
Fermilab GU000l

UNIX at Fermilab

Release 3.0

November 26, 1997

Computing Division
Fermi National Accelerator Laboratory

Compiled by Anne Heavey

ABSTRACT

The UNIX at Fermilab manual has several goals: to help you get started as quickly and painlessly
as possible in the UNIX environment here at Fermilab, to make you aware of the UNIX resources
available at Fermilab, and to help you use UNIX easily and efficiently, whatever your particular
needs.

We discuss the most commonly used UNIX concepts, commands and tools, and provide enough
information to allow you to execute commands and perform tasks typically required by the Ferm-
ilab user community. We refer you to more specialized Fermilab documents as needed, and to
commercially available sources of information for details on commands and features that will
allow you to exploit the more sophisticated features of the UNIX operating system not covered in
this document.

August 1990
March 1996

Revision Record

Original Draft
Total overhaul; then several minor revisions through September 1996

November 1997 Significant changes relative to 9/30/96 release (text changes within sections are not noted
here). Chapter and section numbers correspond to new release:

Ch 1 (Introduction): new FNALU section (1.5)
Ch 2 (Getting Started): moved AFS information into AFS chapter (7)
Ch 3 (Information Resources): new Helpdesk section (3.5)
Ch 6 (File System): new tar section (6.3.7); moved AFS information.into AFS chapter (7)
Ch 7 (AFS): new chapter
Ch 9 (Work Environment): added section on X-terrninal support (9.5)
Ch 10 (UPS Products): new chapter (replacement)
Ch 11 (Editors): new information for the editor xemacs (11.3.2)
Ch 12 (Mail): new "Notice of Upcoming Changes"
Ch 14 (Batch): new chapter
Ch 15 (Tapes): condensed OCS coverage; added sections for FTT (15.4) and FMB (15.5)
Ch 16 (Sofware Dev): new section on the debugger GDB (16.11.3)
Ch 18 (Code Mgmt): condensed the UCM section (18.2)
Removed appendix on FUE Conformance Lev~ls
Appx B (UPS Overview): new appendix
Appx F (rnh and exrnh Custom): new section on auto reply to mail (F.3)

This document and associated documents and programs, and the material and data contained therein, were developed
under the sponsorship of an agency of the United States government, under D.O.E. Contract Number EY-76-C-02-
3000 or revision thereof. Neither the United States Government nor the Universities Research Association, Inc. nor
Ferrnilab, nor any of their employees, nor their respective contractors, subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for accuracy, completeness or usefulness
of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-
owned rights. Mention of any specific commercial product, process, or service by trade name, trademark,
manufacturer, supplier, or otherwise, shall not, nor is it intended to, imply fitness for any particular use, or constitute
or imply endorsement, recommendation, approval or disapproval by the United States Government or URA or
Ferrnilab. A royalty-free, non-exclusive right to use and disseminate same for any purpose whatsoever is expressly
reserved to the U.S. and the U.R.A. Any further distribution of this software or documentation, parts thereof, or other
software or oocumentation based substantially on this software or parts thereof will acknowledge its source as
Ferrnilab, and include verbatim the entire contents of this Disclaimer, including this sentence.

r

r

l

Acknowledgments

In 1995-1996, the Fermilab Computing Division's VMS Migration Task Force was responsible for
updating UNIX at Fermilab (from the June 1991 release) in time for the mass migration from
FNALV. That task force included: Pushpa Bhat, Joel Butler, Lauri Loebel Carpenter, Mike
Diesburg, Dave Fagan, Ken Fidler, Steve Hanson, Rob Harris, Joy Hathaway, Anne Heavey, Art
Kreymer, Paul Lebrun, Frank Nagy, Judith Nicholls, Dane Skow, Mike Stolz, Roy Thatcher, Al
Thomas, Matt Wicks, and Steve Wolbers.
Other contributors/reviewers included Liz Buckley-Geer, Chuck DeBaun, Lynn Garren, Randy
Herber, Peter Kasper, Marc Mengel, Clyde Moseberry, Gene Oleynik, Ruth Pordes, Marilyn
Schweitzer, Jonathan Streets, and Margaret Votava.

The CERN UNIX User Guide, after having lifted information from the early release of UNIX at
Fermilab, was in tum used to provide much of that information back to us appropriately update~!
Naturally, we lifted additional useful information from CERN's well-constructed manual. The
CERN document Shell Choice, A shell comparison was also used.

This 1997 revision of UNIX at Fermilab includes contributions from many of the people listed
above. Additional contributors/reviewers include Eileen Berman, Jim Fromm, Lisa Giacchetti, Jeff
Kallenbach, John Marrafflno, Laura Mengel, Liz Sexton-Kennedy, and Alan Wehmann.

We'd like to thank the readers who have taken the time to send us suggestions about the manual.

November 26, 1997 UNIX at Fermilab

UNIX at Fennilab November 26, 1997

r

[)

Table of Contents

Chapter 1: Introduction ... 1-1
1.1 The UNIX at Fermilab Manual . 1-1

1.1.1 Conventions Used in this Manual 1-3
1.1.2 Summary of Chapters and Appendices . 1-4

1.2 About UNIX .. 1-7
1.2.1 A Brief History . 1-7
1.2.2 A Word About Features and Components 1-7
1.2.3 The Advantages of UNIX . 1-8

1.3 The Fermi UNIX Environment . 1-9
1.4 UNIX OS Support at Fermilab . 1-10
1.5 The Central Fermilab UNIX Resource: FNALU 1-10

L5.l Getting an Account on FNALU 1-11
1.5 .2 Intended Uses of the FNALU Cluster . 1-11

1.6 Additional Documents and Information , 1-11
1.6.1 Fermilab Documents 1-11
1.6.2 Useful URLs .. . 1-12
1.6.3 Commercially Available Texts '. 1-13

Chapter 2: Getting Started on a UNIX System 2-1

November 26, 1997

2.1 Logging In • 2-1
2.1.1 C Shell Family .. 2-2
2.1.2 Bourne Shell Family 2-2

2.2 Logging Out : 2-2
2.2.1 C Shell Family 2-2
2.2.2 Bourne Shell Family 2-3

2.3 The UNIX Prompt ... 2-3
2.4 Special Keys • 2-3
2.5 Special Characters (Metacharacters) . 2-5
2.6 File Systems: Standard UNIX and AFS . 2-6
2. 7 Information Distribution System: NIS . 2-7
2.8 Changing Your Password . 2-7

2.8.1 Standard UNIX Password 2-7
2.8.2 Kerberos (AFS) Password 2-8

UNIX at Fermilab TOC-1

Chapter 3: Information Resources 3-1
3.1 UNIX On-Line Help 3-1

3.1.1 man Pages .. 3-1
3.1.2 Finding the Right Command 3-3
3.1.3 Vendor Product Documentation 3-4

3.2 The Internet .. 3-4
3.2.1 The World Wide Web (WWW or "the Web") 3-5
3.2.2 UNIX Help on WWW 3-7
3.2.3 Newsgroups 3-7

3.3 The Info Utility ... 3.:.g
3.4 Other Users: WWW Directories, finger and who • 3-8
3.5 The Fermilab Helpdesk 3-9

Chapter 4: Shells . 4-1
4.1 Introduction to Shells . 4-1

4.1.1 Determining Your Current Shell . 4-1
4.1.2 Starting a Shell .. 4-2
4.1.3 Exiting a Shell 4-2

4.2 Features of Available Shells 4-3
4.3 Supported/Recommended Shells at Fermilab 4-4
4.4 Shell Scripts 4-4
4.5 Other Interpretive Programming Languages 4-6

Chapter 5: Important UNIX Concepts 5-1
5.1 Processing Environment 5-1

5.1.1 Programs, Commands and Processes 5-1
5.1.2 Command Interpretation by the Shell 5-2

5.2 Command Entry ... 5-3
5.2.1 Command Format 5-3
.5.2.2 Miscellaneous Command Line Features 5-4

5.3 Command Recall .. 5-5
5.4 Important Concepts 5-7

5.4.1 Path • 5-7
5.4.2 Standard Input and Output Redirection 5-7
5.4.3 Pipes 5-10
5.4.4 Filters 5-10
5.4.5 Regular Expressions 5-14

5.5 Job Control 5-15
5.5.1 Priority 5-15
5.5.2 Background, Foreground, and Suspended Jobs 5-15
5.5.3 Scheduling Jobs: at and cron 5-17

Chapter 6: The UNIX File System 6-1
6.1 Directory Structure . 6-1

6.1.1 Pathnames . 6-1
6.1.2 The Home Directory 6-2
6.1.3 Command Line Directory Shortcuts 6-3
6.1.4 Directories and Executables 6-3

TOC-2 UNIX at Fermilab November 26, 1997

r

t

(6.2 Files 6-4
6.2.1 Filenames . 6-4
6.2.2 Filename Expansion and Wildcard Characters 6-5

6.3 Manipulating Files 6-6
6.3.1 List Directory Contents: ls 6-6
6.3.2 List File Contents: cat, less, more, head, and tail 6-7
6.3.3 Copy a File: cp 6-8
6.3.4 Move (Rename) a File: mv 6-9
6.3.5 Reference a file: ln 6-10
6.3.6 Remove a File: rm 6-11
6.3.7 Copy to/Restore from Archive or Tape: tar 6-11
6.3.8 Compress or Expand a File: gzip, gunzip 6-12

6.4 Information About Files 6-13
6.4.1 Find a File: find ... : 6-13
6.4.2 Search for a Pattern: grep 6-14
6.4.3 Count a File: wc 6-15
6.4.4 Dump a File: od 6-15
6.4.5 Determine File Type: file 6-16

6.5 Manipulating Directones 6-16
6.5.1 Print Working Directory: pwd 6-16
6.5.2 List Directory Contents: ls· 6-16
6.5.3 Change Directory: cd 6-17
6:5.4 Make a Directory: mkdir 6-17
6.5 .5 Copy a Directory . 6-17
6.5.6 Move (Rename) a Directory: mv or mvdir 6-18
6.5.7 Remove a Directory: rmdir 6-18

6.6 File and Directory Permissions 6-19
6.6.l File Access Permissions 6-19
6.6.2 Directory Permissions 6-21

6.7 Temporary Directories 6-21
Chapter 7: The AFS File System . 7-1

7 .1 Introduction to AFS . 7-1
7 .2 How to Determine if AFS is Installed on your System 7-1

November 26, 1997

7.3 Issues Related to Login and File Access 7-2
7.3.1 Authentication in AFS 7-2
7.3.2 Kerberos (AFS) Password 7-3
7.3.3 Standard UNIX Password on an AFS System 7-3
7.3.4 Managing your Token : 7-4

7.4 AFS File System Commands and man Pages 7-5
7 .5 AFS Volumes and Quota . 7-6
7 .6 File and Directory Permissions . 7-7

7 .6.1 File Permissions . 7-7
7.6.2 Directory Permissions via Access Control Lists (ACLs) 7-7

UNIX at Fermilab TOC-3

7. 7 AFS Protection Groups . 7-9
7.7.1 Permissions for Performing Group-Related Tasks 7-10
7.7.2 Listing Information about Groups 7-11
7.7.3 Modifying Group Characteristics 7-12

7.8 Implications of ACLs and Examples : 7-14
7.8.1 Protecting your Subdirectories 7-14
7.8.2 Protecting your Home Directory 7-15

7.9 AFS in Translator Mode 7-15
7.10 File Locking in AFS 7-16
7.11 Frequently Asked Questions 7-16

7.11.1 Lost Access to Files 7-16
7 .11.2 AFS and the UNIX Command "find" . 7-16
7 .11.3 Error Messages . 7 -17
7 .11.4 Retrieving Old Files . 7-17
7.11.5 Link Failure 7-17

Chapter 8: Printing . 8-1
8.1 The FUE Print Command: flpr . 8-1
8.2 Pre-Printing Options , 8-3

8.2.1 Convert ASCII to PostScript: a2ps 8-3
8.2.2 Print Multiple Pages per Sheet: psnup 8-3
8.2.3 Set Duplex Mode 8-4

8.3 Other Print Utilities 8-5
Chapter 9: Working Environment ~ 9-1

9.1 Shell Variables and Environment Vari.ables ; 9-1
9.1.1 C Shell Family · : 9-1
9.1.2 Bourne Shell Family 9-3

9 .2 Some Important Variables . 9-4
9.3 The Alias Command 9-5

9.3.1 C Shell Family .. 9-6
9.3.2 Bourne Shell Family 9-6

9.4 Tailoring Your Environment 9-7
9.4.1 C Shell Family Fermi Files 9-7
9.4.2 Bourne Shell Family Fermi Files 9-8
9.4.3 Storing Customized Code 9-10

9.5 X Terminal Support 9-10
9.5.1 Configuration 9-10
9.5.2 Connecting to Host Computers 9-11

9.6 Multimedia File Support 9-11
9. 7 Terminal Characteristics . 9-12

Chapter 10: Accessing Software Products 10-1
10.1 Finding Information about Available Software 10-1
10.2 Accessing Installed UPS Products . 10-2

10.2.1 Get Information About Products Installed on Your System .. . 10-2
10.2.2 Setup a Product Instance 10-2

TOC-4 UNIX at Fermilab November 26, 1997

[

10.2.3 Unsetup a Product Instance . 10-3
10.2.4 Invoke the Product . 10-3

10.3 Obtaining Products from KITS . 10-4
10.3.1 Steps for Installing a Product 10-4
10.3.2 UPD Menu Interface Operations 10-6

10.4 Using Anonymous ftp to Download a Product 10-6
10.4.1 Access Anonymous ftp . 10-6
10.4.2 Select a Product Instance Tar File . 10-9
10.4.3 Copy the Tar File . 10-9

Chapter 11: Editors : 11-1
11.1 The Available Editors . 11-1
11.2 Comparison of Editors 11-2
11.3 Getting Started with the Editors . 11-3

11.3.1 vi .. · 11-3
11.3.2 emacs and xemacs 11-4
11.3.3 NEdit- 11-10
11.3.4 nu/TPU ... 11-10
11.3.5 fermitpu .. 11-11
11.3.6 EDT+ , 11-11

Chapter 12: UNIX Mail Systems 12-1
12.1 Mail Forwarding 12-2

12.1.1 The Fermilab Iv,Iail Server: FNAL 12-2
12.1.2 Forwarding on File-Sharing UNIX "Clusters" 12-2
12.1.3 Recommended Forwarding Procedure 12-3

12.2 Overview of Mail Systems Available at Fermilab 12-5
12.2.1 pine ... 12-5
12.2.2 MH Graphical Interface: exmh 12-8
12.2.3 MH Line-Mode Interface: mh 12-8
12.2.4 Berkeley Mail . 12-8

12.3 The exmh and mh Mail Handlers 12-9
12.3.1 Run Setup and Invoke the Application 12-9
12.3.2 Compose and Send Messages 12-12
12.3.3 Incorporate and Read Incoming Messages 12-15
12.3.4 Reply to Messages 12-17
12.3.5 Forward Messages : .. 12-18
12.3.6 Print Messages 12-19
12.3.7 Extract Messages 12-19
12.3.8 Remove Messages 12-20
12.3.9 Create, Change and Remove Folders 12-21
12.3.10 Refile Messages • 12-22
12.3.11 Search for Messages 12-22

12.4 Basic Configuration for MH 12-23
12.4.1 Configuration Files 12-23
12.4.2 MH Mail Folders 12-24
12.4.3 Incorporation oflncoming Mail into Folders 12-25

November 26, 1997 UNIX at Fermilab TOC-5

12.4.4 Signature Lines . 12-26
12.4.5 Mail Aliases . 12-26
12.4.6 Folder Order and Header Display (exmh) 12-27

12.5 Berkeley Mail .. 12-27
12.5.1 Send Messages and Files 12-27
12.5.2 Read Messages _. 12-28

Chapter 13: Connecting to Remote Systems 13-1
13 .1 Transferring Files . 13-1

13.1.1 ftp .. 13-1
13.1.2 rep • 13-3
13.1.3 The .rhosts File 13-4

13.2 Logging in to Other Systems 13-5
13.2.1 telnet- 13-5
13.2.2 rlogin . 13-5

13.3 Executing Commands Remotely: rsh 13-5
Chapter 14: Batch Processing Environment 14-1

14.1 The Standard Batch System at Fermilab: LSF 14-1
14.1.1 Job Queues ... 14-1
14.1.2 Load Monitoring on Hosts 14-2
14.1.3 Host Selection' 14-2
14.1.4 Job Priority ... 14-2

14.2 Local Interface to LSF: fbatch : . 14-2
14.2.1 View Host Information 14-3
14.2.2 View Queue Information 14-3
14.2.3 Submit a Batch Job 14-4
14.2.4 Monitor Submitted Batch Jobs 14-4
14.2.5 Control Submitted Batch Jobs 14-5

14.3 Related Software Components 14-6
Chapter 15: Tape Handling 15-1

15.1 Operator Communications Software (OCS) 15-1
15.1.1 OCS Basics 15-2
15.1.2 The OCS X Interfaces 15-5
15.1.3 Using Provided Examples to Get Started 15-6

15.2 Raw Buffered I/O (RBIO) 15-6
15.3 DAta From Tape (DAFT) 15-7
15.4 Fermi Tape Tools (FTT) 15-7
15.5 Fermi Modular Backup (FMB) 15-7

Chapter 16: Software Development 16-1
16.1 Overview of Programming Languages and Tools 16-1
16.2 Introduction to C and FORTRAN on UNIX 16-4

16.2.1 The C Compiler: cc 16-4
16.2.2 The FORTRAN Compiler: f77 16-4
16.2.3 C and FORTRAN Compiling Basics 16-4
16.2.4 Linking Order 16-5

TOC-6 UNIX at Fermilab November 26, 1997

[16.2.5 Displaying Active Options 16-5
16.2.6 Option Passing 16-5

16.3 Introduction to C++ on UNIX 16-6
16.4 C and FORTRAN Compiler Options 16-6

16.4.1 Commonly-Used Options 16-6
16.4.2 Recommended Options for General Use 16-7
16.4.3 Debugging Option 16-8
16.4.4 Portability Option for AIX 16-8
16.4.5 ABI Options Under IRIX 6 16-8
16.4.6 Speed Optimization Options 16-9
16.4.7 Load Map Option , 16-9
16.4.8 Special FORTRAN Compiler Options 16-10

16.5 FORTRAN Programming 16-11
16.5 .1 External Reference and Entry Point Names 16-11
16.5.2 Separate Compilation of FORTRAN Subprograms: fsplit ... 16-12
16.5.3 ADC-Specific Issues 16-12
16.5.4 Loading Block Data Modules 16-12
16.5.5 Program Control 16-12
16.5.6 Future FORTRAN Enhancements 16-13

16.6 Obsolete Programming Features , 16-13
16.7 C and FORTRAN I/0 16-14

16.7.1 Records ; 16-14
16.7.2 Tapes · : 16-14

• 16.7.3 Standard Input and Output 16-15
16.8 Performance Tuning for C and FORTRAN 16-15

16.8.1 Optimization 16-15
16.8.2 Word Length 16-15
16.8.3 Feedback .. 16-16
16.8.4 Inlining ... 16-16

16.9 C and FORTRAN Mixed Programming 16-16
16.9.1 Variable Types 16-17
16.9.2 Array Indexing ; 16-17
16.9.3 External Names 16-17
16.9.4 Arguments .. 16-18
16.9.5 Commons • ... 16-18-
16.9.6 I/0 16-18
16.9.7 Linking 16-18

16.10 Executing a Program 16-18
16.11 Debugging ... 16-19

16.11.1 FORTRAN Source Code Analyzer: FLINT 16-19
16.11.2 dbx 16-20
16.11.3 gdb ... 16-22
16.11.4 purify ... 16-22
16.11.5 CASEVision 16-23

l November 26, 1997 UNIX at Fennilab TOC-7

Chapter 17: The make Utility 17-1
17.1 An Overview of the make Utility 17-1
17 .2 The Makefile and its Components . 17-2

17.2.1 Macros .. 17-2
17.2.2 Targets • 17-4
17.2.3 Suffix Rules ,, 17-5
17 .2.4 Suffix Declarations . 17-6
17 .2.5 Control Files within a Makefile . 17-6

17.3 Running make .. 17-7
17.3.1 General Usage 17-7
17 .3.2 Usage without Specifying Target -......... ' 17-7
17.3.3 Usage without a Makefile 17-8

17.4 "Housekeeping" T~gets . 17-8
17 .5 Portability . 17-.8
17.6 make'sBuilt-inRules 17-9
17.7 A Few Caveats .. 17-10

Chapter 18: Code Management 18-1
18.1 CVS .. 18-1

18.1.1 Accessing CVS and Obtaining the Manual 18-1
18.1.2 Basic CVS Commands 18-2

18.2 UCM .. i8-2
18.2.1 Accessing UCM and Obtaining the Manual 18-2
18.2.2 Basic UCM Commands : 18-3.

Appendix A. VMS Migration for the Impatient A-1
A.1 The Two Necessary Commands A-1
A.2 OK, What's the Catch? A-1
A.3 Whoa! Too Fast! ... A-3

Appendix B. UNIX Product Support (UPS) Overview B-1
B.1 Introduction .. B-1
B.2 The UPS Environment B-2
B.3 UPS Products ... B-4
B.4 UPS Databases ... B-4
B.5 UPS Product Files .. B-4
B.6 Product Versions .. B-5
B.7 UNIX Operating System Flavors B-5

B.7.1 What is "Flavor"? B-5
B.7.2 Simple Flavors .. B-5
B.7.3 Extended Flavors B-5

B.8 Instances : B-6
B.9 Flavor Specification B-6
B.10 Chains • B-6
B.11 Product Dependencies (Use and Build Requirements) B-7
B.12 Notes on Setup and Unsetup B-7

TOC-8 UNIX at Fermilab November 26, 1997

[

l
I

[

Appendix C. Fermi Login Files C-1
C.1 C Shell Family .. C-1

C.1.1 .cshrc : C-1
C.1.2 fermi.cshrc ... C-2
C.1.3 setpath.csh ... • C-3
C 1.4 setups.csh : C-4
C.1.5 .login ... C-6
C.1.6 fermi.login · C-7

C.2 Bourne Shell Family C-11
C.2.1 .profile C-11
C.2.2 fermi.profile ... C-12
C.2.3 setpath.sh ... C-16
C.2.4 .shrc ... C-17
C.2.5 fermi.~hrc : C-19
C.2.6 setups.sh ... • .. C-21

Appendix D. awk's Programming Model D-1
Appendix E .. VMS to UNIX Command Ref ere nee E-1 •

E.1 UNIX Equivalents for Many VMS Commands R-1
E.2 Shell Scripts for Copying/Renaming Multiple Files E-5
E.3 Unpacking VMS Backup Save-sets E-5

Appendix F. mh and exmh Customization F -1
F.1 Forwarding and Notification F-1

F.1.1 Forwarding Address F-1
F.1.2 Mail Notification F-2

F.2 Files Used to Customize mh and exmh F-3
F.2.1 .mh_profile ... F-3
F.2.2 components .. F-4
F.2.3 replcomps • F-5

· F.2.4 forwcomps ... F-5
F.2.5 scan-form and inc-form F-6-
F.2.6 .maildelivery ... F-6

F.3 Automatic Reply to Incoming Mail : F-8
F.4 Unattended Autoincorporation F-9

F.4.1 In Standard UNIX Environment F-9
F.4.2 In AFS Environment F-10

Appendix G. mh Command Reference G-1
Appendix H. Mail Conversion from VMS H-1

H.1 Preparation for Conversion H-_1
H.2 Choosing the Process to Use H-2
H.3 Using the Semi-Automatic Process H-2
H.4 Using the Automatic Process H-2

November 26, 1997 UNIX at Fermilab TOC-9

Appendix I. Programming Examples 1-1
1.1 Interfacing C and FORTRAN 1-1
1.2 Makefiles and the make Process 1-3

1.2.1 A Simple make Process 1-3
1.2.2 A Physics Makefile 1-5

Index ... IDX-1

TOC-10 UNIX at Fermilab November 26, 1997

(

Chapter 1: Introduction

This chapter provides an introduction to the manual itself as well as to UNIX and its
implementations at Fermilab. In particular, it covers:

• the purpose and intended audience of UNIX at Fermilab

• where to send comments and questions about the manual

• where to obtain additional copies of the manual

• the typeface conventions and symbols used throughout the manual
• a summary of the contents of all the chapters and appendices in the manual

• a very brief history of the UNIX operating system and a discussion of its advantages
• an introduction to the Fermi UNIX Environment, which is installed on most UNIX systems at

Fermilab
• a listing of the supported UNIX operating systems

• an introduction to FNALU, the central Fermilab UNIX cluster

• information on locating on-line Fermilab documents

• a listing of UNIX references

1.1 The UNIX at Fermilab Manual
This manual covers basic UNIX concepts and operations, and thus is especially geared to users who
are new to UNIX. It also documents the UNIX environment and file systems commonly used at
Fermilab, and thus is a handy reference for all users of Fermilab UNIX systems.

There are many different UNIX systems installed at Fermilab, with differing levels of
conformance to Fermilab standards. Therefore, some of the information contained in this
manual may not be valid for your system. You will very likely need to obtain supplementary
documentation and information specific to your system.

In particular, CDF and DO have created documentation for their systems and made it available
on the World Wide Web (this utility is described in section 3.2.1). You can access this
information at the following locations:

CDF
http://www-cdf.fnal.gov/offline/cdfsga/cdfsga.html

DO
http://dOwop.fnal.gov/dOunix/dOunix.html

November 26, 1997 Introduction 1-1

The purpose of this manual is to help you get started as quickly and painlessly as possible in the
UNIX environment here at Fermilab, as well as to help you use UNIX easily and efficiently,
whatever your particular needs. we· discuss the most commonly used UNIX concepts, commands
and tools, and provide enough information to allow you to execute commands and perform tasks
typically required by the Fermilab user community. We refer you to commercially available
sources of information for details on commands and features that will allow you to exploit the more
sophisticated features of the UNIX operating system not covered in this document. We also
describe the Fermi UNIX Environment, which includes Fermilab-specific programs, libraries,
tools, and usages, and occasionally refer you to other Fermilab documents.
We try to describe here a rather "standard UNIX" and recommend that you try not to use the
"value-added" features that the individual vendors provide which may cause you trouble in
conversion to another platform. Commands and features for both families of UNIX command
interpreters (discussed in Chapter 4), C shell and Bourne shell, are included when they differ. Since
some of the systems at Fermilab will have the AFS file system installed, we address some issues
concerning AFS in Chapter 7.
It is not the purpose of this manual to teach you UNIX or to give you a complete description of
UNIX. For that purpose we recommend that you obtain and read one of many good books on
UNIX. See section 1.6 for some suggestions. This manual is also not intended as a system
administration reference.
For those readers who wish to convert from VMS to UNIX quickly without learning about UNIX
ahead of time, see Appendix A for the bare minimum needed to accomplish this task!

UNIX at Fermilab is bound to contain some errors, however we endeavor to minimize the error
count! We encourage all the readers of this manual to report back to us:

• errors or inconsistencies that we have overlooked
• any parts of the manual that are confusing or unhelpful -- please offer constructive

suggestions!
• other topics to include (keeping in mind the purpose of the manual)
• tricks that other Fermilab users might find helpful

Send your comments via email to cdlibrary@fnal.gov.

Copies of UNIX at Fermilqb, document number GU000l, can be obtained from the following
sources:

WWWl http://www.fnal.gov/docs/UNIX/unix_at_ferrnilab

You can reach this from the Fermilab Computing Division home page,
under UNIX Resources or via the document database (see section 1.6.1).
Both PostScript and HTML versions are available.

Paper Copies

. AFS

Wilson Hall, 8th floor, NE (outside the former Computing Division
library)
PostScript files are available under
/afs/fnal/files/docs/UNIX/unix_at_ferrnilab/ps/
rev1997/

1. See section 3.2.1 for information on the World Wide Web (WWW).

1-2 Introduction November 26, 1997

l

u

1.1.1 Conventions Used in this Manual

The following notational conventions are used in this manual:

bold Used for shells (e.g., csh) and product names.

italic

typewriter

sans-serif

typewriter-bold

bold-italic

<Ctrl-char>

[]

%

$

{ }

Used to emphasize a word or concept in the text; many
terms found in the index are italicized in the text. Also
used to indicate variables and reference book titles.
Used for filenames, path names, contents of files, output of
commands.
Used to indicate keys (on keyboard) arid "buttons" on
graphical applications.

In text, used to indicate commands and prompts. In
command formats, indicates what the user types "as is".
In command formats, indicates variables for which the
user must make context-specific substitutions.
Indicates a control character. To enter a control character,
hold down the control key (labeled Ctrl, probably) while
pressing the key specified by char.

In command formats, indicates optional command
arguments and options.

When shown in between brackets ([x I y I z]) in a
command line, separates a series of options from which
one must be chosen. In UNIX command formats, used to
"pipe" output of preceding command to the following one
(see section 5.4.3).

_Single vertical quotes indicate apostrophes in commands.
Single backquotes in UNIX commands ·have a special
meaning (use output of string in place of string itself).
Don't confuse them with apostrophes.

Means that a repetition of the preceding parameter or
argument is allowed.
Prompt for C shell family commands (% is also used
throughout this document when a command works for
both shell families).

Prompt for Bourne shell family commands; also standard
UNIX prefix for environment variables (e.g., $VAR means
"the value to which VAR is set"). •

In environment variables, paths, files and other text
strings, indicates strings for which the user must make
context-specific substitutions. For example,
${PRODUCT}_DJR is $WWW_DIR for the product www,
and {username}@{node} refers to a string like
joe@fsui02.

All command examples are followed by an implicit carriage return key.

November 26, 1997 Introduction 1-3

• • [:]
0
J
1t

The following symbols are used throughout UNIX at Fermilab to draw your attention to specific
items in the text:

A UNIX "bomb"; this refers to something important you need to know about UNIX in order to
avoid a pitfall .

A VMS "bomb"; this is used to point out common pitfalls of VMS users.

This symbol indicates information for AFS systems (see Chapter 7).

This symbol is intended to draw your attention to a useful hint.

This is a reminder.

We refer you to other documentation sources for further information where you see this symbol.

1.1.2 Summary of Chapters and Appendices

The organization of this manual reflects our compromise between providing a tutorial and a
reference manual. You may find it useful to skip around a little rather than reading straight through.

(j? We recommend that you get a UNIX account and begin to work with the system as you read.

Chapters:

2: Getting Started on a UNIX System
This chapter describes the login and logout procedures, and discusses some basic UNIX
features including the prompt, special keys, and special characters. We present a brief
discussion of the file systems you are likely to encounter at Fermilab, and how to change your
password according to your file system and installation.

3: Information Resources
This chapter introduces you to the information facilities available from UNIX. Standard UNIX
on-line help is available via the man pages. We discuss the World Wide Web and newsgroups ,
which are very rich sources of information on a virtually unlimited set of topics. A few utilities
that allow you to get information about vendor products, other users, and the Fermilab
computing systems are also covered. Finally, we include instructions for communicating with
the Fermilab Helpdesk.

4: Shells
This chapter discusses the concept of a UNIX shell, and how to manipulate shells . . It includes
information on the available and recommended shells and their features. The concept of a shell
as an interpretive programming language is introduced.

5: Important UNIX Concepts

1-4

This chapter introduces you to the UNIX command·structure, and to many important commands
and concepts. The features introduced in this chapter constitute the core of the UNIX operating
system, and many of these tools are quite powerful and flexible. Some of the features are
shell-specific, and we provide the distinctions where necessary.

Introduction November 26, 1997

6: The UNIX File· System
The UNIX file system has a hierarchical or tree-like structure with the directory called root(/)
as its source. The system is essentially composed of.files and directories. In this chapter we
describe techniques for manipulating files and directories, and commands designed to provide
information about them.

7: The AFS File System
Fermilab is using the AFS (Andrew File System) as a distributed file service model, and it is
installed on several machines on site in a production environment, including the FNALU
cluster. This chapter discusses the basic concepts of AFS and provides information on the
commands used to manage your files and directories in the AFS environment.

8: Printing
This chapter covers the standard FUE print utility flpr, as well as filter programs and techniques
available for formatting the output prior to printing. flpr is the Fermi implementation of the
standard UNIX Ipr utility. Most software applications supplied by the Computing Division use
flpr as a default.

9: Working Environment
This chapter describes the methods used to set up your working environment in UNIX. Some
of these are standard UNIX (e.g., shell and environment variables), and some are provided
and/or customized by FUE (e.g., the login scripts).

10: Accessing Software Products
In this chapter you will learn how to get information about the software products that are
provided and supported by the Computing Division. We describe how to access products
·already installed on your system, and how to obtain a product from the Fermilab KITS area and
install it on your system.
A notice regarding upcoming changes is included.

11: Editors
Several text editors are available at Ferrnilab. In this chapter we present our view of the
advantages and disadvantages of the available editors, and we provide some basic information
on the setup and use of each one. You will learn how to invoke each editor, and how to create,
edit, and save a file in each one using a small subset of commands and features. We include
only minimal usage information for the VMS-style editors.

12: UNIX Mail Systems
This chapter describes how mail forwarding is managed at Ferrnilab and discusses the UNIX
mail handlers that are currently available and supported.
A notice regarding upcoming changes is included.

13: Connecting to Remote Systems
Several utilities are available to enable you to transfer files between systems, to log into other
systems on which you have an account, and to execute commands remotely. These (eatures are
described in this chapter.

14: Batch Processing Environment

November 26, 1997

In this chapter we provide introductory information on LSF (Load Sharing Facility), the
standard batch processing system at Ferrnilab, and on fbatch, the locally-written interface to
LSF. We also list the related software components that can be used with LSF/fbatch.

Introduction 1-5

15: Tape Handling
In this chapter we discuss the principal tape handling software and facilities available at
Ferrnilab. Start-up information for running and monitoring OCS tape mounts is provided, and
the OCS X interface is introduced. Several tape 1/0 packages are briefly described.

