

¹ Efficient secretion of a plastic degrading enzyme from the
² green algae *Chlamydomonas reinhardtii*

³ **Authors:** João Vitor Dutra Molino¹, Barbara Saucedo¹, Kalisa Kang¹, Chloe Walsh¹,
⁴ Crisandra Jade Diaz¹, Marissa Tessman², Stephen Mayfield^{1,2*}

⁵

⁶ **Affiliation:**

⁷ 1 - Division of Biological Sciences, University of California San Diego, La Jolla,
⁸ California, United States of America.

⁹ 2 - Algenesis Inc., 1238 Sea Village Dr., Cardiff, CA, United States of America

¹⁰

¹¹ *Correspondence: **Stephen P. Mayfield** (smayfield@ucsd.edu)

¹²

¹³ **Keywords:** Microalgae, *Chlamydomonas reinhardtii*, Environmental Biotechnology,
¹⁴ Climate-Neutral Economy, Sustainable Plastic Recycling, PETase, secretion

¹⁵

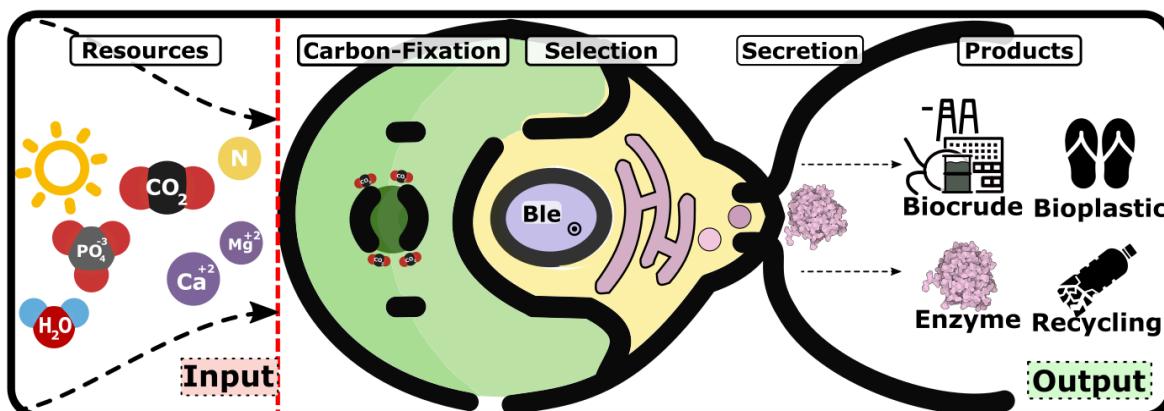
¹⁶ **ORCIDs**

¹⁷ **João Vitor Dutra Molino:** <https://orcid.org/0000-0003-2475-9807>, candidomolino@gmail.com

¹⁸ **Barbara Saucedo:** <https://orcid.org/0009-0000-0886-0839>, barbarasaucedozoso@gmail.com

¹⁹ **Kalisa Kang:** <https://orcid.org/0009-0006-1939-8129>, k4kang@ucsd.edu

²⁰ **Chloe Walsh:** <https://orcid.org/0009-0000-1504-8275>, cswalsh@ucsd.edu


²¹ **Crisandra Jade Diaz:** <https://orcid.org/0000-0001-7342-9041>, cjdiaz@ucsd.edu

²² **Marissa Tessman:** <https://orcid.org/0000-0003-0558-9224>, mtessman@algenesismaterials.com

²³ **Stephen Mayfield:** <https://orcid.org/0000-0001-7642-9047>, smayfield@ucsd.edu

²⁴

²⁵ **Graphical Abstract**

²⁶

²⁷

²⁸

²⁹

30 Abstract

31 Plastic pollution has become a global crisis, with microplastics contaminating every
32 environment on the planet, including our food, water, and even our bodies. In
33 response, there is a growing interest in developing plastics that biodegrade naturally,
34 thus avoiding the creation of persistent microplastics. As a mechanism to increase
35 the rate of polyester plastic degradation, we examined the potential of using the
36 green microalga *Chlamydomonas reinhardtii* for the expression and secretion of
37 PHL7, an enzyme that breaks down post-consumer polyethylene terephthalate
38 (PET) plastics. We engineered *C. reinhardtii* to secrete active PHL7 enzyme and
39 selected strains showing robust expression, by using agar plates containing a
40 polyester polyurethane (PU) dispersion as an efficient screening tool. This method
41 demonstrated the enzyme's efficacy in degrading ester bond-containing plastics,
42 such as PET and bio-based polyurethanes, and highlights the potential for
43 microalgae to be implemented in environmental biotechnology. The effectiveness of
44 algal-expressed PHL7 in degrading plastics was shown by incubating PET with the
45 supernatant from engineered strains, resulting in substantial plastic degradation,
46 confirmed by mass spectrometry analysis of terephthalic acid (TPA) formation from
47 PET. Our findings demonstrate the feasibility of polyester plastic recycling using
48 microalgae to produce plastic-degrading enzymes. This eco-friendly approach can
49 support global efforts toward eliminating plastic in our environment, and aligns with
50 the pursuit of low-carbon materials, as these engineered algae can also produce
51 plastic monomer precursors. Finally, this data demonstrates *C. reinhardtii* capabilities
52 for recombinant enzyme production and secretion, offering a “green” alternative to
53 traditional industrial enzyme production methods.

54

55

56

57

58 Introduction

59 In the 21st century, transitioning to a climate-neutral economy is an urgent and
60 critical challenge, demanding innovative solutions across all facets of society.
61 Biotechnology, especially through the utilization of microalgae, has the potential to
62 play a vital role in this transformation. Microalgae offer substantial environmental
63 benefits, such as replacing fossil-based products with products that offer significantly
64 reduced greenhouse gas emissions (Gupta et al., 2024; Moody et al., 2014). As a
65 sustainable source for bioplastic production, microalgae provide a renewable
66 alternative to petroleum, and contribute to CO₂ sequestration, addressing two major
67 environmental concerns. However, these microalgal production processes must
68 overcome economic and scaling barriers to realize their full potential and achieve
69 broader adoption. This includes making them cost-competitive with traditional
70 methods and ensuring their cultivation and processing are environmentally
71 sustainable and efficient (Sari et al., 2021). By addressing these challenges,
72 microalgae can become a cornerstone of a more sustainable and climate-resilient
73 future.

74

75 Petroleum-based plastics contribute to significant environmental degradation, not
76 only through direct greenhouse gas emissions during production, but also by causing
77 widespread plastic pollution after their useful life (MacLeod et al., 2021). Plastics
78 presently account for about 4.5% of global greenhouse gas emissions, with
79 projections showing a potential increase in emissions if current trends continue
80 (Cabernard et al., 2021). The production of plastic has grown exponentially over the
81 past 70 years, from just two million tons in 1950 to over 450 million tons today,
82 attesting to the widespread use of plastics in many sectors (Ritchie et al., 2023). This
83 increase in production has led to significant environmental challenges, reflected in
84 recycling rates of only 5-6% in 2021, actually down from the 8.7% rate of recycling
85 just three years prior (Greenpeace, 2022). The rest is either landfilled, incinerated, or
86 mismanaged, with a significant portion ending up in natural environments.
87 Unfortunately, between 4.8 and 12.7 million tons of this plastic enter the oceans
88 yearly, contributing to the growing problem of marine pollution (*The Environmental
89 Impacts of Plastics and Micro-Plastics Use, Waste and Pollution*, 2020). This influx of
90 plastics in the marine ecosystem is alarming, as it not only affects marine life but

91 also poses a threat to human health through bioaccumulation in the food chain
92 (Leslie et al., 2022), since it ultimately breaks down into micro- and nano-plastics
93 that can persist for hundreds of years (*The Environmental Impacts of Plastics and*
94 *Micro-Plastics Use, Waste and Pollution*, 2020). The continued accumulation of
95 plastics is projected to have long-lasting impacts, with some estimates suggesting
96 that by 2050, the mass of plastics in the ocean could surpass that of the mass of fish
97 (*The Environmental Impacts of Plastics and Micro-Plastics Use, Waste and Pollution*,
98 2020)

99

100 Various strategies have been pursued to mitigate the pervasive issue of plastic
101 pollution. These include bans on single-use plastics like plastic bags, straws, and
102 utensils, and promoting reusable alternatives such as metal water bottles and fabric
103 shopping bags. Improving waste collection and recycling systems can also play a
104 crucial role in diverting plastic waste from landfills and oceans (Hasan et al., 2023).
105 Given plastic's essential role in applications like food spoilage prevention and
106 general consumer goods packaging (Heller et al., 2019; Verghese et al., 2015),
107 eliminating plastics any time soon seems unlikely. However, even today, there are
108 alternatives such as bioplastics, which are plastics derived from bio-based materials.
109 These bio-plastics offer potentially much more environmentally favorable profiles and
110 some of these materials have successfully scaled up to industrial production.
111 (European Commission. Directorate General for Research and Innovation. et al.,
112 2021).

113

114 Nonetheless, these options still contribute to greenhouse gas emissions, mainly due
115 to the feedstock production chain and competition with food crops for arable land,
116 water, and energy (Richard Platt, 2021). Some bioplastics are chemically identical to
117 their petroleum-based counterparts, posing similar end-of-life environmental
118 problems (Prieto, 2016). As a result, there is increasing interest in creating
119 bio-based, sustainably sourced plastics that naturally biodegrade, helping to prevent
120 the formation of long-lasting microplastics (Allemand et al., 2024). In this context,
121 microalgae have been explored as a renewable source of bio-crude, capitalizing on
122 features like non-arable land requirements, high productivity per area, and scaling
123 feasibility (Tang et al., 2020). Microalgae capture carbon dioxide during growth and
124 can utilize that carbon to generate biomaterials for plastic production. At scale, it can

125 potentially align with current plastic industry pricing (Beckstrom et al., 2020). The
126 emergence of biodegradable consumer products, such as sneakers made from
127 algae-derived oil, showcases the readiness of this technology for bioplastic
128 production (Beckstrom et al., 2020). To advance the competitiveness and adoption of
129 microalgal bioplastics, it is essential to prioritize cost reduction measures, leverage
130 synergistic byproduct production for increased revenue, and optimize economic
131 efficiency—all while preserving positive environmental impacts.

132

133 In this study, we engineered a strain of *Chlamydomonas reinhardtii* to efficiently
134 secrete PHL7, an enzyme capable of degrading post-consumer polyethylene
135 terephthalate (PET) plastics (Sonnendecker et al., 2021). The degradation generates
136 PET monomers that can be recycled into new PET plastics (Tournier et al., 2020). As
137 photosynthetic organisms, microalgae efficiently convert light and carbon dioxide into
138 valuable biomass and bioactive compounds, supporting a closed-loop system from
139 cradle to grave, thereby minimizing environmental impact. Its rapid growth and
140 scalability further underscore its suitability for large-scale cultivation. Extracellular
141 secretion of PHL7 simplifies protein purification and eliminates the need for costly
142 and labor-intensive cell lysis processes. This feature significantly enhances the
143 practicality and economic viability of using microalgae for bioplastic production and
144 other biomass conversion applications.

