THEME ARTICLE: CONVERGED COMPUTING: A BEST-OF-BOTH

WORLDS OF HPC AND CLOUD

Secure Federated Learning Across
Heterogeneous Cloud and High-Performance
Computing Resources -

A Case Study on

Federated Fine-tuning of LLaMA 2

Zilinghan Li, University of lllinois at Urbana-Champaign, Urbana, IL, 61820, USA
Shilan He, University of lllinois at Urbana-Champaign, Urbana, IL, 61820, USA

Pranshu Chaturvedi, Argonne National Laboratory, Lemont, IL, 60439, USA

Volodymyr Kindratenko, University of lllinois at Urbana-Champaign, Urbana, IL, 61820, USA
Eliu A Huerta, Argonne National Laboratory, Lemont, IL, 60439, USA

Kibaek Kim, Argonne National Laboratory, Lemont, IL, 60439, USA

Ravi Madduri, Argonne National Laboratory, Lemont, IL, 60439, USA

Abstract—Federated learning enables multiple data owners to collaboratively train
robust machine learning models without transferring large or sensitive local datasets
by only sharing the parameters of the locally trained models. In this paper, we elabo-
rate on the design of our Advanced Privacy-Preserving Federated Learning (APPFL)
framework, which streamlines end-to-end secure and reliable federated learning

experiments across cloud computing facilities and high-performance computing re-
sources by leveraging Globus Compute, a distributed function as a service platform,
and Amazon Web Services. We further demonstrate the use case of APPFL in fine-
tuning a LLaMA 2 7B model using several cloud resources and supercomputers.

learning paradigm where multiple data owners,

referred to as clients, jointly train a machine
learning model.'~2 The process is orchestrated by a
central server that only requires the transfer of locally
trained model parameters and not the entire datasets.
The server aggregates these model parameters and
redistributes the updated parameters to the clients for
further local training iterations. As FL could leverage
diverse training data from multiple clients without ex-
plicitly collecting and storing distributed client datasets
together as a centralized dataset, it is becoming an
increasingly promising approach to train a more ro-
bust machine learning model and alleviate the do-
main shift problem without compromising the privacy
of local training datasets.® FL is broadly categorized

F ederated learning (FL) is a distributed machine
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into two types, cross-device FL and cross-silo FL.2
Cross-device FL involves a large number of unreliable
devices, such as loT or mobile devices, with only a
small subset participating in each FL training round.
On the other hand, cross-silo FL only has a few
reliable clients, typically institutions or organizations
equipped with powerful computing resources, including
high-performance computing (HPC) systems or cloud
computing facilities. This paper specifically focuses on
the cross-silo FL settings.

The deployment and launch of cross-silo FL ex-
periments face several key challenges, including the
establishment of trust relationships among FL clients,
inherent heterogeneity of client computing resources,
and tedious coordination of the collaboration efforts.
First, trust is paramount in FL to avoid data or model at-
tacks, where a client might maliciously train the model
using invalid data or send corrupted model parameters
to the server. Second, the computing resources of
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clients in a federation can vary widely in architec-
ture, operating systems, job scheduling systems, and
computing capabilities. Third, as cross-silo FL requires
the participation of all clients in each training round,
indicating the need for the simultaneous start of client
training jobs to avoid resource wastage, it becomes
more complex to coordinate the collaboration among
multiple clients.

To overcome these challenges, we introduce
the Advanced Privacy-Preserving Federated Learning
(APPFL) framework which enables easy and stream-
lined setup of secure end-to-end cross-silo FL ex-
periments. APPFL employs Globus Compute as its
primary communication backbone for the distributed
training process. Globus Compute is a distributed
function-as-a-service platform that allows for the ex-
ecution of remote functions on specified computing
resources through the configuration of an endpoint.*
Globus Compute endpoints, managed by clients, can
be configured on a diverse range of computing sys-
tems to support local FL training. Once all client
endpoints are configured, the FL server can easily
initiate and orchestrate the FL training process by
dispatching training tasks as needed. Globus Com-
pute is also integrated with the Globus authentica-
tion service,® linking each FL client with an insti-
tutional or organizational Identity and Access Man-
agement services for identification. This facilitates
building trust relationships among the clients. More
details about Globus Compute can be found at
https://funcx.readthedocs.io/en/latest/index.html. Addi-
tionally, the APPFL framework integrates various asyn-
chronous FL algorithms for efficient training and re-
source utilization, especially beneficial in scenarios
with significant disparities in the client computing ca-
pabilities. It also features advanced privacy-preserving
algorithms to offer an extra layer of protection within the
federation and further ensure the privacy of sensitive
local data. The APPFL framework is aimed at enabling
a wide array of domain experts to easily engage in cre-
ating secure federations and running FL experiments
for various scientific applications.

