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Ontologies have gained popularity in the scientific community as a way to standardize terminologies 
in organizations’ data. Although certain cohorts have created frameworks with rules and guidelines on 
creating ontologies, there exist significant variations in how Materials Science ontologies are currently 
developed. We seek to provide guidance in the form of a unified automated framework for developing 
interoperable and modular ontologies for Materials Data Science that simplifies the ontology terms 
matching by establishing a semantic bridge up to the Basic Formal Ontology(BFO). This framework 
provides key recommendations on how ontologies should be positioned within the semantic web, 
what knowledge representation language is recommended, and where ontologies should be published 
online to boost their findability and interoperability. Two fundamental components of the MDS-Onto 
framework are the bilingual package called FAIRmaterials for ontology creation and FAIRLinked, for 
FAIR data creation. To showcase the practical capabilities of FAIRmaterials, we present two exemplar 
domain ontologies of MDS-Onto: Synchrotron X-Ray Diffraction and Photovoltaics.

Introduction
The use of ontologies has gained traction in the scientific community as a universal tool to facilitate data 
comprehension, analysis, sharing, reuse, semantic data management, and semantic reasoning1–4. This is 
due to their ability as graph-based semantic data models to define and standardize concepts in a given 
field or domain, group different aliases for the same idea together, and represent complex relationships 
between these concepts5. Ontologies have also become increasingly popular due to their pivotal role in 
achieving FAIR, an acronym for the foundational data stewardship concepts of Findable, Accessible, 
Interoperable, and Reusable1,2. The FAIR principles are crucial in research, as they ensure that data can be 
readily discovered, accessed, and utilized by researchers and machines. In the Materials Science domain, 
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where substantial volumes of data are generated daily, sharing data and metadata between cohorts is often 
challenging due to the absence of standardized vocabularies and unified knowledge within the community6. 
Photovoltaic materials and X-Ray Diffraction research serve as two distinct yet comparable examples where 
the lack of unified knowledge, in the form of a domain ontology, inhibits effective collaboration within their 
respective research communities.

In the field of photovoltaics (PV), it is common for PV assets, such as PV Power Plants, to change hands 
quite frequently, which can cause data and information loss during the transactions. As PV instrumentation 
is highly non-uniform, it becomes difficult to link raw data to what it actually represents in the physical world. 
Approaches such as Orange Button7 define a taxonomy, and OpenAPI defines a specification8 for PV financial 
transactions, but without significant user support is difficult for a standards-based approach to become widely 
adopted in the PV research community. Furthermore, photovoltaic modeling depends on a number of different 
software packages, such as pvlib-python9, PVSyst10, and SAM11, all of which have their own incompatible but 
required input data formats. Translating between these packages is currently handled on a case-by-case basis, 
which brings a large maintenance burden upon developers, owners, and researchers. Similarly, photovoltaic 
researchers perform a wide range of measurements to assess the performance and durability of PV modules12–16, 
using most notably illuminated current-voltage and Suns-Voc to determine quantities such as maximum power 
point (Pmp), open-circuit voltage (Voc), short-circuit current (Isc), and fill factor (FF). However, various pho-
tovoltaic researchers use different instrumentation and test conditions (e.g. irradiance, spectral distribution, 
and temperature) to identify the electrical characteristics of a cell or module. Because these quantities often 
differ by small amounts, which can be determined by the detailed measurement metadata, it can be difficult to 
clearly understand which differences area bout the cells, versus which are differences because of the measure-
ment method. Therefore, it is important that the source and conditions of the measurements are retained. These 
examples indicate how there is a need for unification of terminology at all levels of the PV supply chain, from 
research applications to field data collection17. Previous approaches to this depended on establishing standards 
which are challenging to adopt. Here we take an open-source approach18, developing and sharing tools to make 
the task easier. Ideally these packages, frameworks, and tools will eventually become part of the PV community’s 
solution to these challenges.

Synchrotron X-Ray diffraction (SXRD) is a powerful tool for studying structural properties in different fields 
such as materials, biology, physics, medicine, and geology. Next-generation synchrotron sources, such as the 
U.S. Department of Energy’s recently upgraded APS-U19, produce highly intense and focused X-Ray beams, 
which allow researchers to study materials at higher spatial and temporal resolutions by using advanced imaging 
detectors with small pixel sizes and higher frame rates that generate continuous, large data streams. For example, 
current data production capabilities at a single beamline in the Advanced Photon Source synchrotron facility at 
Argonne National Laboratory are 8-10 TB / week (compressed) with a significant increase to 500 TB per week 
post-upgrade20 is anticipated. These data are highly multimodal and include a variety of formats such as images, 
spectra, diffractograms, and extensive metadata that require flexible processing, access, and long-term data stor-
age solutions. Numerous variable-naming conventions exist that span across the diversity of data formats and 
sheer volume and variety of data, preventing laboratories from easily understanding the data outputs of each 
other, making it difficult to achieve automated analysis21. Several solutions for data management plans have been 
proposed in the Photon and Neutron Science committees22 (e.g., DMPonline and DMPtool23, roaDMaP24, and 
the Data Stewardship Wizard tool25) for the long-term maintenance, provenance, and use of the research data in 
accordance with FAIR principles. However, none of these solutions have achieved the level of adoption necessary 
to resolve naming convention conflicts between organizations in the SXRD space.

Both of these research communities, PV and SXRD, suffer from the same underlying problem: a lack of ter-
minological consistency in their data and metadata. This problem hinders collaboration, innovation, and data 
reuse and reanalysis, since it requires research groups time to explain the variables used in their experiments to 
each other, and, in some cases, data are deemed unusable due to the lack of documentation of variable or terms. 
Historically, taxonomies were considered the best solution for terminological inconsistency within a scientific 
domain. However, taxonomies do not have the semantic capacity to fully describe relationships between con-
cepts in domains and therefore restrict the level of reasoning and analysis that teams can gain from adopting the 
taxonomy26.