145 We envision two promising approaches using our microalgae system. The first
146 involves a single-step process, where algal growth and plastic degradation co-occur
147 within the same medium, providing a streamlined solution for recycling plastic
148 monomers. The second approach is a bifurcated method, separating the algal
149 growth phase from the plastic degradation process, which allows for specialized
150 optimization of each step. These methodologies open new avenues in biotechnology,
151 presenting microalgae as a dual-purpose solution for mitigating plastic pollution while
152 contributing to more sustainable and eco-conscious production of bioplastic
153 feedstock.

154 Results

155 We evaluated the capacity of *C. reinhardtii* CC-1690 for secreting plastic degrading
156 enzymes, using the vector pJP32 (Molino et al., 2018) that employs the *ble* gene as
157 a selection marker and contains a signal peptide to direct an associated recombinant
158 enzyme for secretion. . The recombinant enzyme gene was fused to *ble* gene with a
159 self-cleavage peptide (FMDV-2A) sequence, followed by the signal peptide SP7
160 sequence, used for targeting the protein to the ER for secretion (Figure 1A). This
161 signal peptide is from a cell wall protein (SAD1p) (Ferris et al., 2010). The plastic
162 degrading enzyme studied is PHL7, an enzyme isolated from a compost
163 metagenome and identified for its potential to break down and recycle polyester
164 plastics, specifically PET (Sonnendecker et al., 2021). To identify colonies capable of
165 secreting PHL7, we employed zeocin selection plates containing Impranil® (Bayer
166 Corporation, Germany), a polyester polyurethane polymer suspension, in two
167 concentrations: 0.5% and 0.75% (v/v). Colonies on these plates indicated the
168 successful incorporation of the vector conferring resistance to zeocin. The capacity
169 to secrete the plastic enzyme was observed by the formation of halos (transparent
170 clearing zones in the opacity generated by Impranil®) around the colonies, indicating
171 both secretion and activity of the enzyme in the area around the colonies. We
172 performed three independent biological transformations and recorded the number of
173 colonies and halos (Table 1).

174

175 **TABLE 1: Summary of the number of colonies obtained and the number of**
176 **colonies with clearing zones.**

Construct	Impranil® DLN %	#Colonies	#Halos	%Halos
pJP32PHL7	0.5	5110	1255	24.6
pJP32PHL7	0.75	1904	178	9.3

177 ***Note:** Selection plates contain zeocin at 15ug/mL and Impranil® DLN DLN. The colonies
178 came from three independent transformations, and half of each transformation was plated on
179 either 0.5% (v/v) or 0.75% (v/v) Impranil® DLN plates.

180

181 On plates containing 0.5% Impranil® DLN, 5110 colonies formed, of which 24.6%
182 (1255) produced halos. On the plates with 0.75% Impranil® DLN only 1904
183 colonies appeared, with 9.3% (178) forming halos. These results confirm that *C.*

184 *reinhardtii* can secrete active PHL7, as halo formation indicates (Supplementary
185 Figure 1).

186

187 We further screened the colonies with halos in a 96-well plate setup. Strains
188 identified as secreting PHL7 were in TAP media on 96-well plates for five days. The
189 supernatant was recovered and ester bond cleavage activity was determined by
190 measuring fluorescein diacetate (FDA) cleavage activity. To account for native
191 esterase enzymes secreted during the *C. reinhardtii* life cycle (Ves-urai et al., 2021)
192 capable of cleaving the FDA, we measured the parental wild-type strain CC-1690 in
193 the same experiment (Figure 2). A substantial portion of transformants showed
194 increased activity compared to the wild-type. For colonies selected from plates with
195 0.5% Impranil® DLN, 40.6% (28/69) had higher activity than the averaged results
196 (plus three standard deviations) of wild-type. Plates with 0.75% Impranil® DLN
197 presented 50.9% (27/52) of transformants that exceeded this threshold. An ANOVA
198 followed by a Tukey post-hoc analysis showed significant differences in activity
199 levels between the wild-type and transformed strains, with adjusted p-values of
200 0.0388 and 0.0441 for 0.5% and 0.75% Impranil® DLN plates, respectively (Figure
201 2).

202

203 In addition to the FDA assay, we explored another strategy to detect enzyme activity
204 using agarose gels supplemented with Impranil® DLN inside 96-well plates
205 (Supplementary Figure 2). Impranil® DLN absorbs strongly in the near UV region
206 (~350 nm) (Supplementary Figure 3), and we monitored the decrease in absorption
207 as a proxy for substrate degradation (Supplementary Figure 2). Both methods were
208 functional: FDA had a quicker turnaround (~40 min), while the Impranil® DLN-based
209 assay required several hours (>12 h).

210

211 The Impranil® DLN activity assay revealed distinct differences in activity levels
212 between the wild-type and pJP32PHL7 candidate colonies (Figure 2). As expected,
213 the wild-type strain exhibited a narrow distribution of activity values, with all values
214 clustering below the threshold line. The threshold line was calculated as three
215 standard deviations above the mean wild-type baseline activity level. In contrast, the
216 pJP32PHL7 colonies show a broader distribution of activities, with several values

217 exceeding the threshold, indicating the presence of positive strains (Figure 2). This
218 Impranil® DLN activity assay identified 30% positive transformants (25/84).

219 After the supernatant was used to detect enzyme activity, we blotted the 84 colony
220 cultures onto agar plates containing 0.5% or 0.75% Impranil® DLN as a quality
221 control step to confirm the retention of the halo-forming phenotype (Supp. Figure 4).
222 Halo formation was observed in 81 colonies from the 0.5% plates and 83 colonies
223 from the 0.75% plates, with the absence of halos in three colonies from the 0.5%
224 plates likely due to sampling errors or false positives in densely populated regions on
225 the selection plates. A time-lapse video ([Video 1](#)) demonstrates halo formation
226 around cell patches on TAP agar plates containing 0.5% Impranil® DLN and 15
227 µg/mL zeocin, confirming PHL7 secretion and retention of bleomycin resistance.

228 The highest-producing strain from the screenings was selected and expanded, and
229 its supernatant was used to run a zymogram containing Impranil® DLN (Figure 3C).
230 We initially observed the presence of two clearing zones on the protein gels,
231 indicating the presence of two isoforms of the enzyme being produced by *C.*
232 *reinhardtii* in the pJP32PHL7 strain, which we assumed was due to post-translational
233 modifications (PTMs) occurring in the secretory pathway. We confirmed the presence
234 of PHL7 in both cleared regions by mass spectrometry assisted protein sequencing.
235 We identified the presence of 9 and 11 PHL7 peptides from the top and bottom
236 bands, respectively. *In silico* protein sequence analysis using NetN-Glyc-1.0
237 indicated one possible explanation for the two isoforms (Supp. Figure 5). The
238 sequence holds three possible glycosylation sites, two of them juxtaposed, possibly
239 explaining the two isoforms detected, one with one residual glycosylated and the
240 other with both positions glycosylated. To confirm that glycosylation is the likely PTM
241 being performed on PHL7, we prepared a new PHL7 version (PHL7dg), replacing
242 the asparagine residues on the predicted glycosylation sites with aspartic acid
243 (Supp. Figure 5).

244 The new vector containing the non-glycosylated PHL7 was transformed and
245 generated several colonies, with a few presenting halos (Supp. Figure 7). We
246 selected one of the colonies from the single transformation event to grow in a flask.
247 We performed a zymogram alongside the original sequence (Figure 3C). We
248 observed a down shift in the band position in the gel, indicating an absence of the
249 PTM observed in the original unmodified enzyme.

250

251 We compared the growth performance of the top producer pJP32PHL7 strain to the
252 wild-type parental CC-1690 strain (Figure 4). Both strains grew similarly without any
253 observable difference in growth rate between the wild-type and recombinant strains,
254 with a slightly lower stationary phase density for the PHL7 strain. The secretion of
255 PHL7 enzymes was measured by changes in OD at 350 nm due to enzymatic
256 degradation of Impranil® DLN (Figure 4). The production curve demonstrated that
257 the top producer pJP32PHL7 strain started to secrete detectable levels of enzymes
258 on approximately day 5 of cultivation, coinciding with the onset of the stationary
259 phase (Figure 4). The secretion of PHL7 enzymes exhibited a continual rise
260 throughout the stationary phase. A decrease or stabilization in enzymatic content
261 was not observed within the timeframe studied.

262

263 To demonstrate that PHL7 produced by *C. reinhardtii* can degrade PET plastic, in
264 addition to degrading the Impranil polyurethane, we incubated a concentrated
265 supernatant sample from the PHL7 strain, and a wild-type control, with
266 approximately 30 mg of PET powder (>50% crystallinity) for seven days at 68°C in
267 500 mM phosphate buffer (pH 8) (Figure 5). The reaction was monitored by
268 measuring the absorbance at 240 nm, while tracking the formation of TPA, a
269 degradation product of PET (Sonnendecker et al., 2021). A sharp increase in
270 absorbance was observed on the first day, followed by a steady rise over the
271 subsequent seven days. The stark difference in values between the PHL7 strain and
272 the wild-type control (p-value = 6.91e-07) supports the conclusion of PHL7-mediated
273 PET degradation. To confirm the presence of TPA in the reaction media, we
274 submitted the sample for HESI-Orbitrap analysis (LC-MS), which verified TPA's
275 presence (Figure 5, Supp. Figure 6).

276 Discussion

277 Plastic pollution is a significant challenge on a global scale, with no clear resolution
278 in sight. While plastic recycling processes are in effect today, they are expensive,
279 cumbersome, and generally only work for downcycling, thus limiting their use (Shen
280 & Worrell, 2024). New systems designed around a much more efficient process are
281 required, with lower environmental impact, lower costs, and much easier to scale.
282 One such new system could be built around the biological recycling of polyester

283 plastics, including PET, polyurethanes, and several other polyester-based plastics.
284 Using enzymes to depolymerize polyester plastics, ideally into their monomeric
285 constituents, would allow for actual recycling or even upcycling into new plastic
286 products (Li et al., 2023). This solution would require technical advances and political
287 and social changes to support such an endeavor. Within this framework, polyester
288 plastic recycling using enzymes is a promising strategy with a potential market
289 demand of at least 140000 T/year of recycled PET alone (Tournier et al., 2020).
290 Polyester polyurethanes could also be added to this recycling program at similar
291 levels of material (Rossignolo et al., 2024).

