Fermilab

Addressing tokens dynamic generation, propagation, storage

and renewal to secure the GlideinWMS pilot based jobs and
system

FERMILAB-CONF-25-0121-CSAID

arXiv:2506.07379

This manuscript has been authored by Fermi Forward Discovery Group, LLC
under Contract No. 89243024CSC000002 with the U.S. Department of Energy,
Office of Science, Office of High Energy Physics.

2506.07379v1 [cs.DC] 9 Jun 2025

arxiv

Addressing tokens dynamic generation, propagation, stor-
age and renewal to secure the GlideinWMS pilot based jobs
and system

£

Bruno Moreira Coimbra! ®* and Marco Mambelli!

'Fermi National Accelerator Laboratory, PO Box 500, Batavia IL 60510-5011

Abstract. GlideinWMS has been one of the first middleware in the WLCG
community to transition from X.509 to support also tokens. The first step was
to get from the prototype in 2019 to using tokens in production in 2022. This
paper will present the challenges introduced by the wider adoption of tokens
and the evolution plans for securing the pilot infrastructure of GlideinWMS and
supporting the new requirements. In the last couple of years, the GlideinWMS
team supported the migration of experiments and resources to tokens. Inad-
equate support in the current infrastructure, more stringent requirements, and
the higher spatial and temporal granularity forced GlideinWMS to revisit once
more how credentials are generated, used, and propagated. The new creden-
tial modules have been designed to be used in multiple systems (GlideinWMS,
HEPCloud) and use a model where credentials have type, purpose, and different
flows. Credentials are dynamically generated in order to customize the duration
and limit the scope to the targeted resource. This allows to enforce the least
privilege principle. Finally, we also considered adding credential storage, re-
newal, and invalidation mechanisms within the GlideinWMS infrastructure to
better serve the experiments’ needs.

1 Introduction

GlideinWMS streamlines resource provisioning in distributed High Throughput Computing
(HTC) environments, efficiently scouting for resources, tailoring worker nodes, and ensur-
ing robust monitoring and auditing. By leveraging HTCondor, it optimizes job execution
while maintaining system homogeneity. Secure authentication and credential management
are essential to preserve the integrity of distributed systems. Over time, traditional X.509
certificate-based security has given way to token-based authentication, enhancing both scala-
bility and usability. This paper delves into the intricacies of token management and examines
how GlideinWMS compares to other security frameworks in distributed computing.

2 GlideinWMS

GlideinWMS [1, 2] is a pilot-based Workload Management System (WMS) that provisions
computing resources in a distributed environment. Users can request customized elastic HT-
Condor Software Suite (HTCSS)[3] clusters and User Pools, as shown in figure 1, where

*e-mail: coimbra@fnal.gov
**e-mail: marcom@fnal.gov

https://orcid.org/0009-0002-2797-8706
https://orcid.org/0000-0002-9489-2681

they run their computations. GlideinWMS sends Glideins, also called pilot jobs, to various
computing resources, distinguishing them from user jobs. It has been and is used at scale in
production by many collaborations, including the Compact Muon Solenoid (CMS) experi-
ment, many Fermilab experiments, and the OSG for over 10 years. The Virtual Organization
(VO), the computing model abstraction of these collaborations, is used interchangeably with
GlideinWMS. Most scientists interact with tools or portals like CRAB, JobSub, or OSG-
Connect provided by the scientific collaborations instead of GlideinWMS or its clusters.

il -
\]

Frontend Job
Queue

Overlay system

m

Cluster

™ Worker

~ Worker

Factory e AWS | " clidein
=

Figure 1. GlideinWMS system. GlideinWMS components are in blue, the User Pool is in Green, and
the computing resources are in other colors.

~ Worker

Worker

The Glidein, or pilot job, configures computing resources to run user jobs by detecting
node resources, installing common tools, and managing credentials. It also reports system
status and joins the User Pool for job execution.

The Factory and clients like the VO Frontend or HEPCloud’s Decision Engine form the
GlideinWMS system. This paper considers a setup with one Factory, one Frontend, and their
Glideins, though real deployments may include multiple clients and Factories for redundancy.

The Factory submits Glideins to Compute Entrypoints (CEs), handling resource access,
supported VOs, authentication, and throttling. It monitors Glideins, caches credentials, and
provides a secure mailbox for client requests and updates.

Clients, including the Frontend, track user requests and available Glideins, adjusting re-
source allocations via heuristics to ensure efficiency while adhering to policies.

Typically operated by VOs, the Frontend manages key credentials, such as Factory au-
thentication, Glidein submission, user pool integration, and VO-level services (monitoring,
databases, storage).