16: Software Development
This chapter gives an introduction to UNIX software development tools in common use at
Ferrnilab, providing information on:
• Supported languages
• Compiling and linking in C, C++ and FORTRAN
• Debugging
We do not include a discussion of general programming here, but rather, aspects of software
development particular to UNIX.

17: The make Utility
The UNIX make utility is a tool for organizing and facilitating the update of executables or
other files which are built from one or more constituent files. Although make can be used in a
wide variety of applications, in this chapter we concentrate on its use in the area of software
development. We describe how to define relationships between source, object, library and
executable files for use by make, and how to invoke make in its simplest and slightly more
complex forms.

18: Code Management
This chapter introduces the recommended code management solution for UNIX, CVS
(Concurrent Versions System). We also introduce an alternative that is currently being used by
a couple of Ferrnilab experiments, UCM (UNIX Code Management). Both packages use RCS
(Revision Control System) as the underlying protocol. We provide basic information only, and
refer you to the complete manuals for these utilities for detailed information.

Appendices:

A: VMS Migration for the Impatient
So, you've decided you're ready to convert (or you've run up against a deadline!), but you don't
know the first thing about UNIX. Here's enough information to get you moved over. You can
use the rest of the manual to learn about UNIX afterwards.

B: UNIX Product Support (UPS) Overview
In this appendix we discuss the Fermilab product support structure, UPS. We recommend that
you read and understand this material before performing any of the tasks described in Chapter
10.
A notice regarding upcoming changes is included.

C: Fermi Login Files
This appendix contains file listings of the PUE-customized default login files (the "Fermi
Files") used to set up your UNIX environment. If you are on a PUE-compliant system, you are
supplied with a copy of each file in your home directory (except for the fermi. * and
setup.* files which are executed directly from /usr /local/ etc). The files are
reprinted here in their entirety except for the copyright disclaimers.

D: awk's Programming Model

1-6

This appendix is adapted from a section of the same name in the book sed & awk, published by
O'Reilly & Associates. It describes the generic structure and organization of an awk program.

Introduction November 26, 1997

[

d

E: VMS to UNIX Command Reference
This appendix is intended as a convenient UNIX command reference for the migrating VMS
user. The UNIX equivalents of commonly used VMS commands are listed in tabular format.
No information on syntax, options, or arguments is presented here, however some of the listed
commands are described elsewhere in UNIX at Fermi/ab.

F: mh and exmh Customization
This appendix contains information for further customizing the mh and/or exmh mail readers.
Given the multitude of customizable features in these mail readers, we cannot provide you with
a comprehensive treatment of the subject here. The information presented in Chapter 12 and
this appendix should be sufficient for most users.

G: mh Command Reference
This appendix provides an alphabetical reference to the subset of mh commands discussed in
Chapter 12.

H: Mail Conversion from VMS
This appendix is intended to guide you through a mail conversion process from VMS to the
UNIX MH (Message Handling) system. Two options for conversion are presented.

I: Programming Examples
This appendix contains examples of programs that illustrate information presented in Chapters
16 and 17.

1.2 About UNIX

1.2.1 A Brief History

The UNIX operating system was developed at AT&T Bell Laboratories in Murray Hill, New Jersey
in the late 1960's. Universities and colleges have played a major role in popularizing UNIX. The
Computer Science Department at the University of California at Berkeley made so many pop).llar
changes to it that one of the two most popular versions in use today is named the Berkeley Software
Distribution (BSD) of the UNIX system. The other major version is AT&T's UNIX System V.
Many implementations incorporate features of both systems.

1.2.2 A Word About Features and Components

Because UNIX was originally designed by programmers to support their own projects, one of its
strongest points is that it provides an excellent software development environment. UNIX has a
large set of powerful utility programs and tools that allow users to easily build systems and
applications. It also has several command interpreters, called shells that can also be used as
high-level programming languages. Keep an open mind to the powerful features of UNIX that may
be quite different from systems you are familiar with. Some of the important concepts are
introduced in Section 5.4 (e.g., pipes and filters, and device-independence).
Bear in mind that there are many UNIX utilities not described in this guide.

November 26, 1997 Introduction 1-7

The UNIX operating system has four basic components:
• The kernel constitutes the nucleus of the operating system and coordinates the internals such

as allocating system resources.
• The file sy_stem, which is part of the kernel, controls the storage and access of data. It is

similar to the VMS file system in that the structure is hierarchical.
• Commands are programs that you request the computer to execute.
• Programs (commands) called shells serve as command interpreters. They act as links between

you and the computer, interpreting and executing commands. They are also high-level
interpretive programming languages.

Although there are many implementations of UNIX, there are two families of shells. The Bourne
shell family and the Berkeley/C shell family. The shell families and the individual shells are
discussed in more detail in Chapter 4.

1.2.3 The Advantages of UNIX

New Technologies

UNIX allows Fermilab to achieve better alignment with the mainstream of computing. The
"developmental momentum" is with UNIX and personal computers, and it is primarily for these
environments that the new technologies, software products, and software methods are emerging.
Other HEP laboratories have also recognized these trends and are moving in this direction.

Multi-Platform Support

There are many UNIX platforms, and while there are certainly variations among them, the
differences tend to be small. This allows the Computing Division to more effectively support
platforms supplied by many vendors, thus eliminating the link to a single vendor whose pricing
policies and technology directions are outside of our control.

Availability of Popular Applications

The general administrative and much of the technical computing load has migrated to MACs and
PCs due to the availability of commercial applications. There is also a growing demand from HEP
researchers for these applications. The ability to use personal computers as X-terminals offers a
real possibility of providing a single platform that allows access to popular applications for
word-processing, preparation of presentations, charting, statistical analysis, etc., as well as access
to powerful UNIX systems for data analysis and program development.

Choice of Machine and Platform

You first need to determine if you are going to purchase your own desktop UNIX system, get an
account on a workgroup UNIX system, or get an account on the central Fermilab UNIX system,
FNALU. At this point, you may or may not have a choice of platform; for instance FNALU is
comprised of several different platforms. UNIX exists in different flavors on the different vendor
platforms, meaning that the UNIX operating system is somewhat customized to each platform. The
OS is actually named differently on each platform: AIX on IBM, IRIX on Silicon Graphics, Solaris
on Sun, Digital UNIX on Digital 1, and LINUX on PC. The differences between flavors tend to be
small.

1. See section 1.4 for a note on the OS name for Sun and Digital systems.

1-8 Introduction November 26, 1997

Customizable Environment

The "brave new world" of UNIX allows you to set up your work environment and choose your
tools to ~uit your own individual needs. At Fermilab we have been careful to implement and
support what we consider to be the most useful of the wide range of available UNIX utilities
appropriate for our environment. Still, you will find a much larger array of options than you may
be accustomed to. We provide you with defaults for most options, thereby allowing you to get used
to the new system gradually, and build your knowledge and proficiency at your own speed.
In order to take full advantage of the flexibility offered, you need to be aware of the options, and
you need to make some choices. 1\vo choices you as an individual user need to make initially are
the editor and the mail system you want to use. Of course you can change to other ones later. After
that, you have the choice of delving further into the marvels of UNIX, or accepting the provided
defaults so you can just get to work. UNIX is in fact usable by ordinary mortals as well as by
sophisticated hackers! Throughout this manual we give some guidance for making choices.

The available editors come in three basic types:

• modem point-and-click style editors (for graphics-capable terminals) similar to those
available for PC Windows and Macintosh

• UNIX editors that provide powerful features for sophisticated editing needs, but that can also
be used for simple editing tasks using a small subset of commands

• VMS-style editors

The types of mail systems offered include:

• basic UNIX mail readers
• more fully functional "traditional" mail systems

• modem point-and-click mail readers
Instead of a single command interpreter and user interface, several shells have been developed for
UNIX, a m,1mber of which we_provide and support. Until you get a good idea of what the
advantages are of one shell over another, we recommend that you just use the default shell
provided. You can change it later.

The choices that you need to make should not be overwhelming. Most people find the range of
choices empowering once they're familiar with the system.

1.3 The Fermi UNIX Environment
The on-site UNIX 1 computer systems at Fermilab are used for a wide range of tasks, including
general purpose interactive use, batch jobs, farrns2, and data acquisition systems, among other
things. In order to most efficiently accommodate the needs of the Fermilab user community, the
Computing Division prnvides a single, operating system-independent UNIX environment known as
the Fermi UNIX Environment, or FUE.

The Fermi UNIX Environment (FUE) is a set of products installed on most UNIX systems at
Fermilab that defines the computing environment. One of the main goals of FUE is to provide as

• much as possible the same environment on the different UNIX platforms. A second important goal
is to provide a standard product support methodology.

November 26, 1997

1. UNIX has been customized to several different hardware platforms, and each of these
adaptations (SunOS, IRIX, etc.) is considered a separate operating system (also called OS
type in this document) .
2. Farms are clusters of RISC-based workstations for which parallel processing software
has been developed to support activities such as event reconstruction and Monte Carlo.

• Introduction 1-9

The methodology and infrastructure for product support and distribution under FUE is provided via
a software support toolkit called UNIX Product Support (UPS). UPS was developed with the goal
of providing a uniform and consistent interface for the management, distribution, installation and
use of all the supported UNIX software. The UPS methodology is fully described in UNIX Product
Methodology at Fermilab, document number GU0014. Chapter 10 of the present document
describes the operations that installers and end users of the supported software need to know how to
perform. Appendix B provides an overview of UPS to supplement the information in Chapter 10.
FUE consists of three parts:

• A set of login scripts, called the Fermi files that provide a common environment. These are
described in section 9.4 and listed in Appendix C.

• Infrastructure to allow access to software products under UPS.
• General utilities, system administration tools, and software products in UPS format.

UNIX systems at the lab or at users' home institutions can be set up to be FOE-compliant. There
are different levels of FUE compliance available; these levels are described in GU00l 4.

1.4 UNIX OS Support at Fermilab
The Fermilab Computing Division supports many different flavors of UNIX operating systems.
The Computing Division currently supports the following platform and operating system
combinations:

• Silicon Graphics running IRIX
• IBM running AIX
• Digital running Digital UNIX (OSFl)
• Sun Microsystems running Solaris (SunOS)
• Intel PCs running redhat LINUX (this is just becoming supported as this manual goes to print)

There is a command uname (also funame at Fermilab) that returns information about the
current system. The OS name returned by these commands for Sun is SunOS and for Digital is
OSFl. Note that these are different from the names under which the vendors now market these
operating systems.
For the currently supported releases of the operating systems, ·c compilers and FORTRAN
compilers, refer to the document DR00lO (see section 1.6.1 for information on how to locate
Fermilab documents). This information changes frequently.

1.5 The Central Fermilab UNIX Resource: FNALU
FNALU is a UNIX computing resource which is available to the laboratory at large and managed
by the Comput_ing Division. It provides batch and interactive computing on IBM, Silicon Graphics,
Sun, and DEC platforms. The primary file system on FNALU is AFS, described in Chapter 7. AFS
is designed explicitly to serve as a distributed file system both within a local area network (LAN)
and a wide area network (WAN). FUE is installed on FNALU, and it handles the provided software
products in a way that appears the same to all users of the cluster, regardless of platform.

1-10 Introduction November 26, 1997

1.5.1 Getting an Account on FNALU

Accounts on the FNALU cluster fall into two categories, based on the user's resource requirements.
If your resource requirements are small (< 50Mbytes/1 % CPU), you can request an account using
the Computer Account Request Form. To request an account allowing the use of resources beyond
this limit, you need to submit a Project Request Form on which you indicate your estimated
resource requirements. Both forms are accessible from the Computing Division home page in
Forms under the heading Services. Read the Proper Use of the Computing Facilities Form (also in
Forms) before filling out the appropriate form. Send your completed form to compdiv@jnal.gov, or
deliver it to the Computing Division administration area, on the Wilson Hall 8th floor cross-over.

Refer to the FNALU User's Guide, document number GU0008, for a description of the machines
that comprise the FNALU cluster and the available software.

1.5.2 Intended Uses of the FNALU Cluster
FNALU is intended to be a general-purpose, multi-platform cluster with a focus on physi,cs and
engineering requirements. The intended uses of FNALU can be summarized into a few categories:

• software repository/server and code development platform for work groups in a distributed
environment

• platform for proprietary products available for users on a trial basis
• platform for users with low requirements who cannot purchase UNIX system

• distribution platform for Computing Division products and software products used directly by
client systems participating in the AFS file system

• mail reader

1.6 Additional Documents and Information

1.6.1 Fermilab Documents

Unless stated otherwise, the Fermilab documents that we reference throughout this manual can be
found on the World Wide Web (a.k.a. WWW or the Web), an on-line information resource to which
we provide an introduction in section 3.2.1. A limited selection of documents is also available in
printed form on the shelves outside the former Computing Division library, Wilson Hall, 8th floor,
NE corner.

As a general rule throughout this manual, we do not provide the URL 1 for each referenced
Fermilab document due to the volatility of the addresses, we only state the title and document
number. You can find the documents in the Computing Division document database as described
below, where they are maintained.
In addition, lots of information has been gathered under the UNIX Resources Web page, organized
by topic. This page is linked under the heading Documentation & Software on the Computing
Division home page.
The principal URLs you may need to reference while navigating the Computing Division Web
pages are listed in section 1.6.2.

November 26, 1997

I. URL stands for Universal Resource Locator. A URL is a document's address on the
World Wide Web; URL is defined in section 3.2.1 under WWW Basics.

Introduction 1-11

Computing Division Document Database

The database contains both UNIX-related and non-UNIX documents . Most of the documents are
available for viewing and/or printing in either HTML (see section 3.2.1) or PostScript format. A
keyword search facility is provided, which currently allows a one-word entry.
Starting from the Fermilab at Work Web page, you can reach the Computing Division document
database by selecting in tum:

1) Computing Division under the heading Divisions & Sections (or select Computing under
Work Resources) to reach the Computing Division home page

2) Documentation under the heading Documentation & Software

From the document database, under the heading Computing Division Documents, you can find
documents in the categories of General Documentation (document numbers starting with GG),
General UNIX (GU), Division Recommendations (DR) and some other designations.

Software Products Information

Also from the document database, under the heading Product and Application Information, you
can find documentation for many Fermilab software products. The document numbers correspond
to the product numbers, and start with PM (Physics and Math Programs), PU (Utility Programs),
and other designations.
Alternatively, you can find UNIX product documentation from a variety of sources directly by
product name. Starting at the Computing Division home page, first select UNIX Applications und~r
Documentation & Software, then select product documentation under the heading Additional
Resources and Documentation for UAS Products to reach the Fermilab Product Documentation
Area.

1.6.2 Useful URLs

Fermilab home page:
http: //www.fnal . gov/

Fermilab at Work page:

http: //www.fnal.gov/ faw /
Computing Division home page:

http: //www.fnal.gov/ cd/
Computing Division document database:

http: //cddocs.fnal.gov/ cfdocs / productsDB / docs.html

KITS Product Status Report:
http: //www.fnal.gov / docs / products/kit s -report.html

UNIX Resources page:
http: //www.fnal.gov/ cd / UNIX / UnixResources.html

Fermilab Product Documentation Area page:
http: //www.fnal.gov/ docs/produc ts /

1-12 Introduction November 26, 1997

[

1.6.3 Commercially Available Texts

There are several good books on UNIX. The vendors also have UNIX documentation, for example
the Silicon Graphics IRIS-4D User's Guide and Sun's beginner's guides. Printed reference
documentation for the commands is typically just hard copy of the UNIX on-line help, known as
man pages, described in section 3 .1. Some popular books are:

• UNIX System V.· A Practical Guide by Mark Sobell, published by Benjamin/Cummings
• UNIX in a Nutshell by Daniel Gilly et al, published by O'Reilly & Associates, Inc.
• UNIX for the Impatient by Paul W. Abrahams and Bruce R. Larson, published by

Addison-Wesley
• UNIX for VMS Users by Philip Bourne, published by Digital Press (Note that it has a

predictable and detectable bias towards Digital's flavor of UNIX!)
The O'Reilly & Associates, Inc. publishers provide specialized texts on many UNIX applications in
addition to their general UNIX texts. These are generally regarded as excellent references.
From the UNIX Resources Web page, see Recommended books under The UNIX Operating
System for information on what's available in the stockroom. These books can be found in many
bookstores, too.

November 26, 1997 Introduction 1-13

1-14 Introduction November 26, 1997

l

Chapter 2: Getting Started on a UNIX System

This chapter describes the login and logout procedures, and discusses some basic UNIX features
including the prompt, special keys, and special characters. We present a brief discussion of the file
systems you are likely to encounter at Fermilab, and how to change your password according to
your file system and installation.

2.1 Logging In
There are different ways to access a UNIX system:

• Log into the workstation console directly (in other words, it is on or under your own desk) .
Consult the instructions for your workstation.

• Connect to a UNIX machine over the network; enter1:

telnet host

• For X-terminals see section 9.5.
The system will prompt for your login name (or username) and for your password. Below is a
sample login session from an X terminal to node FSGIOl of the FNALU system (note that the
system prompt is set to the node name under FUE): • •

Connecting to host "fsgi01" s u ccess.

I RIX System V.4 (fsgi0l)

login: usemame
Password : (password is not shown) ·
I RI X Release 5.2 IP7 fsgi 0 l
Last login: Tue Oct .24 09:27 : 14 by UNKNOWN@dcdx03 . f n al.gov
Te r mina l Type is xterm

There are no available articl es.
<fsgi 01>

The login name must be all lower case characters, but the password may contain upper and lower
case characters. Be sure to enter them in the correct case, because UNIX is case sensitive. Note
that if you do use upper case to log in, UNIX may assume you have an upper-case-only terminal
and you will have very limited capability. If you do so, either log out and log back in again, or enter
the command:

November 26, 1997

1. telnet is described in section 13.2. Also described there is the utility rlogin, which can
be used instead of telnet.

Getting Started on a UNIX System 2-1

% stty -lease

When you log in, a series of login scripts is run to define the functionality of your terminal and to
set up your environment. These start-up files have been customized under FUE and are called the
Fermi files. They are listed in Appendix C. The Fermi files provide the common environment
described in Chapter 9.
At login, the system will type out:

Terminal Type is {termtype}

where {termtype} represents the best guess depending on exactly how and from where you
entered the system. To change this terminal type, see section 9.7.

2.1.1 C Shell Family

The C shell runs two files when you log in, first a file named . cshrc and then a file named
. login. They are both located in your home directory. See section 9.4.1 for details.

2.1.2 Bourne Shell Family

In the Bourne shell family the . prof i 1 e and . shrc files, located in your home directory, are
run when you log in.1 Sometimes ksh runs . kshrc in place of . shrc. See section 9.4.2 for
details.

2.2 Logging Out
The logout commands are slightly different for the two shell families. For either one, you can
create a . logout script and use it in place of the standard commands.
If you are on a system running AFS, it is best to issue the command unlog before logging out.
See section 7.3.4 for an explanation.

2.2.1 C Shell Family

You can logout with either:

% logout

or

% exit

If you have other processes running you will be informed that you have stopped jobs. You can
continue to enter logout until all the processes are terminated.
The control character eof, which is usually set to <Ctrl-d>, is the normal UNIX way oflogging off.
Since this is easily entered accidentally, the standard Fermi UNIX Environment disables this way
of logging out by including the command set ignoreeof in the Fermi files.

2-2

1. Bourne shell (sh) does not run .. shrc. S,ometimes (more common recently) vendors
have linked sh to ksh (see section 9.4.2), effectively replacing sh with ksh.

Getting Started on a UNIX System November 26, 1997

1

2.2.2 Bourne Shell Family

You can logout with:

$ exit

or (on some systems):

$ <Ctrl-d>

The control character eof, which is usually set to <Ctrl-d>, is the normal UNIX way of logging off.
Since this is easily entered accidentally, the standard Fermi UNIX Environment includes the
command set ignoreeof in the Fermi files to disable it (ignoreeofis not supported on all
Bourne shells).
If you have other processes running you will be informed that you have stopped jobs. You can
continue to enter exit until all the processes are terminated.

2.3 The UNIX Prompt
After you log in successfully, you will get a prompt. The default UNIX prompt usually indicates
your default shell (see Chapter 4 for information on shells). Typically, a % indicates the C shell
(csh) and a $ indicates the Bourne shell (sh) . The Fermi files set the prompt to the machine name,
which is most likely what you'll see.
You can change your default prompt by altering your start-up files.
In the C shell, include in your . login file:

set prompt=' newprompt '

In the Bourne shell, you need to set the value of the keyword shell variable PSJ . This is just a
variable that is declared and initialized by the shell at start-up. Include in your . profile file:

export PSl; PSl="newprompt "

2.4 Special Keys
Like all systems, UNIX has a number of special keys that perform particular functions . Some
important ones are the keys necessary to backspace over a character when entering a command, to
delete the whole line being entered, and to interrupt execution. These are user-specifiable, and have
different defaults based on the shell, the version of UNIX, and the login files described in section
9.4. If you are using the Fermi files (most UNIX systems at Fermilab have FUE installed and thus
do use these files), these special keys will be set as described in the table (notice the footnote
labelled a that follows the table):

November 26, 1997 • Getting Started on a UNIX System 2-3

Name Control Char Function

erase DEL or back- Erase character. Backspace and erase one character
space (the key used depends on terminal setting). Some-

times, especially within tcl/tk applications, you
must use <Ctrl-h>.

werase <Ctrl-w> Delete the rightmost word typed in.

kill <Ctrl-x> Kill (erase) the line typed in so far. a

intr <Ctrl-c> Interrupt the program currently running.

rpmt <Ctrl-r> Reprint the line typed in so far.

flush <Ctrl-o> Stops terminal output until you press a key.

susp <Ctrl-z> Suspend the program currently running and put it in
the background. This does not stop the process as
it does in VMS!

stop <Ctrl-s> Stop the display. To resume, press the start key

start <Ctrl-q> Start the display after stop.

eof <Ctrl-d> Send the program an end-of-file character.

a. If you prefer to use <Ctrl-u> for this function, uncomment the line # s t t y
kill ' "u ' in your . login file (C shell family), or #s tty kill in your
. profile file (Bourne shell family).

To display the current settings for your terminal, enter:

% stty -a

If the keys don't seem to work as described here or you want to change them, refer to section 9.7.
UNIX relies on the hardware tabs of your terminaL If they are not set or if they are set in an
unusual way, displays may appear strange on your terminal. You can set the tabs manually on your
terminal, or you can use the tabs command to set them. The command with no arguments:

% tabs

will set tabs in the usual UNIX way, 8 spaces apart.

Special Note Regarding Backspace and Delete Keys

In some unusual circumstances of setup and keyboards you may also need to issue this set of
commands to get the backspace key to work as expected:

% Stty erase nA?n

% stty intr 0 AC"

% stty kill 0 AX"

2-4 Getting Started on a UNIX System November 26, 1997

[

'

Sometimes there is trouble with the delete key. Adding the following text to your . prof i 1 e or
. login will make the key useful, even on X terminals from different places on different
platforms:

case $TERM in
vtlOO)

stty erase \A? ; ;
xterm)

esac

case "'xdpyinfo I grep 'vendor string'' " in
Dig italEquipme n tCorp) stty erase \A? , ,
Net work\ Computing\ Devi ces) stty erase \AH , ,
Si l icon\ Graphics) stty erase \AH , ,
*) st t y erase \AH,,

esac

Special Note for ksh Users Regarding Arrow Keys

To make the up and down arrow keys work and therefore to enable command line editing and recall
in ksh, include the following lines in your . shrc file (or . kshrc):

s et - o emac s
alias _ A=' " P'
alias D= I " BI -
alias B= I "N' -
alias C=' " F' -
Note that the A, D, B, and C are preceded by two underscores, and that you need to insert an
actual control character, not simply carat-P or carat-B. A control character typically needs to be
preceded by a "quoting" character, which differs from editor to editor.

For this (these) editor(s): ... enter this immediately before the control character:
vi <Ctrl-v>
emacs
nuff PU, fermitpu
EDT+
NEdit

<Ctrl-q>
<Ctrl-v> <Ctrl-v>
<Ctrl-[>
Use Insert Control Character from the Edit menu.

We believe this prescription works on all UNIX operating systems, regardless of how you're
connected (e.g., telnet, xterm).

2.5 Special Characters (Metacharacters)

Slashes

The backslash (\) character is used on the UNIX command line to mask the special meaning of the
character immediately following it (no spaces in-between) so that the command interpreter takes
the character literally. It is called a quoting character. For example:

% command \ <CR>

causes the carriage return to be ignored, allowing you to continue typing your command on the
following line.

November 26, 1997 Getting Started on a UNIX System 2-5

The forward slash(/) character is the symbol for the root directory. In path names it acts as a
separator between directories in the hierarchy, and between the last directory and the file, if one is
specified. For example:

/rootdir/ ... /userdir/subdirl /subdir2/filename

Quotes and Parentheses

Different types of quotes have special meanings.
Normal single quotes (apostrophes) around a string (' string') tell the command interpreter to
take the string (string) literally. Double quotes around a string(" string") also tell the
command interpreter to take the string literally, but allow interpretation of variables that follow a $
character($ preceding a variable name outputs the value of the variable; see section 9.1). Section
5.1.2 further explains single and double quotes in command interpretation, and provides an
example.
Single backquotes around a command string C string') tell the interpreter to run the
command(s) in the string, and to use the output of the command(s) in place of the string itself. This
is useful for combining two commands into one, and for doing iterative tasks within shell scripts
(shell scripts are introduced in section 4.4).
A string of commands enclosed in parentheses (e.g., (command] ;command2)) is run in a
subshell. In section 5.1.1 we discuss the difference between shell commands and non-shell
commands. A non-shell command always runs in a separate shell (a subshell); when enclosed in
parentheses, the command starts a second subshell.

Command Separators

The semicolon (;) character separates successive commands on a single command line. For
example,

% command] ; command2

executes command], and when it finishes, command2 gets executed .
. The ampersand character(&) is similar to ; but does not wait for command] to finish.
A double ampersand(&&) runs command2 only if command] was successful.
Piping commands (the pipe symbol I) is discussed in section 5.4.3. A pipe tells command2 to use
the output of command] as input. ·
A double pipe (I I) runs command2 only if command] was unsuccessful.

Other Special Characters

Special characters are used in file expansion (section 6.2.2). Note that to prevent file expansion,
these characters must be prefaced by a backslash(\). Metacharacters are also used in input/output
redirection (section 5.4.2), and in regular expressions (section 5.4.5) as wildcards, delimiters, and
other special pattern-matching characters. Refer to these sections for specific information.

2.6 File Systems: Standard UNIX and AFS
The standard UNIX file system is a hierarchy of directories descending from what is known as the
root directory. UNIX allows parts of the directory hierarchy, also called file systems, to reside on
separate storage devices or in separate disk partitions. These are accommodated by means of

2-6 Getting Started on a UNIX System November 26, 1997

mount points. A mount point is a directory in a file system that corresponds to the root directory of
some other file system. The primary file system is the one starting at the true root. The standard
UNIX file system is described in Chapter 6.
If the UNIX machine that you work on is part of an integrated system of UNIX machines, for
example a LAN (local area network), it is likely that a distributed file serving system has been
installed on it. A distributed file system provides a common directory structure and thus the same
view of the file system to all participating nodes. This overrides the standard UNIX file system.
Fermilab is using the AFS (Andrew File System) as a distributed file service model, and it is
installed on several machines at Fermilab in a production environment, including the FNALU
cluster. See Chapter 7 for a discussion of AFS.
A special note to CDF and DO users: Your UNIX systems are not configured to use AFS.

2. 7 Information Distribution System: NIS
NIS (Network Information System) is a system that distributes information throughout a cluster.
You may also know this by the name yellow pages.
Note that the word cluster, as used in this manual in reference to UNIX, is not the same as a VAX
cluster. We define a UNIX cluster as a group of machines that share both a common password file
(or user database), and a common file system, especially for login directories. NIS is usually used
to provide the common password file, and the common file system is typically ~Sor AFS .
NIS is installed on FNALU and many other UNIX clusters at Fermilab. In order to determine if
NIS is running on your system, execute the command:

% don:iainname

If it returns a value, _then NIS is running on your cluster. If no output is returned, then it is not.
Many UNIX clusters use NIS to share a common login area across several machines. Note that it is
possible for both .AFS and NIS to be installed on a single system.

2.8 Changing Your Password
For any password changes, you will be prompted for your old and new passwords. Your password
must be at least six characters long and should not be your login name or any simple permutation of

1 it. We recommend that you limit your password to eight characters, especially if it is used as an
AFS password (see section 7.3.2). It is advisable to mix letters and digits in your password.
If your system is configured in a way not covered in the following sections, you may need to
contact your local system manager to determine which password(s) to change.
Man pages are available for the commands described below: passwd, yppasswd, and
kpasswd.

2.8.1 Standard UNIX Password

This section assumes that AFS is not running on your system.
Your UNIX password is used to log you into the system. This password is stored in one of two
ways, depending on the configuration of your system.

November 26, 1997 Getting Started on a UNIX System 2-7

If your system uses the standard UNIX file system, and NIS is not installed, your UNIX password
is part of your local password file. In this case you need to execute the generic UNIX
password-changing command to change your password:

% passwd

The system will prompt you for the necessary information. Your password is only changed for the
machine, or node, on which you execute this command.
If NIS is running on your system, your UNIX password is stored in the NIS password file which is
shared by all machines on the NIS cluster. In this case, you need to use the command yppasswd
to change your password. The system will prompt you for the necessary information. When you
change your password in this way, it changes for all the machines (nodes) that are part of your
cluster.

I;: I! 2.8.2 Kerberos (AFS) Password

Read section 7.3.2 to understand how a Kerberos (AFS) password works. You can change your
Kerberos password using the command:

% kpasswd

The system will prompt you for the necessary information.
0 This command changes your Kerberos password for all systems that run AFS on-site.

2-8 Getting Started on a UNIX System November 26, 1997

l

Chapter 3: Information Resources

This chapter introduces you to the information facilities available from UNIX. Standard UNIX
on-line help is available via the man pages. We discuss the World Wide Web and newsgroups,
which are very rich sources of information on a virtually unlimited set of topics. A few utilities that
allow you to get information about vendor products, other users, and the Ferrnilab computing
systems are also covered. Finally, we include instructions for communicating with the Ferrnilab
Helpdesk.

3.1 UNIX On-Line Help

3.1.1 man Pages

On-line help for UNIX system commands and utilities is in the form of man pages (man stands for
manual) which consist of an on-line version of the UNIX documentation set (often called the UNIX
Programmer's Reference Manual). You access the man pages with the man command. o · Note that the man pages differ in many instances between UNIX platforms.

The man Command

When you need help on a known co~and, use the general man command format:

% man [part] topic

where topic is generally a UNIX command, man is really the on-line manual which is divided into
several parts. part is a digit between O and 9. If you know in advance which part contains the
information you want, you can speed the search by specifying it. More often than not you will just
enter:

% man topic

• The word print in man entries usually means display on the screen. Don't be confused by this.
Several options are available with the man utility, described under man man. The man
command normally displays complete manual pages that you select by name. One-line summaries
can be selected by either by keyword (-k option), or by the name of an associated file (-f).
These options are described in section 3.1.2.
A typical initial man screen can be seen by issuing the command:

% man ls

where ls is the UNIX command to list files in a directory.

November 26, 1997 Information Resources 3-1

ls(l) User Commands

NAME
ls - list contents of directory

SYNOPSIS
ls [-abcCdfFgilLmnopqrRstuxl J [names J

AVAILABILITY
SUNWcsu

DESCRIPTION

ls(l)

For each directory argument , l s lists t he contents o f t he
directory; for each file argument , ls repeats its name and
any other information requested. The output is sorted
alphabetically by default. When no argument is given , the
current directory is listed.
given, the arguments are

/tmp/mpa002Zf

When several arguments are
f i rst sorted appropriately, but

Man pages are typically formatted with the UNIX text processing utility nroff (or grofl). These
utilities are covered in most UNIX texts. If you find that the man page is unformatted, run setup
groff, and then rerun the man command.

Note that built-in shell commands are described under the topic corresponding to their shell.1

(See section 5.1.1 for information on built-in comman~s:) For example, to get information on the
command alias for your current shell, you would enter man shell (e.g. , man bash) and
search there for information on alias using the /pattern function described below.

There is an alternate, "quick and dirty" method to verify the format of a command and get a listing
of its options. It doesn't work with all commands, but is usually worth a try. Simply enter the
command with an illegal option (try / or ? or .). For example,

% ls-/

will produce the output:
ls: ill egal option --
usage: ls -RadCLHxmnlogrtucpFbqisf [files]

I: '! The man Command for AFS Commands

For AFS commands, it works a little differently. AFS commands are discussed in section 7.4. The
man page for an AFS command is found by entering:

% man fs_command

Note the underscore (_) between f s and the rest of the AFS command; the underscore is only
used with the man command.

3-2

1. Some platforms provide man pages for built-in commands, however in general you may
find it easier to look in a reference book!

Information Resources November 26, 1997

f

Manipulating man Pages

man displays the information using your $PAGER environment variable, which under FUE is set to
less (see section 5.4.4). Therefore, man pages are normally piped to less. The command man
less will give you more information about manipulating man via the less filter. less gives you
one page at a time and lets you enter commands at the prompt to control what it does after each
page. For example, you page forward with the Spacebar and page backward using b.

Once in the man environment, you can search for patterns by entering the /pattern option at the
command line. The first instance of the string pattern will appear in the top line of the screen. To
find additional instances of the pattern in the text, simply enter a slash (/).
To exit from man enter q (for quit).

Printing man Pages

To print a man page, you can use the pipe feature (I) along with recommended print formatting
and printing commands. These features are covered in Chapter 8. As a suggestion, pipe the output
of the man command_ to a2ps -m (to convert man pages to PostScript format) and then pipe
that output to the print command f lpr:

% man command I a2ps -m I flpr [options]

This formats the output nicely in landscape, two pages to a sheet.

3.1.2 Finding the Right Command

If you don ' t know exactly what command you need, try the -k option with a keyword.