292

293 Plastic degrading enzyme production could also be synergic with the production of
294 microalgae bioplastic precursors, potentially displacing petroleum as a raw material
295 supply chain while contributing to CO₂ capture (Beckstrom et al., 2020).
296 Implementation of this technology would achieve the benefits of providing
297 biodegradable plastics in the market while simultaneously supplying (enzymes) for
298 enzymatically recycling them. Enzymes are pivotal for the bioconversion of plastics,
299 and several enzymes have been studied for plastic degradation (Bahl et al., 2021).
300 Remarkable improvements in available PET degrading enzymes have been made
301 through either bioprospection to identify novel enzymes from the environment
302 (Sonnendecker et al., 2021) or enzyme engineering to improve existing enzymes
303 (Tournier et al., 2020). These enzymes can now be produced in different
304 recombinant systems (<https://doi.org/10.5281/zenodo.5811103>). Unfortunately, all
305 current industrial-scale growth systems are heterotrophic, which demand fixed
306 carbon feedstocks, partially displacing the benefit of any plastic recycling. A more
307 sustainable alternative is to use phototrophic organisms to produce these enzymes,
308 and microalgae are an ideal candidate due to their innate photosynthetic nature and
309 proven capacity to produce precursors that can be converted to petroleum
310 replacements for fuel and plastic (Gupta et al., 2024; Tang et al., 2020).

311

312 Here, we used green microalgae to secrete the polyester depolymerizing enzyme
313 PHL7, and demonstrated its capacity to degrade post-consumer polyester plastics,
314 including both PET and polyester polyurethanes. Our system used the previously
315 developed pJP32 vector (Molino et al., 2018) to drive efficient secretion of this
316 plastic-degrading enzyme from algae cells, and a screening strategy based on halo

317 formation around colonies to detect secreting colonies (Supp. Figure 1). Impranil® is
318 a polyester polyurethane dispersion that decreases the agar plate transparency, and
319 becomes clear when it is enzymatically degraded. While wild-type strains might
320 secrete native enzymes capable of cleaving ester bonds for a specific substrate, no
321 degradation of Impranil® was observed (e.g., colonies without surrounding halo in
322 Supp. Figure 1 and 7). This is expected since *C. reinhardtii* has never been observed
323 to utilize nutrients trapped inside polymeric structures outside the cell for growth
324 (e.g., plastics).

325

326 To further characterize the enzyme secreted by *C. reinhardtii*, we screened
327 candidate colonies using the FDA and the Impranil® degradation assays (Figure 2).
328 Both methods successfully identified positive strains, though they differ significantly
329 in sensitivity, specificity, and practicality. The FDA assay offers a faster screening
330 option, with results obtained in approximately 40 minutes. However, this method is
331 not specific to polymer degradation, as native enzymes can also cleave FDA (Liu et
332 al., 2023). This demands the inclusion of proper controls to account for background
333 enzymatic activity unrelated to plastic degradation. While the assay is cost-effective
334 due to its cheap substrate, its utility is limited because a follow-up test is required to
335 confirm the presence of a plastic-degrading enzyme. In contrast, the Impranil®
336 -based assay, though taking longer to produce results, is more specific to polymer
337 degradation. Native enzymes are incapable of cleaving this substrate (see Figure 1
338 and Suppl. Figure 1), making it a more reliable indicator of plastic degradation
339 potential. Moreover, Impranil® is structurally closer to post-consumer plastics, further
340 aligning the assay with real-world applications. Interestingly, both methods
341 underestimated the actual number of positive strains. Subsequent blotting of strains
342 led to more halo formations than those identified by the FDA or Impranil® assays.
343 This suggests that both enzymatic assays may have relatively high detection limits,
344 potentially missing weaker positive strains. However, they remain useful for
345 comparing candidates, as they provide a more straightforward and objective
346 measurement of enzymatic activity compared to the subjective nature of halo
347 formation. Though more subjective, the halo formation assay appears to have a
348 lower detection limit. This is likely due to the continuous production of the enzyme by
349 live cells near the cell patches, allowing for signal buildup over time. This

350 accumulation likely increases the assay's sensitivity, enabling it to detect weaker or
351 slower enzyme activity that the FDA and Impranil® assays may miss.

352

353 We observed the formation of two clearing zones in a zymogram containing
354 Impranil® as a substrate. The two clearing zones indicate the presence of two active
355 isoforms of the enzyme. Protein sequencing of both regions identified the presence
356 of PHL7 peptides (Supp. Data 1). Analysis of the protein sequence with NetNGlyc
357 1.0 (Gupta & Brunak, 2002) indicates the presence of three possible glycosylation
358 sites at the 170, 171, and 188 amino acid positions (Supp. Figure 5), which possibly
359 explains the two bands observed, since consecutive glycosylation sites are likely not
360 completely glycosylated (e.g. both positions glycosylated). The peptides in the
361 putative glycosylation region were also not observed in the protein sequence, likely
362 due to unmatched expected peptide mass due to carbohydrate addition. We
363 designed a gene version with substitutions in all three glycosylation sites to further
364 characterize the protein, replacing the asparagine (N) with aspartic acid (D). Aspartic
365 acid residues do not serve as sites for N-linked glycosylation because they lack the
366 necessary amide group that forms the glycosidic bond with the sugar moiety. With
367 the new pJP32PHL7dg vector (Supp. Figure 7) containing the modified version of
368 PHL7 containing aspartic acid residues (PHL7dg), we obtained only a single clearing
369 zone in the zymogram (Figure 3), indicating the absence of glycosylation in
370 PHL7dg, as predicted. Interestingly, the number of colonies displaying halos in our
371 transformation with the pJP32PHL7dg vector was significantly lower, suggesting that
372 removing the glycosylation site in PHL7dg impacted the activity or processing of the
373 protein in algae (Xu & Kieliszewski, 2011). This aligns with findings where adding
374 glycomodules to mVenus resulted in a 12-fold increase in secretion (Ramos-Martinez
375 et al., 2017), and a similar effect may have occurred here. However, the primary goal
376 of the pJP32PHL7dg experiment was to assess the presence of glycosylation in
377 PHL7 via gel shifting, and the observed transformation result is based on a single
378 transformation event. Further exploration is required for a more meaningful
379 conclusion to be drawn.

380

381 We conducted an enzymatic degradation assay using PET beads to further validate
382 the activity of PHL7 secreted by *C. reinhardtii*. In this assay, we incubated a
383 concentrated supernatant from the PHL7 strain and a wild-type control in 500 mM

384 phosphate buffer (pH 8) at 68°C. The results showed a rapid increase in absorbance
385 at 240 nm for the PHL7 sample, indicating potential PET degradation. In contrast,
386 the wild-type sample showed a slight decrease in absorbance, likely due to
387 components either precipitating out of the solution or degrading at the elevated
388 temperature. The PET beads used in this assay had high crystallinity (~50%), while
389 PET bottles have a range of 30-40%, and other PET plastic containers 6-8% (Kawai
390 et al., 2014; Ronkvist et al., 2009). Crystallinity is a key factor in enzyme
391 accessibility, as highly crystalline PET is usually more resistant to enzymatic
392 breakdown (Walter et al., 2022). Despite this challenge, the PHL7 enzyme still
393 demonstrated degradation activity, suggesting its efficacy even on more structurally
394 robust PET substrates. Nevertheless, complete degradation was not observed,
395 either by crystallinity resistance or enzyme losing activity after an extended time.

396

397 Interestingly, after day 2, both the wild-type and PHL7 samples displayed similar
398 trends in the increase of absorbance (p-value: 0.5159). This suggests that another
399 process, unrelated to the direct enzymatic activity of PHL7, may be contributing to
400 the signal. However, given that terephthalic acid (TPA), one of the monomers
401 released during PET degradation, was detected by GC-MS in both samples at the
402 final time point, it is possible that some level of PET degradation occurred in both
403 conditions. However, the PHL7 sample exhibited a stronger signal, consistent with
404 the higher 240 nm absorbance, further supporting the role of PHL7 in PET
405 degradation. Overall, the increase in absorbance and the detection of TPA reinforce
406 the conclusion that PHL7 facilitates PET degradation. The additional increase in
407 signal for the wild-type suggests that other environmental or chemical factors may
408 influence PET breakdown, albeit to a lesser extent.

409 This experiment utilized a concentrate of the supernatant containing the PHL7
410 enzyme, a potential approach for plastic degradation. Specifically, algal biomass can
411 be separated from the PHL7-containing supernatant and converted into alternative
412 materials, such as animal feed, fuel, or plastic (Gupta et al., 2024). Yet, another
413 strategy involves exposing plastic to growing cultures that secrete active enzymes.
414 To illustrate this, we demonstrated the degradation of a sustainable polyester
415 urethane (sPU) film (Figure 6). Since sPU can be derived from biological sources,
416 our group has previously shown the successful conversion of algae oil and starch to

417 form such materials (Chavarro Gomez et al., 2020; Gupta et al., 2024). After
418 approximately ten days of exposure to the pJP32PHL7 culture, secreting the PHL7
419 enzyme, the culture breached the sPU film and fell into the receiving flask. The
420 culture was maintained for an additional month, during which no breach occurred
421 with the wild-type strain. This result only illustrates the strategy since no replicas
422 were performed. Still, it is corroborated by the thousands of colonies observed in our
423 Impranil® selection plates, displaying clearing zones (halos) around them after
424 growth (Supp. Figure 1, Supp. Figure 4, Video1).

425 Previously, *C. reinhardtii* was used to express IsPETase in the chloroplast, one of the
426 first enzymes shown to degrade PET plastics. PET degradation was confirmed using
427 HPLC and scanning electron microscopy with lysates from the transformed cells,
428 demonstrating the potential of green algae to produce the enzyme (Di Rocco et al.,
429 2023). However, accumulation of enzymes inside the cells poses challenges, as it
430 requires cell disruption to release the enzyme, a resource and energy-intensive
431 process. This also complicates the separation of cell biomass from the enzyme,
432 limiting the biomass from being used to produce fuel or bioplastics. Similarly, other
433 researchers engineered IsPETase to be secreted by the marine diatom
434 *Phaeodactylum tricornutum*, demonstrating PET degradation. Culturing with
435 post-consumer plastic yielded lower enzyme activity, potentially due to suboptimal
436 enzymatic reaction conditions (i.e., 37 °C) (Brott et al., 2022) since performed at *P.*
437 *tricornutum* growth condition (i.e., 21 °C) (Moog et al., 2019).

438 In the case of *C. reinhardtii* producing PHL7, the optimal culture temperature (~25°C
439 (Merchant et al., 2007)) differs significantly from the optimal temperature for PHL7
440 activity on PET (~70°C,(Sonnendecker et al., 2021)). Therefore, a
441 compartmentalized process may be more economically and environmentally
442 feasible, as matching growth conditions to enzyme requirements for efficient plastic
443 degradation is unlikely. Nonetheless, we have demonstrated that *C. reinhardtii*, while
444 secreting PHL7, can degrade polymers such as Impranil® DLN and sPU plastic film.
445 Further analyses, such as techno-economic assessments (TEA) and life cycle
446 assessments (LCA), are necessary to determine which strategy—compartmentalized
447 or integrated—would be more effective. However, these analyses are beyond the
448 scope of this manuscript.