Ontologies offer an alternative approach to solving terminological consistency by adding a layer of semantic 
description in the form of non-hierarchical relationships to the concepts they describe27. Given their flexible 
and adaptive structure, ontologies can easily map multiple terms to the same inherent concept and therefore can 
accommodate varying opinions on terminology. Ontology terms can also be utilized in multiple contexts and 
across multiple domains without the need to be redefined, promoting terminological consistency and encourag-
ing cross-collaborative research. Furthermore, they can be serialized into popular linked data formats, such as 
JavaScript Object Notation for Linked Data (JSON-LD)28,29, allowing individuals from the scientific community 
to easily understand and modify the ontology as necessary.

The potential of ontologies to unify knowledge has been proven through the success of the Open Biomedical 
Ontologies (OBO) Foundry, a collection of ontologies that extensively cover different fields in the life sciences30. 
An example demonstrating this success is the Gene Ontology, which covers the functions of genes and gene 
products31, and became a member of the OBO Foundry in 2004. Since its initial creation, Gene Ontology has 
become widely adopted in the life sciences community and has been expanded to include more than 45,000 
terms and almost 134,000 relationships. It has also been used successfully for many knowledge management 
and data reasoning tasks, such as designing deep learning models to predict phenotypes32, as well as to automat-
ically annotate biological texts33. This ontology shows the potential impact that a well-designed and maintained 
ontology can have on a given field.
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Developing an ontology is also the first crucial step toward building knowledge graphs (KG)34. A graph 
is a mathematical concept and data structure that consists of nodes, which represent entities and concepts, 
and edges, which express the relationships between these entities and concepts35,36. Knowledge graphs encode 
structured and unstructured data in a graph data structure, using ontologies as a schema to organize the infor-
mation35. The entities and relationships between entities are embedded as nodes and edges in the knowledge 
graph, respectively. The flexibility and extensibility of the graph data structure allow for new data to be incorpo-
rated with ease into existing KGs. Knowledge graphs encoded with semantic relationships and data can perform 
inductive, deductive, and abductive reasoning by deriving implicit knowledge37. A knowledge graph is a pow-
erful tool that provides human-contextualized knowledge for intelligent systems and machine learning (ML) or 
deep learning (DL) models to act and/or advise in domains such as medicine, chemistry, and Materials Science, 
which is becoming increasingly relevant as the world moves toward incorporating more machines and artificial 
intelligence (AI) into everyday tasks.

We introduce herein the Materials Data Science Ontology (MDS-Onto) in its version 0.3.0.0 as a low-level 
ontology and framework developed to address the need for an automated way to build long-lasting and 
cross-compatible ontologies within the Materials and Data Science domains. MDS-Onto was built by integrat-
ing domain-specific ontologies into a unified structure in which terms and concepts between those fields are 
shared. Each of these ontologies can individually be used for data sharing, data analysis and for model training, 
validation, and testing, as well as pre- and post-processing of different Materials Science datasets. The ontologies 
created as part of MDS-Onto can also be utilized by the scientific community on specific domains as a tool to 
standardize concepts in their field to our Basic Formal Ontology (BFO)-compliant framework. It also enables 
the creation of JSON-LD templates28, following the same variable naming conventions and hierarchical struc-
tures that are specified in the ontologies. Those JSON-LD templates can then be used to populate the terms with 
values, serialize the data, and facilitate the findability and accessibility of the data and metadata.

To create MDS-Onto, we connected specific terms and relationships with preexisting generalized con-
cepts, with the Platform Material Digital core ontology (PMDco)3,38 and PROV-O39 as a bridge used to connect 
Material Science terminology up to the ISO Standard BFO40,41 and then W3C and Schema.org42. We propose a 
modular and extensive approach to simplify the process of terms mapping and matching to mid- and top-level 
ontologies. This methodology reduces the learning curve necessary to use the tools and create interoperable 
ontologies.

It is possible to incorporate and reuse multiple ontologies while building a domain-specific ontology in 
the case when one ontology does not encompass the needs of the domain-specific ontology envisioned by the 
domain expert. Other examples of ontologies that can be used to build domain-specific ontologies include the 
Chemical Entities of Biology Interest (ChEBI) Ontology43–45 and the National Cancer Institute thesaurus (NCIt) 
Ontology46–48. ChEBI and NCIt are common ontologies in the chemical and biomedical domains. ChEBI classi-
fies and defines chemical entities such as atoms and molecules that have biological functionality. NCIt provides 
a wide range of reference terminology and semantic relationships for basic, translational, and clinical research, 
as well as the bioinformatics infrastructure at the Cancer Institute47.

We introduce FAIRmaterials, a bilingual R and Python package that allows users to create ontologies with 
little prior experience. The ontologies created with FAIRmaterials can be used as input to FAIRLinked, a Python 
Package developed to streamline the process of FAIRLinked data creation as JSON-LD files.

In this work, we present the following contributions in the space of ontology development, applied to 
Materials Science and Applied Data Sciences: 

•	 The MDS-Onto framework for creating ontologies using a simplified and modular approach to promote 
knowledge unification and long-lasting collaboration within the Materials Data Science community.

•	 A webpage and tool called MDS-Onto FindTheDocs49 serving s as a central location for ontologies made 
through the framework and provides resources for ontology and JSON-LD documentation, visualization and 
validation.

•	 A bilingual package (FAIRmaterials)50,51 to simplify the creation of modular domain ontologies, which over-
comes the pitfalls of some of the current state-of-the-art ontology development tools.

•	 MDS-Onto, a low-level domain ontology composed of multiple Materials and Data Science domain ontolo-
gies created via the FAIRmaterials package and the MDS-Onto framework, highlighting their practical capa-
bilities and forming the initial basis of the Materials Data Science Ontology.

•	 FAIRLinked52, a Python package that works in synchrony with FAIRmaterials to create linked and FAIR data 
guided by interoperable ontological terms.

This paper is structured as follows. We initially illustrate two application cases in the domains of X-Ray 
Diffration and Photovoltaics as a means of showing how our package and framework can be used to promote 
collaboration between labs and streamline data analysis across a range of Materials Science domains. Next, we 
provide an overview of the current status of Materials Science ontologies and introduce the general framework 
that we have applied to our ontologies, which extends their usability and usefulness. After that, we analyze 
current state-of-the-art ontology development tools and introduce a bilingual Python/R package that we have 
developed to simplify the ontology creation process and a Python package developed to create FAIR data.