% man - k keyword

This displays the man page name, the section number in the UNIX documentation, and a short
description for each man page whose name line contains keyword. For example to find a search
utility, enter:

% man -k search

The system will output several records similar to the following:

confl ict(B) - search for alias/password conflicts /usr/local/lib/mh/conflict [- m
gl ookbib(l) - search bibliographic databases gl ookbi b [-v J [-istring J [-tn
iden t (l) - identify files iden t [-g J [\&.\I .\I. J ident searches for all occu
lkbib (1) - search bibl iographic databases l kbib [-v J [-ifields J [-pfilename
lsearch (l) - See if a list contains a particul ar element lsearch ?mode? l ist pat
l search (n) - See i f a list contains a particul ar element lsearch ?mode? list pat
zgrep (l) - search possibly compressed files for a regular express i on zgrep [gre

Some UNIX systems have an additional utility, apropos, which can be used to locate commands by
keyword lookup:

% apropos keyword

apropos keyword is equivalent to:

% man - k keyword .

November 26, 1997 Information Resources 3-3

The -f filename option for man prints the manual entry summaries which might pertain to the
given filename(s). Any leading pathname components are stripped from the filename before the
filename is matched against the summaries. Here is an example using the - f option, followed by
the output:

% man -f /etc/passwd

passwd (1)
pas.swd (4)

- change login password a n d password attributes
- password file

The summaries are gotten from the whatis database. You can run what is command(s) to look
up a given command and obtain the header line from the manual section. You can then run man
to get more information on the command. If the line starts n ame (section) . . . you can do
man section name to get the documentation for it.

3.1.3 Vendor Product Documentation

Most vendor product documentation is now available on-line, viewable with an X-terminal or
workstation.

Flavor:
AIX
IRIX

Command:
info
insight

Digital UNIX (OSFl) dxbook

Solaris (SunOS) answerbook (only usable on Sun workstations at Fermilab)

3.2 The Internet
The Internet is a global network .of networks that provides access to hundreds of thousands of
computers around the world. As the reach of the network has grown, so has the number of services
accessible. The main tools that allow the user to navigate through the Internet are:

telnet
ftp

Mail

WWW
News

to access remote hosts (see section 13.2)
to retrieve data files (see section 13 .1.1)
to send mail (note that Web browser mail handlers are not covered in
Chapter 12)
to browse the World Wide Web (see section 3.2.1)
to scan the numerous Usenet news groups (see section 3.2.3)

There are two ways to reference an Internet host: an alphabetic name and a series of numbers. The
alphabetic sequence is called the host name (e.g., fnsg0l.fnal.gov) and the numeric one is called the
IP address (e.g. , 131.225.8.178). At Fermilab all host names end withfaal.gov, where this suffix is
called the domain name. Since hosts may change their IP addresses, it is a good practice to always
use the host name.
An excellent introduction to the Internet services is The Whole INTERNET, User's Guide and
Catalog, published by O'Reilly & Associates.

3-4 Information Resources November 26, 1997

3.2.1 The World Wide Web (WWW or "the Web")

Our primary way of delivering information to you, especially relatively static information, is via the
World Wide Web (also known as WWW or "the Web"). There are a number of reasons why the
Web has become the defacto standard for information delivery at Fermilab, within the HEP
community, and even in the computer-literate parts of the world of business:

• The Web is very strong at pulling together information from different places, and of different
formats and types (native HTML1, PostScript, newsgroups, and even VAXNEWS), and
making it appear as a seamless whole.

• It is relatively easy to make information available on the Web.

• Browsers (the programs you use to _view information on the Web) are available for every
supported platform at Fermilab, making it an excellent fit to the distributed environment in
which we now work.

Accessing the Web

In order to access the Web, enter (or put in your login script):

% setup www

Web browsers work best on workstations that support graphics, so if possible you should have on
your desktop a workstation, X terminal, PC or Macintosh rather than a "dumb" terminal. If you
have a graphics terminal, use either Netscape or Mosaic2. To invoke them on an X terminal enter:

% netscape [&]

or

% mosaic [&]

The ampersand(&) is discussed in section 5.5.2. In order to use an X application (which these
products are), you must have defined your $D/SPIAYvariable correctly. See section 9.2.
If you don't have a graphics terminal, then you must use one of the line-mode programs, lynx or
www. lynx is generally thought to be the better of the two. To invoke them, enter:

% lynx

or

% WWW

This section is not intended to provide detailed instruction on the use of any particular Web
browser. Once you get any of them running (at least the graphical ones) there is more infonpation
than you will ever want available under Help. In addition, from the UNIX Resources Web page you
will find information both on using browsers and on the files that control what filetypes the browser
recognizes. These files are called .mailcap and mime. types; see section 9.6 for
information on them.

November 26, 1997

1. HTML stands for HyperText Markup Language, the standard language for documents
accessed on the Web.
2. Development on Mosaic ended in 1996. Many newer features of the Web are not avail-
able on Mosaic, and in some cases will cause it to crash. In particular, Mosaic does not
support tables. We recommend using Netscape.

Information Resources 3-5

Web Basics

Web browsers find information based on URLs (Universal Resource Locators) which are like
addresses and which take you to the top level of a Web site, often called a home page.
A home page usually refers to the first page of a commercial, educational, government or personal
Web site. Each home page can have several layers or pages that it links to, thereby creating a whole
Web site. But the home page is generally the first place you would look. It is like looking at the
cover of a book and its table of contents at the same time.

The native WWW addresses are of the form:

http ://address /

or

http: // address / some thing.html

The first part is the protocol, http in this case. (A protocol is a set of rules computers observe
to exchange information. http stands for the HyperText Transfer Protocol; think of it as the
identifierofaWebpage.) Insteadof http youmightalsosee ftp, fil e , gopher,
mail to, and news .

Next you' ll see a colon and two forward slashes (except for mail to, which has a different
format).
Next comes the computer's address in the format described in section 3.2. A computer address,
or domain name, is used by computers in routing data across the many networks that make up
the Net. •
Finally, you often see a directory path at that computer plus a file at the end of the path. Web
page files usually end in "html", for HyperText Markup Language, although you may also see
"htm", "shtm", or " s html " . HTML is the simple scripting language that tells browsers how
to display the various elements of a Web page such as links, body text, header text, inline
graphics, and external files.

Many HTML files contain links to other documents. Sometimes links are text; sometimes they are
images. If a link consists of text, it is underlined and may be in color. You can tell your cursor is on
a link when a URL appears at the bottom of the screen. If a link consists of an image, you'll see a
URL when you move your mouse pointer across it.
Several Web search "engines" can help you find information you are seeking, and they vary in the
number of URLs they contain in their database, how deep they go into Web sites indexing
information, what they index, and how frequently they "crawl" or "walk" the Web in surveying
sites. There's a valuable Swiss site at URL
http: // cuiwww. unige. ch/ meta-index. html that collects several WWW search tools.
Subject directories make it increasingly easy to find information about broad subjects. An excellent
directory is one called Yahoo at URL http: //www. y ahoo . com/ , a well-constructed directory
of tens of thousands of Web pages.

Writing your Own Web Pages

If you want to start writing Web pages in HTML format, see Creating Web Pages, available under
Web Help on the Computing Division home page.
A note for Web page providers on AFS systems: Set the permissions for system: anyuser to
r 1 on directories containing files that you want to make accessible via a Web browser. See section
7.6.2 for information on AFS directory permissions.

3-6 Information Resources November 26, 1997

l

Fermilab Home Page

Your browser is most likely configured to have either the Fermi/ab Home Page or the Fermi/ab at
Work page as your default home page. If not, the Fermi/ab Home Page can be simply accessed as:
http : //www. fnal. gov/ . You may want to change your default home page to Fermi/ab at
Work: http: //www. fnal. gov / faw / . To do this, set your environment variable
WWW_HOME as follows (environment variables are discussed in section 9.1.), depending on your
shell:
C shell family :

% setenv WWW_HOME http://www.fnal.gov/faw/

Bourne shell family:

$ WWW_HOME="http://www.fnal.gov/faw/"; \ export WWW_HOME

From Fermi/ab at Work you can find information on Fermilab's different divisions and
experiments, activities, schedules, etc. Navigate to the Computing Division's pages to find
information on UNIX.

3.2.2 UNIX Help on WWW

The man pages can sometimes be cryptic, unwieldy, or both. As an alternative, set a bookmark in
your Web browser to UNIX.Help, accessible under the heading The UNIX Operating System on
the UNIX Resources page. Here you'll find easy-to-follow instructions on the use of many UNIX
features, organized into four categories: Tasks, Commands, Concepts, and Utilities.
Also from the UNIX Resources page you'll find The UNIX Reference Desk under the heading
Other UNIX Resources. The resources in this document are divided into the following classes:
General, Texinfo Pages, Applications, Programming, IBM AIX Systems, HP-UX Systems, Unix
for PCs, Sun Systems, X Window System, Networking, Security, Humor.

3.2.3 Newsgroups

Usenet News (or NetNews) is a way of communicating "articles" among people world-wide. In
general, information in newsgroups is volatile information, whereas information in Web pages is of
longer term. We have a server here at Fermilab which receives articles from elsewhere and posts
the articles originating here. Fermilab has its own newsgroups named fnal. x x x. CERN's
groups are prefixed with cern and SLAC's with slac. General information and especially
important information is posted in fnal. announc e . NALCAL, seminar announcements, and.
the like are posted in fnal. announc e. s.eminars. Computing Division forms are in
fna l. announce . forms . UNIX discussion articles are posted in fnal. comp. unix . There
are many more newsgroups, both Fermilab groups and others, that you might find of interest.

In order to make a newsreader available on UNIX, enter (or put in your login script):

% setup news

A number of readers will be made available to you. Line-mode browser commands are nn, rn,
and trn. X-based browser commands are xrn and knews . News may also be read from
most WWW browsers and some mail readers. The readers keep track of the newsgroups that you
are interested in ("subscribed to") as well as which articles in each newsgroup you have read; all of
the UNIX readers cooperatively maintain this information, so you can use different readers at
different times without losing this information.

November 26, 1997 Information Resources 3-7

3.3 The Info Utility

Info is a facility available to the system support people to communicate with you about events
regarding the Ferrnilab computing systems (shutdowns, for example), or other systems-related
information that is newly available. To get a list of the Info messages, enter the command Info.
To read an item, enter the command with the nametag of the item found on the left side of the Info
list:

% Info nametag

Note the capital I! If the item is more than one page, press the space bar to continue. Press q to
quit.

3.4 Other Users: WWW Directories, finger and who

WWW Directories

From the Fermilab at Work page, directories are available to point you to information about
Ferrnilab personnel and the high energy physics community at large. These directories typically
contain general information such as email addresses, phone numbers, and office locations.

finger

finger is used to find out about other users. It searches for matching account names and first or last
names, if known. Depending on the vendor implementation, it may display the name of the person
associated with each account, the login name, the home directory and login shell, the contents of
the file . plan in the person's home directory, and possibly other information such as waiting
mail, and time of last login. If the person is logged in, it al~o may display information about his or
her current sessions.
Note that each vendor has a different implementation of finger. In addition, for security reasons
many sites disable the output of finger over the network. It is therefore unwise to rely on the
format, content, or even the availability of finger as a tool for finding out about users or their
accounts.
The format of the finger command is:

% finger [options] [name . ..]

where name can be a part of a personal name or a username. If you specify the option -m, then
name is matched only to account name and not the rest of the personal name.
We encourage you to create a . p 1 an file. It is just a text file in which you might include
information such as your office location, phone numbers, mail station, home address, schedule,
emergency numbers, and so on.
finger can often be used to look up users on a remote machine by specifying the name in the
standard internet form user@host. This form works on VMS machines with MultiNet running, but
in this case name must be the username; otherwise not much useful information is obtained.
As an alternative, point your favorite browser to the location
http://fnal.fnal.gov/finger/.

3-8 Information Resources November 26, 1997

who

The command who lists certain information about the users on your system.

% who

If used with the -q option, only the names of the logged in users and the number of users are
displayed.

The who am i form identifies the invoking user. The command format is:

% who am i

~ There are a number of options which you can read about in the man pages.

3.5 The Fermilab Helpdesk
The Fermilab Helpdesk (a.k.a. Customer Support) is available to answer questions related to the
supported computer systems and software on site. Keep in mind that its first priority is to maintain
central systems and networks, and to ensure that Fermilab-supported software is available and
usable. Therefore a request which impacts only one individual may not receive immediate
attention.

Customer Support is in service Monday through Friday, 9:00 a.m. to 5:00 p.m. You are encouraged
to use email for all communications that are not urgent.

Helpdesk Email Address

During business hours:

During off-hours:

Helpdesk Web Page

helpdesk@fnal.gov

operator@fnal.gov

You can request help and/or keep track of actions taken on your requests from this page. From the
Computing Division home page, select Customer Support under the heading Services.

Helpdesk Phone Number

630-840-2345

During off-hours, you can leave a phone message, or "escape" to Data Center Services (Operations)
for requests requiring immediate attention.

Helpdesk Location

FCC 1 West

November 26, 1997 Information Resources 3-9

3-10 Information Resources November 26, 1997

! /

r

Chapter 4: Shells

This chapter discusses the concept of a UNIX shell, and how to manipulate shells. It includes
information on the available and recommended shells and their features. The concept of a shell as
an interpretive programming language is introduced.

4.1 Introduction to Shells
The kernel is the real operating system and is loaded into memory at boot time. Typically the user
never interacts directly with the kernel. The utilities are programs stored on disk, and loaded into
memory by the kernel when invoked.
A shell is a utility. It is run in user mode, and does not have system privileges. You have a default
shell, and you can invoke other shells. Invoking shells is discussed in section 4.1.2.
The shell is the interface between the operating system and the user. It interprets the commands
you type and the keys you press in order to direct the operating system to take an action. Shell
scripts, which are analogous to DCL command files, allow you to use the shell as an interpretive
programming language. They are introduced in section 4.4, but a comprehensive treatment of
scripts is beyond the scope of this manual.
There are two families of shells: one based on the Bourne shell (this family also includes the Korn
(ksh) and Bourne-again (bash) shells), and the other based on the Berkeley/C shell. The shells
themselves will be discussed and compared in section 4.2.

4.1.1 Determining Your Current Shell

There are several commands available in all the shells that furnish this information. We present
four examples below with sample output for csh. The first three, echo, env and finger, will
show only your login shell. If you have invoked another shell, these commands will not reflect the
new shell. ps lists information about all your active processes.

% echo $SHELL

displays the value of the variable name that follows the $; example output: / bin / c sh

% env or printenv

shows all defined environment variables, including SHELL; example output: SHELL= / bin / csh

% finger your _username

!ihows user information and login shell; example output:

November 26, 1997

Logi n name : us ername In real life : {your name}
Directory: /afs/fnal .gov/fil es/home/room3/{username) Shel l : /bin/csh

Shells 4-1

Finally,

% ps

shows processes, including shell; example output:
P I°D TTY T I ME COMD
62 64 pts/ 1 1 0:03 csh

Note that on some of the more recent OS releases (e.g., AIX+4 and IRIX+6.4, and likely others in
the near future) / bin/ sh is a link (links are described in section 6.3.5) to the korn shell (ksh).
ksh is a superset of sh, so this shouldn't present any problems for you. One difference is that your
. shrc file (see section 9.4.2) gets sourced when you run / bin / sh scripts.

4.1.2 Starting a Shell

A shell is started by a login process. A new shell is also started for each invocation of a terminal
window or shell script (see section 4.4). Which shell gets invoked is determined by the last field in
your entry in the password entry file. In a standard UNIX file system you can display your
password entry by the command:

% grep "username /etc/passwd

(grep is described in section 6.4.2.; the use of " is explained in section 5.4.5.) To display your
password entry in an NIS environment, use the command:

% ypmatch username passwd

(The NIS command ypmatch is not described in this manual.) Sample ypmatch output from
the FNALU system, for which the default shell has been set to csh, looks like:

aheavey : ! :6302:152 5: Narne of User:/afs/ f nal.gov/files/horne/roorn3/ahea vey : /bin/csh

When you log in, the login process invokes a shell program (e.g., / u s r / local / bin / tcsh or
/ u sr / local / bin / bash) and transfers control to it. The shell displays a prompt indicating it is
ready for your input. The default UNIX prompts are symbols that indicate which shell is invoked
(recall from section 2.3 that your prompt is likely to be set differently):

• % for the C shell family
• $ for the Bourne or Korn shells

On FNALU the prompts are set to indicate the host machine, for example <fsui01>, or
<fsgi02>. At any point in your session you can invoke another copy of the same shell or a
different shell by typing the shell name at the prompt, for example:

% csh

invokes csh (C shell). This new shell, or "subshell", sits on top of your current shell. The
execution of the original shell is then suspended (the shell is put to sleep), and the new shell takes
control. Upon quitting the new one, the original shell wakes up and resumes control.
The average user at Fermilab does not have the privilege to change the password entry file.
Therefore, to change your default shell you will need to ask your system manager.

4.1.3 Exiting a Shell

To exit a shell and return to the calling shell, type exit at the prompt. Repeat the exit
command once for each subshell; when you reach your initial shell, your terminal emulation is
closed, and the terminal window disappears. Instead of exit you may need to enter <Ctrl-d>.

4-2 Shells November 26, 1997

)

l

4.2 Features of Available Shells

This section is excerpted from Shell Choice, A shell comparison (dated September 28, 1994) by
Arnaud Taddei of CERN. His eleven-page document contains a brief description of the six major
shells and provides an excellent comparison of features between the shells. It is available on the
Web at http: // consult. cern. ch / writeup / shell choice.

Of the six major shells, four are in the Bourne family: sh, ksh, bash, and zsh; and two are in the
Berkeley/C family: csh, tsch.

The most up-to-date shells are tcsh (Berkeley/C), and bash and zsh (Bourne). These are also the
three shells that are public domain (as opposed to vendor-supported). The public domain shells are
the same on all platforms, which is not true of vendor shells. This is desirable when attempting to
homogenize user environments. Note that zsh is not supported at Fermilab.

Some of the common features of these newer shells are:
• specific startup files
• startup files are the same for any platform
• specific shell variables
• specific built-in commands

The tcsh is essentially an enhanced csh. Some additional features of the tcsh are:
~ enhanced completion1 mechanism (programmable for commands, file names, variable names,

user names, etc.)
• multiline editing capabilities (command line editing using emacs or vi-style key bindings)
• enhanced file expression syntax
• spelling correction (see section 5.3)
• enhanced prompt
• step up/down through history list

The following table should give you an idea of the virtues of each of the shells supported at
Fermilab. It is adapted from one in Taddei's document referenced above. More complete feature
lists for all the shells can be found there.

++ good

+ existing
weak
absent

Criteria sh ksh bash csh tcsh

Configurability - + ++ + ++

Execution of commands + + + + ++

Completion -- . + ++ + ++

Line editing - + ++ - ++

1. This feature allows you to uniquely specify a file without typing in its whole name.

November 26, 1997 Shells 4-3

~

Criteria sh ksh bash csh tcsh

Name substitution + + ++ + ++

History -- + ++ + ++

Redirections and pipes + + + + +

Spelling correction -- -- -- -- +

Prompt settings + + + + ++

Job control -- + + + +

Execution control + + + + +

Signal handling + + + - -

4.3 Supported/Recommended Shells at Fermilab
On many systems at Ferrnilab, tcsh is used as the default shell. The Computing Division currently
supports csh, tcsh, sh, bash and ksh. tcsh or bash is recommended for interactive use, and sh for
scripts. (The C shell family is not recommended for scripts due to inconsistent syntax at different
levels of nesting.) zsh is not currently supported. From the UNIX Resources Web page you can
access UNIX support information under UNIX Products to find out about any support policy
changes.

4.4 Shell Scripts
As mentioned above, a UNIX shell can be used as an interpretive programming language. Besides
executing shell commands within the script, you can:

• create and use variables
• process (read) arguments
• test, branch, and loop
• perform 1/0

A shell script is a file containing a sequence of commands which can be executed by the shell, and
flow control commands. The same syntax is used for commands within scripts as for interactive
command entry. Section 5.1 explains briefly how the system runs and interprets shell scripts.
Although you can write complex programs using the shell language, you can also create simple
shell scripts for running long commands or a series of commands that you use frequently.
In every shell script you write, include the special characters # ! followed by.the pathname of the
shell as the first characters in the file . This indicates (a) that this is a script rather than a compiled
executable, and (b) which shell to invoke to run the script. 1

4-4

1. On some of the more recent OS releases (e.g., AIX+4 and IRIX+6.4, and likely others
in the near future) / bin / sh is a link to the kom shell (ksh). Therefore on these plat-
forms, the . shrc file (see section 9.4.2) gets sourced for any script starting with
#! / bin / sh.

Shells November 26, 1997

For example:

#! / usr / local / bin / bash

at the start of the script invokes bash to run it. A # found anywhere else in the script is interpreted
as the beginning of a comment, and the shell ignores all characters between the # symbol and the
next newline character.
An introductory reference for script-writing with examples can be found in UNIXHelp on the Web.
You can get to it via the UNIX Resources page under The UNIX Operating System.

Note that in order to execute the script, regardless of shell, the script file must have execute
permission for the appropriate users (see section 6.6.1 for a discussion of permissions). After you
set this permission, the shell will need to rebuild its "hash table" to include the new script. The
hash table is a table of executables that the shell recognizes.
To complete these two operations, enter:

% cl:unod a+x .filename

% rehash1

To run a script, the shell must be able to locate it. If its directory is in your path (see section 9.2),
you only need to type the script's filename to run it. If not, you can type the the filename preceded
by . / on the command line (the . / explicitly tells the shell to look for the executable file in the
current working directory). Typing the full path of the filename will work too, although it is
perhaps the most cumbersome way of telling the shell where the script is. Here we illustrate the
three ways to invoke a script:

% .filename

% • I.filename

% lfull_path/ . .. I.filename

Once the shell locates the script, it interprets and executes the commands in the file one by one.
You may want to maintain a $HOME / bin directory for all your programs and shell scripts, and
include this directory in your path2. The shell uses this variable to locate commands and other
executables.
It is important to remember that, like all UNIX commands that are not part of the shell (see section
5.1.1 for an explanation of shell commands), the script file executes in a subshell forked3 by the
parent shell. This subshell retains any environment variables defined in the script as well as any
shell variables defined in the file . c shrc or . shrc (one of these two files may be executed
automatically prior to the script, depending on your shell; see section 9.4). At the end of the script,
control returns to the parent shell, and any definitions made by the subprocess are not passed back
to the parent process.
To execute a script for which you do want to pass back changes to the parent shell (for example,
setting new shell variables), the syntax for execution differs. For the C shell family, execute the
script by typing:

% source .filename

1. The command in sh is hash; not necessary in other shells.
2. Under FUE, th~ Fermi fl.Jes add your / bin directory to your PATH.
3. Under UNIX, the termfork means create a new process.

November 26, 1997 Shells 4-5

For the Bourne shell family, type:

$. .filename

The source or . command executes the script in the context of your current process, so that
you can affect this current process, in contrast to normal command execution.
For instance, after you make changes to your . cshrc or . login file, you can use source
or . to execute it from within the login shell in order to put the changes into effect.

4.5 Other Interpretive Programming Languages
We have mentioned that each UNIX shell can be used as the interpreter for its own programming
language. Other interpretive languages supported at Fermilab are perl (provided in the FUE shells
product), and gawk (a version of awk; see section 5.4.4). These languages are beyond the scope of
this manual. The O'Reilly & Associates, Inc. publishers provide excellent reference texts on them.

4-6 Shells November 26, 1997

I

I I

Chapter 5: Important UNIX Concepts

This chapter introduces you to the UNIX command structure, and to many important commands
and concepts. The features introduced in this chapter constitute the core of the UNIX operating
system, and many of these tools are quite ·powerful and flexible. Some of the features are
shell-specific, and we provide the distinctions where necessary.

5.1 Processing Environment

5.1.1 Programs, Commands and Processes

A program is an executable file. A program is invoked by entering its filename (which is the
command associated with the executable), often followed by options, arguments, and/or parameters
on the command line. The shell allows three types of commands:

• an executable file that contains object code produced by a compilation of source code

• an executable file that contains a sequence of shell command lines (a shell script)
• an internal shell command (built-in command)

The first two command types may include standard UNIX utilities, commercial products, and
user-written programs. All the shells allow both interactive command entry in which the
commands are typed at the keyboard and executed one by one, and scripted entry in which
commands are put in a file, called a shell script, and executed sequentially when the script is run.
See section 4.4 for a brief discussion of the uses of shell scripts and how to execute them.

Shells execute commands by means of processes. A process is an instance of a program in
execution. A process can interact with the kernel by invoking a well defined set of system calls.
The system calls instruct the kernel to perform particular operations for the calling program and
they can exchange data between the kernel and the process. For example, a process can use system
calls to create new processes and terminate running processes.
When a terminal session begins, the operating system starts a single parent process. Creating a new
process from an existing process is called forking. This new process is called a child process· or
subprocess. Each process has a unique process identification number (PID). A subprocess can fork
another process and become a parent. A process which is not receiving input from the terminal,
either running or stopped, is said to be in the background (see section 5.5). The ps command can
be used to print the status of active processes. See the man pages for information about its options.
When you give the shell a command associated with a compiled executable or shell script, the shell
creates, or forks, a new process called a subshell. The new process runs the system call exec which
invokes yet another program to execute the command in place of the current process (the subshell).
Unless the subprocess runs in the background, the parent process remains dormant until its
subprocess completes or is stopped. Then control returns to the parent.

November 26, 1997 Important UNIX Concepts 5-1

To execute most built-in commands, the shell forks a subshell which executes the command
directly (no exec system call). For the built-in commands cd, set, alias and source, the
current shell executes the command; no subshell is forked. You can, however, cause the shell to
fork a process by enclosing the command in parentheses. The following example illustrates this
(use of the semicolon is described in section 2.5; and the commands cd (change directory)and
pwd (print working directory) are described in section 6.5):

% cd /dirl; pwd displays /dirl (no subshell is forked)
% (cd /dir2; pwd)

% pwd

due to the parentheses, a subshell is forked, then the
commands are issued; displays /dir2. Control then
returns to the parent process.
displays /dirl since the current process was unaffected
by the previous command line.

Most built-in commands exist in all shells, but there may be differences regarding arguments,
options, or output format between the shell-specific versions of each command. Some commands
for a given shell are not available on all platforms. Refer to a UNIX text for lists of built-in
commands.
You do not need to distinguish between built-in and other commands to execute them. However in
order to find help in the man pages, you do need to know which is which. Help on shell commands
is usually found under the shell name, for example under man tcsh or man bash. Some
platforms provide man pages for built-in commands, however in general you may find it easier to
look in a reference book! Help on other commands is found directly under man command.

5.1.2 Command Interpretation by the Shell

When the shell receives a command, it interprets it in a series of three (for Bourne shell family) or
four (for C shell family) passes. Naturally, if the command is an alias (see section 9.3), it requires
an additional pass up front for substitution.

• The first pass for the C shell family looks for the ! character, and replaces it with the
previous command (see section 5.3 for information on command recall).

• The next pass (the first pass for the Bourne shell family) replaces wildcards (used in filename
expansion, redirection, and regular expressions; see sections 6.2.2, 5.4.2, and 5.4.5,
respectively).

• The next pass looks for the $ character in order to replace variable names with their values
(see section 9.1).

• The final pass splits the command line elements by whitespace to arrive at the final, literal
command that the shell must execute.

There are ways to prevent interpretation of special characters in each of these passes. Preceding a
character with a backslash(\) works for all special characters; wildcards can be enclosed in single
or double quotes; variables can be enclosed in single quotes; and whitespace is ignored if the
argument containing the whitespace is enclosed in single or double quotes.
To illustrate the operations that take place in each pass, the following table presents a series of three
examples using the echo command and the same string, first in single quotes, then double
quotes, and finally with no quotes. The echo command writes the string to standard output.
Assume that the files that match g* are qq and qqq, and the value of the variable a is foo.

5-2 Important UNIX Concepts November 26, 1997

I \

~

Command--> echo 'q* $a x' echo "q* $a x" echo q* $a X

After first passa, only echo 'q* $a x' echo "q* $a x" echo qq qqq $a X
wildcards are (no wildcard expan- (no wildcard expan- (unquoted wildcard is interpreted.

sion due to quotes) sion due to quotes) expanded)

After second pass, echo 'q* $ax' echo "q* foo x" echo qq qqq foo x
unquoted or double (no variable replace- (double-quoted vari- (unquoted variable
quoted variables are

ment due to quotes) able $a replaced by $a replaced by value) replaced by their
values. value)

After final pass, echo echo echo
command string is 'q* $a x' q* foe X qq
broken up according
to whitespace. The (string treated as (string treated as one qqq

separate elements are one argument due to aregument due to foo
listed vertically. quotes) double quotes) X

(no quotes; each argu-
ment treated sepa-
rately)

When you type in the q* $a X q* foe x qq qqq foe x
original command, the
system returns the
string:

a. This would be the second pass for C shell family; there were no characters to replace.

5.2 Command Entry
A UNIX command is either a built-in command or the name of an· executable file which the
operating system will load and execute. When you see the prompt, you can enter a command by
typing the command name, any options and arguments, followed by a carriage return.

Recall, the formats displayed in this manual use this font style to indicate characters to be
typed as is, and this font style to indicate arguments to be substituted. Arguments enclosed in
square brackets, [...], are optional.

You should be aware that UNIX commands are not noted for their consistency of format.
Furthermore, commands, formats, arguments, and options may vary slightly from one UNIX flavor
to another. In this manual, we attempt to be as generic as possible, and describe options that are
widely available.

UNIX commands are described on-line in the man pages (see section 3.1).

5.2.1 Command Format

The basic format of UNIX commands is:

% command -option(s) argument(s)

November 26, 1997 Important UNIX Concepts 5-3

where:
%

command

option(s)

argument(s)

is the (default, non-FUE) csh prompt. 1

is the UNIX command name of a utility or tool.
modifies how the command runs; options are nearly always preceded by
a dash and listed one after another. See example below.
specifies data or entities (usually files) on which the command is to
operate; arguments are separated by blanks ("white space").

Remember, UNIX is case-sensitive. Therefore UNIX commands must be entered in the correct
case. Most of the time commands are entered in lower case.
The components are separated by at least one blank space. If an argument contains a blank, enclose
the argument in double quote marks. Normally, options cari be grouped; e.g., the -1 wand the -1
-w option specifications are equivalent in the examples below (we is a sample command; it lists
line, word, and/or character count of one or more files .):

% we -lw .filel .file2

% we -1 -w .filel .file2

Some options can have arguments, and there isn't consistency on whether there should be a blank
space between the option and its argument. Check the man pages when you're not sure. In the next
example which shows the FORTRAN command, output.file is the argument of the option -o:

% f77 -o output.file program. f

Looping and conditional commands are also supported. These are more advanced shell commands
and are not covered in this manual. Consult a UNIX text for information on these.

5.2.2 Miscellaneous Command Line Features

5-4

• To correct typos you can use the erase key (Delete or Backspace) to erase
character-by-character, or the Kill key to kill an entire line (see section 2.4).

• More than one command can be entered on a line if the commands are separated by
semicolons. The commands will be executed sequentially. See section 2.5 for more
information on using multiple commands on one line.

• If you need to continue a command to a new line, you can either keep on typing (without
doing a carriage return), or enter a backslash(\) followed directly by a carriage return (no
space in-between) and then continue typing on the next line. (Recall the backslash is used to
prevent a special character's meaning to be interpreted by the shell. See section 2.5.)

• You can use parentheses to group commands. Since a subshell is created for each group, this
can be used to prevent changing the current environment. It can also be used to redirect all
output from the commands considered as a group (see section 5.4.2).

• Type ahead works, even if the characters get interspersed with output.

1. $ is the non-FUE default for Bourne shell.

Important UNIX Concepts November 26, 1997

i /

I

./

5.3 Command Recall
Command recall is quite different in each shell. One common feature for all shells that support
command recall is the history mechanism. It maintains a list of commands that have been entered
and allows them to be reexecuted. The history variable, set to some number at login time in the
start-up files , determines the number of commands that are saved in the list. The savehist variable
specifies how many commands are to be saved for your next session after you log out. The
history command displays the list of saved commands:

% history

We discuss the following shells separately: csh, tcsh, and bash/ksh. There is no command recall
facility for sh.

csh

There is no command line editing native to csh. Before describing the standard csh command
recall facility, we should mention a Fermilab product called cedit that we recommend for use with
csh instead. It was designed to mimic VMS line editing, and turns out to provide similar command
recall and editing functionality to tcsh. To use cedit, you need to set it up initially. Enter:

% setup cedit

To execute it, type:

% m

followed by <Return>. m stands for modify. Use the up or down arrow keys to scroll to the desired
command. The right and left arrow keys and your backspace key allow you to edit the command
before reexecuting it. There are several control characters that perform functions within cedit.
Typing <Ctrl-i> in cedit displays the available commands.
Recalling history commands using standard csh syntax is fairly easy. Use the commands listed
below.

! ! Reexecute the previous command

In Reexecute command n from the history list

!text Reexecute the most recent command beginning with text

! ?text? Reexecute the most recent command containing text

For example, to reexecute the 4th command from the history list, enter:

% !4

and to reexecute the last command starting with ls:

% !ls

The dollar sign($) can be used to recall the last word of a command. ! $ causes substitution of the
last word of the last command. For example, you can check the contents of my f i 1 e . f and then
compile it using the following command sequence:

November 26, 1997 Important UNIX Concepts 5-5

% less myfile.f

% f77 !$

A couple of nice features you can use with these reexecution commands are preview (p) and
substitute (s). To substitute a string in the previous command and preview it before execution, use
the syntax:

% ! : p : s / oldstring I new string

To do the same for the nth command in the history list, use:

% ! n : p : s / oldstring I newstring

To execute after previewing (and/or substituting), simply type:

% !!

tcsh

Recalling commands is easy if you are using tcsh. The up/down arrows on the keyboard can be
used to recall commands and the left/right arrows can be used to move around within the command
to edit it (VMS users will be familiar with this concept).
A command line correction algorithm is available in tcsh. To enable it, enter:

% set correct=all

This caµses all words on the command line to be checked. If any part gets corrected, the system
notifies you, and gives you a chance to accept or reject it. For example, say you type in:

% lz /usr/bin

The system will return with:
CORRECT l s / usr/bin (yln l e la l) ?