449 Conclusion

450 Overall, our experiments demonstrate that green algae can efficiently secrete PHL7,
451 an enzyme capable of degrading polyester plastics, and that the enzyme can
452 depolymerize PET plastic and polyurethane plastics. We demonstrated a
453 comprehensive strategy to generate and efficiently screen recombinant strains
454 capable of secreting functional plastic degrading enzymes, employing a polyplastic
455 dispersion (e.g. Impranil® plates). Such a strategy can be applied to further examine
456 secretion of plastic degrading enzymes, or even to help elucidate synthetic biology
457 strategies to increase secretion in different systems. We envisioned two possible
458 strategies to degrade plastic with green algae biologically. A coupled system, in
459 which cultures would not only harbor the required nutrients for cell growth, but also
460 contain plastic material to be degraded and used as a food source for the algae.
461 Ideally, the strain should be further engineered to assimilate the released organic
462 molecules from the plastic in an upcycling process. Such a strategy is challenging
463 since membrane transporters, metabolic engineering to incorporate the required
464 pathway, and the need of matching the cell requirement to growth and the enzyme
465 requirements to degrade plastic are not presently aligned. On the other hand, a
466 compartmentalized strategy appears attainable in the foreseeable future, provided
467 that each process, cell growth and enzyme reaction, can be performed
468 independently and in its optimal setup.

469

470 Material and Methods

471 Assembly of transformation vectors

472 All restriction enzymes used in this study were acquired from New England Biolabs
473 (Ipswich, MA, US). The vectors utilized are derivatives of the pJP32 vector (Molino et
474 al., 2018), available in the Supplementary dataset. These vectors were assembled
475 using the pBlueScript II KS+ (pBSII) backbone. To create the pJP32 PHL7 construct,
476 the required PHL7 codon-optimized sequence was purchased from IDT (Integrated
477 DNA Technologies, San Diego, CA, USA) and integrated into the expression vectors
478 by NEBuilder® HiFi DNA Assembly (NEB - New England Biolabs). The backbone
479 was prepared by PCR using the protocol described in

480 ([dx.doi.org/10.17504/protocols.io.bprimm4e](https://doi.org/10.17504/protocols.io.bprimm4e)), with 20 bp homology arms to the
481 synthesized PHL7 sequence. The deglycosylated version (PHL7dg) was also added
482 in the same fashion. All vectors contain restriction sites flanking the expression
483 cassette for linearization, XbaI on the 5' side and KpnI on the 3' end. Final
484 sequences can be found at (<https://doi.org/10.5281/zenodo.13959924>). All vector
485 maps can be found at Supp. Figure 8.

486

487 Culture conditions and *C. reinhardtii* transformation

488 Nuclear transformations were performed on the wildtype, cell wall-containing strain
489 *C. reinhardtii* cc1690 (mt+) ([Chlamydomonas Resource Center](#) in St. Paul, MN,
490 USA). This strain was propagated in TAP medium at 25 °C, with constant illumination
491 at 80 µmol photons/m²s, and agitated at 150 rpm on a rotary shaker. Growth curves
492 were established using the protocol described in [protocols.io](https://doi.org/10.17504/protocols.io.bpvbmn2n)
493 ([dx.doi.org/10.17504/protocols.io.bpvbmn2n](https://doi.org/10.17504/protocols.io.bpvbmn2n)), involving the addition of 160 µL
494 aliquots from 250 mL cultures into a 96-well plate per daily sampling. The
495 absorbance was then measured using an Infinite® M200 PRO plate reader (Tecan,
496 Männedorf, Switzerland), ensuring each strain was represented by three biological
497 replicates. For transformation, *C. reinhardtii* cells were grown to the mid-log phase,
498 achieving a density of 3–6 × 10⁶ cells/mL under the previously mentioned conditions
499 ([dx.doi.org/10.17504/protocols.io.bx5cpq2w](https://doi.org/10.17504/protocols.io.bx5cpq2w)). Cells were then harvested by
500 centrifugation at 3000 xg for 10 min and resuspended in a MAX Efficiency™
501 Transformation Reagent for Algae to a 3–6 × 10⁸ cells/mL density. Following a 5–10
502 min incubation on ice with 500 ng of a double-digested vector plasmid, the cells were
503 electroporated using a Gene Pulser® set to 2000 V/cm and 20 µs.
504 Post-electroporation, the cells were allowed to recover in TAP medium, under gentle
505 agitation in room light, for 18 hours. The recovered cells were then centrifuged,
506 resuspended in 600 µL TAP medium, and spread onto two TAP/agar plates
507 containing either 0.5% or 0.75% (v/v) Impranil® DLN ® with 15 µg/mL of zeocin.
508 Incubation continued under light at 60 µmol photons/m²s and a temperature of 25 °C
509 until colony formation was observed.

510 Strain screening

511 Transformants were screened for enzyme activity by observing areas of Impranil®
512 DLN clearing or “halos” around colonies on TAP agar plates containing 15 µg/mL
513 Zeocin and Impranil® DLN at 0.5% and 0.75% (v/v) (DOI:
514 dx.doi.org/10.17504/protocols.io.rm7vzb695vx1/v1). The total number of colonies
515 was determined using OpenCFU (Geissmann, 2013). These halos indicated the
516 degradation of the Impranil® DLN polymer in the plates. Cultured in 160µL of TAP
517 medium for five days in 96-well plates (Nunc™ Edge™ 96-Well, Nunclon
518 Delta-Treated, Flat-Bottom Microplate, Thermo Scientific™), we selected 84 colonies
519 from these plates following the protocol detailed in
520 dx.doi.org/10.17504/protocols.io.big9kbz6, alongside six wild type colonies and six
521 wells with media as blanks. We used a Thermo plate shaker, Model #4625 (Thermo
522 Scientific, 2555 Kerper Boulevard, Iowa, USA, Thermo Labline 4625 Titer shaker) set
523 to 800 rpm under constant illumination (60 µmol photons/m²s) for cultivation.
524 Absorbance and fluorescence measurements were taken using an Infinite® M200
525 PRO plate reader (Tecan, Männedorf, Switzerland) with complete settings described
526 in the Data Setting file. To establish a baseline for our experiments, the six
527 independent replicates of the parental wild-type strain cc1690 were used as a
528 negative control. Following cultivation, we centrifuged the plates at 3000 xg for 5
529 minutes to collect the supernatant, which was then used in the enzymatic assay. The
530 remaining cultures were transferred using a microplate replicator onto a rectangular
531 agar plate containing TAP and Impranil® DLN dispersion to confirm the selected
532 colonies’ ability to generate halos.

533

534 Plate reader settings

535 The Infinite® M200 PRO plate reader (Tecan, Männedorf, Switzerland) plate reader
536 was set to measure cell density and PHL7 activity. Cell density could be followed
537 with chlorophyll fluorescence at Ex. 440 nm Em. 680 nm, and absorbance at 750
538 nm. A set of protocols followed enzyme activity. Using Fluorescein Diacetate (FDA),
539 a fluorophore that fluoresces at Ex. 490 nm Em. and 520 nm when the ester bonds
540 are cleaved, the detailed protocol was added to protocol.io
541 (dx.doi.org/10.17504/protocols.io.n2bvj3j9blk5/v1). The activity was also followed

542 using a plastic dispersion protocol with Impranil® DLN (Bayer Corporation,
543 Germany), using a gel containing 0.2% (m/v) agarose and 0.25% Impranil® DLN
544 DLN (v/v) to keep Impranil® DLN in suspension and absorbances readings were
545 made in 5 min intervals as detailed described in
546 (dx.doi.org/10.17504/protocols.io.14egn9bxml5d/v1). The enzyme's ability to
547 degrade post-consumer plastic was followed by a spectroscopy method using
548 UV-transparent 96 well plates and readings at 240 nm. The protocol is fully
549 described in (dx.doi.org/10.17504/protocols.io.bp2l6xp8klqe/v1). All settings are
550 described in Data settings file.

551

552 Zymogram

553 We utilized the TGX Stain-Free™ FastCast™ Acrylamide Starter Kit (Bio-Rad
554 Laboratories, USA) to prepare upright, SDS zymogram gels. The acrylamide solution
555 was mixed as per the manufacturer's instructions, with the modification of adding 1%
556 v/v Impranil® DLN to the solution to enable the detection of enzyme activity. This
557 mixture was then poured into a casting frame and allowed to polymerize.
558 Post-polymerization, the gel was placed in the electrophoresis apparatus and run
559 under standard protein gel conditions (120-160V, 1-2h) following the run front with
560 the blue dye. The samples were prepared for electrophoresis by adding 4X Laemmli
561 buffer (#1610747, Bio-Rad Laboratories, USA). Following electrophoresis, the gel
562 was immersed in a 100 mM Potassium Phosphate buffer solution, pH 8.0, and
563 incubated at 37°C until transparent bands (clearing zones) appeared. This incubation
564 step was crucial for developing clearing zones, which indicates enzymatic
565 degradation of the Impranil® DLN within the gel matrix. Clearing zones typically
566 emerged within a couple of days of incubation, allowing for the qualitative
567 assessment of enzyme activity.

568 Protein Sequencing

569 The bands identified in the zymogram of the pJP32 PHL7 supernatant sample were
570 sequenced to confirm the presence of the PHL7 protein. Shortly, the band was cut
571 and reduced into 1 mm cubes, followed by washing steps to remove running buffers
572 and dyes, first with H₂O, then a 50/50 ACN/H₂O, and finally only ACN. The samples

573 were then alkylated, digested with trypsin, and extracted in a 5% formic acid solution
574 for mass spectrometry. The mass spectrometry was performed at the Biomolecular
575 and Proteomics Mass Spectrometry Facility at UC San Diego using a LUMOS
576 Orbi-Trap, and their full protocol can be found under
577 "<https://bpmsf.ucsd.edu/training-protocols/protocols.html>".

578

579 PET degradation assay

580 Polyethylene terephthalate (PET) beads (Goodfellow Cambridge Limited,
581 Huntingdon, UK; Product code ES306000/1) with a maximum particle size of 300 µm
582 and crystallinity of >50% were used for enzymatic degradation studies. The
583 degradation of PET was assessed by quantifying the release of terephthalic acid
584 (TPA) via absorbance at 240 nm using a UV-transparent microplate (UV-Star™
585 96-well microplates) (REF). PET plastic beads were washed in 1M potassium
586 phosphate buffer (pH 8.0) and prepared as a slurry with 20-30% solids. In individual
587 PCR tubes, 50 µL of PET slurry, 50 µL of 100 mM potassium phosphate buffer, and
588 100 µL of plastic-degrading enzyme solution were combined. The reaction was
589 initiated by mixing, followed by centrifugation, and the absorbance at 240 nm was
590 measured to establish a baseline (T0). Tubes were incubated at 68°C for seven days
591 in a thermocycler with a heated lid (105°C) to prevent condensation. After incubation,
592 the tubes were cooled to room temperature, and 100 µL of the supernatant was
593 transferred to UV-Star™ 96-well microplates for absorbance measurement at 240
594 nm using a TECAN plate reader. A control with the supernatant of a wild-type strain
595 was included to account for non-enzymatic degradation. The extent of PET
596 degradation was calculated by comparing absorbance values from the test samples
597 to those of the control. The absorbance values were converted to milligram
598 equivalents of terephthalic acid (TPA) using a standard curve generated with TPA
599 dissolved in buffer and measured under the same conditions as the samples.