3 Security and Credentials in GlideinWMS

Security in GlideinWMS relies on multiple credential types used for different authentication
needs, aka purposes:

¢ Pilot Submission Credentials (P-CRED): Provide access to CEs for Glideins.
e VO Service Credentials (S-CRED): Access secured VO resources such as databases.
¢ CE Credentials (CE-CRED): Used for monitoring and auditing on the CE.

e HT Condor Cluster Credentials (C-CRED): Issued by the HTC Central Manager to join
the User Pool.

¢ Job Credentials (J-CRED): Job specific secure storage access tokens.

e Framework Credentials (F-CRED): Framework tokens used to authenticate Factories
and Frontends with each other.

Each of these credentials can use various authentication methods, including SciTokens[4],
IDTokens, and traditional SSH keys.

3.1 Token Authentication Mechanisms

The deprecation of X.509 proxies, no longer maintained by the software libraries, motivated
the GlideinWMS transition to identity and access tokens[5]. With the phasing out of these
proxies, GlideinWMS had to adapt to a new security model that could handle multiple cre-
dential types with different functionalities, such as identity tokens, access tokens, JWT-based
tokens, and other certificates.

The transition to token-based authentication involves changes for all interactions. For the
Framework and the HTCondor virtual cluster, this involves: IDTokens replacing legacy GSI
authentication, centralized authentication using HTCondor Security, and issuance, renewal,
and validation of per-resource tokens.

The security model and the history of the transition are described in more detail in our
previous paper [5]. This one will focus on the handling of tokens, the dynamic credential
generation, and the software development that followed that initial work.

4 Credentials Module

The implementation of token support in GlideinWMS introduced complexity to parts of the
code and highlighted challenges to support multiple credential types. Adding a new credential
type required editing many functions, often adding the type to lists, creating new conditions,
or creating new conditional statements. This exponentially increased code complexity by
introducing new branches of execution in already long functions.

To address these challenges, a new credentials module was created. It defines hierarchical
credential classes, moving complexity from business logic to specific class implementations.
Developers can use a generic credential base class, handling credentials throughout the code
without considering specific types. When implementing a new type, developers can focus
on basic operations without worrying about code impact. The module also defines credential
purposes, improving workflow decision-making, and introducing new functionalities.

More information about the Credential base class is in the next section.

4.1 Credential Base Class

The Credential base class is an abstract class that defines the basic functionalities expected to
be implemented by every concrete credential type. This class holds the credential payload,
an attribute that stores the underlying credential object to be used as the source of truth for
all other credential attributes.

The only value we store for an object of the Credential class is the string representation of
a credential stored in a private variable. All other attributes of the credential are implemented
as class properties and derived from the stored credential string when they are accessed. This
model not only simplifies the implementation of child credential classes but also prevents
inconsistencies between the credential data represented by its string and the attributes of the
credential object.

The underlying credential object of a concrete credential type implementation of the Cre-
dential class is accessed through a private payload property. This property implementation re-
turns the decoded string of the credential, using the defined decode function for that credential

type. With this mechanism in place, specific credential attributes can easily be implemented
by calling simple functions from the payload variable.

The code below shows simplified implementations of the Credential base class and a child
Token class. Note that this implementation intends to exemplify the techniques discussed in
this section and omits several implementation details.

class Credential (ABC, Generic[T]):
self._string = None

@property
def string(self) -> Optional[bytes]:
return self._string

@property

def _payload(self) -> Optional[T]:
return self.decode(self.string) if self.string \
else None

@staticmethod

@abstractmethod

def decode(string: Union[str, bytes]) -> T:
pass

class Token(Credential [Mapping]):
@property
def subject(self) -> Optional[str]:
return self._payload.get("sub", None) if self._payload \
else None

@property

def scope(self) -> Optional[str]:
return self._payload.get("scope", None) if self._payload \
else None

@staticmethod
def decode(string: Union[str, bytes]) -> Mapping:
if isinstance(string, bytes):
string = string.decode()
return jwt.decode(string.strip())

4.2 Credential Types

Using the Credential base class and the mechanisms discussed in the previous section, several
concrete implementations of specific credential types were developed. Each of these creden-
tial types inherits from the Credential base class and implements all the necessary abstract
methods and the properties unique to its type. Moreover, concrete credential types can be
hierarchical, allowing them to have their own child credential types. In the current version of
the Credentials module, there’s an example of a hierarchical credential type: the Token cre-
dential type, which implements a basic JSON Web Token (JWT). This credential type has two

child types: HTCondor IDTOKEN and SciToken. Both child types have the same methods
but define their own naming standards and file extensions.