MDS-Onto framework and the FAIRmaterials and FAIRLinked packages show immediate promise toward 
standardizing the way that Materials Science researchers sort and categorize their data. The development of the 
MDS-Onto can be used to automate data analysis53, perform inductive reasoning54, and achieve other analysis 
tasks that would otherwise be impossible with non-standardized and semantically unstructured data.
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Results: The MDS-Onto Framework Applied to Synchrotron X-Ray Diffraction and 
Photovoltaics
As the scientific community generates larger quantities of more heterogeneous and multi-modal types of data, 
there is an increasing need for data to be standardized to enable seamless sharing, analysis, and reuse. The 
main barrier hindering the interoperability and longevity of experimental data is the variation in how research 
groups and organizations store, organize, and label their data. Ontologies provide a solution towards unifying 
the organization and labeling of data by facilitating different aliases for concepts and providing automatic inter-
operability with other experiment-specific variables. Although the ontology creation process has already been 
streamlined in specific fields of science, there is still a significant variation in how ontologies are constructed 
within the field of Materials Science. This variation prevents ontologies from achieving automatic interoperabil-
ity with one another and therefore hinders effective cross-collaboration between research groups.

With our MDS-Onto Framework, which standardizes key aspects of the Materials and Data Science ontol-
ogy development process, we showcase the successful implementation of our framework in two case studies: 
Synchrotoron X-Ray Diffraction and Photovoltaics (PV).

An Overview of the Synchrotron X-ray Domain.  In the field of X-Ray Diffraction (XRD), a synchro-
tron—or an accelerator—has various path segments where the beam of particles (X-Rays, neutrons, etc.) is guided 
to an experimental station55. These experimental stations are called beamlines. Depending on the size of the 
facility, there are a varying number of beamlines at a synchrotron source. Even within the same facility, different 
beamlines have different data collection and metadata recording strategies. These compartmentalized strategies 
lead to an immiscible pool of data and metadata, making it very difficult for the user to understand what the vari-
ables in their data mean. In addition to user-defined variable names, the metadata files are unstructured and often 
created and recorded in a non-human-friendly format.

Through the MDS-Onto framework, every variable is assigned a human-readable name and mapped to a 
term from a mid-level ontology. This ensures semantic interoperability with all other variables in the domain. 
Every variable also has alt-label keys in their respective .json files, where the aliases of each variable can be 
specified. For example, a variable defining the load cell in an experiment could be called load-cll at one 
beamline and ld-cell at the other. A well-crafted ontology would define this variable in a human-readable 
format, possibly using the already defined PMDco term “LoadCell,” and then attach the aliases load-cll and 
“ld-cell as alt-labels. The resulting ontology would allow any program written for the variable load-cll 
to function for alternative names of the variable, and therefore it would allow any code written for data collected 
at the Advanced Photon Source (APS) of Argonne National Laboratory to also work for data collected at the 
Cornell High Energy Synchrotron Source (CHESS). Through this example, it becomes apparent that an ontology 
would make modeling and data analysis easier, as well as promote cross-collaboration between different beam-
line research facilities.

X-Ray is a subdomain of MDS-Onto that sits below the MDS-charact domain. The collection of subdomain 
X-ray ontologies (encompassing different techniques that use X-Rays, such as X-Ray diffraction (XRD), X-ray 
scattering, and X-ray computed tomography (XCT)) form the MDS-Xray subdomain ontology.

Schema of X-Ray Beamline Data.  The entire X-Ray subdomain can be divided into the parts specified 
in the following paragraphs. This encapsulation of data into different subontologies makes the data collection 
process more efficient. The vocabulary involved in synchrotron-based X-Ray experiments can therefore be rep-
resented through the following ontologies, all of which are accessible on the MDS-Onto FindTheDocs website.

X-Ray Sample Ontology.  A sample is a piece of material that is prepared for testing to collect information about 
the bulk behavior of the material. We therefore consider the sample as the defined “study object” of the XRD 
experiments. In the organization of XRD terminology, we encapsulate the information about the sample in its 
sample ontology. This leads to better “segmentation”, or modularity, of the data and also helps reduce redun-
dancy. Since X-Ray-based characterization techniques are generally non-destructive56, several experiments 
can be performed on a single sample. Therefore, storing the sample information every time is impractical. The 
X-Ray sample ontology contains all the information about the sample, including the manufacturing process, the 
material, the phase fractions, the manufacturer, etc. Figure 1 represents the various variables and how they are 
connected to PMDco.

X-Ray Tool Ontology.  To perform a synchrotron-based X-Ray experiment, one needs a beamline or a tool, so 
for example the 1-ID beamline at DOE’s Advanced Photon Source. The tool ontology contains information on 
where and with what tool the experiment was performed. Figure 2 represents the schema or structure of the 
X-Ray tool graph. The ontology structure of the X-ray tool helps to FAIRify data collected at different beamlines. 
For instance, if an experiment is conducted at the 1-ID beamline of APS, the “Facility” key would contain the 
value “APS”, and the “Station” key would contain the value “1-ID.” Similarly, if the experiment is performed at 
the FAST beamline at CHESS, the “Facility” key would contain the value “CHESS”, and the “Station” key would 
contain the value “FAST.”

X-Ray Detector Ontology.  The detector—or camera—collects the diffracted beams and is n essessential part of 
X-ray-based experiments. A detector ontology stores general information about the detector. This information 
helps the user determine the information needed about the detector to analyze the collected raw data further.

X-Ray Recipe Ontology.  The recipe is a set of settings and/or steps required to collect a given dataset on a 
specific tool. It contains information on all the various components used, their values, and configurations used 
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to arrive at the raw data. All of the information a user needs to understand a particular experiment is stored in 
the recipe ontology. The X-Ray recipe contains information on every stage of the experiment. It is divided into 
the following subcategories: Calibration, Experiment Type, Beamline Configuration, and Data-Collection. The 
calibration subcategory contains the information needed for calibration of the detector and sample, which is 
one of the first steps in data analysis. As is evident from the name, the experiment type informs the user of the 
experiment being performed. The beamline configuration helps researchers consider the information about the 
beamline tool used for the experiment. This differs from the tool ontology, which contains general information 
about the tool, including characteristics such as its location and the source’s energy range. In contrast, the beam-
line configuration contains information about the specific energy or wavelength used for that experiment. Lastly, 
the data-collection subcategory of the X-ray recipe contains information about the detector parameters used for 
the experiment, since the detector is the data-collection device.

