark. These time intervals are computed using
a Python script executed outside the RSCAD environment.
Since the attacker needs to capture, read, and modify data,



subtle delays will be introduced in the timing patterns, which
we exploit for detection purposes.

Let {(tg, Ir, f;)} be the ordered DNP3 packet data, where
ti is the timestamp of the k-th packet, I is the packet type
(i.e., “Read” or “Response”), and ¢, € {0,1} is the label
indicating benign (¢, = 0) or attack (¢ = 1).

For each packet k where I, = Read with the corresponding
time index tj, we find the immediate next packet where [, =
Response (in chronological order) whose time is index ¢) >
ti. We term this as a matched read-response pair. For each
such matched read response pair, we calculate the time interval
between a read and response packet as X; = ¢}, — ¢, where ¢
denotes the i-th matched Read—Response pair.

C. Modeling Benign Timing Behavior of the Packets

In this section, we discuss how we model benign behavior.

a) Window Size: We start by dividing the serial traffic

into windows of a certain number of X; intervals. Let w donate

a window size, i.e., the number of matched read-response pairs

consider in a single window. Let j denote the j-th window

number over the entire traffic. The process of obtaining the
optimal window length w is given in later section V-E.

b) Ratio of Means (Q(j)): For each window j, we
calculate the Harmonic Mean (HM) and Arithmetic Mean
(AM) of all time intervals X;(j) within that window. We
define the invariant Q(j) as the ratio of HM to AM. Under
benign conditions, time intervals within a window remain
relatively similar, resulting in a stable Q(j) value. However,
a MITM attack introduces additional communication delay,
increasing the time intervals. This disrupts the stability of the
timing pattern, causing a deviation in @(j). This invariant
was first proposed by [11], where they presented a lightweight
framework for the detecting false data injection (FDI) in smart
meters for energy usage, but we adopt the idea and show it
works when we use this ratio metric where the inputs are the
round trip times instead of raw energy usage.

_HM(j) _ (i Yl Xi(j)’l)_

D. Learning Thresholds with Quantile 1., Regression

Q)

6]

In this section, we describe the methodology for determin-
ing the attack detection threshold that characterizes benign
behavior. We can view this problem as learning a best fit line
on the observed Q(j) where we only need to learn the bias
term of a regression problem to get a time invariant threshold.
However, we cannot use ordinary regression (that uses L2
norm loss) because we found that the regression errors are non-
Gaussian (See the Q-Q plot (Fig. 5). Specifically, the Q-Q plot
indicates that the tails are far away from Gaussian indicating
non-malicious outlying points which need to be accounted for
during the learning. Hence, we use a Quantile L; regression
learner. Unlike Lo norm which minimizes squared errors and
is sensitive to large errors, L regression minimizes absolute
errors, making it more resistant to large non-malicious outliers
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Fig. 5: Non-Gaussian Distribution of Regression Errors

in benign data, while adding quantile weights helps to achieve
a balance between false alarm and missed detection [11].
The optimal threshold 7y is determined by minimizing the
empirical risk over the observed ratio values Q(j), defined in
Eqn. 2 and 3. For each candidate threshold 7 € 7%, a risk
function R;(7) is evaluated per time window j. If Q(j) < 7,
a cost is applied with weight «;; otherwise, a penalty is
applied with weight «y. The choice of weights allows for
tuning the sensitivity of the threshold selection process to
ensure a balance between false alarms & missed detections.
The optimal threshold 7,,; is then selected that minimizes
the total empirical risk, calculated as the sum of costs and
penalties normalized by the number of observations 7.

a1 - T = Q) fQU)<T
Ri(1) = 2
#7) {az QG - G zr @
1
Topt = arg Pélrn 5 Z R;(T) 3)
j=1