Figure 1 illustrates the process of federated learning
using the APPFL framework. In this process, the FL
server plays a pivotal role, orchestrating the train-
ing by iteratively dispatching training tasks to all FL
clients and subsequently gathering results via the
Globus Compute cloud server. As Globus Compute
has limitations on the size of the parameters, the
large model parameters are reliably exchanged via the
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FIGURE 1. Overview of the federated learning process using
the APPFL framework.

Amazon Simple Storage Service (S3). The combina-
tion of Globus Compute and Amazon S3 ensures a
secure, robust, and smooth flow of tasks, information,
and models between the server and clients. Comput-
ing machines, ranging from personal laptops to HPC
clusters with varied job schedulers, as well as cloud
virtual machines, are all capable of participating as
FL clients by configuring a Globus Compute endpoint
on it. The endpoint runs a daemon process in the
background once started and only allocates necessary
computing resources when there are pending tasks,
especially if the computing resource uses a job sched-
uler. Consequently, these endpoints allocate resources
only after the FL server launches the training by dis-
patching the initial tasks, thereby reducing resource
wastage and minimizing the complexity of coordinating
the distributed training. Each client computing machine
also installs the APPFL software package, contain-
ing auxiliary codes for executing the dispatched local
training tasks using the private local datasets. This
setup highlights the versatility and adaptability of the
framework to various computing environments, making
it suitable for a wide range of FL applications.
Launching an FL experiment among various data
owners using the APPFL framework involves a struc-
tured and secure process. The first step requires one
participant to establish a Globus group, inviting other
collaborating data owners through their institutional or
organizational emails. This step is crucial for ensur-
ing reliable identity and access management between
the desired collaborators and FL clients, laying the
foundation for an end-to-end trusted relationship. The
created Globus group provides a layer of authorization
for FL experiments. For the actual conducting of the
FL experiment, any collaborator can volunteer to take
on the role of the server. This involves gathering
essential information from each client, such as the
Globus Compute endpoint ID and a dataloader file for
loading the local dataset. Once these elements are
collected, the server utilizes the training script from
the APPFL framework software package to initiate the
training process by providing the information collected
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FIGURE 2. Modular design of the APPFL framework.

from clients, alongside the specified model architecture
and training hyperparameters. All data owners gain
access to the final model parameters at the end of the
FL experiment to ensure that every participant benefits
from the collaborative effort. Optionally, the experiment
can be connected to the resources on Amazon Web
Services that can be used to store training logs and
results from various experiments along with training
visualizations.

Figure 2 presents the modular design of the APPFL
framework. The APPFL server consists of four parts,
federated learning algorithms, machine learning model
architectures for training, training loss functions and
metrics, and training configurations. The APPFL server
supports a range of FL algorithms, including widely-
used synchronous algorithms like Fedavg,! advanced
asynchronous algorithms such as FedCompass,® and
privacy-preserving algorithms such as 11aDMM.’ For
instance, asynchronous algorithms are beneficial for
increasing the efficiency of the overall FL training and
the utilization of the client computing resources in
cases where there are large variations in the client
computing capabilities, and privacy-preserving algo-
rithms are helpful to further protect the local data
privacy against gradient inversion attacks. The com-
prehensive support for various FL algorithms allows
the APPFL framework to adapt to various FL scenarios
and requirements. The framework incorporates several
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standard machine learning model architectures, in-
cluding convolutional neural networks (CNN), residual
neural networks (ResNet), long short-term memory
networks (LSTM), and transformers. It also provides
the flexibility for users to utilize custom model archi-
tectures for specific tasks. Similarly, for training loss
functions and evaluation metrics, the APPFL server
also offers both popular default options and the ability
to use custom choices to accommodate a wide range
of training scenarios. The training configuration com-
ponent is for setting up necessary hyperparameters for
the central aggregation and local training, and users
can include their own configuration parameters when
devising new aggregation or local training strategies.

On the client side, the APPFL client includes aux-
iliary trainers that facilitate model training on private
local datasets using the provided dataloader. The dat-
aloader, prepared by each client individually, contains
the function for loading the local datasets on each
client’'s computing resources and performing neces-
sary pre-processing steps during the remote training
executions. Multiple trainers are provided to support
a variety of ftraining tasks, from common training
procedures to more specialized approaches such as
parameter-efficient fine-tuning (PEFT) and personal-
ized federated learning. Users can also customize their
own local trainers for their applications. The APPFL
communicator, operating on both the FL server and
clients, ensures secure and seamless communication
among the FL server and FL clients by using Globus
Compute to dispatch training tasks and collect results,
and AWS S3 buckets to transfer global and local model
parameters.