X-Ray Result Ontology.  Generally, the output of an X-ray experiment is a sequence of images or a movie. The 
result ontology describes the result of the experiment as well as a log file with the corresponding metadata.

X-Ray Data Pre-Processing Ontology.  All X-Ray experiments have some standard components regardless of the 
experimental objective. A X-Ray source is needed to bombard the sample with X-Rays. A detector is also needed 
to capture the reflected or transmitted beams. Some standard processing techniques need to be applied to the 
primary experimental data that stem from the setup and equipment57. These processing techniques might include 
correcting for the background that is captured by the detector or calibrating the detector with a calibration sam-
ple. After a few basic operations, analysis of the experimental data can begin.

These post-processes are extremely important as the final results of data analysis are susceptible to different 
choices in these corrections. Therefore, unifying knowledge about not only the data, but the entire preprocess-
ing—and analysis—becomes extremely relevant. The post-processing ontology contains information about the 
corrections applied to the primary data.

X-Ray Data-Processing Ontology.  In the context of an X-ray diffraction experiment, one of the most com-
mon (though not essential) post-processing steps is the reduction of 2D raw data into 1D intensity vs 2θ plot. 
This data processing helps quantify the information present in a 2D diffractogram pattern58. There are various 

Fig. 1  The X-Ray sample ontology. The light blue icons represent ontology terms, with the prefix (i.e., pmd) 
indicating the ontology that the term was created in. The dark blue rectangles indicate relationships created 
between entities. The yellow ovals either indicate the type of the value stored in each subclass or the unit that 
the value is expressed in, with the prefix indicating the ontology the unit definition belongs to or the schema 
language that the value type is defined in.

Fig. 2  The X-Ray tool ontology. The light blue icons represent ontology terms, with the prefix (i.e., pmd) 
indicating the ontology that the term was created in. The dark blue rectangles indicate relationships created 
between entities. The yellow ovals either indicate the type of the value stored in each subclass or the unit that 
the value is expressed in, with the prefix indicating the ontology the unit definition belongs to or the schema 
language that the value type is defined in.
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methods of integrating 2D data into a 1D dataset, and they significantly affect the results of analysis. Hence, the 
unification of knowledge for the acquisition and analysis of data from an experiment becomes extremely impor-
tant. The data-reduction ontology provides this unification, keeping track of the steps and methods involved in 
data reduction.

An Overview of the Asset Owner’s PV Site & System Domain.  Similarly to the field of Synchrotron 
X-Ray domain, the domain of Photovoltaics also suffers from a lack of unified knowledge because of the variabil-
ity of PV instrumentation and the different data format requirements of PV-related software. Although there have 
been previous attempts made towards resolving this issue, such as the Orange Button taxonomy, there is yet to be 
an approach that has been widely adopted by the PV community. Because of this, the PV Ontologies became the 
second group of Ontologies that were created through the MDS-Onto Framework. Using the structure of ontol-
ogies, we can associate aliases for PV terms to the same concept and establish the semantic relationships between 
these PV terms. One of the main components of the PV Ontology is the photovoltaic site, which consists of dif-
ferent sub-systems and domains that obey primarily has-a relationships59. For example, a PV Site has-a associated 
PV System, or a PV module has-a PV Cell. It is crucial to retain information at all levels of specificity to gain an 
accurate understanding of a PV Site’s functioning, which highlights the importance of creating PV Ontologies. 
Following the same structure of the Synchrotron X-ray domain (and MDS-X-ray), PV is a subdomain ontology of 
the MDS-BuiltEnv domain ontology. The collection of PV subcomponents (site, system, inverter, battery, charger 
controller, module, backsheet and cell) for the subdomain ontology PV-Onto.

Schema of PV Data.  Similar to the case of the XRD ontologies, much of the PV domain can be separated 
into the below parts, the ontologies of which can also be found on the MDS-Onto FindTheDocs website domain 
search page.

PV Site Ontology.  A PV Site forms the highest level of the hierarchy. It represents the physical location where 
the PV System is installed, and therefore has associated data such as Latitude, Longitude, and Elevation.

PV System Ontology.  A PV Site must have a PV System, and it can have more than one. For example, a Site may 
have multiple similar, but isolated, Systems that tie in with separate Inverters, or a single, large grid-connected 
System and an auxiliary research or quality control System.

PV Inverter Ontology.  PV inverters are needed to convert the direct current (DC) power produced by PV 
Systems into alternating current (AC) power for grid export. A utility-scale System will have many inverters, 
as each inverter is only rated for a set amount of input DC power before it reaches capacity. When an Inverter 
reaches its maximum DC power input, the remaining power is curtailed and lost. Knowing the DC power limits 
of the Inverter is therefore very important for identifying periods of clipping and where additional hardware 
may be needed.

Storage Battery Ontology.  A PV System might have some type of Storage Battery. Batteries have historically 
been used in PV systems as a form of emergency redundancy; in this operation mode, the batteries are kept full 
and only discharged during loss-of-service events. More recently, batteries have become larger, less expensive, 
and more resilient, making them more suitable for arbitrary shifts in energy availability over time (arbitrage) 
or as “delayed generators”. Batteries can be filled by PV systems during peak electricity production times, and 
then deployed at sunrise or sunset to combat the “duck curve” problem of PV generation60. Battery systems can 
be connected directly to PV arrays on the DC side of the system, which improves efficiency and emergency 
availability at the cost of a complicated and expensive control module, or can be connected after the Inverter on 
the AC or grid side.

Charge Controller.  As mentioned above, Storage Battery systems require a Charge Controller, which deter-
mines when and how batteries are charged or discharged. Charge Controllers can operate either from the elec-
tricity grid or can be “islanded”, or isolated from the grid. It is useful for an asset owner to be able to record the 
details of the Charge Controller, as the field has not yet standardized a system design. Therefore, there is a large 
variance in the way charge controllers might behave.