Where y =yes, n=no, e=edit, and a =abort. You must provide one of these responses .
. To tum off command line correction, enter:

% set correct=none

ksh

Two styles of command recall are supported; emacs and vi. The style is determined in one of two
ways:

•includetheline set -o editor ineitheryour . profil e or .shrc file,whereeditor
is either emacs or vi (this takes precedence if variables below are set differently)

• set either the EDITOR or VISUAL environment variable to one of these editors
When set to emacs, use the usual emacs commands to display and modify previous commands, for
instance <Ctrl-p> for previous line. When set to vi, command recall is initiated by typing the
Escape (or <Ctrl-[>) key. Then all the standard vi commands can be used. Some of the basic vi
and emacs commands are listed in section 11.3.

bash

Both csh and ksh-style recall are supported.

5-6 Important UNIX Concepts November 26, 1997

l
r

5.4 Important Concepts
This section attempts to provide an overview of a few of the important concepts in UNIX which are
very different from other systems and may therefore be confusing to the novice user. In order to be
able to make effective use of UNIX, these concepts need to be understood.

5.4.1 Path

When you issue a command, the shell program parses the command line and either processes it
directly or searches for an executable file with that name in any of the directories specified in your
search path, which is controlled by the variable PATH. If the file is not found in any of the
directories in your search path, the shell reports that the command was not found. The file may well
be on the disk somewhere, but it is not in your path.1

FUE attempts to provide an appropriate path, and we recommend that you not change this basic
path. However, feel free to add directories to it. For the csh family, your . login file contains a
set path line for the shell variable path.2 Uncomment this line (remove the #) and include
additional directories in the shown format:

set path=($path /dirl /dir2 ...

Or change the environment variable PATH (also in . login), as follows :

setenv PATH "${PATH}: / dirl: / dir2"

For the sh family, uncomment and add directories to the PATH line in your . profile file:

PATH=$PATH: / dirl: / dir2 ...

See section 9.2 for information on the PATH variable.

As an aside, if you add an executable to one of the directories in your search path, it may be
necessary for you to either log out and log back in, or to recreate the internal tables used by the
shell with the rehash (csh) or hash (sh) command (see section 4.4).

5.4.2 Standard Input and Output Redirection

The shell and many UNIX commands take their input from standard input (stdin), write output
to standard output (stdout), and write error output to standard error (stderr). By default,
standard input is connected to the terminal keyboard and standard output and error to the terminal
screen.3

The way of indicating an end-of-file on the default standard input, a terminal, is usually <Ctrl-d>.
Redirection of 1/0, for example to a file, is accomplished by specifying the destination on the
command line using a redirection metacharacter followed by the desired destination.

November 26, 1997

1. This concept will be familiar to users of MS-DOS.
2. Shell versus environment variables are discussed in section 9 .1.
3. VMS users would know these as the logical devices SYS$INPUT, SYS$0UTPUT, and
SYS$ERROR.

Important UNIX Concepts 5-7

C Shell Family

Some of the forms of redirection for the C shell family are:

Character Action

> Redirect standard output

>& Redirect standard output and standard error

< Redirect standard input

> ! Redirect standard output; overwrite file if it exists

>&! Redirect standard output and standard error; over-
write file if it exists

I Redirect standard output to another command (pipe)

>> Append standard output

>>& Append standard output and standard error

The form of a command with standard input and output redirection is:

% command - [options] [arguments] < inputfile > outputfile

If you are using csh and do' not have the noclobber variable set (see section 9.2) , using > and >& to
• redirect output will overwrite any existing file of that name. Setting noclobber prevents this. Using
> ! and >& ! always forces the file to be overwritten. Use>> and>>& to append output to
existing files.
Redirection may fail under some circumstances: 1) if you have the variable noclobber set and you
attempt to redirect output to an existing file without forcing an overwrite, 2) if you redirect output
to a file you don't have write access to, and 3) if you redirect output to a directory.
Examples:

% who> names

% (pwd; ls -1) > out
% pwd; ls -1 > out

Redirect standard output to a file named name s

Redirect output of both commands to a file named out

Redirect output of ls command only to a file named
out

Input redirection can be useful, for example, if you have written a FORTRAN program which
expects input from the terminal but you want it to read from a file. In the following example,
myprog, which was written to read standard input and write standard output, is redirected to read
myin and write myout :

% myprog < myin > myout

You can suppress redirected output and/or errors by sending it to the null device, / dev /nul 1.
The example shows redirection of both output and errors:

% who>& /dev/null

To redirect standard error and output to different files , you can use grouping:

% (cat myfile > myout) >& myerror

5-8 Important UNIX Concepts November 26, 1997

/

If

y

{ I

Bourne Shell Family

The Bourne shell uses a different format for redirection which includes numbers. The numbers
refer to the file descriptor numbers (0 standard input, 1 standard output, 2 standard error). For
example, 2 > redirects file descriptor 2, or standard error. &n is the syntax for redirecting to a
specific open file. ,For example 2 >&1 redirects 2 (standard error) to 1 (standard output); if 1 has
been redirected to a file, 2 goes there too. Other file descriptor numbers are assigned sequentially to
other open files, or can be explicitly referenced in the shell scripts. Some of the forms of
redirection for the Bourne shell family are:

Character Action

> Redirect standard output

2> Redirect standard error

2>&1 Redirect standard error to standard output

< Redirect standard input

I Pipe standard output to another command

>> Append to standard output

2>&11 Pipe standard output and standard error to another
command

Note that < and > assume standard input and output, respectively, as the default, so the numbers
0 and 1 can be left off. The form of a command with standard input and output redirection is:

$ command - [options] [arguments] < inputfile > outputfile

Redirection may fail under some circumstances: 1) if you have the variable. noclobber set and you
attempt to redirect output to an existing file without forcing an overwrite, 2) if you redirect output
to a file you don't have write access to, and 3) if you redirect output to a directory.

Examples:
$ who > names Direct standard output to a file named name s

$ (pwd; 1 s -1) > out Direct output of both commands to a file named out

$ pwd; 1 s -1 > out Direct output of 1 s command only to a file named out

Input redirection can be useful if you have written a FORTRAN program which expects input from .
the terminal and you want to provide it from a file . In the following example, myprog, which was
written to read standard input and write standard output, is redirected to read my in and write
myout.

$ myprog < myin > myout

You can suppress redirected output and/or error by sending it to the null device, /dev /null. The
example shows redirection of standard error only:

$ who 2> /dev/null

To redirect standard error and output to different files (note that grouping is not necessary in Bourne
shell):

$ cat myfile > myout 2> myerror

November 26, 1997 Important UNIX Concepts 5-9

5.4.3 Pipes

UNIX uses the concept of a pipe to connect the standard output of one program directly into the
standard input of another program. This is specified by separating the two commands with the pipe
operator, the vertical bar (I). The general format is:

% command] I command2 I ...

where, of course, each command can have options and arguments. To implement pipes of
commands, the shell forks off multiple processes. For example if you run the command:

% history I more

the shell forks twice; the grandchild runs history, the child runs more (after hooking up the
right file descriptors to the right pipe ends), and the parent shell waits for the process to finish. The
history command, a built-in, is implemented in the grandchild shell process directly, while the
more command requires an exec system call.
The tee command can be used to send output to a file as well as to another command.

% who I tee whoout . I sort

This creates a file named whoou t which contains the original who output. It also sorts the
who output and sends it to standard output, the terminal screen. The following example sends the
(unsorted) who output to the file and the screen:

% who I tee whoout

5.4.4 Filters

A filter is a. command or program which gets its input from standard input, sends its output to
standard output, and may be used anywhere in a pipeline. Examples of filters are the UNIX
utilities:

• more (and less)
• grep
•awk
• sort

The combination of UNIX filters grep, awk, and sort and the use of pipes is very powerful.

more and less

The·more filter allows you to display output on a terminal one screen at a time. You press
Spacebar to move to the following screen, and q to quit.
less is a much more flexible variant of the standard UNIX utility more and is provided under FUE 1.
The command less lists the output (e.g., specified files) on the terminal screen by screen like the
command more, but in addition allows backward movement in the file (pres~ b to go back one
full screen) as well as forward movement. You can also move a set number of lines instead of a
whole page. To view a file with the less filter, enter:

% less [options] [filename] ...

1. FUE sets your environment variable PAGER to the less filter.

5-10 Important UNIX Concepts November 26, 1997

' I

The options and usage are described in the man pages for more and less.

After displaying a page of information, more and less display a colon prompt (:) at the bottom of
the screen and wait for instructions.

LESS(l) UNIX System V LESS(l)

NAME
less - oppos i te of more

SYNOPSIS
l e ss [-[+] aABcCdeEirnMnqQuUsw] [-bNJ [-hNJ [-xNJ [- [z]N]

[-P [rnM=J string] [- [lLJ log file] [+cmd]
[-ttag] [f i l ename] ...

DESCRIPTION
Less is a program similar to more (1) , but which allows
backwards movement in the file as wel l as forward movement .
Also, l ess does not have to read the entire inpu t file
before starting , so with large input fi l es it starts up
fast~r than text editors like vi (1) . Less uses termcap (or
terminfo on some systems) , so it can run on a variety of
terminals. There is even limited support for hardcopy

You can search for patterns in the file by entering /pattern at the less prompt. Continue to search
for the same pattern using a slash(/). A further advantage is that less does not have to read the
entire input file before starting, so with large input files it starts up faster than text editors like vi.

grep

The grep filter searches the contents of one or more files for a pattern and displays only those lines
matching that pattern. grep is described in Section 6.4.2.

awk ·

awk is much more than a filter; it is a powerful pattern scanning and processing language.
Although you will need to spend a little time learning how to use awk, it is very well suited to
data-manipulation tasks. It handles internally what you would have to handle laboriously in a
language like C or FORTRAN. You can do in a few lines what would take many, many lines of
FORTRAN.
awk works best when the data it operates on has some structure, for example a document with
heading levels, or a table. In the case of a table, you can tell it the field separator (spaces, colons,
commas, tabs) and it can align and interpret the contents of the field according to the way you use
it. Or you can reorder the columns, or change rows into columns and vice-versa.
We present here some very basic information to get you acquainted with the concepts of awk, but
you will need a more in-depth reference in order to use this utility. A widely-available book on
awk is The awk Programming Language by Aho, Kernighan, and Weinberger, Addison-Wesley.
Another good reference, from which much of the information in the present section is extracted, is
sed & awk published by O'Reilly & Associates.
There are several versions of awk, and they differ from platform to platform. "Old" awk may be
awk or oawk, "new" awk may be nawk. FUE provides a GNU version of awk called gawk as part
of the shells product.

November 26, 1997 Important UNIX Concepts 5-11

Some of the features of awk are:
• Ability to view a text file as made up of records and fields in a textual database
• Use of variables to manipulate the database
• Use of arithmetic and string operators
• Use of common programming constructs such as loops and conditionals
• Ability to generate formatted reports

With nawk, additional features make it easier to write larger scripts. Using nawk you can:

• Define functions
• Execute UNIX commands from a script
• Process the result of UNIX commands
• Process command-line arguments more gracefully
• Work more easily with multiple input streams

awk executes a set of instructions for each line of input. You can specify instructions on the
command line or create a script file. Input is read a line at a time from one or more files or from
standard input. The instructions must be enclosed in single quotes to protect them from the shell.
(Instructions always contain curly braces which are interpreted as special characters by the shell.)
We refer you to one of the books on awk for the available instructions. We'll use the instruction
print in our examples.
For command lines, the syntax is:

% awk 'instructions ' files

As an example, say that file ·test contains only the.line Hello, world. The command:

% awk '{print}' test

produces the output:
He llo, world

Multiple command lines can be entered by separating commands with semicolons or using the
multi-line input capability of the Bourne shell. awk programs are usually placed in a file where
they can be tested and modified. The syntax for invoking awk with a script file is:

% awk - f 'script' files

where - f indicates that the filename of a script follows.
awk interprets each line of the input data file(s) as a record, and each word on that line, delimited
by blank spaces or tabs, as a field. You can reference these fields, either in patterns or procedures.
$ 0 represents the entire input line; $1, $ 2, ... refer to the position of individual fields on the
input line. As an example, say that the file p e rsonne l contains a list of employees' first names,
last names, and addresses. The command:

% awk '{ print $1}' personnel

would produce output of the type:
John

Alice

Mary
Eric

5-12 Important UNIX Concepts November 26, 1997

(\
'

To use the pattern-matching features of awk, ·you need to be familiar with the metacharacters used
in regular expressions (see section 5.4.5). A pattern is enclosed between forward slashes(/) on the
command line or in a script. When awk reads an input line, it attempts to match each
pattern-matching rule in a script. Only the lines matching the particular pattern are the object of an
action. If no action is specified, the line that matches the pattern is printed (executing the print
statement is the default action) .
In our pers onne l example, let's assume that Alice is from Illinois (IL) and Eric is from Iowa
(IA). To bring up the complete records with the pattern IL or IA, we could issue the command:

% awk '/I./{print}' personnel

where the metacharacter . matches any single character. We could more simply type:

% awk '/I./' personnel

and get the same result in either case:
Alice Jones 83 4 S . J e ff e rson St., Batavia, IL 60510
Eric Smith 24 Bi r ch St., Albert City , IA 50510

In Appendix D we present awk's programming model, which is beyond the scope of the present
section. This model will help you understand the potential that awk offers the programmer.

sort

sort sorts the lines of the specified files, typically in alphabetical order. Using the -m option it can
merge sorted input files. Its syntax is:

% sort [options] [field-specifier] [fi.lename(s)]

For example, start with the p e r s onne l file contents:

John Smith 75 South Ave., Denver, CO 80145
Alice Jones 834 S. Jef f erson St ., Batavia , IL 60510
Mary Fahey 901 Californ ia St". , San Francisco , CA 94121
Eric Smith 24 Birch St. , Albert City , IA 50510

Run the command:

% sort personnel

to reorder the file contents as follows:

Alice Jones 834 S. Jefferson St., Batavi a , IL 605 10
Eric Smi t h 24 Birch St. , Al bert Ci ty , IA 50510
John Smi th 75 South Ave ., Denver, CO 801 45
Mary Fahey 901 California St., San Francisco, CA 9412 1

sort is very easy to use. Read the man page for sort to see what the available options are and how
to specify the sort fields . If a field is not specified, the sort key is the entire line. The sorted output
goes to standard output by default.

November 26, 1997 Important UNIX Concepts 5-13

5.4.5 Regular Expressions

A regular expression is a string composed of letters, numbers, and special symbols that defines one
or more strings. They are used to specify text patterns for searching. This is similar to wildcards on
VMS.

A regular expression is said to match any string it defines. The major capabilities include:

1) match single characters or strings of characters

2) match any arbitrary character

3) match classes of characters

4) match specified patterns only at the start or end of a line

5) match alternative patterns
Regular expressions are used by vi, gre~, and awk (and at least a couple of utilities not covered in
this manual, for instance ed and sed). grep in fact stands for global regular expression printer. For
a complete discussion of regular expressions, refer to a UNIX text. To get you started, we include a
table of special characters that can be used in expressions.
Note that regular expression special characters are different from those used in filename
expansion.

• .

$

/\

\

[]

[...]

Matches any single character
Example: . ing matches all strings with any character
preceding ing; singing, ping

Represents O or more occurrences of the preceding character
Example: ab*c matches a followed by O or more b's
followed by c; ac, abc, abbbbbc

Matches any string of characters (. matches any character, * matches
any number of occurrences of the preceding regular expression)
Placed at the end of a regular expression, matches the end of a line

Example: ay$ matches ay at the end of a line; ... today

Placed at the beginning of a regular expression, matches the beginning
of a line

Example: "T matches a Tat the beginning of a line; Today

Delimits operator characters to prevent interpretation
Tums off special meaning of the following single character(\ is often
called a quote character)
Specifies character classes
Matches any one of the characters enclosed in square brackets

Example: [bB]ill matches bill or Bill
There is an extended set of special characters available for full regular expressions, including for
example ? and +. These can be used in egrep and awk. Refer to a UNIX book for information.

5-14 Important UNIX Concepts November 26, 1997

J

5.5 Job Control
Any command you give to the shell (true for all shells except sh) is ajob and is given a job number.
A single command is the simplest job. A series of commands separated by semicolons, or
commands piped together, create a single job. A script also creates a single job. A job may consist
of many processes, because each command is a process.
The job stays with its environment, for example, the current directory. If you subsequently change
directories after putting a job in the background and then resume the background job, you will be in
the original directory again.
Job control allows you to work on several jobs at once, switching back and forth between them at
will, and it allows you to stop, start, and kill them. When you start up a job interactively, it is by
default in the foreground and attached to your terminal. You can move that job into the background
so you can start up another job or observe another job that is already running. You can move any
background job into the foreground so it is once again attached to your terminal. You can run any
number of background jobs at any one time, but there can be only one foreground job. The use of
multiple windows on an X terminal makes much of this transparent.

5.5.1 Priority

You can control the priority of a command or shell with the shell command nice:

% nice [+n 1-n] [command]

n is the value by which you want to increase or decrease priority. Values range from 1 to 19, with
the default at 10. The higher the nice value, the lower the priority of a process, and the slower it
runs. (You are being nicer to other users!) If no number is specified, nice sets the priority to 4. If
command is omitted, the priority is s_et for the current shell. If command is specified, it is run at the
specified (or default) priority in a sub-shell. You can use nice to lower the priority of a command or
shell that makes large demands on the system but isn't needed right away.
Note that another nice command exists, /bin / nice. It is not a built-in shell command. If you
do man nice, you. will get information on this one. In order to get information on the shell
command nice, do man csh (using csh as an example).

5.5.2 Background, Foreground, and _Suspended .Jobs

You run jobs in the background so that you can perform other tasks in the foreground (i.e.,
interactively). Jobs are always in one of three states: running in the foreground, running in the
background, or suspended. Any job intended to run in the background should have its output and
error redirected to a file.
There are two ways to put jobs into the background:

Using the & Metacharacter

One way to start a job in the background is to append the ampersand metacharacter (&) to the end of
the command line. In the first example, the standard output is redirected to a file (in this case, the
syntax is valid for both shell families):

% command > output-file &

Note that the parentheses are necessary in the next example in order to send both commands to the
background:

November 26, 1997 Important UNIX Concepts 5-15

% (command] ; command2) &

The shell prints a line indicating the job number and process ID of its top-level commands, and the
job is started as a background job.

GJ Using the Suspend Control Character

. The other way is to use the suspend control character, called susp or swtch, (see section 2.4) which
is usually assigned to <Ctrl-z>. It stops or suspends the foreground (the currently running
interactive) job, moving it to the background; it does not kill it.
After stopping a job, you can either resume it with the f g command or make it run in the
background with the bg command (see below). You may want to stop a job temporarily to do
another task and then return to it interactively, or you may want to stop it in order to let it finish as a
background job.
When a background job terminates, this is reported just before the next prompt (so the message
doesn't interrupt the current foreground job).
A background job will stop if it tries to read from the terminal. If output is not redirected, a
background job can either (continue to) send output to the terminal or be stopped if it attempts to
write to the terminal. The following command can be used to toggle this behavior:

% stty [-]tostop

The minus indicates negation, meaning that background jobs will continue to run even if they
attempt to write output to the terminal and that the output will appear on the terminal screen.
However, programs which attempt to interrogate or change the mode of the terminal will be
blocked when they are not in the foreground whether or not tostop is set.

Listing Jobs

The jobs command lists your jobs:

% jobs [-1]

This command lists the background jobs, their job number, status, and the command being
executed. A plus sign in the output means that job is current (in control of your terminal), a minus
sign means that job is next. Current and next refer to its relation to the foreground (see fg). The
-1 option lists the process ID as well.

Commands Used for Controlling Jobs

There are a number of commands to control jobs: fg, bg, stop, kill. All of them can take
an argument which specifies the particular job, or they can have no argument. The argument can
take two basic forms: a simple process ID number (as displayed by ps) or a form prefixed with a
percent sign(%). If no argument is given, the current job is acted upon.
The % form of the argument can be %- where - indicates the previous job, %n where n is the
job number as displayed by the jobs command, %pref where pref is some unique prefix of the
command name and arguments of one of the jobs, or % ?str where str is some unique string in one
of the jobs.
You can use the fg command to move a suspended or background job into the foreground:

% [fg] %[job]

The f g is not mandatory. If the job specification is omitted, the current job will be brought into
the foreground, and the next job becomes current.

5-16 Important UNIX Concepts November 26, 1997

I
I
'

Examples (note that the first % on each line represents the default csh prompt):
% fg %5

% %1

% %

Bring job number 5 into the foreground
Bring job number 1 into the foreground

Bring the current job into the foreground

After stopping a foreground job, you can start it running in the background with the bg command.
bg puts the current or specified jobs into the background, continuing them if they were stopped. In
the following commands,job stands for job number.

% bg % Uob]

We described above how to stop (suspend) a foreground job with the suspend control character
(<Ctrl-z>). Similarly, you can suspend a background job with the stop command:

% stop °-'4ob

You can abort a suspended or background job with the kill command:

% kill %job

If you attempt to exit a shell (logout) when there are stopped jobs, you will get a warning message.
A second logout will log you out if you choose not to see.what jobs are stopped before you exit.
In the C shell family, background jobs will continue running after you log out.

5.5.3 Scheduling Jobs: at and cron

UNIX provides two methods for running jobs at some specified time.

If AFS is installed on your system, there are Kerberos authentication problems with running
programs that spawn jobs external to your login process group (Kerberos authentication is
described in section 7.3). at and cron fall into this category. You can run the job, but it will not run
with authentication, and most likely will not be able to write into / af s space. A work-around is •
available for executing an authenticated cron job (send mail to helpdesk@fnal requesting the full
details of this procedure).

at

The first is the at utililty. This allows the user to queue a job for later execution.

The format of the at command is:

% at time [date] [+increment]

at reads the commands from standard input. Standard output and standard error output will be
mailed to you unless they are redirected.
The shell saves the environment variables and the working directory that are in effect at the time
you submit the job and makes them available when the job is executed. •

November 26, 1997

• The time can include 1, 2, or 4 numbers. One or two digits is assumed to be hours, four digits
to be hours and minutes. It can be specified as two numbers separated by a colon
(hours:minutes), either in 24-hour format or with am or pm appended. The names noon,

, midnight, now, and next are recognized.
• The date is either a month name followed by a day number (and optionally a year number

followed by an optional comma) or a day of the week (fully spelled out or abbreviated to three
characters). The words today and tomorrow are known. If no date is given, today is assumed
if the hour is greater than the current hour and tomorrow if it is less.

Important UNIX Concepts 5-17

• The optional increment is a number suffixed by minutes, hours, days, weeks, or years in
singular or plural form.

Examples:

% at 8

% at 0800

% at 8:00am Jan 24

% at now+ 1 minute

at reads from standard input, meaning you type in the commands (there may or may not be a
prompt). When you are finished, terminate input with <Ctrl-d> followed by a carriage return.
You can also redirect the input to a file of commands, for example:

% at now+ 1 hour< myscript

at runs in the Bourne shell (sh) by default. If you need to force it to run in C shell, you can use the
trick illustrated in the following interactive example:

% /bin/csh << xxxxx

? at now+ 2 minutes

? source . cshrc

? alias> aout

? <Ctrl-d> (followed by carriage return)

The first line causes csh (C shell) to read the following lines up to xxxxx or to the end-of-file.
There is no xxxxx, of course, so it reads until you give it the. <Ctrl-d>. The third line runs your
. c shrc . It is an illegal Bourne shell command, therefore you can tell at ran in the C shell and
that your . c shrc file was executed. You will receive a message similar to the following, and the
results will be mailed to you (alas, at will say it's using / bin / s h even if you 've "tricked" it):

warning : commands will be executed u sing /bin/sh
job 826157640 . a at Wed Mar 6 1 8:14:00 1996

After 2 minutes, aou t is mailed to you. It contains a list of all the aliases defined in your
. c s hrc file. If you are running a script using at then the script will be run under whatever shell
you specify in the script.
For example, say you run:

% at now+ 2 minutes

? script

? <Ctrl-d> (followed by carriage return)

where script is a file that contains the line #! / bin / c s h at the beginning. The commands in the
script will execute under csh.

5-18 Important UNIX Concepts November 26, 1997

I

'

cron

The second method for running jobs at some specified time is the crontab command. It is
designed for jobs that need to be run on a regular basis , e.g. , once a night, or once per week. Note
that cron, like at, uses the Bourne shell so that output redirection must be specified using Bourne
shell syntax. Scripts will be run under what ever shell is specified in the script. If no shell is
specified then Bourne shell is used.
The format of the command is:

% crontab (filename]

% crontab [options]

where.filename is the name of a file containing the commands that you want to have executed. If
you do not specify a file, then crontab will read commands from standard input as you type
them, ending with <Ctrl-d>, and the commands will be run in Bourne shell. The system utility
cron reads the crontab file and runs the commands. Standard output and standard error will be
mailed to you unless they are redirected.
The command can also take the following options:

-r remove crontab file
-1 list contents of crontab file

A cron file consists of lines of six fields each. The fields are separated by spaces or tabs. The first
five are integer patterns that specify the following:

• minute (0-59)
• hour (0-23)

·•day of the month (1-31)
• month of the year (1-12)
• day of the week (0-6 with 0=Sunday)

If an asterisk appears in a field instead of a number, cron interprets that as a wildcard for all
possible values. The sixth field of a line in a cron file is ·a string that is executed by the shell at the
specified times.
Examples:
The user creates a cron file my_fil e , and runs crontab:

flMyfile
ii Run script t hat archives to 8mm tape for backup .
fl Monday-Thursday at 2200 backup everything t hat has b een
ii changed. Every Friday at 2200 b a ckup everyth ing .

0 22 * * 1- 4 /usr/buckley/ daily 1>>/usr/buc kley/cron/b ack up . log 2>&1
0 22 * * 5 /usr/buckley/weekly 1>>/u sr/buckl ey/cron /backup .log 2>&1

% crontab myfile

This command will perform an incremental backup at 10pm Monday to Thursday and a full backup
at 1 Opm on Friday.

November 26, 1997 Important UNIX Concepts 5-19

5-20 Important UNIX Concepts November 26, 1997

Chapter 6: The UNIX File System

The UNIX file system has a hierarchical or tree-like structure with the directory called root(/) as
its source. The system is essentially composed of files -and directories. In this chapter we describe
techniques for manipulating files and directories, and commands desi.gned to provide information
about them. d In Appendix E you can find a table of UNIX equivalents for commonly used VMS commands.

6.1 Directory Structure
The UNIX system automatically puts you at a specific location in the file system when you log in.
This is called your login directory. Typically, this is the same as your home directory. The name of
your home directory is usually the same as your login name. Within this directory you can create
files and additional directories (sometimes called subdirectories) in which to group the files . You
can move and delete your own files and directories and control access to them.
The root of the file system is called root an_d is written as a slash(/). In other words, to change to
the root directory, typ<;:: •

% cd /

There is only one directory tree on a system even if several devices are mounted in that tree. (All
devices are viewed as files.) The current directory or working directory is the directory that you are .
currently working in, which is also the directory that commands refer to by default. Files in your
current directory can, therefore, be specified by their filenames only.

6.1.1 Pathnames

Wherever you can use a filename, you can also use a pathname, which is how you point to files that
are not in your current directory. You can refer to files in other directories using either a relative
path name, that is a path specified relative to your current directory, or with an absolute path name,
that is a path specified relative to the root of the file system.

Absolute path names are preceded with /, the root directory. If a pathname does not begin with /
it is assumed to be a relative path name. Relative path names begin with a directory or filename, a
. (pronounced "dot") which refers to the current directory, or . . (pronounced "dot dot") which
refers to the directory immediately above the current directory. The character / also separates
components of the pathname, which are directory names, except for the last one, which can be
either a simple filename or a directory name.
In summary, every file has a pathname, and its absolute pathname is of the form:
/ rootdir / dir2 / .. . / filename

November 26, 1997 The UNIX File System 6-1

The following is the form of a relative pathname of a file:
dir_n/dir_n+l/ ... /filename

An example of an absolute path name is:
/usr/smith/projectl/afile
If my current directory is /usr /smith, then I can refer to the file af ile in subdirectory
proj ectl with a relative pathname like this:
projectl/afile
Or, if my current directory is /usr / smi th/proj ectl, I can refer to a file named fileb in
/usr/smith/project2 ~:

.. /project2/fileb
Note that you cannot necessarily tell if fileb is an ordinary file .or a directory name. Many
commands will accept a directory name, and if it is a directory name, the command in which it is
used may perform the action on all files in the directory. This behavior can be dangerous!

• 6.1.2 The Home Directory

Your home directory is the top of your personal branch in the file system, and is usually designated
by your username, i.e. /{path}/ {username}.

Tilde(~)

In most UNIX shells other than sh, the tilde(-) stands for the home directory. Used alone, it
specifies your home directory. Followed by a different user's login name, it expands into the
pathname of the home directory of that user. This is a convenient way to refer to a user's directory,
because it is independent of where the system manager may place the directory on the disk.
The use of tilde(-) to refer to a home directory is limited. It isn't available in the Bourne shell, and
isn't available in FORTRAN.
Of the following three examples, the first refers to the file def from your own home directory, the
second to the home directory of user jones, and the third refers to file datal in the subdirectory
proj ectl of jones' home directory.

-/def
-jones
-jones/projectl/datal
To change to jones' home directory you'd enter:

% cd -jones

logdir

FUE provides the command logdir which returns the full path of the specified user. logdir
by itself returns the path of the invoking user. For example:

% logdir username

is equivalent to:

% echo -username

6-2 The UNIX File System November 26, 1997

J

I \

l

To change directories you'd em~r (note the use of backquotes to use the output of the enclosed
string):

% cd 'logdir username

In contrast to the tilde, logdir can be used within commands, scripts, FORTRAN and C
programs, and other programs in all shells.

$HOME

The environment variable HOME is automatically set to the absolute pathname of your home
directory. Environment variables are discussed in section 9.1 and HOME is described in section
9.2. To see the value of HOME, enter:

% echo $HOME

From some other directory, you can change to your home directory or one of its subdirectories
using a command like the following:

% cd $HOME1

or

% cd $HOME/mysubdir

6.1.3 Command Line Directory Shortcuts

$HOME

~username

I

Current directory
Parent directory of the current directory ("up" one directory)

Your home directory (all shells but sh)
Environment variable whose value is your home directory

Home directory of another user (all shells but sh)
Root directory

6.1.4 Directories and Executables

It is appropriate at this point to mention the relationship between directories and commands. A
command is simply the name of an executable file, located in some directory. To execute a
command, the shell first needs to find the executable file. The shell therefore needs to be given a set

. of directories to search. This information is provided via the environment variable PATH which is a
list of search directories. You can display it with the cominand:

% echo $PATH

PATH is explained more thoroughly in section 9.2. Standard UNIX commands are generally
grouped in a few standard directories (e.g., / usr / bin), and your default PATH contains these.
See section 9.2 to learn how to run executables that you create and store in your own directories.

1. cd by itself is equivalent to cd $HOME.

November 26, 1997 The UNIX File System 6-3

The utility which is useful in cases where a command may be ambiguous, for example due to
aliasing (see section 9.3), and you want to know exactly which executable file or files the command
runs. which lists the files that would be executed if the specified command(s) had been run. The
syntax for which is:

% which command [command2 ...]

Each argument is expanded if it is aliased, and your path is searched for the executable files
associated with the commands. See the man page for more information.

6.2 Files
An ordinary file contains ASCII characters or binary data and is considered by the UNIX system to
be merely a sequence of bytes. No structure is imposed on the file and no meaning attached to its
contents by the system; the meaning depends on the program that reads the file.
A directory file contains an entry for each file in that directory. The directory entry for a particular
file contains the file name and inode number. The inode number is a volume data structure used by
the file system. It has an associated entry in the inode table which contains other information about
the file such as the owner, file protection, modification date.
A hidden.file is an ordinary file whose name begins with a period (called "dot"). The . login,
. cshrc, and . logout files described in Chapter 9 are hidden files. The reason they are caJled
hidden is that the ls (list files) command does not list them by default. Use the -a option with·
ls to see them. Hidden files do not app.ear in filename expansion of *, either. Filename expansion
is discussed in section 6.2.2, below.
UNIX does not support fiJe versions. If you edit a file and save it with the same name, your earlier
version is overwritten. Similarly, if you copy or rename (move) a file to a filename that already
exists, the original file is overwritten.

6.2.1 Filenames

A full file specification has only two parts, the directory specification and the file name. A filename
is composed of from 1 to 14 characters in old UNIX implementations and a much larger number in
more recent versions (up to 255, typically). Although you can use any character in a filename
except /, UNIX assigns special meaning to many characters (metacharacters), so they should be
avoided (see section 2.5). It is safe to use the upper- and lowercase letters, numbers, dash (-),
underscore (_), period (.), and comma (,). As mentioned in the previous section, files beginning
with a dot (.) are hidden files. The "filenames" . and . . (single and qouble dot) are reserved.
The . refers to the current directory, and the . . refers to the current directory's parent directory.
No two files in the same directory can have the same name, but files in different directories can
have the same name.
VMS users have not had the luxury of using dashes in filenames. Dashes are much more common
inUNIXfilenamessimplybecauseit'seasiertotype my-file than my_file.

Filenames are case sensitive. This means MYFILE is different from Myfile is different from
myfile is different from my File, etc.
You cannot distinguish a directory file from an ordinary file by its name, aJthough some people
make their own convention by beginning directory filenames with a capital letter, or ending them in
.d.

6-4 The UNIX File System November 26, 1997

' '

u

Filename extensions are not required in UNIX. You can include a period and an extension in a
filename to help describe the contents of the file, but it will not have special meaning to UNIX
itself. However, programs can make use of extensions, for example the FORTRAN compiler
expects certain extensions. Note, you can have more than one period in a filename, for example,
lex.yy.c.