E. Obtaining the Optimal Hyperparameters

Now we discuss how we find the optimal parameters—a;,
ag, and w. Our approach balances all three key considera-
tions for real time detection, i.e. false alarms (FA), time to
detection(TTD), and missed detection (MD). We formulate this
as a preference based multi-objective optimization problem
with the following priorities: minimize FA count first, then
TTD, and finally MD rate. This prioritization reflects real-
world needs. Minimizing the total number of FA is the most
important since the prior probability of an actually attack is
much lower (i.e., the base rate fallacy) [14]. The next priority
is to minimize TTD since delayed detection lead to undesirable
consequences in smart grid. MD rate is treated as a lowest-
priority objective, since the system raises an alarm as soon
as an attack is detected, even if some intervals are missed
afterward. Based on this, we model the problem as a multi-
objective optimization problem shown below.

Let fra, frrp, and fy;p denote the objective functions
for false alarms count, time to detection, and missed detection
rate, respectively. The optimization problem is formulated as:

min{fra, frrp, fump} subject to:

O0<ap <1, Va; €R @
0<as<l, VayeR

w>1, Vwel



We use the classical e-constraint method to solve the
above problem. The e-constraint method allows optimizing
one primary objective while enforcing user defined preferred
constraints on other objectives. We enforce the following
constraints: keep the time to detection (frrp) below 2 sec-
onds and the missed detection rate (fy;p) at or below 0.2.
This ensures the system focuses on minimizing false alarms
while maintaining fast and accurate detection. From the cross-
validation set, we solve the MOOP, to get the following
optimal parameters were «; = 0.999, s = 0.001, and
window size w = 10, resulting in an optimal detection
threshold of 7o, = 0.870.

VI. RESULTS AND DISCUSSION

In this section, we examine the results of implementing an
MITM attack and we show the results of our detection model.

A. Modification Demo

Figure 6 illustrates the results of the executed attack,
wherein it is apparent that the three analog (instantaneous)
input signals have been halved with an attack strength of 0.5.

¢ [3 Analog Inputs

[} 0- Analeg(-8.316834
[ 1- Analog(-152.098434
[y 2 - analog(161.652298

9 [J Analog Inputs
[} 0- Analog(-4.158420

[} 1 - Analog(-76.043202
[ 2- Analog(80.826103

(a) Pre Attack (b) Post Attack

Fig. 6: Analog input signals from outstations in PASuite

B. Evaluation of the Detection Mechanism

The optimal hyperparameters were applied to the detection
model. The model was subsequently evaluated on the test set.
A visualization of the entire test set is shown in Figure 7. The
results are given in Table L.

TABLE I: Performance of Detection Mechanism

FA Count | TTD (seconds) | MD Rate
0 0.99906 0.1

The zero FA count during the test confirms that the effec-
tiveness of our model along with the e-constraint method. It
also shows that normal operational behavior is not misclas-
sified as an attack, demonstrating the operational reliability
of our model. Additionally, the TTD and the MD rates
signify a timely attack detection. Overall, the evaluation results
demonstrate the practical viability of the detection mechanism
in a real-world DER-integrated smart inverter.

VII. CONCLUSIONS

In this research, we developed a real-time HIL testbed
for simulating MITM false data injection attacks in DER-
integrated smart inverter topologies. Our testbed supports the
study of smart inverter vulnerabilities and facilitates further
research on advanced attack strategies and detection methods.
To aid continued research, we publicly release DNP3 traffic
captures under both benign and attack conditions.
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Fig. 7: Visualization of detection model in the test set showing
detection metric below threshold after attacks

Furthermore, we designed and evaluated an attack detection
mechanism an anomaly detection mechanism based on round-
trip time (RTT) between DNP3 requests and responses. Our
results show that timing deviations are effective indicators
of MITM attacks, even without payload inspection. Using a
multi-objective optimization framework, we tuned detection
hyperparameters to balance false alarms, time to detection, and
missed detections. This approach provides a practical method
for real-time intrusion detection in DNP3-based industrial
control systems.
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