PV Module Ontology.  The bulk of a PV System’s detailed performance depends on the PV Module used. 
There are many different brands of PV Modules, and performance depends greatly on many factors, which 
are recorded in the domain ontology. Module manufacturers tend to have similar, but not standardized, 
terminology. Module testing agencies such as the California Energy Commission (CEC) tend to develop 
such terminology as well. Modules undergo qualification and reliability testing, and the parameters of 
interest are represented within the ontology. The Orange Button taxonomy provides some terminology 
for PV Modules and PV Inverters, and these terms have been preserved in this ontology and explicitly 
marked as originating from the Orange Button taxonomy. Figure 3 ilustrates the structure of the PV 
Module ontology.

PV Backsheet Ontology.  PV Modules have a Backsheet, which can be a multilayer polymer laminate or a glass 
sheet, added to the rear side of the PV module. Information about the PV Backsheet is often not included on a 

https://doi.org/10.1038/s41597-025-04938-5


7Scientific Data |          (2025) 12:628  | https://doi.org/10.1038/s41597-025-04938-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

Module specification sheet from the manufacturer, so if this information is known, it is valuable to include, as 
the details of the PV Backsheet can significantly impact how a Module degrades17.

PV Cell Ontology.  A PV Cell is a semiconductor-based device that converts light into electricity and is the 
smallest unit of a PV Site. Approximately 95% of the photovoltaic cells produced globally are made using crys-
talline silicon (c-Si) wafers61, and these PV Cells are generally identified by the so-called cell technology or 
architecture, which dictates the manufacturing processes used to produce the cells62,63. Older cells are primarily 
Aluminum Back Surface Field (Al-BSF), while more modern cells are Passivated Emitter and Rear Cell (PERC)12. 
As the technology develops, Tunnel Oxide Passivated Contact (TOPCon) cells and Silicon Heterojunction (SHJ) 
cells are expected to gain significant market share61,64.

Figure 4 introduces the structure of the PV Cell ontology.

Discussion
Impact of Ontologies on X-ray Beamline Data.  X-ray ontologies can help unify knowledge about the 
configuration of an experimental setup to make it appropriate for the material sample being studied. This means 
that the respective ontology of the experiment would contain information about all the experimental parameters 
and configurations. For a detector, the ontology would contain all the information about its tilt, center, position-
ing, etc. Similarly, the sample ontology contains all the information about the sample being studied. Since one 
could do ten different experiments on a single sample, the user can look at just one file to obtain all the informa-
tion needed to know about a specific experiment done on a sample. In this case, information about a particular 
sample is not needed in every experiment. This separation of data and metadata information into distinct onto-
logical groups helps make the data and analysis more manageable and shareable.

The MDS-Onto Framework also helps to manage the analysis of these data. Several studies have used deep 
learning to help researchers learn from diffraction data65,66. It also helps to streamline and standardize statistical 
processes such as deep learning and neural network training. This, in turn, makes science more reproducible.

Impact of Ontologies on PV Site & System Data.  Ontologies provide a powerful tool for PV power 
plants, as they enable data to be preserved with the correct identifiers and metadata at all scales, from the Cell 
to the Site. From an asset owner’s perspective, encapsulating all of this information into an ontology and a few 
key .json files is valuable, as it provides an easy means for information transfer when an asset changes hands. 
On the modeling side, asset owners are often concerned with the expected performance of a PV installation; this 
requires a detailed digital twin of the system to be constructed using FAIR data and metadata that can be accessed 
through the ontology using the MDS-Onto Framework.

Methods : A Proposed Ontology Development Framework for Materials Science 
Ontologies
The Current Status of Materials Science Ontologies.  Ontologies were first recognized in the 1980s 
as a promising way to make machine-understandable and shareable information within the semantic web67. The 
initial purpose behind creating ontologies was to break down silos through a commonly controlled vocabulary 
and to provide easy-to-parse semantic information and structure about a certain dataset or domain. Therefore, 
ontologies were designed to contain information such as the definition of a concept, alternative names for that 
concept in the literature, a unique Uniform Resource Identifier (URI) to identify the concept and the connection 
of the concept to other concepts68. Due to their malleable and accommodating structure, ontologies have also 

Fig. 3  The PV Module Ontology.

Fig. 4  The PV Cell Ontology.
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been increasingly acknowledged for their ability to articulate complex and heterogeneous information, enrich 
contextual information, and enable the description of intricate and diverse data sources. Due to this flexibility, 
different pockets within the scientific community began creating ontologies to provide a level of semantic struc-
ture and organization to their experimental data67.

One of these pockets was the field of Materials Science, where more than 40 ontologies exist today, cov-
ering domains ranging from interfaces in batteries to nanoparticles69. Although these ontologies successfully 
define concepts in their respective domains, many of them are isolated ontologies (sometimes referred to as core 
ontologies) or differ in which ontologies they connect to and, therefore, in how they structure their concepts69. 
This difference in structure prevents these Materials Science ontologies from being automatically interoperable 
and compatible with one another, hindering simple knowledge unification across the domains that they cover. 
Therefore, a Materials Science framework with specific ontology creation guidelines is needed to ensure that 
future Materials Science ontologies automatically reflect this compatibility and interoperability.

Similar frameworks have already been established by different cohorts of the scientific community, and their 
relative successes demonstrate the impact that a framework can have on the general unification and interopera-
bility of knowledge30,70. One of the greatest examples of a successful framework is the OBO Foundry principles, 
which consists of twenty key principles that cover every facet of ontology development71. These principles rec-
ommend that (a) relationships used in ontologies be taken from the Relation Ontology (RO), (b) ontologies be 
specified in a common formal language, and (c) ontologies fully encapsulate their selected domain. Through 
these principles, over 170 OBO Foundry ontologies have been established for use in biomedical research, 
and each of these standardizes vocabulary and unifies knowledge in a given biomedical research domain72. 
Since these ontologies were created using the same underlying principles and an agreed-upon structure, OBO 
Foundry has also been able to create tools to automate ontology workflows and easily compare ontologies for all 
OBO Foundry ontologies, showing the benefits of creating a framework73. Below, we introduce some key recom-
mendations that comprise our MDS-Onto Framework, namely the suggested positioning of all MDS ontologies, 
what knowledge language representation should be used for MDS domain ontologies, and where they should 
be published.