The modularity of the framework simplifies cus-
tomization for users, enabling them to conduct FL
experiments on data from various domains, incorpo-
rate new machine learning model architectures, devise
novel local training algorithms, and develop new FL
server aggregation strategies. This flexibility makes
the framework versatile and responsive to the evolving
needs of users across various applications.

To demonstrate the effectiveness of the APPFL frame-
work in streamlining FL experiments, we present a
case study focusing on the application of APPFL
in federated fine-tuning the LLaMA 2 7B2 a pop-
ular open-source pre-trained large language model
(LLM) with approximately seven billion parameters,
on the SuperGLUE natural language understanding
benchmark.® Figure 3 illustrates the overview of the
experiment. Each FL client operates on an individual
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FIGURE 3. Overview of the federated large language model
fine-tuning experiments among four heterogeneous clients on
HPC nodes and cloud.

computing machine and accesses its local datasets.
Each SuperGLUE dataset is partitioned into four client
chunks in a non-independent and identically distributed
manner following the dual-Dirichlet partition strategy
introduced in FedCompass.® The strategy employs
two Dirichlet distributions to simulate the distribution of
sample classes within one client (with a concentration
parameter ay = 2) and the distribution of sample
sizes across clients (with a concentration parameter
ag = 8), respectively. Figure 4 illustrates how local
data is distributed among the four clients for various
datasets within the SuperGLUE benchmark.

To circumvent transferring the gigabytes of pa-
rameters of LLM every training round, a parameter-
efficient fine-tuning (PEFT) method, low-rank adapta-
tion (LoRA)," is employed. LoRA freezes all parame-
ters of the pre-trained LLM and only trains an additional
set of rank decomposition matrices injected into each
transformer layer, which substantially reduces the num-
ber of trainable parameters. Specifically, for LLaMA 2
7B, with decomposition matrices applied to all query
and value matrices, a rank of 8, and a scaling factor
of 32, LoRA results in a total of 16.0 MB (megabyte)
trainable parameters being exchanged between the FL
server and clients.

For all datasets in the SuperGLUE benchmark,
each sample is transformed into the Stanford Alpaca
prompt format."" Table 1 shows the detailed prompt
instructions and inputs for each SuperGLUE dataset.
The APPFL PEFT local trainer minimizes the cross-
entropy loss for the labeled prompt outputs using the
AdamW optimizer with a learning rate of 10~* and
a decay factor of 0.85.'> Fedavg is used as the
FL algorithm. The number of global communication
rounds is set to 5 and the training batch size is set
to 4 for all datasets. Given the varying characteristics
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of the datasets in the SuperGLUE benchmark, we have
tailored the number of training batches of each training
round and the maximum token length for each dataset
in the training configurations, as detailed in Table 2.
Notably, the term “All” for the batch number indicates
that each client utilizes the entirety of available local
training samples in every local training round.

To reflect real-world variability in computing re-
sources, the four clients are operating on four het-
erogeneous computing machines. Specifically, two of
these clients are deployed on HPC setups within the
Delta supercomputer at the National Center for Super-
computing Applications (NCSA), using the Slurm job
scheduler. These two differ in their GPU capabilities:
one uses an NVIDIA A40 GPU, while the other employs
an NVIDIA A100 Tensor Core GPU. The remaining
two clients leverage Amazon Web Services (AWS)
Elastic Compute Cloud (EC2) virtual machines with
different specifications: one runs on a g4ad.xlarge
instance and the other on a g4ad. 4xlarge instance.
This diverse computational setup provides a realistic
testbed for the APPFL framework, demonstrating its
applicability and adaptability in heterogeneous comput-
ing environments.