6.2.2 Filename Expansion and Wildcard Characters

The UNIX shells have a number of special characters which can be used on the command line
when specifying filenames and directory names. They allow the shell to expand the argument into
a set of filenames. These characters are called wildcards. Filename references that contain these
characters are called ambiguous file references. Filename expansion is also called globbing.

The question mark(?) causes the shell to generate filenames which match any single character in
that position. For example, out? matches out 1 but not out 12.
The asterisk(*) causes the shell to generate filenames which match any number of characters
(including zero characters) in that position. For example, myfile matches myf*. The* alone
means all files (except those that begin with dot (.), which is a special case).
A pair of brackets ([]) surrounding a list of characters causes the shell to match filenames
containing the individual characters in that position. The brackets define a character class and each
definition can only replace a single character in a filename. In other words, it is like a question
mark that will only allow certain characters. For example, memol and memo a match memo[l 4a]),
but memo3 and memo la do not. A hyphen can be used to define arange of characters, for example
[a-z] represents all lowercase characters. Thus memo[a-z] matches memoa but not memo2 or
memoB.

Character

?

*

[]

Examples:
% ls out*
% ls out?
% ls out [ab]*

% ls *out*

Action

matches any single character in a filename

matches any string of characters (including the empty string)
in a filename

matches any single character from the set enclosed in the
brackets

lists all files beginning with out
lists all files with 4-character names beginning with out
lists all files beginning with out followed by a orb (e.g., outa4)
lists all files containing out

Filename expansion may surprise you with the results. For example, ls b* would list all files
starting with b in the current directory, but it would also list the contents of all directories whose
names start with b because of the way 1 s behaves for a directory argument. If you want to be

November 26, 1997 The UNIX File System 6-5

sure of what filename expansion will result in, you can use the echo command to check it before
executing a command. 1 For example, say you have a few matching files in your directory for the
command:

% echo *out*

You would obtain output something like this:

fout fout275 inandout outl out2 out

Filename expansion in csh can be turned off by setting the noglob variable:

% set noglob

To tum it back on, type unset noglob.

6.3 Manipulating Files .
This section describes the basic file manipulation commands:

• listing the contents of a directory
• displaying the contents of a file
• copying and renaming a file
• deleting a file
• changing a file's access permissions

Section 6.5 describes the commands you can use to change and manipulate directories.

6.3.1 List Directory Contents: ls

The ls command, which stands for list, is used to list the contents of a directory. ls has
many options, some of which are system-dependent, so only a few of them are described here. For
a complete description of the command, refer to the man pages for ls.

1 s by itself lists the names of the files and subdirectories in the current directory (in multicolumn
format on some platforms), sorted alphabetically.
The format is:

% ls [options] [filenames]

where some of the options are:

6-6

-a List all entries, including those that begin with . (dot).
-1

-c
-F

List in the long format, giving mode, number of links, owner, group,
size in bytes, and (by default) time oflast modification, by default sorted
by filename.
List in columns (default on some platforms)
Put a / after the name of each file that is a directory, an * after the name
of each file that is executable, and an @ after the name of each file that
is a symbolic link.

1. echo is otherwise useful for sending messages to the terminal from a script and send-
ing known data into a pipe.

The UNIX File System November 26, 1997

r.

-R

-t

Recursively list subdirectories encountered.

Sort by time stamp (latest first) instead ofby name. The default time
stamp is the last modification time (see -u).

-u Use the time of last access for sorting if used with the -t option or
printed in the date column if used with the -1 option. -ult both
sorts by and displays last access date.

-d If the argument is a directory, list the directory itself, not its contents.
Use with -1 to get the status (e.g., permissions) of a directory.

If the argument is a directory, 1 s displays the contents of the directory. Note that this can happen
unintentionally as a result of :filename expansion. This behavior can be prevented with the -d
option. The -t option is useful when lo.oking at recent files:

% ls -lt

will result in the long output sorted by reverse modification date rather than by :filename.

The following is a sample output of ls -1 .

total 251
drwxr-xr-x 3 nicholls g020c 512 May 2 08:53 Tools
drwxr-xr-x 2 nicholls g020c 512 May 2 09:01 bin
-rw-r--r-- 1 nicholls g020c 446 May 4 14 : 09 defaults
-rw-r--r-- 1 nicholls g020c 95418 May 1 17:4 2 intro .lpr
-rw-r--r-- 1 n icholls g020c 0 May 10 17 :51 lsout
-rw-r--r-- 1 nicholls g020c 6683 May 1 1 6 :4 6 rnan.lpr
- rw-r--r-- 1 nichol ls g020c 12258 Ma y 9 16:16 out

The first line indicates the number of blocks used. The rest of the lines report on (sub)directories or
files in the directory being reported on. The first column of the output is called the mode. The
character in this first column indicates the type of file, and for our purposes here, they are:

d directory
ordinary file

The next 9 characters are interpreted as three fields of three characters each, indicating the read (r),
write (w), and execute (x) permissions for owner (sometimes called user), group, and other, in that
order (see section 6.6.1 for a discussion of permissions).
Next is the number of links to the file or directory. This refers to the number of different names
established for it. .Normally files have 1, and directories have 1 each for the directory itself, its
parent directory, and each of its subdirectories. In the sample output above, notice that the
directory Tools has 3 and bin has 2. Evidently, Tools has one subdirectory and bin has
none.
The next fields are the login name of the owner, the group to which the owner belongs, the size of
the file in bytes, the date and time the file was last modified, and, finally, the :filename (which can be
a directory name).

6.3.2 List File Contents: cat, less, more, head, and tail

UNIX has a number of commands that can be used for displaying the contents of a file at the
terminal.

November 26, 1997 The UNIX File System 6-7

cat

cat, which stands for "concatenate and print," is the standard UNIX file display; it simply prints
the file to the screen. 1 When piped to less (see section 5.4.4 which describes less as a filter), cat
displays the file contents a screen at a time, and some simple commands may be executed at the
supplied prompt.

% cat filename... [I less]

As its name suggests, cat is in fact quite useful for copying and concatenating files. Output is often
piped to a file rather than to the screen, using standard output redirection (see section 5.4.2). The
following example concatenates the three specified files and copies them sequentially to a single
filecalled allthreefiles:

% cat fileone filetwo filethree > allthreefiles

less, more

A shortcut for cat filename I less is to use less as a file browser:

% less filename

And wherever you use less, you can alternatively use more, although it is not as functional as
less . You cannot move backwards through the file with more.

head, tail

head displays the first n lines of the specified file or files. If more than one file is specified, the
filename is displayed before each set of file contents of n lines. n defaults to 10 -lines.

% head [-n] [filename ...]

tail displays the last lines of a file. Its syntax is a bit different:

% tail [+ I -n lbc] [filename ...]

The option +n displays the file starting n lines down from the beginning of the file, -n displays
the last n lines. 1, b, or c requests display of n lines, blocks, or characters (default is 1 lines).
If more than one file is specified, the filename is displayed before each set of file contents. n
defaults to 10 lines.
tail is useful when you want to see how far a process got. To display the last line of a log file,
enter:

% tail -1 logfile

6.3.3 Copy a File: cp

The command cp (stands for copy) can be used to make a copy of a file, leaving the original
version intact. You can copy a single file to another one (in the same or a different directory), or
you can copy one or more files to a different directory, retaining the same filenames.

6-8

1. There are better ways to display a.file (see ~ess and more, which follow cat in this sec-
tion).

The UNIX File System November 26, 1997

The syntax for these two situations varies slightly:
% cp [options] file] target.file the file.file] is copied to target.file, where target.file may

include a path
% cp [options] file] [.file2 ...] targetdirectory

one or more files (file] .file2 ...) are copied to
targetdirectory

If the target is a file, its contents are overwritten unless - i is specified, in which case you are
prompted for confirmation.
Some options are:

- i If the target filename exists, you are prompted for confirmation before
overwriting.

-r Used only with the targetdirectory form. Recursively copy a directory,
its files, and its subdirectories to targetdirectory.

The first example below copies myfile to anotherfi·le, both in my current directory,
prompting for verification in case anothe rfile already exists.:

% cp -i myfile anotherfile

New users may find it useful to define cpi as the alias for cp - i to use in place of cp so that
prompting always occurs. Section 9.3 discusses aliases.
The second example copies files proj 1 and proj 2 to ~other directory named newproj
which is parallel to the current directory (has same parent directory as current):

% cp projl proj2 .. /newproj

The third example copies the file oldproj / proj 1 to my current directory (.),which is a
parallel directory to oldproj (has same parent directory). The file proj 1 keeps its name.

% cp .. /oldproj/projl

6.3.4 Move (Rename) a File: mv

The mv command (stands for move) allows you to rename a file in the same directory or move a
file from one directory to another. If you move a file to a different directory, the file can be renamed
or it can retain its original name. mv can also be used to move and rename directories.

% mv [options] sourcel [source2 ...] target

Depending on whether the source(s) and target are files or directories, different actions are taken.
These are described in the table below. If target is a filename, only one source file may be
specified.

Source Target Result

file name Rename file as name

file existing file Overwrite existing file with source file

directory name Rename directory as name

November 26, 1997 The UNIX File System 6-9

Source

directory

one or more files

An important option is:
-i

Target Result

existing directory Move directory to be a subdirectory of existing
directory

existing directory Move files to directory

If target exists, the user is prompted for confirmation before
overwriting.

6.3.5 Reference a file: In

The ln (link) command allows you to create a link in one directory to a file in the same or a
different directory, or to a different directory. Via links, a file or directory can appear to exist in
multiple places, but only actually exist in one, thus conserving disk space. Links are often used to
easily reference files or directories that would otherwise require a long path name.
The syntax for ln is similar to that for cp and mv, and in fact they are all run by the same
executable.
The most commonly used options for the ln command are:

-i

-s
You are prompted before overwriting an existing filename.
This makes a symbolic, as opposed to an ordinary or hard, link. A
symbolic link can point to a file that is in a different file system, whereas
a hard link cannot.

A symbolic link displays the link and the file to which it is linked when you run ls -1; this is the
only way to know the name that a file is linked to.
Note that when using the AFS file system, hard links can only be made between files that are in the
same directory (the same volume, see section 7.5), so use the -s option even if you're in the same
directory tree.
The syntax differs slightly for files and directories:

% ln [options] /pathlto/file_name /path/tollink_name
Create the link link_name to reference the file.file_name. If link_name
already exists (as a link or as a file), it gets overwritten (unless you use
option -i).

% ln -s [other options] /path/to/file_name /path/tollink_name
Create symbolic link named link_name, that links to.file_name which
exists in the same or another directory.

% ln -s [other options] /pathlto/file_namel [/path/to/file_name2 ...] directory

Let's look at an example:

Create a symbolic link in directory to each of the listed files. The files
may all exist in different directories since the - s option is used. The
link names will be the same as the filenames they link to. If files of the
same name but in different directories are specified, only the first link of
that name will be created.

% ln -s /e741/runl/e_mu2/mydata r5742

6-10 The UNIX File System November 26, 1997

If rS 7 42 is a directory, this creates a link called mydata in the directory rS 7 42 that points
to / e7 41/runl / e _mu2 / mydata. You can now reference the data file as mydata (i.e. the
same filename) as if it were in the directory r 5 7 4 2.
On the other hand, if r 5 7 4 2 is not an existing directory then it represents the name of the link
being created. In this case, the command. establishes a link called r 5 7 4 2 that points to the file
/ e7 41 / runl / e_mu2 / mydata. Running the command ls -1 should display the following
output:

lrw-r--r-- 1 ah eavey g020 46 Aug 29 1 4:26 r5742 -> /e741/runl/e_mu2/myda t a

6.3.6 Remove a File: rm

The rm command (stands for remove) is used to remove the entries of one of more files .

% rm [options] file ...

Some commonly used options are:
-i

-r

Confirmation of removal of write-protected file occurs interactively,
whether the standard input is a terminal or not. If used with the -r
option, you are prompted about each directory before it is examined.
Causes rm to delete the contents of the specified directory, including
all its subdirectories, and the directory itself (recursive). This option
should be used cautiously.

The file list can include ambiguous file references, so rm should be used cautiously. You can use
the echo utility with the same ambiguous file reference to see the list generated.
Removal of a file requires write permission to its directory, but neither read nor write permission to
the file itself. If the file has no write permission and the standard input is a terminal, the set of
permissions is printed and you are prompted for confirmation. If the answer begins with a y, the file
is deleted. If the standard input is not the terminal, the files are deleted without confirmation.
New users may find it useful to define rmi as the alias for rm - i to use in place of rm so that
prompting always occurs. Section 9.3 discusses aliases.

6.3.7 Copy to/Restore from Archive or Tape: tar

The tar utility (tape archive) can be used to create, add to, list and retrieve files from an archive
file . Archive files are often stored on tape. The action taken by the tar command depends on the
key, which is essentially a function option. The key inust be specified on the command line as if it
were the first option. It may be followed by function modifiers, and then by options and/or
arguments. The keys and function modifiers must be grouped together before any arguments are
listed. tar does not require, but does allow, a dash (-) before the list of keys and function
modifiers. The keys and functions are:

November 26, 1997

c create a ·new tar file
r append specified files to tar file
t list all files in the tar file, or all files in a specified file list
u append new or changed files to tar file
x unwind entire tar file or extract specified files from tar file and write each file to the

directory as specified in the tar file relative to the current directory

The UNIX File System 6-11

The keys, function modifiers and options are discussed in the man pages. Be aware that they vary
in some cases between UNIX flavors. The command syntax varies somewhat from key to key, so
check the man pages for that information, too.
When creating a tar file, we have a few recommendations for avoiding problems:
First, when possible, create the tar file on a machine of the same flavor as the target platform.
Occasionally a tar file doesn't unwind properly on a different platform.
Secondly, choose your working directory carefully. It is often convenient or desirable to be able to
specify simple relative path names for the files to include in the tar file. For example:

% cd /path/to/dir

% tar cvf /tmp/filename.tar

creates a tar file with all pathnames relative to /pa th/ to/ dir. In general you should not
specify the pathname explicitly on the command line, unless it will be valid on any other system
where the tar file may be unwound and used.
Thirdly, be careful choosing your target directory for the new tar file. Make sure that the target
directory is outside of the directory tree that you're including in the tar file. Otherwise the tar file
tries to include itself, and can grow infinitely large.
Note to ex-VMS users: tar does not provide for extracting a named set of files from a backup file
and placing them all in the current directory disregarding their directory specifications on the
backup file.

6.3.8 Compress or .Expand a File: gzip, gunzip

Several utilities are available on UNIX systems for file compression. compress and pack are
native UNIX utilities, and gzip is provided by FUE. We recommend you use gzip for file
compression, and its associated utility gunzip for file expansion. gunzip recognizes and can
expand files compressed with compress and pack as well as gzip. 1

The file extensions gunzip recognizes include . gz, -gz, . z, -z, _z, and . z. gunzip also
recognizes the special extensions . tgz and . taz as shorthands for . tar. gz and . tar. Z,
respectively. When compressing, gzip uses the . tgz extension if necessary instead of truncating
a file with a . tar extension.
You will need to reference the man pages for details on syntax, options.and usage. In their
simplest forms gzip and gunzip can be used as follows, starting, for example with the original
uncompressed file bigfile:

% gzip bigfile

The result is bigfile. gz, whose size is reduced with respect to bigfile according to
Lempel-Ziv coding (J..,Z77), the same compression scheme used by compress. Whenever possible,
gzip replaces each file by one with the extension · . gz, while keeping the same ownership modes
and access and modification times. gzip will only attempt to compress regular files. In particular, it
will ignore symbolic links. If the compressed file name is too long for its file system, gzip
truncates it.
Compressed files can be restored to their original form using gunzip, or equivalently by using the
-d option with gzip. If the original name saved in the compressed file is not suitable for its file
system, a new name is constructed from the original one to make it "legal".

1. On some systems (namely where gzip and gunzip are not installed in
/usr /local/bin) you will need to run setup gtools in order to access them.

6-12 The UNIX File System November 26, 1997

r

To restore bigfile. gz to its original name and size, enter:

% gunzip bigfile.gz

6.4 Information About Files
This section gives a cursory overview of simple uses for two very powerful commands for dealing
with files: find for searching for files and grep for searching for strings within files. We also
describe wc which displays the size of a file, od which creates a dump of a file, and file
which can determine file type.

6.4.1 Find a File: find

The find utility tests each file in the given pathname list to see if it meets the criteria specified by
the expression supplied. It does this by recursively descending the directory hierarchy for each
path name. The format is:

% find path-name-list expression

path-name-list can contain file expansion metacharacters. Each element in expression is a separate
boolean criterion. A space separating two criteria is a logical AND operator, a . -o separating the
criteria is a logical OR operator. A criterion can be negated by preceding it with an exclamation
point (!). Criteria are evaluated from left to right unless parentheses are used to override this.
Special char-acters must be quoted (use \) and there must be spaces on each side of the special
charac.ter pair. • •

Some of the criteria that can be used within expression are:
-name· filename

-type filetype

-atime n
-mtime n
-newer .filename •

-print

-exec command \;

-ok command \ ;

True if.filename matches the name of the file being
evaluated. Ambiguous file references can be used if
enclosed in quotes.
True if the type of the file is .filetype, where .filetype is
either d (directory) and f (ordinary file).
True if the file has been accessed inn days.
True if the file has been modified in n days.
True if the file has been modified more recently than
.filename has.
Causes the matching path names to be displayed on the
screen.
True if command returns a zero exit status. command
must be terminated with a quoted semicolon (note the\).
An empty pair of braces ({ }) within the command
represents the filename of the file being evaluated.
Same as - exec except the generated command line is
displayed and executed only if the user responds by typing
y.

In the previous list, +n means more than n, -n means l.ess than n, .n means exactly n.
Note that find doesn't do anything with the found files, it doesn't even display the names, unless
instructed to.

November 26, 1997 The UNIX File System 6-13

Examples:
• Search the current directory and all subdirectories for the file lostfile:

% find. -name lostfile -print
• List all files ending in . html in your /wwwork subdirectory:

% find wwwork -name '*.html' -print

• This command will prompt you if you want to execute more on each file that begins with the
letter din the current directory and all subdirectories (Enter y if you want the file displayed.):

% find. -name 'd*' -ck more{} \;

• List all files in the current directory that don't begin with m:
% find. ! -name 'm*' -print

• Find all files in the current directory and all subdirectories that contain the string hello:
% find. -exec grep -1 "hello" {} \;

• Remove all files in your directory tree that are named a . t or have the extension of . o and
haven't been accessed in a week:

% find ~\(-name a.t -o -name '*.o') -atime +7 -exec rm{}\;
Note that using the find command uses many system resources.

In particular on AFS systems, you may accidentally end up searching servers all over the world if
the top of the search is at the root directory(/). Generally you should be careful to only search the
part of the UNIX tree that interests you. Here is an example: •

• Look for.filename starting at the root directory (I), and exclude searches in the / afs and
/nfs branches:

% find / \ (-name /afs -prune \) -o \ (-name /nfs -prune \) -o - name fi/e11ame -print

6.4.2 Search for a Pattern: grep

The grep utility searches the contents of one or more files for a pattern.
The format is:

% grep [options] pattern [file ...]

Some of the options are:
-c

-i
-1

Display only a count of lines that contain the pattern.
Ignore upper/lower case distinctions during comparisons.
Display only the name of each file that contains one or more matches.

The pattern can be a simple string or a regular expression (see section 5.4.5). You must quote
regular expressions that contain special characters, spaces, or tabs (this can be done by enclosing
the entire expression within single quotation marks).
Examples:

• Find all non-hidden files in the current directory containing the string smith:
% grep -i smith*

• Search the file abc for a string beginning with/, followed by O or more r's, and ending in og
(e.g.,frog, fog, frrog):

% grep 'fr*og' abc

6-14 The UNIX File System November 26, 1997

l

• Search the file myfile for a line beginning with a T:

% grep •AT• myfile

or
% less myfile I grep •AT•

• Search / usr / j ones / junk for the characters.file followed by a number (e.g.,filel,.file3):
% grep •file[0-9]' /usr/jones/junk

• Display a line if Smith is logged in:
% who I grep smith

• Show all processes being run by Smith:
% ps -ef I grep smith

• Show all environmental variables containing string in their name or their translation:
% env I grep string

• Show all aliases containing string in their name or their translation:
% alias I grep string

6.4.3 Count a File: we

The wc command, which stands for word count, counts the number of lines, words, and
characters there are in the named files, or in the standard input if the argument is absent. If there is
more than one file, wc totals the count as well.

% wc [-lwc] [names]

The options 1 , w, and c may be used in any combination to specify that a subset of lines, words,
and characters be reported. The default is -lwc.

UNIX users frequently count things by piping them into wc. For example, to display the number
of users logged into the system, you can execute:

% who I wc -1

6.4.4 Dump a File: od

The od (octal dump) command can be used to examine the contents of a file in various formats:
octal, decimal, hexadecimal, and ASCII. The default is octal.
The format is:

% od [options] [file] [offset] [I less]

If.file is not included, standard input is assumed. The options are:
-c

-d

-o

-x

Produces a character dump.
Produces a decimal dump.
Produces an octal dump.
Produces a hexadecimal dump.

The -c option prints non~printable characters as a printable character preceded by a backslash:
\ O is null, \b is backspace, \ f is form-feed, \n is new-line, \ r is return, and \ t is tab.

November 26, 1997 The UNIX File System 6-15

The offset specifies where in the file the dump is to begin, if different than the beginning of the file.
It is of the form [+] n [.] [b] . The + is only necessary if you have no file specified so that the
command interpreter knows this is the offset not the file. Without . or b, n indicates the dump
starts at (octal) byte n of the file. A . displays n in decimal, a b in 512-byte blocks.
We recommend that you always pipe the output of od to less (or more) so that you can
manipulate it. Large files can be unwieldy, and you may not be able to stop the output once it's
going!

6.4.5 Determine File Type: file

The file utility can be used to determine the file type of a file according to its content~. It bases
its guesses on a list of "magic numbers" recorded in a "magic file", / etc/rriagic. Some of the
file types are:

• ASCII text
• C program text
• directory
• executable

file determines the filetype by looking at the beginning of the file and comparing it to entries in
the magic file. The command format is:

% file filename ...

6.5 Manipulating Directories
This section describes the commands you can use to organize and use the UNIX directory structure.
It describes how to make and remove directories, and move from one directory to another. Listing
the contents of a directory (files and subdirectories) was described in a previous section. Section
6.6.2 explains the meaning of access permissions as applied to directories.

6.5.1 Print Working Directory: pwd

The pwd command (for print working directory) displays the path name of your working (current)
directory. The command format is:

% pwd

6.5.2 List Directory Contents: Is

The ls command, which stands for list, is used to list the contents of a directory. ls has
many options, some of which are system-dependent. A few of them are described in section 6.3.1.
For a complete description of the command, refer to the man pages for ls.

6-16 The UNIX File System November 26, 1997

6.5.3 Change Directory: cd

When you first log in to the system, you are placed in your home directory, which is then also your
current working directory. You can use the. cd command (for change directory) to change your
current working directory. The command format is:

% cd [directory]

You can specify a complete path or a relative path. You can use .. (for the parent directory) in your
pathname. You must have execute permission (which provides search permission in this case) on a
directory to cd to it.
If directory is not specified, you are returned to your home directory.
The following examples illustrate moving to different directories:

• your home directory
% cd

• a subdirectory called Tools
% cd Tools

• a colleague's home directory (using absolute pathname)
% cd /usr/jones

• a colleague's subdirectory (using tilde)
% cd -jones/ourfiles

• a parallel directory (has same parent directory as current directory)
% cd .. /Tools

6.5.4 Make a Directory: mkdir

The mkdir command (for make directory) is used to create a directory. The command format
is:

% mk.dir dirname ...

If a pathname is not specified, the directory is created as a subdirectory of the current working
directory. Directory creation requires write access to the parent directory. The owner ID and group
ID of the new directory are set to those of the creating process.
Examples:

• create a subdirectory in the current working directory
% mkdir progs

• create one with a full pathname (the directory Tool s must already exist)
% mk.dir /usr/nicholls/Tools/Less

6.5.5 Copy a Directory

The most straightforward way of copying a directory and its contents is to pipe the output of the
ls command (see section 6.3.1) into the file copy facility epic (see the man pages).

November 26, 1997 The UNIX File System 6-17

First, create the destination directory using mkdir (see section 6.5.4), if it doesn't already exist.
Secondly, from the source directory, run the command (shown with recommended options; see man
pages for option information):

% ls I epic -dumpV destination_dir

The destination_dir must be specified relative to the source directory.
Another way to copy directory hierarchies is to use the tar utility, described in section 6.3.7. The
following sequence of commands copies a structure from the source directory to the destination
directory:

% cd source_dir; tar cf - . I (cd destination_dir; tar xfBp -)

The"-" is used for the name of the tar file (argument to the f option) so that tar writes to the
standard output or reads from the standard input, as appropriate.

6.5.6 Move (Rename) a Directory: mv or mvdir

See section 6.3.4 for information on mv. To move a directory (olddirname) and its contents to a
different position in the directory tree, use the command format:

% mvdi r olddirname newdirpath

If newdirpath exists already, then the directory gets moved to newdirpath/olddirname. Note that
• the two arguments cannot be in the same path. For example:

% mvdir x/y x/z

is ok, but

% mvdir x/y x/y/z

is not ok.

6.5. 7 Remove a Directory: rmdir

You can remove a directory with the rmdir command. The directory must contain no files or
subdirectories, and you must have write permission to the parent directory.

% rmdir dirname ...

You can use an absolute or relative pathname.
You can also use rm -r as described in Section 6.3.6. rm -r will delete a directory, all
subdirectories, and all files. This command should be used with extreme caution.
For example, the following command deletes the directory t emp, all subdirectories of t emp and
all files contained in those directories, prompting before each removal, and confirming removal of
write-protected files (-i):

% rm -ir /usr/jones/temp

6-18 The UNIX File System November 26, 1997

6.6 File and Directory Permissions

6.6.1 File Access Permissions

The UNIX file system allows you to control read, write, and execute access to your files on the
basis of user (owner), group, and other (everyone else).1 In this section we will consider only the
standard UNIX file permissions.
Note that in the AFS file system, file permissions are mediated by Access Control Lists (ACLs)
that are set on a directory level. The standard UNIX file permissions don't.apply in this case
except for the owner permissions, which apply to all users. AFS file permissions are treated
in section 7 .6. •

To determine the current permissions, use the long form of the ls command, ls -1. Referring to
the example below, the nine characters immediately following the first field represent the one-bit
flags known as the mode bits that control file access. A dash indicates a bit is not set, r stands for
read access, w for write access, and x for execution access. The first set of three characters refer
to owner permission, the middle three for group permission, and the last three for all other user
classes.

total 251
drwxr-xr-x 3 nich olls g02 0c
drwxr-xr-x 2 nichol ls g020c
-rw-r--r-- 1 n ichol l s g020c
-rw-r--r-- 1 nichol ls g020c
-rw-r--r-- 1 nicholls g02 0c

51 2 May 2
512 May 2
446 May 4
95418 May 1
0 May 10

08 : 53 Tool s
09: 01 b in
14 :09 defaults
17:42 intro.lpr
17:51 l sou t

-rw-r--r-- 1 nicholl s g02 0c 6683 May 1 1 6:46 rnan. l pr
-rw-r--r-- 1 nicholl s g020c 12258 May 9 16 : 16 out

In the example, ignoring the directory fil(_!s (which have a d in position 1), the owner has rw
access to the files, whereas group and others have read (r) access only.

chmod

The chmod command, which stands for change mode, is used to change access permissions of a
file or directory:

% chmod mode filename ...

or

% chmod mode directory ...

In the absolute form of the mode where the level of protection is specified in octal format, mode
looks like 741 or 554, for example, where each of the three octal numbers represents the sum of the
permissions granted to its class: user, group, and other, in that order. The three types of permission
have the values:

read
write
execute

4 (100 octal)
2 (010 octal)
1 (001 octal)

For example, a mode of 741 means owner can read, write, and execute (4+2+1=7); group can read
(4+0+0=4); and others can execute the file (0+0+l=l).

1. Note o is for other and not for owner as on VMS.

November 26, 1997 • The UNIX File System 6-19

To give this permission to a file test, you would enter:

% chmod 741 test

You can use an alternate form of mode in the chmod command in which mode is a
three-character field specifying an action to be taken. The action is to add or subtract one or more
permissions from one or more user classes. It takes the form:

who operator permission(s)

These three positions within the field take the following characters:
who represents the user class or classes; it takes any combination of u, g ,

o, and a for user (user is really the owner), group, other and all,
respectively, where all includes the three individual classes

operator • + or - for adding or subtracting permissions, or= for setting a specific
permission and resetting all other permissions for the specified user

permission(s)
class(es)
any combination of r, w, and x for read, write, and execute,
indicating the permissions to be permitted, denied, or reset.

Examples of the chmod command:
• Remove group execute permission to the file progs:

% chmod g-x progs

• For the files out and out 1, add group read and write, and deny write to other:
%.chmod g+rw,o-w out outl

• Set group read permission and reset all other group permissions to my fil e :
% chmod g=r myfile

Note that classes of users or levels of protection not specified in a command are not modified in this
form of the command (with the exception that = resets other permissions) .

. umask

With the umask command you can specify a mask that the system uses to set access permissions
when a file is created. In order to understand umask you need to know that access permission at
file creation is application-dependent. Each command or application sets a file permission in its
open command. 1 The system then "subtracts" any user-defined mask, resulting in the final access
permission for the file. You can set a umask by this command:

% umask [ooo]

where ooo stands for three octal digits. The user-specified "mask", ooo, has the same positional
structure as described above for chmod, but specifies permissions that should be removed
(disallowed).
For example, a mask of 022 removes no permissions from owner, and removes write permission
from group and others. Thus a file normally created with 777 would become 755 (this would
appear as rwxr-xr-x in the format put out by the command ls -1). The following command
could be put in your . cshrc or . profile .

% umask 022

The meaning of permissions applied to directories is described in Section 6.6.2.

1. Normally only the loader creates files with execute permission.

6-20 The UNIX File System November 26, 1997

ll

6.6.2 Directory Permissions

See section 7.6 for AFS systems.
You can grant or deny permission for directories as well as files, and protection assigned to a
directory file talces precedence over the permissions of individual files in the directory.

• Read permission for a directory allows you to read the names of the files contained in that
directory with the ls command, but not to use them.

• Write permission for a directory allows you to create file:s in that directory or to delete any file
in the directory, regardless of the file protection on the files themselves. It does not allow you
to see the files or use them without r and x directory permission. In other words, write
permission to a directory allows you to alter the contents of the directory itself, but not to
alter, except to remove, files in the directory (which is controlled by the file's permissions).

• Execute permission allows you to list the contents of the directory.

File access permissions of directory files are changed with the chmod command (see section
6.6.1). •

6.7 Temporary Directories

By convention, there are directories named / tmp (and sometimes / usr / tmp) where programs
and users can store temporary files. Many programs (e.g., compilers) write temporary files there or
in the area specified by the environment variable TMPDIR. Since these are public areas, it is
necessary to manage this space, which means that you cannot count on files being retained in these
directories.
Many systems on site have fairly small / tmp areas and therefore you must be careful not to fill up
this space. In general, you should only use / tmp for very temporary, small files. On many
systems files in / tmp will disappear after a reboot or after existing for a week. You can set
TMPDIR to a different location if there is not enough space in these areas.
Contact the administrators of the particular system to find out what the current policy is on the
machine.

Noyember 26, 1997 The UNIX File System 6-21

6-22 The UNIX File System November 26, 1997

Chapter 7: The AFS File System

Fermilab is using the AFS (Andrew File System) as a distributed file service model, and it is
installed on several machines on site in a production environment, including the FNALU cluster.
This chapter discusses the basic concepts of AFS and provides information on the commands used
to manage your files and directories in the AFS environment.

On the Web there is a local collection of information regarding AFS. Look under The UNIX
Operating System on the UNIX Resources Web page. The helpdesk has a small quantity of
laminated AFS reference cards that list the syntax of the most common AFS commands. The
helpdesk is located in FCC 1 W. There are also man pages for AFS commands on the systems
running as AFS clients.

7.1 Introduction to AFS

AFS is a modem implementation of distributed file serving. The FNALU cluster is running AFS as
a distribut.ed file server in a production environment. Several other systems at Fermilab run AFS as
well. AFS has several advantages over older file systems such as NFS (see section 2.6), particularly
in the areas of:

• consistency of file organization across the distributed network
• authentication of users (security)

• server management

• volume replication and backup

• server function redundancy
All systems participating in the AFS file system have the same view of the file system. All files for
a set of machines known as a cell exist under / a f s / { c el lname} . The cellname for Fermilab is
fnal . gov, thus all files that are part of the AFS file system are lo.cated under
/ af s / fnal . gov. There is also a symbolic link (see section 6.3.5) to a shorthand version of the
cell name, which is simply / afs / f nal. Other cells are also accessible. They are listed as
directories under / af s, for example the CERN cell at / af s / c e rn. ch.

7 .2 How to Determine if AFS is Installed on your System

O A special note to CDF and DO users: Your UNIX systems are not configured to use AFS.
To find out if AFS is installed, issue the command:

% ps -ef I grep afsd

November 26, 1997 The AFS File System 7-1

If you get output of the form (note the / usr / vice / etc / afsd):
root 305 1 0 Sep 30 ? 14 :10 /usr/vice/etc/afsd - stat 2800 - de

ache 24 00 -daemon s 5 - vo l umes 128
root 306 1 0 Sep 30 ? 5:47 /us r /vice/etc/afsd -stat 28 00 -de

ache 2400 - daemon s 5 - volumes 128

then it is installed and running on your machine. If you do not get output lines like this, AFS is not
installed. However it is still possible that you have access to the AFS file system via a translator1

service. We discuss translator mode in section 7.9. To check, enter the command:

% df lgrep afs

If no output is returned, AFS is not running on your machine in any capacity. If output is returned
and the line begins with a node name preceding / a f s, for example:

fs u t0l : /afs 1 44000000 0 144000000 0%

then.AFS is running in translator mode. (If the output line begins with / af s, then AFS is actually
installed on your machine.)