Materials Data Science Ontology (MDS-Onto)
Materials Data Science Ontology, a low-level ontology, sits directly below PMDco and other mid-level ontologies 
in its specificity level. It unifies concepts from various Materials Science domains by integrating domain-specific 
terminologies under the same overarching ontology. Even though PMDco is primarily used to map the core 
terms of MDS-Onto, other mid-level ontologies that are BFO-conformant can be used to map terms and con-
cepts if terms are not available in PMDco. By matching our terms to BFO, we ensure that our ontology is posi-
tioned under schema.org and the semantic web, allowing developers to check term and relationship mappings 
with other registered ontologies and find resolutions early (usually by adopting the other term). This process is 
referred to as ontological alignment and expands out of the single domain to all concepts, and even into other 
domains.

Purpose of Modular and Extensive Approach.  Using PMDco (Platform Material Digital Core 
Ontology) as the main semantic bridge between the MDS (Materials Data Science) Ontology (MDS-Onto) 
and upper-level ontologies such as Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE)74  
or BFO may introduce significant challenges. Different scientific domains present divergent concepts and rela-
tionships that may not naturally extend from those defined in PMDco. To overcome the direct dependency of 
PMDco terms to align to MDS concepts, we propose a modular approach and extensive framework designed to 
achieve interoperability through ontological mappings. Figure 5 illustrates the general structure of the MDS-Onto 
Framework with its hierarchical components. At its core, the framework utilizes BFO as the upper-level ontology 
to which MDS-Onto is aligned.

The middle layer, known as the bridge layer, hosts one or more mid-level ontologies such as PMDco, 
QUDT (Quantities, Units, Dimensions, and Types Ontology)75 that serve as semantic intermediaries between 
user-defined terms and relationships within MDS and the abstract concepts in BFO. This layer ensures that spe-
cialized concepts in MDS-Onto are seamlessly aligned with the overarching framework of BFO, thus enhancing 
semantic consistency. Consequently, the framework facilitates the effective interoperability of diverse datasets 
while promoting coherence and extensibility between scientific disciplines. The MDS Ontology (MDS-Onto) 
constitutes a low-level ontology structured into multiple layers, with each higher layer representing increasingly 
abstract generalizations compared to the layers below.

The top-level MDS Concept Ontology extends the terms and relationships provided by the ontologies within 
the bridge layer. This layered approach enables modularity and extensibility by isolating changes within spe-
cific layers, eliminating the need for widespread modifications across the entire stack when updates are made. 
All subdomain and domain ontologies in MDS-Onto reuse or extend mds terms and relationships exclusively 
to maintain consistency across the stack. Certain external ontologies, such as QUDT for specifying units and 
SKOS76 for alternative labels, are allowed for well-defined purposes. By restricting the use of external ontologies 
to targeted tasks, such as units or labeling, MDS-Onto maintains its modular integrity while benefiting from 
established, widely adopted standards. Terms such as mds:Tool and mds:Recipe not only extend concepts from 
bridge layer ontologies but also serve as essential categories for grouping entities defined within the Top-Level 
MDS-Concept Ontology.

Figure 6 illustrates the process of establishing a semantic connection between MDS-Onto and a mid-level 
ontology. While this approach may initially seem to introduce redundancy by replicating terms, it ensures that all 
domain and sub-domain ontologies are built upon MDS terms and relationships, avoiding direct dependencies 
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on external ontologies. As a result, updates-such as changes to PMDco’s entities or relationships can be man-
aged by modifying only this semantic connection within the Top-Level MDS-Concept Ontology. This localized 
adjustment prevents widespread alterations across the system, enhancing the framework’s modularity, flexibility, 
and maintainability.

Domain experts often create new ontologies and integrate them into MDS-Onto without adequately consid-
ering the reuse of existing terms already defined in other ontologies. To address this challenge, MDS-Concept 
ontology proposes to identify and promote the reuse of common concepts within MDS-Onto. By reducing dupli-
cation and enforcing term reuse, this approach enhances consistency and efficiency across ontologies. When 
domain ontologies and subdomains are finalized, they are merged and added to a new version of MDS-Onto. In 

Fig. 5  Modular and Extensive MDS-Onto Framework.

Fig. 6  Modular Approach: Connecting MDS-Onto to PMDco.
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the MDS-Onto Framework, sub domain level terms are labeled following  community stardards guidelines such 
as the recommendations from Research Data Alliance Persistent Identification of Instruments Working Group 
RDA (PIDINST) on how to publish persistent identifiers for instruments77. 

Figure 7 shows that the current MDS Ontology is organized into several domains and subdomains. Each 
subdomain ontology is nested within a specific domain, such as mds:manufacturing, mds:exposure, mds:char-
acterization, mds:geo, and mds:builtenv.

Constructing Domain Ontologies through the MDS-Onto Framework.  Resource Description 
Framework.  Apart from its position within the semantic web, one of the most important aspects to consider 
when creating MDS subontologies is that they are expressed in a formal knowledge representation language that 
optimizes machine readability, data interoperability, and data integration. Given these priorities, ontologies are 
often described using a knowledge representation language called the Resource Description Framework (RDF)78. 
The RDF describes knowledge using textual triples in the following sequence: a subject, a predicate, and an object. 
In this textual structure, the predicate explicates the relationship between two entities, that is, between the subject 
and the object. The RDF became a W3C recommendation for data interchange in 200479, with an update to v1.1 
in 201480, and has since become an essential component of ontology development due to its natural facilitation 
of ontology merging and its inherent compatibility with ever-evolving data schemas. The Resource Description 
Framework Schema (RDFS)81 and its recent extension to RDF-Star82 extend the RDF with a standardized vocabu-
lary for common relationships between resources, including terms to define hierarchical relationships and terms 
to denote the domain and range of relationships. Although RDFS and RDF-star greatly expands the relational and 
terminological complexity that can be incorporated into an ontology, they still lack the terminology to accommo-
date highly complex relationships between concepts and properties. The Ontology Web Language (OWL)83 was 
therefore created in 2004 and updated to OWL2 in 201284 to further expands the progress of RDFS by facilitating 

Fig. 7  Reducing conceptual duplicates using concept ontologies.
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symmetrical and transitive relationships, disjointedness among classes, and other crucial logical axioms. Using 
RDF in conjunction with RDFS/RDF-star and OWL2, Materials Data Science researchers have the necessary 
vocabulary to fully describe complex domains. For these reasons, we chose to incorporate all of these into our 
MDS-Onto framework.