600

601 Monomer Detection - Mass Spectrometry

602 Enzyme samples were incubated with PET beads plastic in 0.5M potassium
603 phosphate buffer, pH8, at 68°C for seven days. The supernatant was recovered and
604 submitted to a liquid-liquid extraction protocol.

605 Liquid-liquid extraction of TPA and LC-MS

606 The monomers from PET were extracted from a 100 µL enzymatic reaction mixture
607 using a standardized solvent extraction method. An equal volume of ethyl acetate
608 (100 µL) was initially added to the enzymatic reaction mixture in a centrifuge tube,
609 facilitating the monomer's extraction. 50 uL of HCl ~10M was added and the mixture
610 was then vortexed vigorously for complete mixing and subsequently centrifuged at
611 10,000 x g for 5 minutes to enable phase separation. The upper organic layer
612 containing the extracted TPA was carefully transferred to a new tube. To dry ethyl
613 acetate extract was then subjected to solvent evaporation under normal pressure
614 and room temperature overnight to avoid thermal degradation of TPA. The resultant
615 dry TPA extract was resuspended in methanol for mass spectrometry. Monomer
616 detection was performed via direct injection on a HESI-Orbitrap in negative mode.
617 The source temperature was 100C, sheath gas flow was 10, capillary temperature
618 was 350 C, and the spray voltage was 3.5 kV. FTMS scans were taken from 90-500
619 m/z at 240,000 resolution. The injection flow rate was set at 10uL/min. The EIC at
620 165.02 m/z, identified as the deprotonated TPA [M-H]⁻, was averaged over 30
621 seconds.

622

623 Plastic Film Degradation

624 A sustainable polyester urethane (sPU) film derived from algae oil was obtained from
625 Algenesis Materials (PC2). 10 mL of *C. reinhardtii* cc1690 cell cultures and
626 pJP32PHL7 at density 3–6 × 10⁷ cells/mL in TAP medium were added to 50 mL
627 centrifuge tubes (Genesee Scientific 28-108). The centrifuge tubes were sealed with
628 the sPU film, locked into place with black electrical tape, and inverted so that the
629 culture was in direct contact with the sPU film. The inverted tube containing cell

630 culture was fitted tightly into the opening of an Erlenmyer flask. A syringe equipped
631 with a syringe filter (Whatman Uniflo 9916-1302) was inserted into the conical part of
632 the inverted centrifuge tube, establishing an open system that ensures sterility. This
633 configuration allowed for aeration within the system while safeguarding against
634 culture contamination. The cells were cultured in this configuration at a stable
635 temperature of 25°C with constant illumination at 80 $\mu\text{mol photons/m}^2\text{s}$ and agitated
636 at 150 rpm on a rotary shaker for ten days or until the cell cultures had degraded and
637 penetrated the sPU film.

638 Data Analysis

639 R Statistic version 4.3.2 running in the RStudio 2023.09.1+494 "Desert Sunflower"
640 was used to import and process data, generate the statistical summary, and
641 generate the plots. The codes used are deposited at Zenodo
642 (<https://doi.org/10.5281/zenodo.13959987>). The data herein was collected from
643 experiments in which, pJP32PHL7 was used to transform the CC1690 strain, and 84
644 colonies were picked for screening. These colonies were individually assessed
645 through absorbance and fluorescence measurements, providing 84 independent
646 data points per condition in the initial screening phase. For FDA analysis, the
647 presence of cells after centrifugation interferes with the activity measurement due to
648 enzymes inside cells (Chen et al., 2016), and wells with a chlorophyll signal higher
649 than 100 RFU were excluded from the analysis. In flask culture analyses, standard
650 deviation bars represent the variation across three biological replicates of each
651 strain.

652 Data Availability

653 The datasets generated during and/or analysed during the current study are
654 available in the ZENODO repository, <https://doi.org/10.5281/zenodo.13981200>.

655 Funding

656 This material is based upon work supported by the U.S. Department of Energy's
657 Office of Energy Efficiency and Renewable Energy (EERE) under the APEX award

658 number DE-EE0009671. Biomolecular and Proteomics Mass Spectrometry Facility at
659 UC San Diego was funded by NIH shared instrumentation grant numbers (S10
660 OD021724).

661

662 Author contributions

663 **JVDM**: Conceptualization, Data curation, Formal analysis, Investigation, Methodology,
664 Visualization, Writing – original draft, Writing – review & editing
665 **BS**: Investigation, Methodology, Writing – review & editing
666 **KK**: Investigation, Methodology, Visualization, Writing – review & editing
667 **CW**: Investigation, Writing – review & editing
668 **CJD**: Investigation, Writing – review & editing
669 **MT**: Investigation, Methodology, Writing – review & editing
670 **SM**: contributed to drafting and revising the original manuscript and secured funding for the
671 research.

672 Competing interests

673
674 SM was a founding member and holds an equity stake in Algenesis Materials Inc.
675 MS works at Algenesis Materials Inc. Algenesis Materials played no role in funding,
676 study design, data collection and analysis, decision to publish, or manuscript
677 preparation. This does not alter our adherence to policies on sharing data and
678 materials. The remaining authors declare that the research was conducted without
679 any commercial or financial relationships that could be construed as a potential
680 conflict of interest.

681

682 References

683 Allemann, M. N., Tessman, M., Reindel, J., Scofield, G. B., Evans, P., Pomeroy, R. S.,
684 Burkart, M. D., Mayfield, S. P., & Simkovsky, R. (2024). Rapid biodegradation of
685 microplastics generated from bio-based thermoplastic polyurethane. *Scientific
686 Reports*, 14(1), 6036. <https://doi.org/10.1038/s41598-024-56492-6>

687 Bahl, S., Dolma, J., Jyot Singh, J., & Sehgal, S. (2021). Biodegradation of plastics: A state of
688 the art review. *Materials Today: Proceedings*, 39, 31–34.
689 <https://doi.org/10.1016/j.matpr.2020.06.096>

690 Beckstrom, B. D., Wilson, M. H., Crocker, M., & Quinn, J. C. (2020). Bioplastic feedstock
691 production from microalgae with fuel co-products: A techno-economic and life cycle
692 impact assessment. *Algal Research*, 46(January), 101769–101769.
693 <https://doi.org/10.1016/j.algal.2019.101769>

694 Brott, S., Pfaff, L., Schuricht, J., Schwarz, J. N., Böttcher, D., Badenhorst, C. P. S., Wei, R., &
695 Bornscheuer, U. T. (2022). Engineering and evaluation of thermostable IsPETase
696 variants for PET degradation. *Engineering in Life Sciences*, 22(3–4), 192–203.
697 <https://doi.org/10.1002/elsc.202100105>

698 Cabernard, L., Pfister, S., Oberschelp, C., & Hellweg, S. (2021). Growing environmental
699 footprint of plastics driven by coal combustion. *Nature Sustainability*, 5(2), 139–148.
700 <https://doi.org/10.1038/s41893-021-00807-2>

701 Chavarro Gomez, J., Zakaria, R., Aung, M. M., Mokhtar, M. N., & Yunus, R. B. (2020).
702 Characterization of novel rigid-foam polyurethanes from residual palm oil and algae
703 oil. *Journal of Materials Research and Technology*, 9(6), 16303–16316.
704 <https://doi.org/10.1016/j.jmrt.2020.11.095>

705 Chen, X., Yang, X.-Y., Fang, L.-H., & Du, G.-H. (2016). Fluorescein Diacetate Microplate
706 Assay in Cell Viability Detection. *Zhongguo Yi Xue Ke Xue Yuan Xue Bao. Acta
707 Academiae Medicinae Sinicae*, 38(6), 710–714.
708 <https://doi.org/10.3881/j.issn.1000-503X.2016.06.014>

709 Di Rocco, G., Taunt, H. N., Berto, M., Jackson, H. O., Piccinini, D., Carletti, A., Scurani, G.,
710 Braidi, N., & Purton, S. (2023). A PETase enzyme synthesised in the chloroplast of
711 the microalga Chlamydomonas reinhardtii is active against post-consumer plastics.
712 *Scientific Reports*, 13(1), 10028. <https://doi.org/10.1038/s41598-023-37227-5>

713 European Commission. Directorate General for Research and Innovation., COWI, Nova
714 Institute, & Utrecht University,. (2021). *Carbon economy: Studies on support to*

715 *research and innovation policy in the area of bio based products and services.*

716 Publications Office. <https://data.europa.eu/doi/10.2777/004098>

717 Ferris, P., Olson, B. J. S. C., De Hoff, P. L., Douglass, S., Casero, D., Prochnik, S., Geng, S.,
718 Rai, R., Grimwood, J., Schmutz, J., Nishii, I., Hamaji, T., Nozaki, H., Pellegrini, M., &
719 Umen, J. G. (2010). Evolution of an expanded sex-determining locus in *Volvox*.
720 *Science (New York, N.Y.)*, 328(5976), 351–354.

721 <https://doi.org/10.1126/science.1186222>

722 Geissmann, Q. (2013). OpenCFU, a New Free and Open-Source Software to Count Cell
723 Colonies and Other Circular Objects. *PLOS ONE*, 8(2), e54072.
724 <https://doi.org/10.1371/journal.pone.0054072>

725 Greenpeace. (2022). *CIRCULAR CLAIMS FALL FLAT AGAIN* (No. 2022UPDATE; pp. 1–40).
726 Greenpeace.
727 https://www.greenpeace.org/usa/wp-content/uploads/2022/10/GPUS_FinalReport_2022.pdf

729 Gupta, A., Molino, J. V. D., Wnuk-Fink, K. M., Bruckbauer, A., Tessman, M., Kang, K., Diaz,
730 C. J., Saucedo, B., Malik, A., & Mayfield, S. P. (2024). *Engineering the novel
731 extremophile alga Chlamydomonas pacifica for high lipid and high starch production
732 as a path to developing commercially relevant strains* (p. 2024.07.18.604193).
733 bioRxiv. <https://doi.org/10.1101/2024.07.18.604193>

734 Gupta, R., & Brunak, S. (2002). Prediction of glycosylation across the human proteome and
735 the correlation to protein function. *Pacific Symposium on Biocomputing. Pacific
736 Symposium on Biocomputing*, 310–322.