A diagram illustrating the current hierarchy of credential types available in the module is
presented in figure 2.

4.3 Credential Pairs

Some authentication methods combine public and private credentials (asymmetric authenti-
cation). The GlideinWMS Credentials module introduces the CredentialPair base class to
manage these scenarios. It inherits attributes and methods from the regular Credential class
but includes a private credential attribute that holds another instance of the Credential class.
Credential pairs are treated as simple credentials in most GlideinWMS code.

Credential pairs inherit from both the CredentialPair base class and their underlying cre-
dential type. For example, the X509Pair class inherits from CredentialPair and X509Cert
classes. This polymorphism allows credentials to be treated with varying levels of complex-
ity in different GlideinWMS workflows.

A diagram illustrating the current credential pairs included in the Credentials module is
presented in figure 3.

Credential

Credential

[T i T 1
‘XSOBCer(‘RSAKey ‘ Text ‘

Token Generator

CredentialPair

SciToken

IdToken

Figure 2. Credentials Types Hierarchy

X509Pair ‘ RSAKeyPair
X509Cert] L] RSAKey|

UsernamePassword
TextCredential|

Figure 3. Credentials Pairs Hierarchy

4.4 Credential Purposes

The credentials module defines three credential purposes that can be assigned to credentials.
These purposes are directly related to the purposes discussed in section 3 that GlideinWMS
handles. They are:

e request (P-CRED): Used to authenticate with the compute element (CE) of a site.

¢ payload (S-CRED): Payload credentials are sent along with the Glidein but not used in the
GlideinWMS workflow. They are often used by operators to authenticate with services or
resources from worker nodes.

e callback (C-CRED): Used by the startd spawned by a Glidein on a worker node to authen-
ticate back with an HTCondor collector that manages the user pool.

4.5 Credential Generators

When dealing with minimal-privileged credentials like tokens, it’s often necessary to use dif-
ferent credentials for clients and hosts. This can be managed with pre-generated credentials

for a small number of cases, but becomes increasingly challenging when dealing with hun-
dreds of sites. Additionally, credentials can have short lifespans and require frequent renewal.
To address these issues, the Credentials module offers credential generators.

The CredentialGenerator class leverages the GlideinWMS Generator Framework to load
Python scripts capable of generating specific credential types based on provided arguments.
This feature enables the generation of credentials at runtime on a per-site basis, simplifying
configuration files. Moreover, since they are dynamically created, the risk of unintended
credential exposure is substantially reduced.

4.6 Security Parameters

The Credential module introduces security parameters for authentication with sites. These pa-
rameters pass additional context when requesting computing resources, such as the resource
type or account. Previously, these qualifiers were available in GlideinWMS as credentials.
The redesigned parameters are now declared independently and considered during authenti-
cation for any selected credential on a site. Like credentials, security parameters are defined
by the Parameter base class and have data types (Integer, String, or Expression). Each type
inherits from the base class and implements unique methods.

4.7 Parameter Generators

As their name suggests, generator parameters also leverage the GlideinWMS Generator
Framework to dynamically generate their values. They have access to the same runtime argu-
ments as credential generators. Generated parameters can be used to dynamically add context
to an authentication identity based on the site resources being requested from or other criteria
defined by the generator itself.

5 GlideinWMS Generators Framework

The GlideinWMS Generators Framework is a set of tools to help users generate data at run-
time to be used at different times in the GlideinWMS execution workflow. The framework
consists of a set of built-in generators ready to be used straight from the GlideinWMS Fac-
tory and Frontend configuration files, and a Python module that provides the tools for users
to write their own generators.

5.1 Usage

Generators are currently supported by security credentials and parameters. Users can directly
use generators from the GlideinWMS configuration files. When declaring credentials or pa-
rameters, users should set their type to “generator” and specify the generator name in the
“absfname” property for credentials or the “value” property for parameters. Generators also
require additional settings passed in the "context" property as a dictionary. The content of
these dictionaries varies by generator, but at a minimum, they must contain the “type” key,
which specifies the type of content generated.

Next, two configuration examples are presented. One demonstrates how to set up a cre-
dentials generator, while the other illustrates how to configure a parameter generator.