MDS-Onto FindTheDocs.  Once an ontology has been created in the proper semantic web positioning and 
with the aforementioned knowledge representation language specifications, it is pivotal that the ontology be 
published so that other researchers can suggest modifications and incorporate it into the semantic management 
of their own experimental data. The MDS-Onto FindTheDocs website, as illustrated in Fig. 8, performs this task 
by providing an open and easy-to-navigate interface that allows users to search for any ontology that has been 
created through the MDS-Onto Framework. In addition to providing every MDS ontology in multiple syntaxes, 
the website also includes documentation for terms in every ontology, as well as a static visualization of the 
ontology. Furthermore, the website consists of a variety of resources for ontological analysis and visualization, 
including tools like WebVOWL85 and JSON-LD Playground86, and extensive documentation on how to use 
the FAIRmaterials package, which will be discussed further in Section 3. This website has been made available87 
at https://cwrusdle.bitbucket.io/. 

MatPortal.  We have published the latest version of the entire MDS ontology to the MatPortal ontology repos-
itory88, and the Industry Portal89. MatPortal and Industry Portal are publicly accessible repositories with a col-
lection of over thirty Materials Science Ontologies and an arsenal of tools for ontology discovery, analysis, and 
comparison. These Ontology Portal websites are based off of the open-source BioPortal90 website and its net-
work of connected ontology portals, which consists of more than 70 ontologies and engages the biomedical 
community to review and help improve ontologies through its ontology development features. By publishing 
our ontology to MatPortal and IndustryPortal, we are allowing the Materials Science community to review our 
ontology and identify and assess potential mappings between our terms and terms from other ontologies. This 
ensures that we remain in sync with the rest of the Materials Science community when it comes to ontology 
maintenance and evolution.

The Relationship between MDS-Onto and FAIRification.  FAIRification is a method of standardizing the 
collection and storage of experimental data to ensure that the said data are findable, accessible, interoper-
able, and reusable1,2. Continual efforts are underway to FAIRify different forms of data to allow for smooth 
cross-collaboration between scientific communities. These efforts include making all data readily Findable 
by implementing unique identifiers across data portals, ensuring efficient Access through standardized inter-
faces for seamless sharing, establishing Interoperable links to connect disparate datasets and enhance their 
usability across various software tools, and promoting data Reuse by providing comprehensive licensing infor-
mation. Detailed descriptions and industry-approved definitions of the FAIR data standard are listed on the 
Open Source FAIR Cookbook website91, providing more clarification on what it means for data to be FAIR92. 
While ontologies do not directly FAIRify data themselves, they are an integral step towards data FAIRification. 

Fig. 8  Home page of the MDS-Onto FindTheDocs website. The website consists of all of the MDS domain 
ontology files in different syntaxes along with corresponding documentation, links to resources to aid ontology 
visualization and analysis, and documentation on how to use the FAIRmaterials package.
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Ontologies are most directly associated with the Interoperability aspect of FAIRification, as they detail data 
and metadata in a standard knowledge representation language and provide a framework for automati-
cally connecting two data sets whose variables are mapped onto the ontology. Ontologies also create unique 
resource identifiers for all concepts and instantiations of concepts, and therefore satisfy a key component of 
Findability. However, these unique resource identifiers are not automatically findable by machines since the 
ontology data and corresponding identifiers are not necessarily entered into a searchable resource. Therefore, 
more effort is needed to fully satisfy the Findability aspect of FAIR. Additionally, since ontology files are not 
automatically made available to others via a standard communication protocol, there are additional steps 
needed to make experimental data accessible through an ontology. Lastly, while certain relationships between 
ontologies can easily allow researchers to attach detailed provenance to data and their corresponding meta-
data, data usage licenses are still necessary to satisfy the reusability component of FAIR93–97. Hence, ontologies 
should primarily be viewed as a useful tool towards achieving FAIR data rather than as an automatic indicator 
of FAIRified data.

Simplifying the MDS-Onto Creation Process with the FAIRmaterials R & Python Package.  This 
section outlines the methodology utilized in the development of FAIRmaterials98. FAIRmaterials is a bilingual 
package in R and Python that translates several .csv files from a public .csv template, which can be found 
here, with ontology terms and corresponding data in RDF triples. The three main outputs that result from run-
ning the package include Turtle (/texttt.ttl) and JSON-LD files storing the translated RDF triples, as well as a 
graph visualization of the RDF triples (saved as an .svg in R and a .png in Python).

The Python version also includes a fourth output. It generates documentation for the output ontology as a 
.html file. The FAIRmaterials package is designed to be a simple and user-friendly tool to create and visualize 
ontologies, allowing researchers of all levels of ontology experience to engage in knowledge management. This 
tool makes it easier for individual researchers to create ontologies by offering an alternative to complex tradi-
tional ontology editing platforms such as Protege99. FAIRmaterials simplifies ontology development through 
a .csv-based template system, which has well-documented instructions and is intuitive to use. The package’s 
conversion of simple and structured .csv inputs into rich, well-defined ontologies facilitates the creation of 
ontologies to improve FAIRification1 of research data.

The RDFLib library of W3C supports the capabilities of the package’s R and Python versions by programmat-
ically creating and populating ontologies100. RDFLib101,102 also allows serialization into many syntaxes, including 
Turtle and JSON-LD, for diverse user needs. The package not only helps generate ontologies, but also provides 
tools for static visualizations, and the generation of detailed .html documentation (in Python) improves both 
the readability and usability of ontologies.