737 Hasan, Md. M., Fayshal, M., Adnan, H. M., & Dhara, F. T. (2023). *The single-use plastic
738 waste problem in Bangladesh: Finding sustainable alternatives in local and global
739 context*. <https://doi.org/10.6084/m9.figshare.24225550.v1>

740 Heller, M. C., Selke, S. E. M., & Keoleian, G. A. (2019). Mapping the Influence of Food
741 Waste in Food Packaging Environmental Performance Assessments. *Journal of
742 Industrial Ecology*, 23(2), 480–495. <https://doi.org/10.1111/jiec.12743>

743 Kawai, F., Oda, M., Tamashiro, T., Waku, T., Tanaka, N., Yamamoto, M., Mizushima, H.,

744 Miyakawa, T., & Tanokura, M. (2014). A novel Ca²⁺-activated, thermostabilized

745 polyesterase capable of hydrolyzing polyethylene terephthalate from

746 *Saccharomonospora viridis* AHK190. *Applied Microbiology and Biotechnology*,

747 98(24), 10053–10064. <https://doi.org/10.1007/s00253-014-5860-y>

748 Leslie, H. A., van Velzen, M. J. M., Brandsma, S. H., Vethaak, A. D., Garcia-Vallejo, J. J., &

749 Lamoree, M. H. (2022). Discovery and quantification of plastic particle pollution in

750 human blood. *Environment International*, 163, 107199.

751 <https://doi.org/10.1016/j.envint.2022.107199>

752 Li, A., Sheng, Y., Cui, H., Wang, M., Wu, L., Song, Y., Yang, R., Li, X., & Huang, H. (2023).
753 Discovery and mechanism-guided engineering of BHET hydrolases for improved
754 PET recycling and upcycling. *Nature Communications*, 14(1), 4169.
755 <https://doi.org/10.1038/s41467-023-39929-w>

756 Liu, K., Xu, Z., Zhao, Z., Chen, Y., Chai, Y., Ma, L., & Li, S. (2023). A Dual Fluorescence
757 Assay Enables High-Throughput Screening for Poly(ethylene terephthalate)
758 Hydrolases. *ChemSusChem*, 16(5), e202202019.
759 <https://doi.org/10.1002/cssc.202202019>

760 MacLeod, M., Arp, H. P. H., Tekman, M. B., & Jahnke, A. (2021). The global threat from
761 plastic pollution. *Science*, 373(6550), 61–65. <https://doi.org/10.1126/science.abg5433>

762 Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, J., Witman, G. B.,
763 Terry, A., Salamov, A., Fritz-laylin, L. K., Maréchal-drouard, L., Marshall, W. F., Qu, L.,
764 Nelson, D. R., Sanderfoot, A., Spalding, M. H., Kapitonov, V. V., Ren, Q., Cardol, P.,
765 Cerutti, H., ... Grossman, A. R. (2007). The Chlamydomonas Genome Reveals the
766 Evolution of Key Animal and Plant Functions. *Science*, 318(5848), 245–250.
767 <https://doi.org/10.1126/science.1143609>. The

768 Molino, J. V. D., de Carvalho, J. C. M., Mayfield, S. P., Carvalho, J. C. M., & Mayfield, S. P.
769 (2018). Comparison of secretory signal peptides for heterologous protein expression
770 in microalgae: Expanding the secretion portfolio for *Chlamydomonas reinhardtii*.

771 *PLoS ONE*, 13(2), 1–20. <https://doi.org/10.1371/journal.pone.0253111>

772 Moody, J. W., McGinty, C. M., & Quinn, J. C. (2014). Global evaluation of biofuel potential
773 from microalgae. *Proceedings of the National Academy of Sciences*, 111(23),
774 8691–8696. <https://doi.org/10.1073/pnas.1321652111>

775 Prieto, A. (2016). To be, or not to be biodegradable... that is the question for the bio-based
776 plastics. *Microbial Biotechnology*, 9(5), 652–657.
777 <https://doi.org/10.1111/1751-7915.12393>

778 Ramos-Martinez, E. M., Fimognari, L., & Sakuragi, Y. (2017). High-yield secretion of
779 recombinant proteins from the microalga *Chlamydomonas reinhardtii*. *Plant
780 Biotechnology Journal*, 15(9), 1214–1224. <https://doi.org/10.1111/pbi.12710>

781 Richard Platt, A. B., Patrick Reumerman, Cécile Geier, René Van Ree, Iris Vural Gursel,
782 Lesly Garcia, Martin Behrens, Philipp von Bothmer, Jo Howes, Yamini
783 Panchaksharam, Kaisa Vikla, Valerie Sartorius, Bert AnnevelinkRichard Platt, Ausilio
784 Bauern, Bert Annevelink. (2021). *EU Biorefinery Outlook to 2030. Studies on support
785 to research and innovation policy in the area of bio-based products and services* (No.
786 9789276321569; Issue February). <https://doi.org/10.2777/103465>

787 Ritchie, H., Samborska, V., & Roser, M. (2023). Plastic Pollution. *Our World in Data*.
788 <https://ourworldindata.org/plastic-pollution>

789 Ronkvist, Å. M., Xie, W., Lu, W., & Gross, R. A. (2009). Cutinase-Catalyzed hydrolysis of
790 poly(ethylene terephthalate). *Macromolecules*, 42(14), 5128–5138.
791 <https://doi.org/10.1021/ma9005318>

792 Rossignolo, G., Malucelli, G., & Lorenzetti, A. (2024). Recycling of polyurethanes: Where we
793 are and where we are going. *Green Chemistry*, 26(3), 1132–1152.
794 <https://doi.org/10.1039/D3GC02091F>

795 Sari, Y. W., Kartikasari, K., Widyarani, Setyaningsih, I., & Lestari, D. (2021). Chapter
796 13—Techno-economic assessment of microalgae for biofuel, chemical, and
797 bioplastic. In C. M. Galanakis (Ed.), *Microalgae* (pp. 409–432). Academic Press.
798 <https://doi.org/10.1016/B978-0-12-821218-9.00013-X>

799 Shen, L., & Worrell, E. (2024). Chapter 31—Plastic recycling. In C. Meskers, E. Worrell, & M.
800 A. Reuter (Eds.), *Handbook of Recycling (Second Edition)* (pp. 497–510). Elsevier.
801 <https://doi.org/10.1016/B978-0-323-85514-3.00014-2>

802 Sonnendecker, C., Oeser, J., Richter, P. K., Hille, P., Zhao, Z., Fischer, C., Lippold, H.,
803 Blázquez-Sánchez, P., Engelberger, F., Ramírez-Sarmiento, C. A., Oeser, T.,
804 Lihanova, Y., Frank, R., Jahnke, H.-G., Billig, S., Abel, B., Sträter, N., Matysik, J., &
805 Zimmermann, W. (2021). Low Carbon Footprint Recycling of Post-Consumer PET
806 Plastic with a Metagenomic Polyester Hydrolase. *ChemSusChem*.
807 <https://doi.org/10.1002/cssc.202101062>

808 Tang, D. Y. Y., Yew, G. Y., Koyande, A. K., Chew, K. W., Vo, D.-V. N., & Show, P. L. (2020).
809 Green technology for the industrial production of biofuels and bioproducts from
810 microalgae: A review. *Environmental Chemistry Letters*, 18(6), 1967–1985.
811 <https://doi.org/10.1007/s10311-020-01052-3>

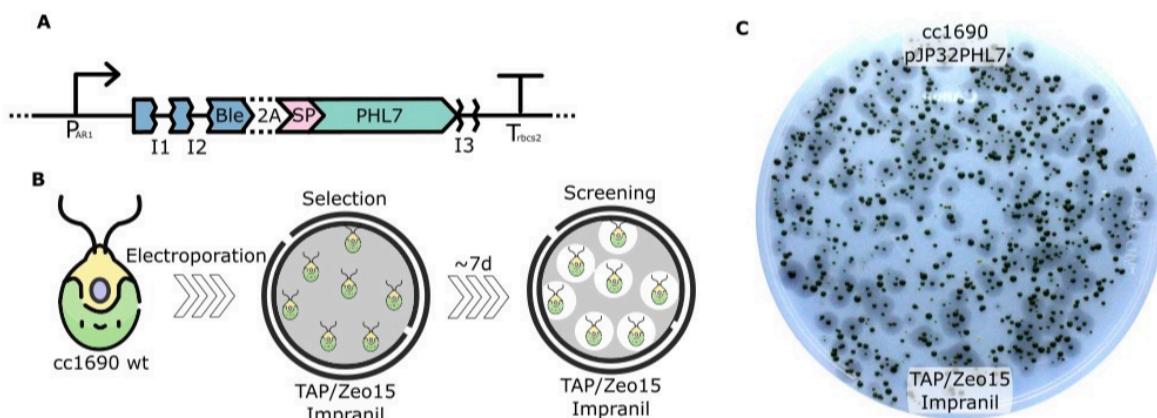
812 *The environmental impacts of plastics and micro-plastics use, waste and pollution: EU and
813 national measures*. (2020). [Dataset].
814 https://doi.org/10.1163/9789004322714_cclc_2020-0189-1073

815 Tournier, V., Topham, C. M., Gilles, A., David, B., Folgoas, C., Moya-Leclair, E., Kamionka,
816 E., Desrousseaux, M. L., Texier, H., Gavalda, S., Cot, M., Guémard, E., Dalibey, M.,
817 Nomme, J., Cioci, G., Barbe, S., Chateau, M., André, I., Duquesne, S., & Marty, A.
818 (2020). An engineered PET depolymerase to break down and recycle plastic bottles.
819 *Nature*, 580(7802), 216–219. <https://doi.org/10.1038/s41586-020-2149-4>

820 Verghese, K., Lewis, H., Lockrey, S., & Williams, H. (2015). Packaging's Role in Minimizing
821 Food Loss and Waste Across the Supply Chain: PACKAGING'S ROLE IN
822 MINIMIZING FOOD WASTE ACROSS THE SUPPLY CHAIN. *Packaging Technology
823 and Science*, 28(7), 603–620. <https://doi.org/10.1002/pts.2127>

824 Ves-urai, P., Krobthong, S., Thongsuk, K., Roytrakul, S., & Yokthongwattana, C. (2021).
825 Comparative secretome analysis between salinity-tolerant and control
826 Chlamydomonas reinhardtii strains. *Planta*, 253(3), 68.

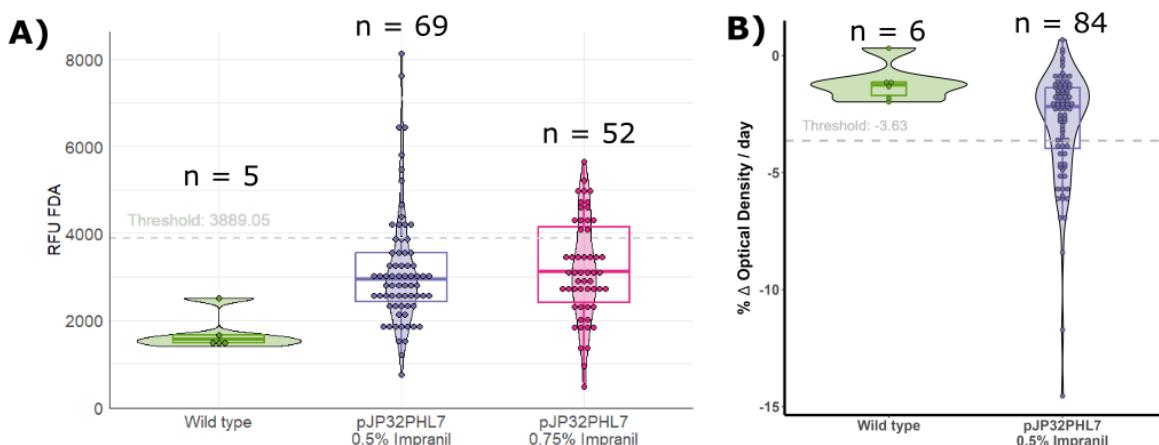
827 <https://doi.org/10.1007/s00425-021-03583-7>


828 Walter, A., Sopracolle, L., Mutschlechner, M., Spruck, M., & Griesbeck, C. (2022).
829 Biodegradation of different PET variants from food containers by *Ideonella*
830 *sakaiensis*. *Archives of Microbiology*, 204(12), 711.

