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ar Reactions in Metal Hydrides at Low Energies
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Why Metal Hydrides Are Used In Fusion Our Experimental Setup Challenges
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Metal hydrides can act as a dense, stable environment e Low Event Rates: Due to the low expected Cross
that facilitates the close interaction of hydrogen atoms. e An ion gun under vacuum sections at low energies, long measurement times
This property proves to be advantageous for initiating ﬁ]g[geéeéaztgsn?rg?#i’éekr 'Bglggﬁjmm are needed. We routinely run experiments for 8 hours
and assisting the fusion of Deuterium?. or Titanium foil. & = arjdhp:;ln ekven Ioncgljertruns\;\r; the future. back 4
: . e Electrochemical e Hi ackground rates: We average a backgroun
Metal h_ydrldes have the foI_Iowmg CharaCte”St'CSf. e This loads the foil with Cell e ataias 20008 2000000 “33 =D rat% of ~10g neutrons/hr in our EJ dgtector. Asg our
1. High Hydrogen Density: Store large quantities of deuterium and induces DD .l S N D Ic neutron rate is on the order of 10-20 counts/hr at low
hydrogen ions in a small space. fusion. Wt 2000000000000 I3 energies our signal to background ratio is small and
2. SFabIe Hydrogen Release: Their sta_blllty changes e The other side is exposed to ] \t/)ve Eave Ia(;getuncefrtglgtles. ?L;rr]dlodekgeefh
with temperature and pressure, allowing controlled deuterated sulphuric acid. We — E ackground rates ot U.o counts/nr, making the
hydrogen release under different conditions. use this to induce electrolysis Diode N detection of protons much more reliable at low
loading the foil Detecto \ energies.
a o electrochemically. A2 <15 keV e Noise Issues: \We must aim to operate with an
Deuteron SIneing ko o optimal signal to noise ratio due to low rates. This
o “ + @ + MV 50% * gh's !Pc_reeturs]esf t_rlme ﬂydhro en d has led to certain tradeoffs. In our system we receive
felum - Neutron ol o E ar fuaior tatas. noise from two sources. We see low energy noise
G T AN J ' from electron emission, which we have managed to
“ + @ + 4Mev  50% e We then detect 3 MeV protons remove using an Al foil, however, this also removes
Triton Proton using a Silicon diode detector our Tritium counts. We also see too much noise at
Metal \ 1.01 MeV 302 MeV and (2.45) MeV neutrons using high energies, from x-ray emission, to make our
'att'ce‘ ‘ foy o+ 2aMev 107% an EJ309 Detector. P —— silicon diode detector reliable, and so can only record
A Simplified model of our experimental setup, with a cut out
KNS IR yray diagrarr)n of electrolysis beingpused to electro%hemically load A Photo of our prOtOh data :below :ng'
the metal foil with hydrogen. Chamber Interior. ; | | =3 '“'
N N SRS SR S A A S »
Initial Results | I e S N S R
Our goal is to advance nuclear fusion research by 104 5 . _ o o _ N ................................... .................................. .................................. ................................... _____
establishing new methods of controlling and RS . | * Weseeamuch higher rate of fusion in Titanium fol [ (T [ A A U R S
harnessing these reactions at low energies. | X i o . compared to Palladium foil as we would expect due to |
. . - Titanium having a higher loading ratio than Palladium ﬂ . | B | | | |
We aim to discover how we can affect the rate of - s . (2:0.9) B e e S
deuterium fusion at different energies within different 3 E ® ” C . .
metals. £ T e Our initial results show a clear increase in fusion rate in AN example spectra from our silicon clode detector
— .
We are probing the energy range between 5 and g * i A 7 Titanium loaded electrochemically compared to Titanium \';'vzic’c)ifrgzlf?)h (a)\rl]véng |\2/I g\e/aFl)(rso,t;enzr?rsierr]\gngrs el\iz\clti on
15 keV, with plans to run at energies as low as 500 V. g . . & loaded with only a deuterium beam. £ irthest left is wh , gnt). 1 the detect
This includes energies within the screening regime, E i@ i urthes _e IS W ere. ournoise ?pPear‘?‘ N _ € detector.
where the Coulomb barrier is decreased by electron =10%7 A 1 : T e Differing from Titanium, we see no increase in fusion rate Our Helium 3 peak likely falls within this noise.
screening effects (See the equation below). Here we ¢ 8 9 & when we electrochemically load Palladium foil compared _
expect a decrease in the amount of electrostatic s to beam loading only. Upcoming Plans
repulsion and have seen this increase the rate of
fusion reactions at low enough energies in previous 1 e Run at energies below 5kV: Currently we have
experiments?. TS 30 35 a0 45 50 55 60 65 70 75 i 3MeV Proton Spectra lots of data between 5 and 15 keV, We are planning
We are investigating if electrochemically loaded metal SEnterayHass Ency (e ;- (B nloaced) | e d | as. down to 500 V
hydrides increase the yield of fusion products when 0 L —— to take data at lower energies, down to |
compared to metal hvdrides loaded with a beam only (Above) Plot of detected neutron rates per hour 0 (60 Unioaded]
] | ' with center of mass energy of our beam. We show s - e Testing Different Metal Hydrides: So far we have
S(E.p) I,f' E an overall increase in rate in Titanium with energy ‘12 " " — only tested Palladium, Titanium or a combination.
Oih(Ecm) = 3 exp | —m/ and show no increase in rate for Palladium. 5 [V teaded) |- Other metals would be interesting to look at, for
em + Ue I \“ Ecm + Us 2o . i — example Nickel.
(Right) Plots of proton count rate in our silicon 5 [ Unioneea) |
The equation for reaction cross section. Here E diode detector with a Titanium foil. These plots : ol "y _— ¢ Running Beam and Electrochemistry in Parallel:
represents the ion kinetic energy, S(E) is the show that our proton rate increases with beam 12_ v unionded) | Currently we can only run our beam up to 5kV while
astrophysical S factor, U, is the electron screening energy, and also that overall rates generally N P N B U mhm L loading electrochemically. We have planned
. . . . . ey . 400 600 800 1000 1200 1400 1600 1800 2000 400 600 800 1000 1200 1400 1600 1800 2000 . . .
potential and the exponential is a screening term increase when the foil is electrochemically loaded. energy (ADC Units) Energy (ADC Units) changes which will allow us to run electrochemistry
with Eg being the Gamow Energy (2uZ,%Z,%e*/ h). at up to 15kV beam energy.
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