FAIRmaterials is designed to simplify ontology development and address the lack of standardized vocab-
ularies in many domains that hinder data sharing and interoperability. Through a user-friendly .csv-based 
template system, FAIRmaterials enables researchers of all levels of ontology experience to design and expand 
ontologies efficiently. This approach in combination with additional features of the package, such as automated 
ontology merging, static visualizations, and comprehensive documentation, increases its utility in implementing 
the FAIR principles. Major benefits of FAIRlinked is the ease of creating baseline domain ontologies. We believe 
that using a csv-based template with a modular approach for terms mappings to mid level ontologies lower 
the barrier for usage as domain experts can choose to map their terms directly to MDS-Concept, minimizing 
the efforts required for terms alignement. 

FAIRLinked: Creating Ontology Aligned FAIR Datasets.  FAIRLinked52 is a Python package that trans-
forms research data into FAIR-compliant Linked Data. By utilizing the RDF Data Cube Vocabulary, using a meas-
ure dimension approach, and mapping data to low-level ontologies (e.g., MDS-Onto), FAIRLinked fosters data 
interoperability and reusability103. This focus on semantic data management and enhancement and FAIR com-
pliance sets FAIRLinked apart from other data management tools, making it especially appropriate for research 
scenarios that require standardized ontology-aware data publishing. Designed to work alongside researchers in 
a variety of data generation contexts, ranging from laboratory experiments to observational workflows, such 
as photovoltaics or geospatial studies, FAIRLinked prompts users with questions before and after running an 
experiment to facilitate converting tabular experimental data and metadata into an ontology-backed RDF data-
set. Users can fully utilize this package by supplying ontologies that adopt frameworks similar to MDS-Onto for 
scientific disciplines beyond Materials Data Science. In the context of Materials Data Science, MDS-Onto aims 
to represent its diverse domains and subdomains comprehensively. The primary goal of FAIRLinked is to bridge 
the gap between ontologies and datasets, enabling data to be shared, semantically reasoned over, and integrated 
into automation pipelines. These pipelines transform raw data into semantically enriched, FAIR-compliant and 
AI-ready datasets.

Figure 9 illustrates the general framework of FAIRlinked and FAIRmaterials, which work side by side 
to create FAIR data. FAIRlinked takes as input MDS-Onto and domain ontologies files to create a data-
frame(.csv templates) with variables(column names) extracted from the domain ontologies files that have 
been modularized to MDS-Onto Ontology. The template is populated with data and is fed into FAIRlinked to 
generate JSON-LD and turtle files populated with data. Users can specify a single JSON-LD file to be created 
per dataset or a JSON-LD file per row, depending on the application and user case. By creating JSON-LD files 
that have unique and parseable fine names, one can easily write scripts to find, access, read, and integrate it to 
data workflows. It promotes significant advances by creating more reliable, reproducible and efficient research, 
where data and metadata are monitored throughout their lifecycle and easily integrated into data science pipe-
lines and workflows.
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Community Engagement with MDS-Onto
MDS-Onto Framework is an open-source project with an ensemble of user-friendly and complementary tools 
available to the scientific community to use in their respective research fields and allow them to contribute to its 
core development in domain-specific applications. MDS-Onto have a governance structure based on core devel-
opers and domain experts leads that oversee and monitor the developement of domain ontologies and creation 
of FAIR data of research teams in their respective areas. Domain leads responsibility is to ensure quality require-
ments and consistency of terms and ontologies created within the MDS-Onto Framework as well as enhancing 
the ongoing collaborations and forming new partnerships.

Domain leads closely interact with the MDS-Onto Framework leadership and core development teams to 
ensure the transfer of knowledge and that new progress are being properly shared. The MDS-Onto core team 
often promotes workshops and we host biannual meetings with collaborators to illustrate new developments and 
foster new partnerships. We also have ongoing projects where domain leads or a core member of development 
teams directly participate in the research to facilitate the ontology and fair data creation and ensure that data are 
being properly managed in all its lifecycle.

Data availability
All ontology files (.owl and .ttl), supportive documentation (.html) and .json files can be accessed 
and downloaded from https://cwrusdle.bitbucket.io/) in the tab “Domain Files” in its current version (0.3.0.0). 
The ontology files are also available on MatPortal (https://matportal.org/ontologies/MDS) and Industry Portal 
(https://industryportal.enit.fr/ontologies/MDS) and have been published on osf104. The current modular MDS 
ontologies on version 0.3.0.0 are: PV Battery, Cell, Charge Controller, Module, Site, Interdigitated Combs, Surface 
Insulation Resistance (SIR), IV Curve, Atomic Force Microscopy, Fractography, Profilometry, Pyrometry, X-Ray 
diffraction and FTIR. Files can be accessed and downloaded directly from the MDS-Onto FindtheDocs webpage. 
New ontologies have been verified and validated for different domain experts in the particular field.

Code availability
The FAIRmaterials Python package can be easily accessed from the Python Package Index (PyPI)105. To install 
the package, simply search for “FAIRmaterials” on the PyPI website50 and follow the instructions provided for 
installation. The package can also be installed with the following Python command:

pip install FAIRmaterials

The FAIRmaterials R package can be easily accessed on the Comprehensive R Archive Network (CRAN)106. To 
install the package, simply search for “FAIRmaterials” on the CRAN website51 and follow the instructions pro-
vided for installation. The package can also be installed with the following R commands:

install.packages("FAIRmaterials")library(FAIRmaterials)

The package includes comprehensive documentation, including detailed usage examples. These can be found 
in the packages vignette available on the “FAIRmaterials” page on CRAN found51. You can also access the package 
vignette after installation using the following R command:

vignette("FAIRmaterials")

More documentation can be found after the installation using the R command:

?process_ontology_files

Fig. 9  FAIRmaterials and FAIRLinked workflow. In the input layer, the user fills in the .csv template, mapping 
terms, and relationships to mid-level ontologies, and runs the FAIRmaterials package to generate three outputs: 
JSON-LD empty templates, ontologies (.owl), and a .png for ontology visualization. In the subsequente step, 
domain Ontologies created with are used to create dataframe templates with interoperable ontological variables. 
When the dataframe is populated with data is feed into FAIRlinked that outputs populated JSON-LD and .ttl files.
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The code for both versions can also be accessed through a public GitHub104, with more documentation for the 
packages. The FAIRLinked Python package can be access and installed on PyPI52 It can also be installed with the 
command:

pip install FAIRLinked
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