7 .3 Issues Related to Login and File Access

7 .3.1 Authentication in AFS

On machines running AFS, as on most systems, providing a username and password is sufficient to
identify a user as legitimate, and allow the login to succeed. However to access AFS files, you must
provide a password recognized by AFS, called a Kerberos password. This authenticates you to
AFS. Once you are authenticated, AFS issues what is known as a Kerberos token to your login
process. It is having the token that allows you access to the AFS file system. As long as you
remain logged on, the Kerberos token "lives''. for a period of time set by the AFS administrator of
the system; for example in the Fermilab cell it is set to six days.
The token is passed to all subprocesses of the login process (see section 5.1 for an explanation of
subprocesses). All normal UNIX interactive operations are therefore automatically authenticated,
• and access is granted to files in the AFS tree, provided you have the appropriate permissions (AFS
permissions are covered in section 6.6.2). The Fermilab standard batch interface fbatch provides
for token renewal at job execution time, since you can't control when your batch jobs actually run.
Situations occasionally arise in which you are not automatically authenticated (e.g., some remote
login methods) or you lose your token (e.g., you remain logged in for more than six days). When
this happens and you need to obtain a new token, issue the command string:

% pagsh

% klog

pagsh starts a special AFS shell under your login process. klog prompts you for your AFS
password and obtains a Kerberos token associated with this shell, thus granting authentication and
access to files .

[J=' A few notes:

7-2

1) Running pagsh first is much more secure than just running klog. It ensures that the
token is associated with your pagsh process, and thus with all processes you spawn. klog

1. In translator mode, a "translator machine" runs AFS and exports the AFS file tree to
other systems,

The AFS File System November 26, 1997

u

by itself gets a token associated with your UID, which is not always unique. This could
potentially allow another user to share the token, which is undesirable.

2) You cannot enter the commands on one line in the format pagsh; klog. pagsh starts a
new sh shell, and klog needs to be run at the new shell prompt on the next line.

3) pagsh changes your shell to sh, so you will need to run your preferred shell afterwards
(e.g., enter tcsh, bash, or ksh on the command line). You may also then want to
source your . login and . cshrc or your . profile and . shrc scripts to ensure
that your FUE environment is back to normal (see section 4.4 regarding sourcing a script,
and section 9.4 for information on the login files).

There are Kerberos authentication problems with running programs that spawn jobs external to
your login process group. at and cron fall into this category (they are described in section 5.5.3).
You can run the job, but it will not run with authentication, and most likely will not be able to write
into / a f s space. A work-around is available for executing an authenticated cron job (send mail
to helpdesk@fnal requesting the full details of this procedure).
Be aware that being logged on as root grants you no special permissions in / a f s file space; there
is no such thing as being "authenticated as root".

7 .3.2 Kerberos (AFS) Password

You will have a Kerberos password (sometimes called an AFS password), for any account on a
system that uses the AFS file system, for example FNALU. The Kerberos password, which you
enter at login time, allows two operations to proceed:

• You can log in to the system.
• Your Kerberos token is automatically obtained via the AFS programs pagsh and klog to allow

you access to the file system. The token is attached to your login process.
You can change your Kerberos password using the command:

% kpasswd

The system will prompt you for the necessary information.
We recommend that you limit your password to eight characters. This enforces consistent behavior
in a multi-vendor AFS environment. On some platforms the login program may truncate a long
password after eight characters, allowing login to proceed but denying access to the file system.

O This command changes your Kerberos password for all systems that run AFS on-site.

7 .3.3 Standard UNIX Password on an AFS System

Depending on how the AFS file system was installed, you may or may not have a standard UNIX
password in addition. to your Kerberos password. In other words, you may have a standard UNIX
password even if you never need to use it! On FNALU, AFS was installed so that you have only a
Kerberos password; no standard UNIX password is defined . .
You can find out if you have a standard UNIX password (or an NIS password, see section 2.7) by
attempting to change it via the standard UNIX command pas swd. If the command does not
succeed (assuming you provide the correct old password if requested), then you do not have a
standard UNIX password. Note that the passwd command returns a different error message on
each different UNIX flavor.

November 26, 1997 The AFS File System 7-3

If you have both, at login you should provide the Kerberos password so that you obtain your
Kerberos token. If instead you provide your standard UNIX password, the system will log you in,
but you will not obtain a token and thus will not be able to access AFS files. If the passwords are
the same, the Kerberos password automatically takes precedence.
Generally, the Kerberos password is the only password you need. There are exceptions; for
example, remote login via a method that doesn't understand Kerberos passwords (e.g., MAC-X to
some UNIX platforms). In this case, after logging in using a standard UNIX password, you would
need to run the command string pagsh and klog as described in section 7.3.1:

7 .3.4 Managing your Token

View Active Tokens

To see what tokens you currently hold, you can issue the command:

% tokens

The output should look similar to this:
Token s held by the Cache Manager:

User ' s (AFS I D 6302) token s for afs@fnal.gov [Expi res Oct 21 10 :'221
_user aheavey ' s tokens for krb tgt.FNAL.GOV@fnal.gov [Expires Oct 21 1 0 : 22)

-~End of list--

If the output showns no tokens (or only the krbtgt token, the second one shown above1), then
you only have access to (usually a very limited number of) files designated as accessible to the
special user system:anyuser (a pre-defined AFS protection group; see section 7.7). As its name
implies, this designation includes anyone who can access the system (e.g., a user with a standard
UNIX password but no Kerberos password).

Get Back an Expired Token

If you remain logged on beyond the set token expiration period, you will find that you no longer
have access to AFS files. The system will likely return the message Pe rmissi on deni e d
when you attempt a file operation. To get back the token associated with your login process, issue
the commands2:

% pagsh

% klog

If you are unexpectedly unable to edit your files, try this first! Expired tokens are often the reason
for this problem. See the notes in section 7 .3.1 regarding these commands.

Destroy a Token

Logging out does not destroy your token; it remains "live" for up to 26 hours afterwards. This is a
security risk. Prior to logging out, we advise that you issue the command:

% unlog

7-4

1. The krbtgt token was created on FNALU for an application that was never imple-
mented, and it does not affect AFS access. It will probably be removed in the near future.
2. If your token has expired within the previous two hours, you do not need to run pagsh
before klog.

The AFS File System November 26, 1997

to destroy the token. If you create a . logout file (see section 9.4), you should include this
command in it.

Token Issues for Remote Login

One practical issue raised by the Kerberos environment involves the use of the Berkeley networking
programs such as rlogin, rsh, and rep. telnet automatically authenticates the user and avoids the
issues discussed here. All these utilities are described in Chapter 13.

Normally systems are equivalenced to enable the use of the rlogin, rsh, and rep protocols. The
equivalencing of the machines implies that once you are logged into one system, you may log into
the equivalenced machines without providing further proof of identity, such as a password. This
doesn't fit in with the Kerberos authentication system.

On FNALU, token-passing is available for rsh and rep. 1 If you have authenticated into the
/ af s / fnal. gov cell, you can use rep and rsh more or less normally between AFS machines;
the token will be passed along with the request, and the network communications will be
authenticated automatically. 2

rlogin is more complicated. When equivalencing between two machines is enabled, the rlogin
protocol does not ask for a password. rlogin works, but the remote user is not authenticated at
login time, and cannot access most files.

O:, We recommend that you use telnet rather than rlogin in order to avoid this problem.
If you need to use rlogin for some reason, immediately after login issue the commands:

% pagsh

% klog

as described in section 7.3.1, to obtain authentication.

7.4 AFS File System Commands and man Pages

AFS provides a command (with many options) that allows you to address file system issues such as
checking permissions, checking quota, making mount points, finding where a volume is mounted in
the file tree, and so on. The AFS file system (f s) command is entered in the format:

% fs main_option -option(s) argument(s)

Many of the options can be abbreviated, and option flags can often be omitted from the command.
Check the man pages, as described below.
To get a list of the main options of the f s command, enter:

% fs help

Here is an edited output listing showing only a few of the options:

November 26, 1997

fs: Commands are:
l i stacl
l i stquota
l smount
quota

l ist access c ontr ol list
l ist volume quota
l ist moun t poi nt
show volume quota usage

1. If you are on a non-FNALU node, check with your system administrator before running
these utilities.
2. This is set up with the usual UNIX method of using /etc / hosts. e quiv or
. rhos t s to equivalence systems.

The AFS File System 7-5

r mmount
setacl
setquota
whereis
whichce l l

remove mount p oint
set access control list
set vo l ume quota
list fi l e ' s location
l ist fi l e ' s ce l l

To get usage information on a particular f s option, enter:

% fs option -help

For example:

% fs setacl -help

Usage : fs setacl - dir <d irectory>+ -acl <access list entries>+ [-c l ear J [- n e gat
ive J [-id J [- if J [- h elp J ,

Man pages are available on-line on the AFS systems1, but you'll find that the names of the manual
pages are a little less than clear. Since the f s command is one command with several main
options (e.g., setacl , listacl), to get the man pages you must attach the command and the
main option via an underscore (_):

% man command_option

where command is f s, for example:

% man fs setacl

The underscore is only used with the man command, not when issuing the command itself.

7 .5 AFS Volumes and Quota

UNIX divides disks into partitions. AFS further divides partitions into subsections called volumes.
A volume houses a subtree of related files and directories. Normally, volumes are considerably
smaller than traditional file systems. For example, each user's home directory would normally be
stored in a separate volume. Large sub-directories are further sub-divided. You do not need to
know which file server houses any volume. AFS locates volumes automatically.
To examine the quota on a volume within AFS, the fs listquota command may be used.
You can request information on several directories at a time. For example the following command
requests information on the current working directory (.) and on another one specified via an
environment variable (see section 9.1):

% fs listquota $UAFWWW

Vo l ume Name Quota Used % Used Partition
room.aheavey 130000 126024 97%<< 75% <<WARNING
fi l es.reports . UNIX 2000000 77370 4% 63%

The output includes the name of the volume containing the specified directory(ies), the quota size,
amount used, percent used, and the percent of space used on the partition containing the volume.
You might also get a warning! All sizes are in kilobytes.

7-6

1. If you have trouble finding the man pages for AFS commands on your node, check your
$MANPATH variable to see that it includes / usr / af s ws / ma n.

The AFS File System November 26, 1997

7 .6 File and Directory Per:inissions

7 .6.1 File Permissions

File permissions work quite differently from those in standard UNIX, which are described in
section 6.6.1. In AFS, you can use the chmod command just as you would in a standard UNIX
file system. However, it behaves differently. Although in AFS all the permission bits on a file may
be examined or changed, only the owner bits are actually used in AFS, and they apply to all
users of the file (as permitted by users' ACL settings; see below). To tum off write access to a
particular file by all users, including the owner, you just need to tum off the owner write bit of the
file.

7.6.2 Directory Permissions via Access Control Lists (ACLs)

All other AFS permissions are done with Access Control Lists (ACLs) which take effect at the
directory level only. Every directory has its own ACL that defines who can access the directory and
its files . Each entry in an ACL consists of a usemame or an AFS protection group paired with a set
of permissions (e.g., read, write). An AFS protection group is simply a list of usemames grouped
to share a set of permissions in one or more ACLs. If a user is in two or more ACL entries (e.g., is
a member of two groups listed in the ACL) with different permissions assigned, the user gets the
union of the permissions.
The permissions granted in a directory's ACL represent the maximum permissions. If a file in the
directory has more restrictive permissions set, the user is limited by the restrictions on the file. If a
file has more lenient permissions set, the user is limited by his ACL entry.
ACL rights include:

1 lookup rights (allows user to issue an ls command on files in the directory, examine
the directory's ACL, and access the directory's subdirectories which are protected by
their own ACLs)

i insert rights (allows user to create new files or copy files into the directory)
d delete rights (allows user to remove files or move them to other directories)

a administrator rights (allows user to change the ACL for a directory; note that you
always have this right for your home directory even if you accidentally remove this
ACL.)

r read rights (allows user to look at the directory's contents and to read the data in the
files contained in the directory)

w write rights (allows user to modify the contents of the files in the directory and to
change the UNIX mode bits with the command chmod)

k lock rights (allows user to run programs that need to flock files in this directory; see
the man pages for flock)

Rights may also be referred to by special names that designate commonly-assigned combinations
of rights. These are called combination rights. The defined combination rights are:

write all rights but a (i.e. lidrwk)

read 1 and r rights only

all all rights (i.e. lidarwk)

none no rights;_ this rem<;>ves the group's or user's entry from the ACL entirely
Combination rights can be used in commands, as shown in the examples in section 7.6.2.

November 26, 1997 The AFS File System 7-7

A couple of notes:
• In general, users are granted all permissions on their home directories.
• When a child directory is created, it inherits the parent directory's ACL. The child directory's

ACL can then be changed. Users of the child directory must have at least lookup rights (1) on
the parent directory.

Examining a Directory's ACL

You can examine a directory's ACL rights with the command:

% fs listacl /path/to/directory

This returns a listing of all the users/groups that have any permissions on the directory, and what
the permissions are. The directory path can be absolute (starting from root) or relative to the
current working directory. For example, if you run the command:

% fs listacl /afs/fnal.gov/f.iles/wwwdocs/cd/webwg/tools

The system returns information in the format:
Access l ist for /afs/ fna l.gov/fi l es/wwwdocs/cd/webwg /tool s i s
Norma l righ ts:

l a u rarn :www_cd_webwg_ too l s r l i dwk
n ich o lls : www_cd r l idwk
hanson:newsmachine r l i dwka
n ichol l s : wwwdocs rl i dwk a
system:admini strators rl idwk a
system: anyuser rl

The group lauram: www_c d_webwg_too ls has read, list, insert, delete, write, and lock
permissions in this directory (all but administer permissions), i.e. the group has write rights. Any
member of that group has these permissions in this directory.

Adding/Changing/Deleting a Directory's ACL

You can modify a directory's ACL for a particular AFS group or for an individual using the fs
setacl command. The fs setacl command only changes the ACL for a single directory,
not for a directory tree. The command syntax is:

% fs setacl -dir /path/to/directory -acl group permission(s)

where group is either a group or an individual username. When it is a group, it must be entered in
the format { group_owner } : { group_name}.

We recommend that you generally define ACL entries for groups rather than individuals; it is much
easier to maintain. When you need to add or remove permissions for an individual, it is easier to
add/remove the user from one or more groups than to track down every directory for which the user
appears in the ACL.
The directory path in the command can be absolute (starting from root) or relative to the current
working directory. Any pre-existing permissions for the group or individual are invalidated; the
specified permissions collectively become the new set of permissions. The permissions apply to all
members of the specified group.
For example, to modify the ACL for the current directory (.) to include only read and lookup rights
for any user (including unauthenticated users), enter:

% fs setacl -dir. -acl system:anyuser rl

7-8 The AFS File System November 26, 1997

r

j

or, using combination rights syntax:

% fs setacl -dir. -acl system:anyuser read

See the combination rights (e.g., read) in section 7.6.2. The group sys t e m: a nyus e r is
described in section 7. 7.
A note for Web page providers: setthe permissions for system: a ny u ser to r l on
directories containing files that you want to make accessible via a Web browser.
To remove all permissions in an ACL for a particular group (or individual), issue the f s setacl
command with no permissions, e.g. ,

% fs setacl -dir /path/to/directory -acl group ""

or, using combination rights syntax:

% fs setacl -dir /path/to/directory -acl group none

See man fs listacl and man fs_setacl forfurtherinformation. (Notethe
underscores in the man command.)

7.7 AFS Protection Groups
An AFS protection group is a list of usernames grouped to share a set of permissions on one or
more directories. Any user can include any existing yrotection group in any ACL within your AFS
cell. A protection group is designated in the format:
{group_ owner} :{group_name}

AFS provides three predefined protection groups:
system : anyu ser This is similar to world permissions in UNIX. Any AFS user (anywhere

in the world, ·and not necessarily authenticated) can access files or
directories, according to the permissions granted (e.g., read, write).

system: a u thus e r This is a more restrictive version of sys t e m: a ny u ser. Only users
who have authenticated within the local cell (/ af s / fna l at
Fermilab) may access files, according to the permissions granted (e.g.,
read, write).

system:administrator s

This group includes only the few people in the / a f s / f nal cell
authorized to administer AFS.

As determined by your project's / af s area manager(s), you may need to manage, and possibly
create, protection groups.
Groups can be owned by other groups or by individual userids. Group members often are not
allowed to _add or remove other members of the group. If a group is owned by a group, then all the
members of the owner group can by default add or remove other members from the owned group.
This can avoid problems when key individuals are unavailable. Having one group consisting of a
few key individuals, and using this group as the owner for all your other groups is a nice, neat way
to organize your groups. Find out from your / a f s area manager how group ownership and
permissions are assigned within your project or on your system.

November 26, 1997

1. You may encounter groups that do not have an owner prefix; these are special groups
created by the system administrators.

The AFS File System 7-9

l'!
AFS provides the pts command (protection server) for group-related tasks. Like the fs
command, pt s has several main options. Also like the f s command, you need to use an
underscore between pts and the main option to access the man page. Issue the command pts
help to list the main options (this list has been abbreviated to contain only the options we discuss
in this section):

pts: Commands are:
adduser
chown
creategroup
delete
examine
listowned
membershi p
removeuser
set fields

add a user to a group
change ownership of a group
create a new group
delete a user or group from database
examine an entry
list groups owned by an entry or zero id gets orphaned groups
list membership of a user or group
remove a user from a group
set fields for an e n try

7.7.1 Permissions for Performing Group-Related Tasks

Group characteristics (e.g., membership, ownership) can only be seen and/or modified according to
the permissions set on the group. We refer you to the man page for pts_setfields (notice
the underscore) for the full story, and present only a brief explanation here.
Every group has a set of five access flags, which represent permissions for performing sensitive
tasks regarding (I) status, (2) ownership, (3) membership, (4) adding members, and (5) removing
members. There is a pt s main option associated with each of these tasks:

status (s) pts examine

owned (o) pts listowned

membership (m) pts membership

add (a) pts adduser

remove (r) pts removeuser

Each flag has one of three possible values: its first letter in lowercase, its first letter in uppercase, or
a hyphen. The value determines which users can issue the corresponding command option for the
group as follows:

lowercase letter (s , o, etc.)
uppercase (S, O, etc.)

all members of the group
all users (i.e. sys t ern: anyuser)

hyphen (-) group owner and members of
s y stem: a dmini s tra t or s oruy

As an example, we'll issue a pts examine command and examine its output:

% pts examine lisa:uss-group

Name: l isa:uss-group, id : -316, owner: l i sa , creator : hanson,
membershi p: 14, flags: S-M-- , group quota : 0.

The permissions information is contained in the flags entry. The flags S-M-- are the default
flags when a group is created (all users can check status and membership information, only group
owner and administrators can verify ownership and add/remove group members).
If you can't successfully issue one of the pt s command options, check the access flags! Of
course if you can't issue pts examine to check the flags, then you don't have status
permissions for the group.

7-10 The AFS File System November 26, 1997

[.J

7. 7 .2 Listing Information about Groups

List Members of a Group

To list the members in a group, use the command:

% pts membership group

For example:

% pts membership lauram_:www_cd_webwg_tools

returns the output:
Members of lauram:www_cd_webwg_tools (id : - 454) are:

nicholls
hathaway
stolz
george
lauram
dwalsh
nelly

List Groups in which an Individual is a Member

To list the groups to which an individual belongs, again use pts membership, but with the
user's id as the argument:

% pt s membership username

For example:

% pts membership aheavey_

Groups aheavey (id: 6302) is a member of :
nicholls:www_reports

List Groups Owned by Group or Individual

To show what groups a particular group or user owns, issue the command:

% pts listowned group .

where group is actually either a group or an individual username. If you try to list groups owned by
someone other than yourself, you may find that you do not have permission to do so.
Here are a couple of examples. To check groups owned by the group n ich o ll s : wwwdoc s ,
issue the command:

% pts listowned nicholls:wwwdocs

Output is returned in the format:

November 26, 1997

Groups owned by nicholls:wwwdocs (id: -306) are:
nicholls:www_cd_support
nicholls:www_cd_mgmt
nicholls:www_faw_events
nicholls:www_orgs_fol kclub
nicholls:www_directorate
nicholls:www_cd_ups
nicholls:www_cd_webwg

The AFS File System 7-11

To check groups owned by the individual user lau ram, issue the command:

% pts listowned lauram

Output is returned in the format:
Gr oups owned by lauram (id: 1866) are:

l auram:wwwrnachine
l au rarn : expwwwmachine
lauram:expwwwadm

Show Group Ownership

To find a group's owner, use the command:

% pts examine -name grQup

This is helpful to determine if a group is owned by an individual or a group. For example, to find
the owner of the group ni c h o ll s : www_re port s , run the command:

% pts examine nicholls:www_reports

Name: nich oll s :www_reports , id: -37 8, owner: nicholls:wwwdocs , creator : hanson,
membership: 5, flags: S-M-- , group quota : 0.

Its output in the entry owner indicates that it is owned by a group (nicholl s : wwwdocs), not
by the individual ni c h o ll s.

7. 7 .3 Modifying Group Characteristics

Change the Owner of a Group

Note: It is best to change the owner of the group before you run fs setacl to add directory
permissions for the owned group. •
You can change ownership of a group using the command:

% pts chown -name owned_group -owner owner _group

Let's take for example the group owne rl: groupna me l , where ownerl is an individual. We
want to change its ownership to a group. The group we want to own it is designated
owrier2 : groupname2. We issue the command: ·

% pts chown -name ownerl:groupnamel -owner owner2:groupname2

The owned group is now designated owne r 2 : groupname l. Notice that it takes its owner
designation from the owner group, and maintains its former group name. Here's a more real-life
example for clarity:

% pts chown -name lauram:www_cd_webwg_tools -owner\
nicholls:wwwdocs

The old lauram: www_cd_we bwg_tools is now designated
ni c h o lls:www_c d_webwg_ tools.

You can change a group's ownership to itself (and set the group's access flags appropriately if
needed) to allow all members of the group to add/remove other members and perform other
administrative tasks. To change the group's ownership to itself, issue the pts chown command
with the same group as both arguments:

% pts chown -name nicholls:wwwdocs -owner nicholls:wwwdocs

7-12 The AFS File System November 26, 1997

The group designation { group_owner} : { group_name} does not change. If you need to
reset the group's access flags, see man pts_setfields.

Note that there is a potentially confusing consequence of the way the group names change. All
groups look like they're owned by individuals. You can always issue the command:

% pts examine -name group

to determine if the owner is an individual or a group, as shown under Show Group Ownership in
section 7.7.2.

Adda Member

To add a member, use the command:

% pts adduser -user username -group group

For example:

% pts adduser -user nelly -group lauram:www_cd_webwg_tools

The new member (nelly) must have an account on the system/cluster that mounts the AFS files
he or she needs to access.

Remove a Member

To remove a member from a group, use the command:

% pts removeuser -user username -group group

Create a Group

Check with your / af s area manager before creating new groups. As groups proliferate, system
management can become more difficult.
To create a new AFS protection group, use the command:

% pts creategroup -name group

or, leaving off the -name option flag for simplicity:

% pts creategroup group

Always enter a group in the format { group_owner} : { group_name}; don't enter only the
{ group_owner} portion. By default, the group owner is yourself.1

As an example, user lauram could run the command:

% pts creategroup lauram:www_cd_webwg

Remove a Group

To remove a group, use the command:

% pts delete -nameorid group

November 26, 1997

1. There is an option (-owner) to set the owner to another individual or a group, but we
recommend. that you just use chown afterwards as described in section 7.7.3.

The AFS File System 7-13

For example:

% pts delete -nameorid lauram:www_cd_webwg_tools

7.8 Implications of ACLs and Examples
The implementation of security in our Fermilab AFS cell is based on the notion that sharing
information is more important than trying to protect it. Therefore, in most cases, the default has
been to set ACLs to have the least security that is still reasonable. As currently implemented, all
user home directories come with their ACL set so that system : any user has rl (read and
lookup) permissions. A Mai l subdirectory (used by the MH mail readers) is provided with more
secure permissions.
The practical implication of this is that anyone on the internet running an AFS client can read your
files, unless you change the ACL. Home directories are writable only by their owners (that is, the
owner has rldiwka permission), but the world can read them. This is probably fine in many
cases, but you should be aware of it and protect your files as you see fit, according to the guidelines
presented below.

7 .8.1 Protecting your Subdirectories

You can protect any single directory by changing its ACL to tum off permission for
sys t em: any u ser as well as for other users or groups that should be denied permissions. For
example, if you use the mail reader pine, you may want to protect the message subdirectory mail.
To make it completely inaccessible by syst em: a ny user, you'd issue this command:

% fs setacl $HOME/mail system:anyuser none

On the other hand, if you need to allow others to write into any of your directories, the default
permission is too constraining. Say you are in a collaborative effort with user mrchips. You could
allow him full permission in your s hared directory by issuing the command:

% fs setacl $H~ME/shared mrchips all

Recall from section 7.6.2 that if a user is in two or more groups that have different permissions on a
directory, the user gets the union of the permissions.
Also, recall from section 7.6.2 that the fs setacl command only changes the permission for a
single directory. If you have a directory hierarchy on which you want to change permissions, you'll
have to use a UNIX command that traverses down the tree and changes all the directories as it goes.
The find command can be used (see section 6.4.1), but it must be used judiciously in the AFS
environment! This is not recommended for inexperienced UNIX users (see section 7.11.2). As
an extension of the above example, say you had a directory hierarchy under shared to which
you wanted to allow mrchips full access. The find command could be used instead of f s
setacl, as follows:

% find $HOME/shared -typed -print -exec fs setacl -dir {} -acl\
mrchips all\;

This would traverse down from the s hare d directory, changing the ACL for each of the
directories it finds. The -print argument causes the system to print out all the directories the
command encounters, allowing you to monitor the progress.

7-14 The AFS File System November 26, 1997

7 .8.2 Protecting your Home Directory

We strongly recommend that you make your home directory world readable, and simply keep
your private files in protected subdirectories. That said, ...

We do not recommend that you set the ACL on your home directory such that
system: anyuser has no_permissions (i.e. combination rights none) in order to keep your top
level directory private. There are at least a couple of undesirable consequences:

• If you ever managed to log in unauthenticated, you wouldn't be able to enter your home
directory. In fact you might not be able to log in at all, depending on the platform.

• The dot files in your home directory (e.g., . login,' . profile) would be unreadable by
unauthenticated system processes, which could cause them to break. For example, if
system: anyuser does not have at least rl permissions on your home directory, the
sendmail program will not be able to read your . forward file, and your mail forwarding
will break.

If for some reason you really want to protect your home directory, you can do so to the extent that
only l (lookup) permission is granted. However, you must make sure that any files that must be
world readable, such as your . forward file, remain accessible. Be aware that it is not always
obvious which files must remain world readable in order to preserve the behavior of your
environment. You can protect your home directory as follows (Proceed with caution!):

1) Every AFS home directory is created with a subdirectory called public. Move the files
that must remain world readable into this directory.

2) For each file moved into pcibl ic, create a symbolic link in your home directory to the file
in the public directory. Use the same filename.

3) After all the necessary files are moved and linked, then shut off all permissions except l
(lookup) on your home directory.

Note that you must leave the l permission turned on or programs won't be able to find the file in
public via the symbolic link.
Here is a sample session, assuming the only file that must remain world readable is . forward
(there would actually be many files). It would be run from the user's home dire_ctory:

% mv .forward public/.forward

% ln -s public/.forward .forward

% fs setacl . system:anyuser l

7 .9 AFS in Translator Mode
If your machine is accessing AFS via a translator node, you do not get authenticated when you log
in, and in fact you can't run the pagsh or klog programs discussed in section 7,3.1. You cannot
access your AFS login area. You only have access to directories for which an ACL is defined for
system: anyuser. You have access to files in those directories according to the ACL entry for
system: anyuser and the file owner bits, as usual.
At Fermilab most of the UPS products are set with read permissions (rl) for
system: anyuser, thus allowing access to products maintained in the / afs products area
from a machine running in translator mode. This is not true for products that are site-licensed (e.g.,
edt), which are made accessible only to users on site. •

November 26, 1997 The AFS File System 7-15

7.10 File Locking in AFS
The file locking mechanism in AFS does not really follow POSIX semantics. There are a few
issues to mention:

• Files may only be locked as a whole; regions of a file may not be locked.
• File locking only works properly and reliably from a single system. If a file is locked from

one client and an attempt is made to access the file from another client, the error
EWOULDBLOCK is returned.

• There is no deadlock prevention in AFS, so deadlock situations can occur with file locking.
• Any program that attempts to use byte-range file locking in AFS will get a message from the

cache manager warning that other users may be accessing the same file. Usually these
messages can be safely ignored.

Generally we don't recommend including applications that depend on file locking in the AFS file
space. Contact the helpdesk for more information or for resolution of a problem.

7.11 Frequently Asked Questions

7.11.1 Lost Access to Files

Why can't I access files I'm supposed to be able to edit?

First see what permissions you have by checking:
• which groups have rlwidk permissions on the directory
• that you are in at least one of these groups
• that the owner of the file has the standard rw UNIX permissions (see section 6.6.1)

Remember that authentication· lasts only a set period of time (6 days in / a f s / fnal . gov). If
your authentication has· expired, you will not have access to your files. You can reauthenticate by
running pagsh and klog (see notes in· section-7.3.1). Also we encourage you to use telnet in
(which always authenticates to AFS) instead of using rlogin. See section 7.3.4 and chapter 13 for
information on these utilities.

7.11.2 AFS and the UNIX Command "find"

Why shouldn't I use ''find" in AFS space?

You should be very careful about using any command that traverses the file system on a machine
that has / afs mounted. Be aware that a find on your system starting at root(/) will traverse
the whole AFS file tree, including all the. other AFS sites mounted on our cell. This is particularly
problematic on some workstations, like S_olaris 1 Suns, which by default run a nightly cron job that
traverses the whole file system. Also note that the -mount and ,-xdev options (e.g., find /
-mount . . . -print) won't recognize an / afs file system boundary; find can't tell the
difference between local files and AFS files . The find command is discussed in section 6.4.1.

7-16 The AFS File System November 26, 1997

7 .11.3 Error Messages

What does it mean if I get an error message like this:
afs: Wait ing for busy v o lume 536870945 in cel l fnal.gov

This is an error message from AFS that indicates that you are trying to access a volume that is busy.
There may be a number of perfectly normal reasons for this. It probably means either that your
volume is in the process of being cloned for a nightly backup, or that one of the system
administrators is in the process of moving your volume to a different disk because the one you are
on is filling up. Normally the process that generated the error will just hang harmlessly for a few
minutes until whatever locked the volume is finished. ~ this goes on for more than 20 minutes or
so, contact the helpdesk and inquire about what is going on.

7 .11.4 Retrieving Old Files

What if I need to retrieve yesterday's copy of a file?

Daily backups of the entire Fermilab cell are available from
/ afs / fnal. gov/ files / backup /. For example if your home area is
/ afs / fnal. gov/ files / home /room3 /j oe, you should be able to find yesterday's files in
/afs / fnal. gov/ files / backup / home /room3 / j oe. The backups are done at 12:45 a.m.
seven days a week.

Not all of the volumes are readily available (as of November 1997), but work on that is proceeding.
In the interim, if you cannot locate your files, contact the helpdesk to request that your backup
volume be mounted so that you can access it.

7.11.5 Link Failure ·

Why did my link fail?

Hard links can be used only within an AFS volume, not across volumes. Generally, you should use
symbolic links. Links are discussed in section 6.3.5.

November 26, 1997 The AFS File System 7-17

7-18 The AFS File System November 26, 1997

I

I I

Chapter 8: Printing

This chapter covers the standard FUE print utility flpr, as well as filter programs and techniques
available for formatting the output prior to printing. flpr is the Fermi implementation of the
standard UNIX lpr utility. Most software applications supplied by the Computing Division use
flpr as a default.
Note that many X-windows applications allow you to specify in a pop-up window the print
command you want to use.

8.1 The FUE Print Command: flpr
The Fermilab print utility flpr (pronounced "flipper") implements the lpd printing protocol, and
can be used to print UNIX files to any print server using this protocol, including VMS print queues
and most UNIX systems. Related commands are flpq (to check the print queue) and flpk (to
kill a submitted print job; not supported on many hosts). The format of each command is:

% flpr [options] [file] ...

% flpq [options] [users ljobs]

% flpk [options] [users ljobs]

The options are described in the man pages. All three programs will display a list of their options
when given an argument of - \?. Which options actually function depends on the functions
supported by the lpd host.
The fo_llowing command produces the version of flpr in use, when and where it was created, the
flpr defaults in effect, and the command format:

% flpr -\? -v

To print a file, generally you will just need to enter the following:

% flpr -q queue file

This assumes that your implementation of flpr uses FNPRT.FNAL.GOV as the default host
computer (most do), and that your printer is known to FNPRT (most are). If the -q option is not
specified, the queue is taken from (in order of precedence):

1) environment variable FLPQ

2) user control file (. flprrc)

3) system control file(s)

4) data compiled into flpr

November 26, 1997 Printing 8-1

A full list of queues supported by FNPRT is available by running the command obtain
printer to create the file flp. printers in your directory1.

If your printer host is not known to flpr, you can use the option -h to specify it on the command
line, set your own default printer host with the environment variable FLPHOST, or put an
appropriate entry in your . flprrc user control file.
You can set environment variables such as FLPQUE and FLPHOSTwith the setenv command
for the C shell family (see section 9.1):

% setenv FLPQUE queue

% setenv FLPHOST host

and for the Bourne shell family:

$ FLPQUE=queue; export FLPQUE

$ FLPHOST=host; export FLPHOST

A useful feature of flpr is the capacity to use nicknames. A nickname specifies the printer host
computer and the queue as a pair. If you often use a printer unknown to FNPRT, this feature may
be handy for you. You would then enter a print command in this format:

% flpr -P nickname file

The flp. printers file mentioned above defines many nicknames, most or all of which are
associated with the host FNPRT, and is therefore more useful as a queue reference for the -g
option. An example nickname is whlOw_lw, which is defined as:
printer whlOw_lw fnprt.fnal.gov whlO~_lw

Why are printer nicknames useful? If you're using a printer not recognized by the flpr defaults,
you'll need to specify both host and queue unless you use a nickname. Also, we recommend that
you use nicknames rather than queue names in shell scripts. If a printer fails or is removed, then its
associated nickname can be redefinc;:d, and the scripts don't need to be changed. If a queue name is
specified in a shell script, then this capacity does not exist. You can define a nickname yourself, or
if a widely-used printer is down, it may be appropriate for your system administrator to establish a
substitute printer by changing the nickname in flp. printers.