831 <https://doi.org/10.1007/s00203-022-03306-w>

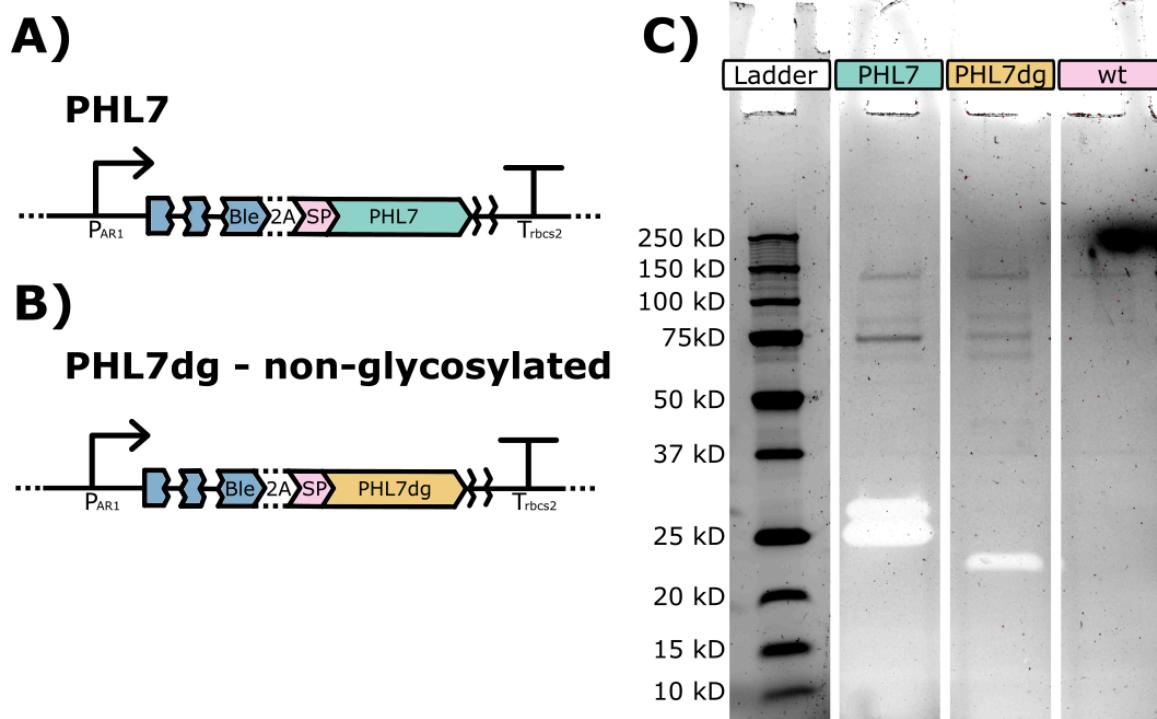
832 Xu, J., & Kieliszewski, M. (2011). Enhanced accumulation of secreted human growth
833 hormone by transgenic tobacco cells correlates with the introduction of an
834 N-glycosylation site. *Journal of Biotechnology*, 154(1), 54–59.
835 <https://doi.org/10.1016/j.jbiotec.2011.04.001>

836


837 Figures

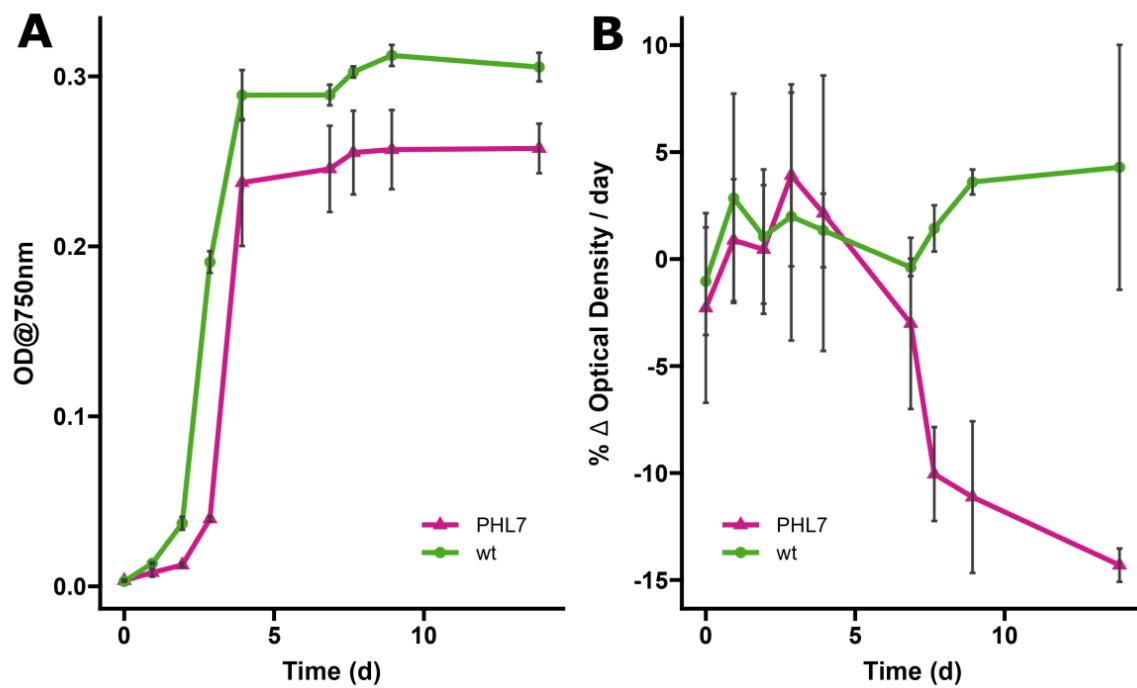
838

839 **Figure 1: Overview of the vector design, the transformation workflow, and an**
840 **experimental result.** A: Schematic representation of the vector used, including the chimeric
841 Par1 promoter, bleomycin resistance gene, F2A auto-cleavable peptide, SP7 signal peptide,
842 *rbcS2* introns, and the *rbcS2* terminator region. B: Workflow for generating transformants with
843 halos. C: A typical result of the transformed cells with halos, indicating successful expression
844 and secretion of the target protein as designed in the vector. Selection on TAP media plates
845 containing zeocin 15 µg/mL and Impranil® DLN at 0.5% (v/v).


846

847

848 **Figure 2: Enzymatic activity of PHL7 produced in *C. reinhardtii*.** A) Cleavage of ester
 849 bond activity in the supernatant by Fluorescein DiAcetate (FDA) assay. B) Relative
 850 absorption reduction per day of Impranil® DLN. Wild-type cells are the parental CC1690
 851 strains (green). pJP32PHL7 0.5% Impranil® DLN are the transformants picked from the
 852 selection plates containing zeocin 15 ug/mL and 0.5% Impranil® DLN (purple). pJP32PHL7
 853 0.75% Impranil® DLN are the transformants picked from the selection plates containing
 854 zeocin 15 ug/mL and 0.75% Impranil® DLN (magenta). A violin plot and a box plot
 855 superimpose the bin dot plot to summarize statistics.


856

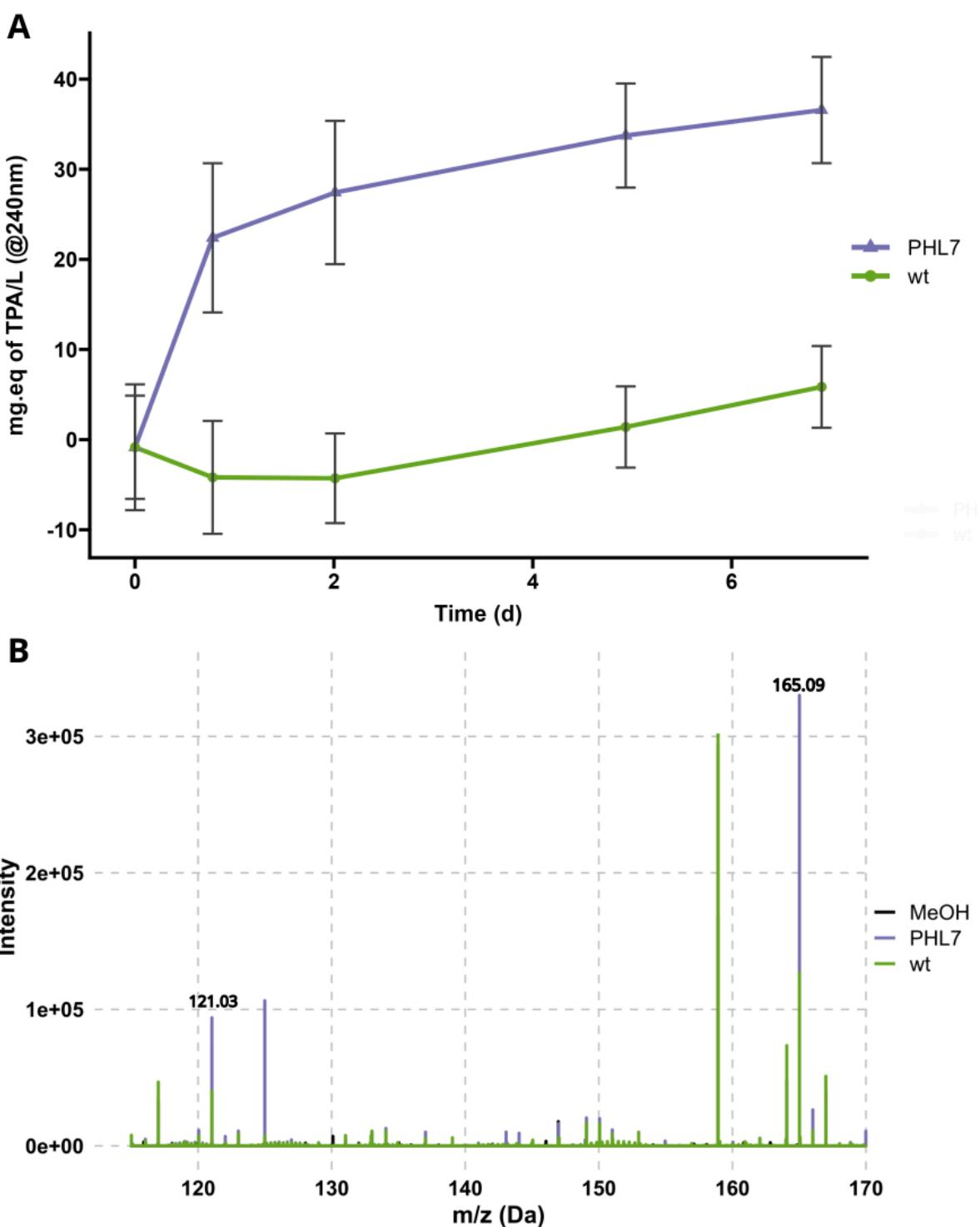
857

858 **Figure 3: PHL7 glycosylation on the secretory pathway.** A) Schematic representation of
 859 pJP32PHL7 vector corresponding to sample loaded in lane "PHL7" on zymogram. B)
 860 Schematic representation of pJP32PHL7dg (non-glycosylated PHL7) that corresponds to
 861 sample loaded in lane "PHL7dg" on zymogram. C) SDS zymogram gel with 1% v/v Impranil®
 862 DLN containing Precision Plus Protein™ Unstained Protein Standards, Strep-tagged
 863 recombinant (Bio-Rad Laboratories #1610363) and 10X concentrated supernatant samples