<credential
absfname="RoundRobinGenerator" purpose="payload"

security_class="frontend" trust_domain="grid"
context="{’items’: [’strl’, ’'str2’, ’str3’], ’'type’: ’text’}"
type="generator"

/>

<parameter
name="VMId" value="RoundRobinGenerator"
context="{"items’: [’vml’, ’'vm2’, ’vm3’], ’'type’: ’string’}"
type="generator"

/>

5.2 Custom Generators

Users can create custom generators if the built-in ones do not meet their specific needs. A
custom generator is a Python module that exports a subclass of the Generator base class. This
subclass implements the "generate" method to return the generated content. The example
below shows a custom generator that returns a random element of a list passed in the "items"
key of the context dictionary.

import random
from typing import Any
from glideinwms.lib.generators import export_generator, Generator, GeneratorError

class RandomGenerator(Generator[Any]):
"""Random generator"""
def generate(self, **kwargs) -> Any:
items = self.context.get("items", [])
if not items:
raise GeneratorError("No items provided for generation")
return random.choice(items)

export_generator (RandomGenerator)

There are three key points in this example. First, the class is exported using the "ex-
port_generator" method from the Generators module. This method adds the class to the
GlideinWMS environment, enabling its runtime import. Second, the "context" dictionary is
accessed without being explicitly declared in the RandomGenerator class. This is because it is
declared in the Generator parent class. Third, the generate method accepts arbitrary keyword
arguments. These arguments are used to access runtime arguments provided by the Glidein-
WMS system. A list of the currently provided arguments is available in the GlideinWMS
documentation [6].

5.3 Legacy Generators

Previous GlideinWMS versions supported credential generators using the Callout API, which
provided similar functionalities but lacked flexibility in generating security parameters and
integrating with the configuration. Users are encouraged to rewrite callout-based generators
using the new framework, but can also use the built-in LegacyGenerator, an adapter for callout
scripts that can be configured directly from the Frontend configuration. Here’s an example of
adding a LegacyGenerator to the front-end configuration.

<credential
absfname="LegacyGenerator" purpose="payload"
security_class="frontend" trust_domain="grid"
context="{

’callout’: ’example_callout.py’,
"type’: ’scitoken’,
"kwargs’: {’paraml’: ’valuel’, ’param2’: ’'value2’}

}ll
type="generator"

/>

6 Conclusions

The GlideinWMS security framework has evolved to incorporate token-based authentication,
significantly improving system security and flexibility. By implementing structured creden-
tial classes, automated token management, and renewal mechanisms, we reduce technical
debt in the code and enhance authentication reliability while minimizing administrative over-
head.

GlideinWMS provides a seamless and scalable approach to token-based authentication in
HTC environments. Future work will focus on refining credential refresh mechanisms and
integrating additional security enhancements.

7 Acknowledgments

The authors’ work was performed using the resources of the Fermi National Accelerator
Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility.
Fermilab is managed by Fermi Forward Discovery Group, LLC, acting under Contract No.
89243024CSC000002.

References

[1] I. Sfiligoi, glideinwms—a generic pilot-based workload management system, Journal
of Physics: Conference Series 119, 062044 (2008). https://dx.doi.org/10.1088/1742-
6596/119/6/062044

[2] I Sfiligoi, M. Mambelli, P. Mhashilkar, D. Box, M. Mascheroni, K. Larson, B. Holzman,
J. Weigand, A. Tiradani, H.W. Kim et al., glideinwms/glideinwms: Glideinwms 3.10.5
(2023), https://doi.org/10.5281/zenodo.8383959

[3] T. Tannenbaum, D. Wright, K. Miller, M. Livny, in Beowulf Cluster Computing with
Linux, edited by T. Sterling (MIT Press, 2001)

[4] A. Withers, B. Bockelman, D. Weitzel, D. Brown, J. Gaynor, J. Basney, T. Tannenbaum,
Z. Miller, SciTokens: Capability-Based Secure Access to Remote Scientific Data, in
Proceedings of the Practice and Experience on Advanced Research Computing (As-
sociation for Computing Machinery, New York, NY, USA, 2018), PEARC ’18, ISBN
9781450364461, https://doi.org/10.1145/3219104.3219135

[5] Mambelli, Marco, Coimbra, Bruno, Box, Dennis, Transitioning glidein-
wms, a multi domain distributed workload manager, from gsi proxies to to-
kens and other granular credentials, EPJ Web of Conf. 295, 04051 (2024).
https://doi.org/10.1051/epjconf/202429504051

[6] GlideinWMS Documentation, https://glideinwms. fnal.gov/doc.dev/
documentation.html

https://doi.org/https://dx.doi.org/10.1088/1742-6596/119/6/062044
https://doi.org/https://dx.doi.org/10.1088/1742-6596/119/6/062044
https://doi.org/10.5281/zenodo.8383959
https://doi.org/10.1145/3219104.3219135
https://doi.org/https://doi.org/10.1051/epjconf/202429504051
https://glideinwms.fnal.gov/doc.dev/documentation.html
https://glideinwms.fnal.gov/doc.dev/documentation.html