A printer nickname does not have to be the same as the printer queue name. It may be a short,
easily remembered name, such asps for a postscript printer or lp for a text printer. Such personal
printer nicknames can be established in your personal flpr control file, $HOME/. flprrc.

As an example . flprrc, assume you use the FNPRT queues bOtrwqms_hp for text printing,
and bOtrwqms_ps for Adobe PostPscript printing. You want to use the nicknames lp for text
printing and ps for PostScript. Further, you would like the print jobname to contain identifiers for
your login name and the file being printed. You could build a . flprrc as follows2:

host fnprt.fnal.gov
queue bOtrwqms__ps

identifier %1$%b
printer ps fnprt.fnal.gov bOtrwqms__ps
printer lp fnprt.fnal.gov bOtrwqms_hp

1. This file actually specifies printer-queue combinations. These names are the same as
the queues when FNPRT is the host, the case for most if not all of the entries.
2. The identifier in the file is equivalent to the - I option described in the flpr man page.

8-2 Printing November 26, 1997

r

~

If this file exists, it will be used automatically. flpr also accesses any system-wide defaults files,
such as flp. d e faults and flp. p rinters stored in a system directory. The
fl p . d e f a u l t s file contains default values for the host, usemame, printer queue, protocol
temporary filename format and one or more associations between a nickname and a host and printer
queue pair.
Another option for the f lpr command that may occasionally be useful is -1 login-name. This
specifies the remote login name to be used in case you want another user name associated with the
print job. The default name is the same as that on the current system.
From the UNIX Resources page on the Web, see Printing from UNIX at Fermilab under Our Local
Environment for information on the Ferrnilab print server, and how to list and check print queues.

8.2 Pre-Printing Options
a2ps and psnup, described below, are now in the UPS product psutils. You may need to run
setup psutils before using them. They can be used from the UNIX command line as well as
from many applications. pr is also available to format the pages before printing with flpr. pr is
explained in the man pages.
a2ps and psnup are described in detail in the man pages and in the Ferrnilab DCD Release Note
41.0 Users Guide to UNIX Printing Utilities.

8.2.1 Convert ASCII to PostScript: a2ps

The a2ps utility converts ASCII to two-column PostScript by default, and encloses the text in boxes
with headers indicating date, time, filename and page number. You also get a line saying "Printed
by username from node". You can override the defaults; see the man pages.

a2ps is useful if the printer can only accept PostScript. You can use it to produce different output
formats (e.g. , "2-up", where two pages of your file are shrunk to fit on a single sheet). It provides
options to add items like line numbers, user, file, and system information to the output. The
command syntax is:

% a2ps [global options] files [positional options] files

where global options apply to all files being printed, and positional options are applied only to the
files found in the remainder of the command line (with the exception of -H as noted in the man
page which only applies to the next file) .
Here is an example where we pipe the output of a2ps to flpr (-p indicates portrait mode):

% a2ps -p file] I flpr -q whl0w_lw

8.2.2 Print Multiple Pages per Sheet: psnup

The psnup utility takes a PostScript file and prints it "n-up". This refers to how many pages get
printed on a single sheet. Portrait and landscape mode alternate as n changes. Occasionally this
procedure doesn't work due to problems with Postscript variance.1 The syntax of the command is:

1. psnup inserts Postscript code in front of the PostScript it is given. Because Postscript
is a programming language, this doesn't always work. The file may be printed in its origi-
nal format, it may never be printed, or it may print fine!

November 26, 1997 Printing 8-3

% psnup [-pn] [- r] [-R] [-sn] files

where:
-pn

-r

-R

-sn

the number of pages of PostScript (or spots) that should be printed per
sheet of paper. n is constrained to be 2, 4, 8, 16, 32, or 64.
sets the first spot in lower right and progresses horizontally to the upper
left. This is handy for when the pages have already been reversed by
another program, and you are printing on a printer that reverses pages.
sets the first spot in the upper left hand comer and progresses
horizontally to the lower right. This is for non-reversing printers.
n is the number of the spot you want the first page of output to be
placed. The first spot on the page is 0, not 1.

8.2.3 Set Duplex Mode

Duplex mode refers to printing on both sides of the paper. This is often desirable for larger
documents, although not all printers support this feature.

Postscript Files

To print a Postscript file in duplex mode on a printer that supports this feature, you must prepend
some specific text to the file. An easy way to do this is to maintain this text in a separate file, and
concatenate it to your Postscript file when you are ready to print it in duplex mode. The two-line
text file, which we'll call d up lexp s here, must have the following contents:

%!

statusdict begin true setduplexmode end

To print your Postscript file in duplex mode, enter the command:

% cat duplexps postscript_.file I flpr -qduplex_printer

Text Files

For text files, you need to prepend a different sequence to the file. The technique we present here
works with any PCL-based printer with a duplex device in it (assuming no filters are in the way) .
Since text files are easy to edit, just add the following line to the top of your file1:

I <ESC>&llS<ESC>&aOG

The trick is to get the escape character in your file! The sequence <Ctrl-[> will work for escape,
but it must be preceded by a "quoting" character, which differs from editor to editor.

8-4

1. After the first ampersand(&), th~ characte,rs are: lower case L (1), one (1) , uppercase S
(S). The character before the final G is a zero (0).

Printing November 26, 1997

j

For this (these) editor(s):
vi
emacs
nu/f PU, fermitpu
EDT+
NEdit

... enter:
<Ctrl-v> <Ctrl-[>
<Ctrl-q> <Ctrl-[>
<Ctrl-v> <Ctrl-v> <Ctrl-[> <Ctrl-[>
<Ctrl-[> <Ctrl-[>
Use Insert Control Character from the Edit menu;
escape is 27 decimal. The escape character may not echo
on your screen depending on your font.

... to insert an escape character. Then print the file in the usual manner to an appropriate printer.

8.3 Other Print Utilities
There are two other traditional printing systems under UNIX. One of these is lpr, upon which ffpr
is based. lpr requires that each printer be defined in the local / etc /printcap file, which must
be done by the system administrator. One of ffpr's advantages is that no such definition is required
since the host name and print queue can be specified on the command line. lpr is the default print
command used by some applications, however. You can obtain in your current directory the file
print cap which contains all printcap entries for print queues defined on FNPRT by executing
the command:

% obtain printcap

The other traditional printing system is called Ip. This has its own set of files which must be set up
by system administrators and is recommended for use only in situations where the other options are
not available to you.

November 26, 1997 Printing 8-5

8-6 Printing November 26, 1997

r

l I

Chapter 9: Working Environment

This chapter describes the methods used to set up your working environment in UNIX. Some of
these are standard UNIX (e.g., shell and environment variables), and some are provided and/or
customized by FUE (e.g., the login scripts).

9.1 Shell Variables and Environment Variables

Every UNIX process runs in a specific environment. An environment consists of a table of
environment variables, each with an assigned value. When you log in certain login files are
executed. They initialize the table holding the environment variables for the process. (Exactly
which files run will be made clear later in this chapter.) When this file passes the process to the
shell, the table becomes accessible to the shell. When a (parent) process starts up a child process,
the child process is given a copy of the parent process' table. Environment variable names are
generally given in upper case.
The shell.maintains a set of internal variables known as shell variables. These variables cause the
shell to work in a particular way. Shell variables are local to the shell in which they are defined;
they are not available to the parent or child shells. Shell variable names are generally given in
lower case in the C shell family and upper case in the Bourne shell family.

9.1.1 C Shell Family

The C shell family explicitly distinguishes between shell variables and environment variables.

Shell Variables

A shell variable is defined by the set command and deleted by the unset command. The
main purpose of your . cshrc file (discussed later in this chapter) is to define such variables for
each process. To define a new variable or change the value of one that is already defined, enter:

% set name=value

where name is the variable name, and value is a character string that is the value of the variable. If
value is a list of text strings, use parentheses around the list when defining the variable, e.g.,

% set name= (value] value2 value3)

The set command issued without arguments will display all your shell variables. You cannot
check the value of a particular variable by using set name, omitting =value in the command; this
will effectively unset the variable.
To delete, or unset, a shell variable, enter:

% unset name

November 26, 1997 Working Environment 9-1

To use a shell variable in a command, preface it with a dollar sign($), for example $name. This
tells the command interpreter that you want the variable's value, not its name, to be used. You can
also use ${name}, which avoids confusion when concatenated with text.
To see the value of a single variable, use the echo command:

% echo $name

If the value is a list, to see the value of the nth string in the list enter:

% echo $name [n]

The square brackets are required, and there is no space between the name and the opening bracket.
To prepend or append a value to an existing shell variable, use the following syntax:

% set name=prepend_value$ {name}

or

% set name=$ {name }append_value

Note that when a shell is started up, four important shell variables are automatically initialized to
contain the same values as the corresponding environment variables. These are user, term, home
and path. If any of these are changed, the corresponding environment variables will also be
changed. •

Environment Variables

Environment variables are set by the setenv command, and displayed by the printenv or
env commands, or by the echo command as individual shell variables are. Some environment
variables are set by default (e.g., HOME, PATH).
The formats of the commands are (note the difference between set and setenv):

% setenv [NAME value J

% unsetenv NAME

where value is interpreted as a character string. If the string includes blanks (i.e. if it encompasses
multiple values), enclose the string in double quotes("), e.g.,

% setenv NAME "value] value2 ... "

The current environment variable settings can be displayed using the setenv command with no
arguments.

To use an environment variable in a command, preface it with a dollar sign($), for example
$NAME. This tells the command interpreter that you want the variable's value, not its name, to be
used. You can also use ${NAME}, which avoids confusion when concatenated with text.
To prepend or append a value to an existing environment variable, use the following syntax:

% setenv NAME "prepend_value${NAME}"

or

% setenv NAME "$ {NAME}append_value"

If the pre- or appended value is the value of a preexisting environment variable, enclose the variable
name in braces, too, e.g.,

% setenv NAME "${NAME}${XYZ_VAR}"

9-2 Working Environment November 26, 1997

r

j

Appending and prepending is commonly used with the PATH variable, and a colon is used as a
separator, e.g.,

% setenv PATH 11 ${PATH}:${XYZ_DIR} 11

9.1.2 Bourne Shell Family

The Bourne shell family does not really distinguish between shell and environment variables.
When a shell starts up, it reads the information in the table of environment variables, defines itself a
shell variable for each one, using the same name (also uppercase by convention), and copies the
values. From that point on, the shell only refers to its shell _variables. If a change is made to a shell
variable, it must be explicitly "exported" to the corresponding environment variable in order for any
forked subprocesses to see the change. Recall that shell variables are local to the shell in which
they were defined.
Shell variables are defined by assignment statements and are unset by the unset command. The
format of the assignment statement is:

$ NAME=value [; export NAME] 1

where there are no spaces around the equal sign(=). The unset command format is:

$ unset NAME

where NAME is the variable name, and value is a character string that is the value of the variable.
If the string includys blanks (i.e. if it encompasses multiple values), enclose· the string in double
quotes, e.g.,

$ NAME="valuel value2 II

The values of all the current variables may be displayed with the set command.

To use a variable in a command, preface it with a dollar sign($). This tells the command
interpreter that you want the variable's value, not its name, to be used. For example, to see the
value of a single variable, enter:

$ echo $NAME

You can also use ${NAME}, which avoids confusion when concatenated with text.
To prepend or append a value to an existing environment variable, use the following syntax:

$ NAME=prepend_value$NAME

or

$ NAME=$NAMEappend_value

Appending and prepending is commonly used with the PATH variable, and a colon is used as a
separator, e.g.,

$ PATH=${PATH}:${XYZ_DIR}

November 26, 1997

1. In most cases you will want to include the optional part of the command, so that it
reads: NAME=value; export NAME

Working Environment 9-3

9.2 Some Important Variables

These variables are important for all shells, unless noted otherwise.

DISPLAY

In order to use an X windows application, the environment variable $DISPIAY must be set
correctly. Normally the Fermi login files set it correctly for you. Its value is of the form
node:screen.server. At Fermilab, this will generally look like node . fnal . gov: 0 . 0 where
node is your machine name.
Finding the value of name is different on different types of terminals and workstations:

UNIX workstation On a local window, run funame . -n to get the name.
NCDX terminal ("X-terminal") Use the TCP/IP Name found under Show Version from

the startup menu.
Tektronix X terminal Enter setup by pressing F3 (the setup key). Select setup. Under

Configuration Summaries, select TCP/IP. A screen appears with the
nodename. This is the name you want.

VMS workstation If the workstation is connected directly to the monitor, then use the
name of the workstation.

HOME

Your home directory is the top of your personal branch in the file system, and is usually designated
by your username, i.e·. /{ p a th}/ {u sername }. The value of the variable HOME is the
pathname of your home directory. The command cd without arguments always returns you to
$HOME. In all shells except sh, the tilde (-) symbol used in filename expansion, expands to the
value of this variable. For example -/my f ile is equivalent to $ HOME / my£ il e .
-{ u sername} is equivalent to the $HOME directory of user {userna me} .

PATH

The PATH variable lists the set of directories that the shell looks in to find the commands that you
enter on the command line. (For the C shell family, the shell variable path takes its value from
PATH.) If the path is set incorrectly, some commands may not be found. If you enter a command
with a relative or absolute pathname, the shell will only search that pathname for it, and not refer to
PATH.

If you include the current working directory, "dot" (.), in your PATH, the shell will always find
your current working directory. This allows you to run executable files from your current working
directory by typing in only the filename. The Fermi login files include the dot at the end of the
path for you.
For the C shell family, see the following line in the s e t p a th. csh file (see section C.1.3):
set path= ($path.)

For the Bourne shell family, see the following line in the s et path. sh file (see section C.2.3):
PATH = $ {PATH}. :

See section 9.4 for information on these files . If "dot" is not in your PATH, then in order to execute
a file, you need to precede the executable filename by . / on the command line. This provides the
current directory pathname explicitly.

9-4 Working Environment November 26, 1997

j

LINES and COLUMNS

These variables control the number of lines and columns are displayed on your screen. The csh
family syntax is:

% setenv LINES n

% setenv COLUMNS n

to set the number of lines or columns ton.
0 Note for Solaris (SunOS 4.x) and OSFl: Use instead:

% stty -rows n

% stty -cols n

MANPATH

The MANPATH variable lists the set of directories that the shell looks in to find man pages.

SHELL

This variable is set to your default shell. Your default shell is determined by the last field in your
password entry (see section 4.1.2).

ignoreeof

This shell variable is in csh, tcsh, ksb and bash. sh doesn't have it. When the ignoreeofvariable is
set, you cannot exit from the shell using <Ctrl-d>, so you cannot accidentally log out. You must
use exit or logout to leave a shell (see section 2.2).

noclobber

This shell variable is in csh, tcsh, ksh and bash. sh doesn't have it. With the noclobber variable
set, you are prevented from accidentally overwriting a file when you redirect output. It also
prevents you from creating a file when you attempt to append output to a nonexistent file.
noclobber has no effect on utilities such as cp and mv. It is only useful for redirection. See
sections 5.4.2 and 6.3.

9.3 The Alias Command

The alias command allows you to create your own names or abbreviations for commands by
performing string substitution on the command line according to your specifications. Aliases are
recognized only by the shell that invokes them; spawned processes do not "inherit" them.
Never use the actual command syntax as an alias for itself. If for some reason an error occurs and
the login file which defines your aliases doesn't run, UNIX executes the standard version of the
command. Normally you'd see an error message in this case, but what if you miss it? This can be
disastrous. For example, if you are accustomed to using rm (removefile(s), see section 6.3.6) as
an alias for rm - i (remove file(s), but prompt for confirmation), when you run rm you will
expect a confirmation prompt. If the alias didn't get defined you won't get a prompt, and you may
end up removing files you need. That is why we suggest rmi as an alias for this command.

November 26, 1997 Working Environment 9-5

9.3.1 C Shell Family

The format of the alias command is:

% alias [new [old]]

When you enter new the shell substitutes old.

The first example causes ls -1 to be executed when the command 11 is entered:

% alias 11 ls -1

The next example creates the command dir to list directory files only:

% alias dir 'ls -1 I grep Ad•

grep in this case searches for a d in the first column of each line.

9.3.2 Bourne Shell Family

Alias

The alias command is supported by ksh and bash, but not sh. For the entire Bourne shell
family you can use shell functions instead of aliases; we discuss these below. The format of the
alias command is:

% alias name= 'alias_contents'

The first example causes ls -1 to be executed when the command 11 is entered:

% alias ll='ls -1'

The next example creates the command dir to list directory files only:

% alias dir='ls -1 I grep Ad•

grep in this case searches for a d in the first column of each line.

Shell Functions

The Bourne and Korn shells support shell functions, which are similar to shell scripts in that they
store a series of commands for execution at a later time. Shell functions are more quickly accessed
than scripts because they are stored in memory instead of a file, and the shell preprocesses them.
They can be used in place of aliases in order to be completely portable between sh, ksh, and bash.
For information on the format of shell functions and how to use them, refer to the sh man pages or
a UNIX text.

9-6 Working Environment November 26, 1997

f

9.4 Tailoring Your Environment
This section discusses the FlJE-customized login files (also called the Fermi files) used to set up
your UNIX environment. All the files discussed in this section are printed in Appendix C. You will
automatically have your own copy of these files in your home directory1. The default files exist in
/ usr / local / etc and you can recopy them to your home directory if you ever need to. Once
you understand the functions of the various files, you can tailor them to suit your tastes.
Many of these files include sample code that you may want to activate. A pound sign (#) in the first
column indicates a comment line. To activate a command line that's been "commented out",
remove the #.

9.4.1 C Shell Family Fermi Files

The C shell executes hidden FlJE-customized files at various times in your session. They include
the files . cshrc and · . login, which you may choose to further modify.
When you log out, the shell looks for a logout script in your home directory called . logout .
FlJE does not provide this file, but you can create it yourself, and it will get run automatically. This
file is not required.
As an example, including the clear command in your . logout file contents clears the screen
when you logout.
If your system is running AFS, we recommend including the unlog command in the . logout
file. This is explained in section 7.3.4 .

. cshrc and f ermi.cshrc

Upon logging in, the first file to execute is the . cshrc located in your home directory. The shell
also executes this file each time you invoke a new C shell, for example when you execute a C shell
script or otherwise fork a new process.
Your . cshrc file first executes / usr / local/etc / ferrni. cshrc , which:

• sets up the machine id, type, and operating system
• sets up UPS
• establishes a reasonable default path (and therefore PATH) by running

/ us r / local / etc / s e tpath. csh (see section C.1.3), andMANPATH
• sets fermimail as the standard mail alias

ferrni. cshrc also calls / usr / local /etc / local. cshrc which may set other
environment variables.2 You do not have a copy of ferrni. cshrc in your home directory; it is
not designed to require individual customization. See section C.1.2 for the file listing.
The file . cshrc should contain all your aliases so that child processes have access to them;
many suggested aliases are provided for you to activate, and you can define your own. You can
also set shell variables (noclobber and ignoreeof are already set for you) and parameters that are
local to a shell.

November 26, 1997

1. Exceptions are the ferrni. * and setup.* files which are called directly from
/ usr / local / e tc .
2. This is a file for things that the local system manager wants to add to the login scripts. It
may or may not have been created on your system.

Working Environment 9-7

Don't set any environment variables here. Any changes to their values will remain after you
terminate a forked process, thus changing your standard environment for the duration of your login
session. See section C.1.1 for the default file listing .

. login and f ermi.Iogin

The . login file is executed only at login time. After execution of . cshrc, the . login file
located in your home directory is run. The default . login file first executes the file
/usr/local/etc/fermi.login.

fermi. login performs several actions:
• sets umask (default file access permissions) so others can read and execute but not modify or

delete your files
• determines the terminal type (and makes "best effort" at determining D/SPLAYvariable)
• sets common terminal characteristics
• sets a host of environment variables

You do not have a copy of fermi. login in your home directory; it is not designed to require
individual customization. See section C.1.6 for the file listing.
Next, the . login file sets your prompt, and sets the variables history and savehist. You can edit
your . login to modify your path and/or terminal settings, change the default values of
environment variables or create your own, and/or include commands that you want to execute once,
at the beginning of each session (for instance setup product commands). See section C. 1.5 fqr
the default file listing .

. logout

The C shell executes the . logout file in your home directory (if you have created one) when
you log off the system.

Execute files to modify current session

If you modify your . cshrc or . login files and you want them to take effect in the current
session, you must execute them with the source command:

% source .cshrc

% source .login

This is explained in section 4.4.

9.4.2 Bourne Shell Family Fermi Files

The Bourne shell executes hidden PUE-customized files at various times in your session. When
you log on in the Fermi environment, the . profile and . shrc files in your home directory
are executed for sh, bash, and ksh. Your . shrc file is also executed at any time a new bash or
ksh is invoked. 1

9-8

1. On some of the more recent OS releases (e.g., AIX+4 and IRIX+6.4, and likely others
in the near future) /bin/ sh is a link (links are described in section 6.3.5) to the korn
shell (ksh). ksh is a superset of sh, so this shouldn't present any problems for you. One
difference is that your . shrc file gets sourced when you run /bin/ sh scripts.

Working Environment November 26, 1997

r

u
[I

The name of the file . shrc is determined by the ENV environment variable which is set to
-/. shrc in the standard . profile, it is not a standard UNIX feature .

. profile and fermi.profile

The .profile filefirstexecutes /usr/local/bin/ferrni.profile. Thisfileperforrns
several actions:

• sets umask (default file access permissions) so others can read and execute but not modify or
delete your files

• sets up the machine id, type, and operating system
• establishes PATH (by running /usr /local/ etc/ setpath. sh; see section C.2.3) and

MANPATH.

• determines the terminal type
• sets a host of environment variables
• sets common terminal characteristics

You do not have a copy of f errni . prof i 1 e in your home directory; it is not designed to require
individual customization. See section C.2.2 for the file listing.
The . prof i 1 e file sets your prompt and the variables that govern your history list, your default
editor, and your command line editor. You can edit your . prof i 1 e to modify your path and/or
terminal settings, change the default values of variables1 or create your own, and/or include
commands that you want to execute once, at the beginning of each session (for instance setup
product commands). See section C.2.1 for the default file listing .

. shrc and f ermi.shrc

The . shrc file first executes /usr/local/etc/ferrni. shrc which sets up UPS and
performs some machine-dependent functions. See section C.2.5 for the default file listing.
The . shrc file should contain all your aliases2 so that child processes have access to them; many
suggested aliases are provided for you to activate, and you can define your own. You can also set
variables (noclobber and ignoreeof are already set for you except in sh) and parameters that are
local to a shell, and you can activate and define functions. See section C.2.4 for the default file
listing.

Execute files to modify current session

If you modify your . shrc or . prof i 1 e files and you want them to take effect in the current
session, you must execute them with the . command:

$.shrc

$.profile

This is explained in section 4.4.

November 26, 1997

1. Remember for sh, there is not really a difference between shell and environment vari-
ables; see section ~-1.
2. Aliases are available for bash and ksh, but not for sh; see section 9.3.2.

Working Environment 9-9

9.4.3 Storing Customized Code

If you wish to maintain versions of distributed code customized to your own needs, we recommend
that you store them in the following directories:

$HOME/bin
$HOME/bin.$ARCH

for machine-neutral code
for architecture-specific code; $ARCH is the value
returned by funame -s (e.g., SunOS, IRIX).

The path names for these directories will be added to your PATH when the Fermi files are invoked.

9.5 X Terminal Support
A very helpful collection of information regarding X terminal configuration and use is maintained
on the Web. From the Computing Division home page, select X-terminals under the heading
Systems and Networking. •
In this section we provide only a brief overview of the configuration and start-up information.

9.5.1 Configuration

If you have a new X terminal, you'll first need to configure it. The Computing Division currently
provides boot/configuration/font service for NCD and Tektronix X terminals. There are two types
of boot service, basic and complete. Basic service enables you to immediately boot the terminal,
·manage windows, reach the network, and have a complete set of fonts for most applications.
Complete service includes the Save Configuration capability. Complete service requires a special
request form. Refer to the Web pages for instructions.
Upon reboot, the terminals are by default loaded with a basic server and configuration. The server
contains local telnet, setup, and console clients as well as two window managers. The
configuration contains font service, access to the FNAL name servers, color tables, and other basic
X terminal needs.
The service is provided on FNALU, but in practice, anyone with an NCD or Tektronix X terminal
can use the service. In particular: •

New users

Users in small groups

Special projects

Users whose own server is down

9-10

If you have your terminal and there is no boot software
available on your local nodes, you should use the central
boot service.
Groups with a small number of terminals may prefer to
use the service instead of getting their own copy of the
software.
Projects which will be using the terminals for a short
amount of time or without a particular host computer
should use the service.
For temporary use.

Working Environment November 26, 1997

f
f ' ' 1

9.5.2 Connecting to Host Computers

For an NCO X terminal:

1) Select Start Terminal from pulldown menu on background

2) Type in host name

3) Login to host
For a Tektronix terminal:

1) Select Telnet From "Host Connections" menu in Launcher, or select or type in host name in
TekHostMenu

2) In telnet window, type open

3) Login to host
For either type of X terminal, in order to run an X client program, you need to set your DISPLAY
environment variable (see section 9.2).

9.6 Multimedia File Support
Applications such as Web browsers and mail handlers need to be able to handle files of many
different types. The standard used for identifying multimedia file types is called Multipurpose
Internet Mail Extensions (MIME).
When a server sends a document to a client, it usually includes a section that identifies the
document's type so that the file can be presented properly. The identifier is called a MIME type,
and consists of a general type (e.g., text, image, application, audio, video) and a subtype which
specifies the format. These two elements are separated by a slash. Examples of ;MIME types are:

text/plain
text/html
image/jpeg
image/gif
application/p ostscript

A file called . mailcap1 is used to map MIME types to external viewer programs, thus
providing a recipe for displaying/playing multimedia files. When you first run setup www in a
FUE environment, a default . mail cap file gets created in your $HOME directory if it doesn't
already exist. If an earlier version of the file is found, the terminal displays a message saying that
you can update it from the file in $WWW_DIR/lib/TypeMap. For most situations, the
. mai 1 cap file should be sufficient as provided.
Each entry in the . mail cap file consists of two fields separated by a semicolon(;). The first
field is the MIME type in the format type/ s ubtype. You may see asterisks used as wildcards
to specify all of the subtypes of a particular type (e.g., video/*). The second field specifies the
display command. It requires a full shell command, including the pathname for the external viewer
and any command line arguments. Some examples of entries from the TypeMap file are:

November 26, 1997

image/xwd ; display %s
image/x-xwd; display %s
image/x-xwindowdump; display %s
a udio/*; sfplay %s

1. Its name refers to the fact that it was originally designed for multimedia mail, however
its role has since expanded, and will probably continue to do so as more and more pro-
grams become multimedia.

Working Environment 9-11

video/mpeg; mpeg___play %s
video/*; animate %s
application/postscript; ghostview %s
application/x-dvi; xdvi %s
appl icati on/pdf; xpdf %s

The %s is a printf-style parameter for the string representing the filename.
Sometimes, if the MIME type is not sent in the file's header, the multimedia application displaying
it needs to determine the file's MIME type from its file extension. In this case, the application
references a file called mime. types which provides the mapping between file extensions and
MIME types. This file is usually not required, and in fact a default mime. types file is not even
provided.
To add support for a new MIME type with an associated file extension, you would need to create a
mime. types file to provide the file extension mapping, and then edit your . mail cap file to
include an entry that maps the new MIME type to an external viewer that can display the data.
For example, say you want to add support for MIME type application with (fictional)
subtype xyz. The files come with the extension xyz z, viewable via the program viewxyz. You
would need to create mime. types and include the following line in it:
application/xyz xyzz

Note there is no semicolon(;) in a . mime. types entry. Then in . mail cap, you would need
an entry as follows:
application/xyz ; v iewxyz %s

More information on the . mai leap and mime . types files can be found on the Web under
the heading WWW from the UNIX Resources page.

9. 7 Terminal Characteristics

You can specify your terminal type to UNIX if the default is not suitable. To do so, enter the
command for the C shell family:

% set term=termtype

or for the Bourne shell family:

$ TEP.M.=termtype; export TEP.M.

where termtype is the name of a terminal type supported on the system. vtlOO, vt220 and xterms
are acceptable terminal types. If you always use the same kind of terminal, you may want to put
this command in your . login or . profile. Note that the standard Fermi files attempt to set
this variable correctly.
In Section 2.4 we listed some terminal control functions. Recall that you can display the settings
with the stty command:

% stty -a

9-12 Working Environment November 26, 1997

The format on each machine is different but should indicate approximately the same information.
The following is the output from a Silicon Graphics workstation. The settings reflect the FUE
defaults.

speed 9600 baud; line= 1;
i ntr = AC ; quit= A; erase= DEL; kill= AX ; eof = AD; eol = A@ ; swtch AZ

lnext = AV ; werase = AW; rprnt = AR; f l ush= AO; stop= AS; start= AQ

-parenb -parodd csB -cstopb hupcl cread c l ocal -loblk -tostop
-ignbrk brkint ignpar -parmrk -inpck istrip -inlcr -igncr icrn l - iucl c
ixon ixany -ixoff
isig icanon -xcase echo echoe echok -echonl -noflsh
opost -olcuc onl cr -ocrnl -onocr -on lret - ofill -ofdel tab 3
%

In this display the second and third lines display the FUE default control characters. The character
" indicates the control key (e.g. , "C represents <Ctrl-c>). Your reference books will most likely
tell you to delete a character with the # key and delete a line with the @ key, but this is not correct
at Fermilab. Use the character indicated as erase in the stty output for single character deletion,
and kill for whole line deletion. The Fermi UNIX Environment defaults for these operations are
the delete key and <Ctrl-X>, respectively.
You can display a description of all of the options reported by stty with the command:

% man atty

If you don't like the FUE defaults, you can also set these functions with the atty command. The
form for setting them is:

% atty control-char c

where:
control-char

C

Example:

% atty kill '"Y'

is one of the functions in the table in section 2.4.
is the representation of the key to be used for that function. A control
character is specified preceded by a caret: "x represents <Ctrl-X>.

There are two special representations: "? is interpreted as the delete key and " - is interpreted as
undefined. You must include the quotes as shown in the example so that special characters are not
interpreted incorrectly. You must be careful not to have two functions represented by the same key.
There are many other options that can be set with stty. Others that might be of interest are echoe
which specifies that deleted characters are erased, and -tabs which specifies that the tab character
be translated into the appropriate number of spaces. Refer to the man pages for more information.

November 26, 1997 Working Environment 9-13

9-14 Working Environment November 26, 1997

Chapter 10: Accessing Software Products

In this chapter you will learn how to get information about the software products that are provided
and supported by the Computing Division. We describe how to access products already installed
on your system, and how to obtain a product from the Fermilab KITS area and install it on your
system.

Appendix B discusses the Fermilab UNIX Product Support structure, UPS. We recommend that
you read it first to get a good basic understanding of how products are handled. At a minimum, you
can refer to it to clarify the terms and concepts used in this chapter. •

The information in this chapter and Appendix B has been taken from UNIX Product Methodology
at Fermi/ab: Guide to Using UPS v3 and UPD v2for Product Maintenance, Installation,
Distribution and Development (GU0014), but covered here in much less detail, appropriate to the
different audience. We refer you to that document if you need further information.

Notice of Upcoming Changes

UPS and UPD are currently undergoing redevelopment with a significantly different design.
The new versions and accompanying doc_umentation are due for release in the first half of 1998.

Off-site machines need to register for the product distribution services, UPD and anonymous ftp,
discussed in sections 10.3 and 10.4, respectively. To do this, the responsible party for the machine
needs to fill out the UNIX Product Distribution Request Form and mail it to compdiv@jn.al. To find
this form, go to the Computing Division home page, and under the heading Services click on
Forms. Or look in the top level anonymous ftp directory (see section 10.4).

10.1 Finding Information about Available Software

The ever-changing list of software provided and/or supported by the Computing Division is
maintained in a database accessible via the Web, as described in section 1.6.1. Here you can search
for information on any UPS product, in particular the product name and number1, an abstract
describing the product, flavors for which it is available, and which versions are available in KITS.
In addition, documents associated with the product are provided in HTML, PostScript, and/or
ASCII text formats , as available.
An on-line report is available that lists the current version of all the UPS products. From the
Computing Division home page, select UNIX Applications under Documentation & Software, and
then select Kits Report.

November 26, 1997

1. This is an alphanumeric designation assigned by the Computing Division to identify
each product and its associated documents.

Accessing Software Products 10-1

10.2 Accessing Installed UPS Products

10.2.1 Get Information About Products Installed on Your System

First find out if multiple databases are defined on your system for your use by running the
command:

% echo $PRODUCTS

O:, Note the capital letters; PRODUCTS is an environment variable set by UPS.
If there is only one value, you can find out what UPS products are installed on your system with the
command:

% ls $PRODUCTS

If the variable PRODUCTS is set to multiple values, you can check each directory (i.e. each
database) separately.
To find the current version of a UPS product and its location, use the command:

% ups list [-a] [product]

More than one version, or instance, of a UPS product may be installed on your machine. If -a is
specified; ail instances of the product(s) are listed. If product is qmitted, all UPS products are
listed.