864 from pJP32PHL7 (PHL7), pJP32PHL7dg (PHL7dg), and wild-type parental cc1690 strain
865 (wt) (from left to right). The gel displayed 2 halos (i.e., transparent bands) in the PHL7 lane
866 and 1 halo in the PHL7dg lane after 1 day of incubation in a 100mM potassium phosphate
867 buffer solution, pH 8.0 at 37°C.

868

869 **Figure 4: Growth curves and enzyme activity profiles of the parental line (wt)**
870 **and the recombinant pJP32PHL7 (PHL7) strains over time.** Panel A shows the growth
871 curves of the wild-type (wt, green circles) and the mutant (PHL7, magenta triangles) strains,
872 measured as optical density at 750 nm (OD750) over time. Each point represents the mean
873 OD750 at a given time point, with vertical black error bars indicating the standard deviation
874 across biological replicates ($n = 3$). Panel B depicts enzyme activity, expressed as the
875 percentage change in optical density per day (% Δ OD/day) of Impranil® DLN, for the same
876 strains over time. Mean enzyme activity is shown with black error bars representing the
877 standard deviation across biological replicates ($n = 3$). The same symbol patterns were
878 used, the wild-type (wt, green circles) and the mutant (PHL7, magenta triangles).

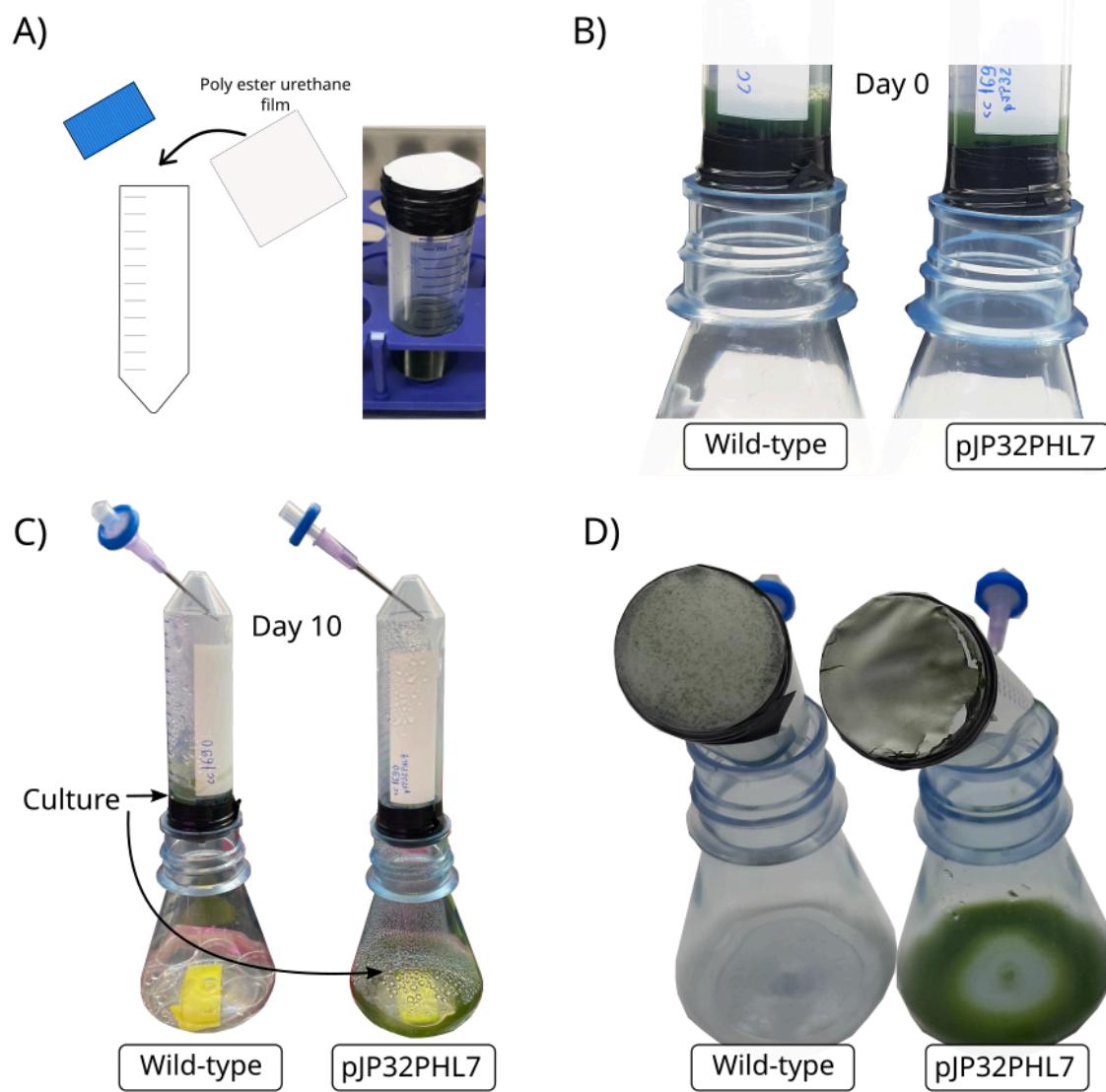

879

880

881

882

883

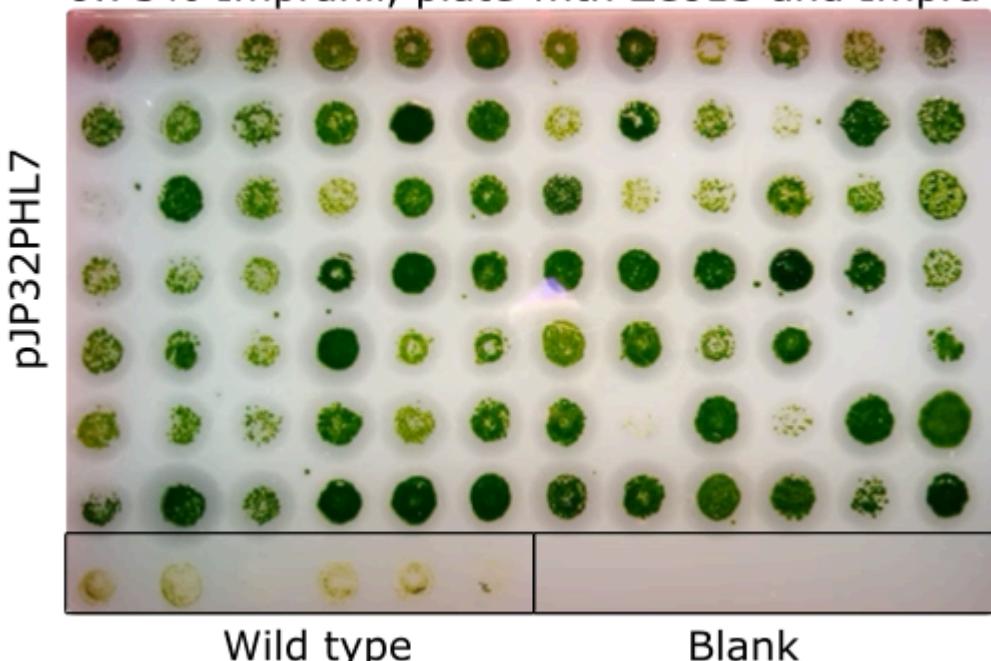

884

885 **Figure 5: Terephthalic Acid (TPA) release during PET degradation experiment. A)** The
886 plot shows the TPA concentration (mg equivalent of TPA per liter, calculated by absorbance
887 at 240 nm) over time for wild-type and PHL7 strains, measured during the enzymatic
888 degradation of PET. The absorbance values were normalized to the initial value at time point
889 t0, and the TPA concentration was calculated using the standard curve. Each data point
890 represents biological replicates' mean TPA concentration (\pm SD). The TPA concentration
891 trends after day two were statistically analyzed using linear models. Strain-specific
892 differences in TPA production were observed, with the wild type shown in green and PHL7 in
893 purple. n = 2 biological replica, and n = 21 technical replica **B)** Mass spectrometry plot with

894 intensity (y-axis) versus mass-to-charge ratio (m/z) for the range of 110 to 170 m/z, with two
895 peaks highlighted corresponding to **TPA (Terephthalic acid)** in wild-type (wt) and PHL7
896 samples, with methanol (MeOH) as the blank.

897

898


899

900

901 **Figure 6: Demonstration of plastic degradation with a culture.** (A) Sustainable polyester
902 urethane (sPU) films were taped onto 50 mL centrifuge tubes containing 10 mL of wild-type
903 cc1690 and pJP32PHL7 cell cultures. (B) Centrifuge tubes were inverted and attached to the
904 opening of empty Erlenmeyer flasks. (C) A syringe with an air filter was inserted into the
905 conical part of each centrifuge tube. After approximately 10 days of growth at 25°C with
906 constant illumination at 80 $\mu\text{mol photons/m}^2\text{s}$ and agitated at 150 rpm on a rotary shaker ,
907 liquid culture was observed in the pJP32PHL7 flask, and no culture was observed in the
908 wild-type flask, thereby indicating enzymatic degradation of the sPU film by pJP32PHL7. (D)
909 The sPU film for the wild-type displayed no degradation. In contrast, the sPU film for
910 pJP32PHL7 clearly displayed a tear on the perimeter of the film, thus indicating degradation
911 by PHL7 enzymes secreted from the recombinant strain.

⁹¹² Video

0.75% Impranil, plate with Zeo15 and Impra

⁹¹³

⁹¹⁴ Video 1: <https://www.youtube.com/watch?v=a2LE5zZe9oo>