Table 3 presents a comparative analysis of the
performance achieved by the LLaMA 2 7B model when
fine-tuned under different settings: federated learning
(FL), global training using centralized data (Global),
and local training with client local corpus (Local).
Since the labels for the SuperGLUE test datasets are
not publicly available, the evaluation is based on the
validation datasets from this benchmark. The results
highlighted in the table reveal a notable pattern: models
fine-tuned through FL outperform those fine-tuned lo-
cally on individual client data. This finding underscores
the effectiveness of FL in enhancing model robustness.
By leveraging the diverse local training corpora of
various clients, FL manages to train more comprehen-
sive models without the need for explicit data sharing.
However, there remains a slight performance discrep-
ancy when compared to models trained with central-
ized data, which likely arises from the inherent data
heterogeneity across different clients. Additionally, the
experiment showcases the adaptability of the APPFL
framework in leveraging FL for a broad spectrum
of applications, as well as the capability to facilitate
FL experiments across a wide range of computing
environments, from HPC nodes to cloud computing
facilities, making it a valuable tool for conducting FL
experiments in real-world settings.
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FIGURE 4. Local data distributions among four clients for the SuperGLUE datasets, where different colors indicate samples

with different labels.

TABLE 1. Detailed Stanford Alpaca prompt instructions and inputs for the SuperGLUE datasets.

Dataset

Instruction

Input

BoolQ

The following reading comprehension question
requires you to understand the following passage

and answer a question related to the passage. Please
answer with only "True" or "False" to the question:
{sample [’ question’]}?

sample [’ passage’ ]

CB

Please determine whether the hypothesis
"{sample[’hypothesis’]}" entails, contradicts,

or is unrelated to the following premise:
"{sample[’'premise’]}". Please respond with either
"Entailment", "Contradiction", or "Neutral".

N/A

COPA

Given the following premise, please determine
whether Choice One, {sample[’choicel’]},

or Choice Two, {sample[’choice2’]}, is the
{sample[’question’]} of the premise. Please respond
with either "One" or "Two".

sample [’ premise’ ]

MultiRC

Given the following paragraph, please determine
whether "{sample[’answer’]}" is a correct answer to
the question "{sample[’question’]}". Please respond
with either "Yes" or "No".

sample [’ paragraph’ ]

RTE

Please determine whether the sentence
"{sample[’premise’]}" entails the hypothesis
"{sample[’hypothesis’]}" or not. Please respond with
either "Yes" or "No".

N/A

WicC

Please determine whether the word "{sample[’word’]}"

N/A

is used in the same way in the following

two sentences: "{sample[’sentencel’]}" and
"{sample [’ sentence2’]}" Please respond with either
"Yes" or "No".

WSC Please carefully read the following passages. For
each passage, you must identify whether the pronoun
marked in *boldx refers to the "quoted" noun.

sample[’text’].

\n Question: In

the passage above,
does the pronoun
sample [’ span2_text’]
refer to
sample [’ spanl_text’]

TABLE 2. Number of training batches per local round and
maximum token lengths for different datasets in the Super-
GLUE benchmark.

In this paper, we introduce the design of the
APPFL framework, a sophisticated software package
to streamline the initiation and execution of secure

Dataset Batch number  Max token length
BoolQ 200 350 and reliable end-to-end federated learning experiments
CB All 350 across a diverse range of applications. This framework
COPA. All 300 is adept at handling heterogeneous computing environ-
ﬁ;;thC 288 ggg ments, from HPC systems to cloud-based resources.
Wic 200 200 We showcase the framework’s capabilities through a
WsC All 220 comprehensive case study, illustrating how APPFL can
be seamlessly applied to the federated fine-tuning of
Month 2024 Computing in Science & Engineering 5
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TABLE 3. Performance of the fine-tuned LLaMA 2 7B using federated learning (FL), global training, and local training.

Dataset # Val. Samples FL (%) Global (%) Local Avg (%) Local (%)

BoolQ 3270 80.34 81.01 72.73 [69.72, 69.45, 77.80, 73.94]
CB 56 78.57 82.14 62.95 [46.43, 76.79, 67.86, 60.71]
BOPA 100 83.00 89.00 74.00 [76.00, 68.00, 70.00, 82.00]
MultiRC 4850 68.38 71.62 65.22 [70.54, 63.72, 61.80, 64.81]
RTE 227 87.36 85.28 84.66 [86.28, 85.20, 84.48, 82.67]
WiC 638 64.11 66.14 53.76 [59.87, 50.00, 55.64, 49.53]
WsC 104 72.12 75.96 64.36 [64.42, 68.27, 57.69, 63.46]

large language models using parameter-efficient fine- 5. S. Tuecke, et al, "Globus auth: A research

tuning methods. Looking to the future, there is potential
for further enhancement via improving the quality and
accessibility of FL-as-a-Service provided by APPFL.
Our ultimate goal is to empower a broader range
of domain experts from large institutions, universities,
and national laboratories, to effortlessly conduct FL
experiments in various Al applications, thus expanding
the horizons of collaborative, privacy-preserving Al
research and development.
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