10.2.2 Setup a Product Instance

Each installed, declared UPS product instance requires that the setup command be issued prior
to use (unless it is a dependent product of one that is already setup) 1. At a minimum this command
sets the environment variable ${PRODUCT}_DJR (e.g., WWW_DIR, EMACS_DIR) to point to the
root directory of the product instance. If the product has a setup file maintained in
$ { PRODUCT} _DIR / ups/ (most products do), setup also sources this file which makes the
appropriate changes to your software environment in order to make the product available for use.
Typically users need to setup a chained instance of a product, for example the current instance on
their machine. To setup the current instance of www, enter:

% setup [-c] www

• The current instance is, in other words , the default (-c is unnecessary). To setup any other
chained instance, include the chain flag (described in section B.10) in the command. For example,
to setup the instance of www declared as test, enter:

% setup -t www

To setup an unchained instance of a product, include its version number. For example, to setup
version 2_6a of www, enter:

% setup www v2 6a

1. There are exceptions to this rule; in particular, you should never setup the core FUE
products futil, fulib , funkern and shells. UPS gets setup for you under FUE.

10-2 Accessing Software Products November 26, 1997

)

j

We recommend that you not specify UPS products by their version in general, but instead use
primarily the current version for production, the test version (or new or development) for testing, or
an old version only if necessary. We cannot maintain all versions forever, and unless there are
overwhelming reasons, old versions will be removed in a timely manner.
Note that you can only have one instance of a product setup at a time. Each time you run setup
on an additional instance oft.he same product, the previously active instance is automatically
unsetup first.

Examples

% setup prodl

Sets up the current instance of product prodl and all o(prodl 's use requirements.

% setup -d prodl

Sets up the instance of product prodl chained to development, and all of prodl 's use
requirements.

% setup -v -f IRIX prodl vl_l

Sets up the instance of prodl that has a version of vl_l and a flavor of IRIX, and all of prodl ' s
use requirements. Sets verbose on.

10.2.3 Unsetup a Product Instance

unset up sources the unsetup script", also maintained in $ {PRODUCT} _DIR/ups / . In general
this undoes the changes to your software environment made by setup in order to make the
product no longer available for use. You may need to unsetup a UPS product if you are short on
environment variable space and want to get rid of extra environment variables, or shorten the PATH
variable length.
When you no longer need to access a product (or its use requirements), simply type: •

% unsetup product

10.2.4 Invoke the Product

Normally UPS products are invoked by entering the product name on the command line, with any
appropriate options and/or arguments, e.g.,

% setup prodl

% prodl [options]

Note that you must know the name of the application or its invoking command, which in a few
cases is different from the UPS product name used in the setup command. If the product
comprises multiple applications, you can usually get a listing of them by checking the product's
bin directory. After you setup the product, run:

% ls ${PRODUCT}_DIR/bin

For example, say you want a tool to format a document in Postscript. First you need to setup the
UPS product psutils, which includes all the available tools. Then run the command:

November 26, 1997 Accessing Software Products 10-3

% ls $PSUTILS_DIR/bin

to see what your choices are:
a2ps fixmacps
epsffit fixntps
extractres fixpsditps
fixdlsrps fixpspps
fixfmps fixscribeps

fixtpps
fixwfwps
fixwpps
fixwwps
getafm

includeres psmerge showchar
psbook psnup
pscover Ii)sresize
psduplex psselect
pslabels pstops

To invoke one of them, just enter the name of the executable on the command line. Be aware that
for some products, files other than executables may also be included in bin.

10.3 Obtaining Products from KITS
The UPD menu interface was designed for easy distribution of software products, either directly
via the network or by an intermediate tar file stored on disk or tape. Tar files of the currently
available versions of UPS products for the supported UNIX flavors are maintained in the Ferrnilati
KITS area on the node UPD.FNAL.GOV. UPD provides functionality to:

• list products in KITS or any other UPS product distribution node
• list. the contents of a remote tar file

• download a product instance or copy an individual file from a remote tar file

UPD can also be used to:
• unwind the tar file once it's on the local node
• declare the product instance to the UPS database

As a user, you should be able to largely rely on your system administrators to install UPS products
for you. Occasionally you may need a product that has not been installed on your machine.

H you want. to make a UPS product available for general use on your system, you should have it
added to your local system's UPS database. Contact your system administrator in this case.
ff a product is for personal use, we recommend that you download the tar file to a temporary area
using the UPD function provided, and unwind the retrieved tar file into your personal area. Be
careful that you have enough disk space available.

Recall that off-site systems must register for UPD.

10.3.1 Steps for Installing a Product

Before installing any product:

1) Create at least the directory in which the product root directory will reside; you can create the
product root directory itself, too, but it is not necessary.

2) (optional) Change to the product root directory or to the directory in which it will reside.

3) Run setup upd.

4) Run upd to invoke the UPD menu interface.

10-4 Accessing Software Products November 26, 1997

u

[

/1 '

You should see the following main menu (version v2_8d of UPD was used here):

Welcome to the ma i n menu interface for upd.
Choose one of the following options:

1 upd lis t: list available products
2 upd copy: copy a product from a remote node
3 upd unwind: unwind product into l ocal directory
4 upd tarcont : list the table of con tents of the tar file
5 upd extract : extract a file from tar file
6 upd getreq: determine the build and use requirements
7 ups dec l are: declare the product to UPS
8 ups tailor : execute product ' s ups/ t ai l or file
9 fork a l ogin shell

q qui t
Enter choice

Products are installed in a maximum of six steps, all of which can be accomplished via this menu:

1) List available products from the remote distribution node, and determine which product
instance to install (option 1).

2) Copy the tar file associated with the chosen product instance to a temporary tar file on the
local node (option 2).

3) Unwind the temporary tar file into its product root directory (option 3).

4) Declare the product to the UPS database (option 7), with or without a chain.

5) Tailor the product if UPD informed you that it is necessary (option 8).

6) Declare the product as "current" to UPS (option 7, again), if not already done.
Note that UPD also allows you to download individual files from within a remote tar file. If, for
example, one or two files of a previously installed product get corrupted, you can use UPD
TARCONT to list the contents of the tar file and UPD EXTRACT to download an individual file
from it.
A few notes on installing products:

November 26, 1997

• If additional actions are required by the installer, the product's INSTALL_NOTE is
automatically typed to the screen during the unwind process to inform you about them.

• Very few products require tailoring. UPD informs you during the declaration if tailoring
needs to be run.

• If you are using a version of UPS previous to v3_9, we do not recommend simultaneously
declaring a product to the UPS database and declaring it current (steps 4 and 6). This is due to
a slight design flaw that is corrected in later versions (described in GU0014).

• If the product has use requirements (you shouldn't need to worry about build requirements in
most cases), you are informed of this fact during the unwind step. Use option 6 to find out
what the requirements are. You will need to install each required product instance
individually if it does not already exist on your system.

• According to your group's policy, communicate to the users of your system if you make a new
product instance available for their use.

Accessing Software Products 10-5

10.3.2 UPD Menu Interface Operations

Each step of the installation has a screen associated with it, similar to the sample screen below:

UPD LIST: * impl ies value required
*l [upd.fnal.gov) remote node name

2 [) product name
3 [current] version or chain (e.g. , vl_0 or current)
4 [SunOS+5) flavor
5 [) remote database, if different from default

e execute upd list
q quit and return to main menu

Enter choice

The screens each have a list of numbered parameters to set. Defaults are provided where possible,
and you can change or remove them. If you exit UPD and then restart it, you will lose any values
associated with the particular product instance you were working with. The option of forking a
shell from within UPD is provided in order to avoid this problem.
To set a parameter, enter its number at the Ente r c h o i ce : prompt, and press carriage return.
You set the parameters individually in successive operations. The parameters labelled with an
asterisk(*) require you to set a value. All other parameters are optional. When an optional
parameter does not have a value, the screen function generally executes for all possible values.
Once you've set all the parameters that you want, enter e to execute the screen function. Press q
to quit the screen and return to the main menu. If you're on the main menu, pressing q quits out
ofUPD. •

10.4 Using Anonymous ftp to Download a Product

UPS products are also available via anonymous ftp from the host FfP.FNAL.GOV. We
recommend that after copying over the product tar file using ftp you use UPD to install the product.
If you have a local UPS database, we recommend distributing via UPD because it provides a better
interface for declaring products once the tar file is copied. You can always invoke UPD to do this
after downloading via ftp, of course.

10.4.1 Access Anonymous ftp

To access anonymous ftp , enter the command:

% ftp ftp.fnal.gov

You will get a response similar to the following, to which you enter anonymous at the Name
prompt:

Connected to f sui0l . fnal.gov .
220 fsui0l FTP server (Version wu-2.4(2) Thu Jul 20 12:03 : 52 CDT 1995) ready .
Name (ftp . fnal.gov:your_username): anonymous

10-6 Accessing Software Products November 26, 1997

u

d

Once that is accepted, you will be prompted to enter your email address as a password (e.g.,
qj ones@fnal . gov), which is not echoed to the screen:

331 Guest login ok, send your compl ete e-mai l address as password.
Password:

The screen will then display the following information 1:

230-Th is is t h e FTP service for FTP . FNAL . GOV. Use of this
230-service is for a u thorized usage only.
230 -
23 0- The purpose of this servi c e is to provi de access to t h e
230-fol lowing categories of fi l es :
230- - The FermiTool s area: publicly available software under t h e
230- /pub d i rectory (all users) . Files available listed i n l s-lR.Z .
230- - The UNIX KITS area : Thi s provides a l ternate access to fi l es
230- normally accessed via the upd program. (registered users)
230- Files available l is t ed in index .
230-
230 - Th is server a llows for on-the-f l y compression and uncompression
230 - of f iles retr i eved. It also al l ows you to tar up ent i re d i rectory
230-structures .
230-
230 - You a r e register ed to retrieve f iles from the UNIX k i ts area .
230-
230-Please read t h e f ile readme
230- it was l ast modi f ied on Wed Sep 27 1 6:47 : 32 1995 - 415 days ago
230 Guest l ogi n ok, access restriction s apply .

In the top level directory a rea dme file is provided that discusses some of the available tools and
features.

If you are on an off-site node, it must be registered with Fermilab in order to use anonymous ftp to
obtain tar files2 from the KITS area. If you need to register, use the UNIX Product Distribution
Registration Form in the top level directory under the filename r egistra tion. All machines in
the fna l . gov domain are automatically registered.

1. The "last modified" information will change, of course.
2. Note, the Fermi'.fools proµucts are not subject to this restriction; you do not need to reg-
ister your node to obtain tar files from the FermiTools / pub area.

November 26, 1997 Accessing Software Products 10-7

Here is a top-level directory listing for reference:

f t p> dir
20 0 PORT command successful .
150 Open ing ASCII mode data connection for /bin/ls.
total 66
dr-xr-xr-x 8 ftp root 1024 Nov 1 9 22:00
dr-xr-xr-x 8 ftp root 1024 Nov 19 22:00
drwxrwxr-x 7 ftp 995 512 Oct 31 11:2 1
drwxr- xr- x 20 k i ts sys 1 024 Nov 19 22:00
lrwxrwxrwx 1 root oth er 7 Jul 27 1995
dr- xr- xr- x 2 root oth er 512 Jul 27 1995
dr - xr - xr - x 2 root other 512 Apr 24 1996
drwx - - - - -- 2 root root 8192 Jul 27 1995
-rw-r--r-- 1 root other 11 824 Nov 19 22:00
l rwxrwxrwx 1 root other 8 Sep 15 19 95
- rw-r--r-- 1 root other 1566 Sep 27 1 995
- rw- r--r- - 1 r oot other 1 9'.37 Mar 26 1 996
dr- xr-xr- x 5 root other 512 Apr 24 1996
226 Transfer complete .
827 bytes recei ved in 0 . 17 seconds (4.6 Kbytes/s)

. incoming
KITS
bin -> usr/bin
dev
e tc
lost+found
ls - lR . Z
p ub-> KITS/pub
read.me
registration

u sr

Most UPS products can be found under the KITS directory. Access to this directory is restricted
to registered users. Directly under KITS is a directory for each supported OS type, under which
the product instance tar files appropriate to each one are maintained. The d ec lare d directory
containing the product declaration files is also available under KITS. The public ftp area
KITS / pub, available to all (registered and nonregistered) users, includes the Fermilab Software
Tools (FermiTools). This collection of software is intended to provide the internet community with
many of the Fermilab-developed software packages that we believe have general value to other
application domains.
To see the contents of KITS , run the following (the output has been abbreviated for this manual):

ft p > c d KITS
250 CWD comman d successful.
ftp> dir
drwxr - xr-x 1 02 kits sys 2048 Oct 29 17:31 AIX
drwxr-xr-x 53 kits sys 1024 Nov 1 9 10:53 GENERIC _UNIX

drwxr-xr- x 25 kits sys 51 2 Aug 15 13:57 HP- UX
drwxr-xr-x 153 kits upd 2560 Oct 29 1 7:3 8 IRI X
drwxr-xr-x 2 kits sys 512 Aug 27 14 :47 LINUX
drwxr-xr-x 84 kits upd 1536 Nov 6 13 :29 OSFl
drwx r - xr-x 111 k i ts sys 2048 Oct 29 1 7 : 46 SunOS
drwxr-xr- x 41 k i ts sys 1024 Aug 1 5 13: 5 6 ULTRI X
dr wxr-xr- x 2 ki ts sys 3584 Nov 19 1 2: 08 declared
drwxrwsr-x 22 bin frmtoo l s 512 Nov 1 4 22 : 29 pub

10-8 Accessing Software Products November 26, 1997

)

10.4.2 Select a Product Instance Tar File

From the root directory (/), cd to the appropriate OS type subdirectory under KI TS (SunOS is
used as an example here). You 'll need to "get" the index file since you can 't list a remote file
from ftp . Since index is an ASCII file, make sure you set the mode to ASCII first, as shown
below:

ftp> cd KITS/SunOS
250-A complete listing of files available under this directory
250-structure is available in the index file .
250 -
250 CWD command successful.
ftp> ascii
200 Type set to A.
ftp> get

(remote- file) index
(local - file) index_SunOS
200 PORT command successful.
150 Opening ASCII mode data connection for index (74·193 bytes).

226 Transfer complete .
local : index_SunOS remote: index
76388 bytes received in 0.89 seconds (84 Kbytes/s)

Now you have a local (renamed) copy. Use the ftp command
to list the file contents:

to run less as a shell command

ftp> !less index_SunOS

You'll find that the file lists everything under KI.TS ; all directories, subdirectories and tar files.

10.4.3 Copy the Tar File

Any file that is not a straight text file must be transferred in binary mode. Set the mode to binary
(bin) and then use the standard ftp get function to copy the tar file. Refer to section 13.1.1 for
information on standard ftp commands.
After the tar file is downloaded, use UPD to unwind it into the appropriate location on your system
and declare it, as described in section 10.3.1.

November 26, 1997 Accessing Software Products 10-9

10-10 Accessing Software Products November 26, 1997

\

l

l

Chapter 11: Editors

Several text editors are available at Fermilab. In this chapter we present our view of the advantages
and disadvantages of the available editors, and we provide some basic information on the setup and
use of each one. You will learn how to invoke each editor, and how to create, edit, and save a file in
each one using a small subset of commands and features. We include only minimal usage
information for the VMS-style editors.

11.1 The Available Editors

vi

emacs

xemacs

NEdit

A native UNIX screen editor. It is not generally considered to be one of
the better available editors, however knowing the basics is useful for two
reasons: 1) you may occasionally encounter an application that throws
you into a vi session, from which you' ll at least want to exit, and 2) vi is
the one editor you are guaranteed to find on all UNIX machines 1.

A powerful modem public-domain screen editor available. for both VMS
and UNIX. You will find emacs installed on most UNIX machines.

An incarnation of the advanced, self-documenting, customizable,
extensible real-time display editor emacs. It provides many powerful

• display and user-interface capabilities not found in emacs.
A popular and intuitive X-based editor written at Fermilab for UNIX.

The remaining available editors are UNIX implementations of Digital's products for VMS:

nu/fPU
fermitpu

EDT+ ·

An emulation of TPU
A locally ported UNIX version of the newest EVE, layered on nu/fPU
(from VMS V6.l)
A UNIX version of EDT2

The VMS-style editors are legacy products, and as such are not guaranteed to remain available
beyond the VMS-to-UNIX migration period. It is also unlikely that you will find these third partr
editors on UNIX systems outside of Fermilab. They are provided solely to ease the transition to

November 26, 1997

1. In addition, UNIX provides sed for non-interactive editing and awk for more sophisti-
cated and complex non-interactive editing. These two products are not covered in this
manual.
2. Due to budgetary constraints and soaring maintenance costs, support for EDT under
UNIX is now frozen at release v6_3a. We expect that this release will continue to function
properly. However, if future hardware or software changes cause EDT to break, it will not
be replaced or upgraded. EDT will not be purchased for any new operating systems
which may be supported in the future.

Editors 11-1

UNIX for users already familiar with these products on VMS. Users not already familiar with
these VMS editors are strongly discouraged from choosing one of them for use in UNIX! All
users are encouraged to begin learning one of the permanent UNIX editors.

11.2 Comparison of Editors
The following table discusses the advantages and disadvantages of each of the above-mentioned
editors.

Editor Advantages Disadvantages

vi Available on all supported platforms Considered to be very primitive in its
and systems as a native UNIX tool. screen capabilities. Non-intuitive inter-
Well-documented. It is set as the face. Lowest common denominator of
default editor for many applications screen editors.
on many systems.

emacs Widely available public domain soft- Requires installation· of emacs. Inter-
ware package. Well documented. face not very intuitive for users accus-
Many macros and enhancements tomed to VMS-style editors.
available via the internet. Lan-
guage-specific text editing modes
(e.g., English, Lisp, c; FORTRAN).
Lots of expertise and consultin~
available via newsgroups, etc. Very
configurable. EDT-style keypad
emulation available. X and ASCII
modes. Supports file versions.

Xemacs Same as for emacs, plus more. Intui- Requires installation of Xemacs.
tive, GUI interface. Language-spe- I

cific syntax-highlighting.
Multi-windowed, interactive,
object-oriented class browser.

NEdit Very intuitive and well-documented. Requires installation of NEdit.
Customizable. Gaining popularity Requires X-based terminal. Not avail-
world-wide. X-based. able on all systems/platforms.

nu/TPU Nearly identical to Digital's TPU for Duration of availability is uncertain.
people familiar with TPU program- Implementation includes many faults.
ming. Sufficient for a wide variety of Limited documentation available
simple editing tasks. Close enough on-line. Uses old version of EVE
to EVE/EDT-style keypad to be (from VMS V5.0). Does not match the
familiar to VMS users. Does not interface that VMS users are used to.
exhibit screen-repainting problem of Not X-based. Requires VT-100 or
fermitpu (see below). VT-200 compatible keyboard map-

pings.

11-2 Editors November 26, 1997

(

f

Editor

fermitpu

EDT+

Advantages

Nearly identical to Digital's EVE of
VMS V6.l with the exception that

/ he EDT-style keypad is used by
default. Licensing is handled on the
local node (i.e., no network license
server problems). User-configurable
and extendable. Does not require X.

Very similar to an enhanced EDT for
people familiar with EDT program-
ming. Incorporates a powerful word
processor, disaster recovery system,
an extensive help facility, full feature
programmable text processing and
the GOLD-KEY style of editing.
Does not require X, although X inter-
face is available. Minimum learning
curve for users familiar with Digital's
EDT.

Disadvantages

Duration of availability is uncertain.
Not available/installed on all sys-
tems/platforms. Not the same as fer-
mitpu on the central facility VMS
systems, although sinJJar. Requires the
FUE environment and the installation
of nuff PU and the fermitpu layered
products. Not X-based. Requires
VT-100 or VT-200 compatible key-
board mappings. On some platforms,
the screen is repainted after every key-
stroke which is very slow.

Duration of availability is uncertain;
maintenance contract terminated.
Requires the FUE environment and the
installation of the EDT product. Not
available/installed on all systems/plat-
forms. Distributed licensing (implies
that network problems and/or problems
with the license server could prevent
EDT+ from being usable on occa-
sion). Not X-based. Requires VT-100
or VT-200 compatible keyboard map-
pings.

Note: For all editors used with X display, the D/SPIAYvariable (see section 9.2) must be set
properly.

11.3 Getting Started with the Editors

In this section we present a few important commands for each editor. The minimaUnformation
necessary for you to edit and save a simple file is provided. All these editors have many commands
and sophisticated features that we do not cover here.

11.3.1 vi

As we mentioned in section 11.1 above, you may occasionally find yourself thrown into the vi
editor unexpectedly, and you will certainly want to know how to exit, if nothing else. For that
reason alone you should become familiar with a few vi commands. As is typical in UNIX, the vi
commands are case sensitive.
vi requires no setup. Invoke it using the command:

% vi [filename]

Once the file is opened, you are in command mode. From this mode you can issue commands,
move the cursor, and invoke insert mode.

November 26, 1997 Editors 11-3

To enter insert mode, type i. Text you type will be inserted before the cursor. From insert mode
you can enter new text in the file. Press the Escape key to exit insert mode and return to command
mode. On many keyboards the Escape key is labelled; if not, the sequence <Ctrl-[> is mapped to
the escape function.

Some useful vi commands available in command mode

h,j,k,l

H

L

<Ctrl-f>, <Ctrl-b>
/pattern

I
X

X

dw

dd
ndd
p

: r filename
:x

:w

:w file
:q!

move cursor left, down, up, right, respectively
move to top line of screen
move to bottom line of screen
scroll forward, backward one screen
search for pattern
repeat search in forward direction
delete current cursor position
delete back one character
delete current word
delete current line
delete n lines starting with current
insert (paste) last deleted text after cursor
read in contents of.filename after cursor •
quit vi, writing file only if changes were made
write file, do not quit
save copy to.file , do not quit
quit file, discarding edits

Most UNIX guides contain a complete description of vi.

11.3.2 emacs and xemacs

We'll cover these two editors in the same section because although they are separate products; they
are closely related. •
emacs is a popular editor available on the net. It can be invoked in windows mode or ASCII mode.
Many UNIX books cover emacs, and a good reference for GNU emacs is Leaming GNU Emacs
(O'Reilly & Associates). We also refer you to an on-line GNU EMACS manual accessible under
Editors on the UNIX Resources Web page. Further documentation can be found from the man
pages.
xemacs is a graphical, X window implementation of emacs, with a few extra bells and whistles. (It
is somewhat fancier than emacs in windows mode, and not to be confused with it.) xemacs is very
similar in appearance and operation to many PC text processing applications for Windows. It is
menu/mouse driven, with keyboard shortcuts available. ixemacs has commands for passing single
command lines to shell processes; it can also run a shell interactively. All standard emacs keyboard
commands can be used in xemacs instead of/in addition to the pull-down menu commands. An
xemacs manual is accessible under Editors on the UNIX Resources Web page.

Setup and Invoke emacs

To use emacs, the product needs to be installed. To set it up, include in your login script or enter:

11-4 Editors November 26, 1997

H

% setup emacs

The mode (X or ASCII) in which ~macs attempts to start-up is determined according to your
D/SPIAYvariable. To invoke, type:

% emacs [options] [filename]

To invoke it in ASCII mode without a new window using an X terminal, type:

% emacs -nw [options] [filename]

Setup and Invoke xemacs

To use xemacs, the product needs to be installed. To set it up, includ~ in your login script or enter:

% setup xemacs

To invoke xemacs, type:

% xemacs [filename] [&]

Help Facilities

emacs/xemacs has an extensive interactive help facility, but the facility assumes that you know how
to manipulate emacs windows and buffers. <Ctrl-h> enters the Help facility. <Ctrl-h>-t enters the
help tutorial, which can teach beginners the fundamentals of emacs in a few minutes. <Ctrl-h>-a
enters Help Apropos, _to help you find commands by function. For emacs in windows mode, there
is also a Help menu. <Ctrl-h>-i enters the Info facility which brings up the on-line documentation
browsing sy.stem. The initial page (the Directory node) gives a menu of major topics. The
information is presented in a hierarchical tree format. xemacs provides this via an Info button.

Keyboard Commands

emacs/xemacs commands use the Control key and the Meta key1. In the following list c-
indicates that the control key is pressed at the same time as the character that follows. Similarly,
M- indicates the use of the Meta key, althm~gh it's not necessary to keep the Meta key pressed
down while typing the next character. Note that some command sequences use multiple
keystrokes, with and without the Control and Meta keys. A sequence like c-x u means hold
down control while you press x, then just press u. Following is a list ofthe emacs commands
used most often:

November 26, 1997

C-h enter on-line help system
c-h i enter the information browser which provides a menu of major topics

(use tab and enter keys or 2nd mouse button to select a topic;
navigation information is provided)

C-p, C-n, C-f, C-b move up (to previous), down (to next), forward, or backward by one
line or character, respectively

C-v, M-v move forward, backward, by one screen
c-s search forward for characters (system will prompt you for string). To

continue search, type c- s again.
c-r search backward

1. If you have a key labelled Meta, use it; if you don't, try the Alt key or the Escape key
(if you're running a native X window). As a last resort, the sequence <Ctrl-[> should
always work as a Meta key.

Editors 11-5

C-d
C-k
C-y

c-x u

C-g

c-x i

M-q

delete a character
delete (kill) from cursor to end of line
restore what you've deleted

undo last edit
get out of current command operation
insert file at cursor position (system will prompt for filename)

fill paragraphs
c-@ or c-spacebar set the mark for the start cir end of a region to select
c-w delete all between mark (see c-@) and cursor's current position (paste

back with c-y)

M-w copy all between mark (see c-@) and cursor's current position (paste
back with c-y)

c-x c-x exchange mark and cursor's current position (since the mark is invisibl_e,
this allows you to find it)

c-x c-s

C-x c-w
c-x C-b
c-x 0

c-x c-c

save the file
write to file (system will prompt for filename)
display buffer list
move cursor to other window (when more than one displayed)

exit emacs
Note, if the serial port or terminal device you are typing on is configured for <Ctrl-s>/<Ctrl-q>
flow control, you may find that <Ctrl-s> (written above as C-s) within emacs causes the terminal
.to stop sending characters, the same as when used at the shell prompt. If you want to use the usual
emacs key bindings and to have c-s work properly within emacs, you'll need to reconfigure
your line to not do flow control. Where and how you do this depends on how you're connected. If
you're connected via a modem, you may need to reconfigure your modem, as well as the
pseudo-terminal on your UNIX host. The latter can be done via the command:

% stty stop undef start undef

(which sets the stop and start characters to "undefined"). You could include this statement in your
. 1 og in or . prof i 1 e . The intermediate step, between the on-site modem and the Cisco
router/terminal server, has flow control turned off by default.

Language-Specific Text Editing Environments

emacs/xemacs supports several text editing environments (called modes), each geared to a
particular language (e.g., English, Lisp, C, FORTRAN). When the editor is started, it normally
loads the file $HOME / . emacs, if present, which contains Lisp commands for initialization. In
particular, by setting up a mapping in this file between file extensions and languages, you can
configure emacs/xemacs to come up in the appropriate mode according to the extension of the file
you specify on the invoking command line. The text you need to include in . emacs has the
syntax:

11-6

(setq auto-mode-al ist (append ' (
("\\ . extensi on l$" langua gel-mode)
("\\ . extension 3$" . langua g e3-mode)

) auto-mode-alist))

("\\ . extension2$ "
("\\.extens i on4$"

Editors

l anguage2-mode)
l angua ge 4-mode)

November 26, 1997

I
j)

I
')

J

For example:
(setq auto-mode-alist (append ' (

("\ \. asm$"
("\\.cc$"
("\\ . c$"
("\\ .m$ "
("\\.cdf$"
("\\.for$"
("\\.inc$"
("\\.era$"
(" \ \ . tex$"
("\\ .el$"

asm-mode)
c++-mode)
c-mode)

("\\ . s$"
("\\ .C$"
("\\ .h$"

objc-mode) ("\\. csh$"
fortran-mode) ("\\.cin$"
fortran-mode)
fortran -mode)
fortran-mode)
TeX-mode)

("\\ . f$"
("\\.car$"
("\ \ . crb$"
("\\ . txi$"

emacs-lisp-mode) ("\\ . ice$"
) auto-mode-alist))

("\ \ .awk$"
("\\ . hh$"
("\\. i$"

awk-mode)
c++-mode)
c-mode)

asm-mode)
cc-mode)
c-mode)
c - mode)
fortran-mode)
fortran - mode) ("\\.F$" . fortran-mode)
fortran-mode)
fortran-mode)
Texinfo-mode)

. c++-mode)

The on-line GNU EMACS manual provides more information on creating and modifying this file.

Use with EDT-Style Keypad

emacs/xemacs can be 1-iet to have an EDT-style keypad. This is documented more thoroughly in
our Web pages; here we provide some start-up information.

November 26, 1997

emacs (windows) and xemacs The key bindings are in the control of the editor emulation.
When you first start up the tpu-edt emulator (instructions
follow) it will prompt you to setup a keyboard mapping
(see screen below). You need a separate mapping for each
different keyboard type you use.

emacs in non-windows mode Here you are at the mercy of your window emulator.
There are things you can do to remap keys on most vtl 00
window emulators, but it is different for each OS/emulator.
There are too many permutations to document.

Thi s program pr ompts you to press keys to create a custom keymap file
for use with the x- wi ndows version of Emacs and TPU-edt .

Start by pressing the RETURN key. and continue by pressing the keys
s peci f ied in the mini-buffer. You can re-arrange the TPU-edt keypad
by pressing any key you want at any prompt. If you want to entirely
omit a key . just press RETURN at the prompt .

Here 's a pictur e of the standard TPU/ edt keypad for reference:

I HELP I
IKeyDefs l

Do
I _______ I ______ _

I find llnsert IRemove
I I ISto Tex l
1 _______ 1 _______ 1 _______ 1

ISelect IPre ScrlNex Serl
I Reset IPr e WinlNex Wini
1 _______ 1 _______ 1 _______ 1

IMove upl
I Top I

_______ I _______ I ______ _
IMov Lefl Mov DowlMov Ri g l
ISta□fLilBottom IEnd□fLil
1 _______ 1 _______ 1 _______ 1

I
I I I I
1 _______ 1 _______ 1 _______ 1 ______ _

I Gold I HELP lfndNxt I Del L
I key IE-Help I find I Undel L
1 _______ 1 _______ 1 _______ 1 ______ _

I Page I Sect IAppend I Del W
I Do I fill IReplacelUndel W
1 _______ 1 _______ 1 _______ 1 ______ _

lforward lReverselRemove I Del C
IBottom I Top llnsert IUndel C
1 _______ 1 _______ 1 _______ 1 ______ _

I Word I EOL I Char I
IChngCas lDel EOLISpec lns l Enter
1 _______ 1 _______ 1 _______ 1

I Line ISelect I Subs
I Open Line I Reset I
I _______ I _______ I ______ _

Hit carr iage- r eturn (CR > to continue •

Editors 11-7

~

To invoke the emulation, put the following text at the top of your $HOME/. emacs file:
(tpu-edt) ;; Basic Emu l ation
(tpu- set-scrol l - margins "1 0 %" "15%") ; ; Set scrol l margins 10% (top) and 1 5% (bottom).
(load "vt-control" t) ; ; VT terminal controls (No complaint if not available)

;; TPU- edt treats words l i ke EDT; here ' s how to add word separators .
; ; Note that backslash (\) and double quote (") are quoted with ' \'.
(tpu- add- word-separ ators "]\\ [-_, . \"=+() '/*#: ! &;$ ")

To try this out without changing your . emacs file, first invoke the editor, then press Alt-x (hold
down Alt while pressing x), and type tpu-edt followed by a carriage return.
On some platforms you may have trouble with the Gold key. The problem and its solution are
dependent on the type of terminal and keyboard you are using. We know the solutions for some
combinations. We are planning to provide this information soon in a Web page under [!NIX
Resources, and to keep it updated as we learn more. You may also find some helpful information
under the heading X-terminals from the CD home page; see Misc. Information - Hints, Notes, User
Experiences, Etc.

The xemacs GUI Interface

Due to the user-friendly nature of the product, we present only a few basic commands to give you a
flavor of this type of editor if you are not familiar with it:

Open a file Open from the toolbar or File menu (you can also open in another
window or in a new frame); choose an existing file from popup window

Create a new file Open from the toolbar or File menu; type in the new file name
Include a file
Select text

Insert File from the File menu

Use the mouse
Highlight special syntax in color (for use with language modes)

Syntax Highlighting from Options menu.
Cut/Copy/Paste text CuVCopy/Paste from the toolbar or Edit menu
Search for text Search from the Edit menu
Spell check Spell from the toolbar or Edit menu.
Save the file Save from the File menu
Close the file Delete Buffer from the File menu (use the Buffer menu to select the

buffer to close)
Exit xemacs Exit EMacs from the File menu

All standard emacs commands can also be used. In particular, if you call up one of the bells and
whistles that you didn't really want, use:

C-g get out of current command operation

The xemacs oo-Browser

The 00-Browser is a multi-windowed, interactive, object-oriented class browser. It currently
supports seven object-oriented languages (Eiffel, C++, Objective-C, CLOS (Lisp), Java, Python
and Smalltalk), one non-object-oriented language (C), and one documentation language, (GNU
Info). On the Web you can find documentation for the oo-Browser with the xemacs product.
Before using the browser, you must create a database of information for each set of source code
files you plan to use.

11-8 Editors November 26, 1997

1

LI

Here is a brief set of instructions for creating a database:

l)Run setup xemacs

2) Change to the directory in which you want the browser database output to go (we'll call it
outputdir), and invoke xemacs.

3) Select OO-Browser from the Tools pull down menu. In the prompting window at the bottom
of the window it will say: Load/Create 00-Browser Environment:
{outputdir}/

Enter a filename. This file is used to store the answers to the following questions. The
application will then read this file to build your browsing environment. The file can be reused
in future sessions. Here we'll use the filename OOBR, to create the file
{outputdir}/OOBR.

4)Nextitpromptsforalanguage: Choose: 1) C++/C; 2) Eiffel; 3) Info; 4)
Java; 5) Lisp; 6) Obj-C; 7) Python; 8) Smalltalk

Enter the number corresponding to your choice.

5) Some error messages may rapidly scroll by. Ignore them1 and wait for the following prompt:
Please specify the "OOBR" Environment (Hit RET to begin).

Enter Return as requested.

6) Next it prompts for a list of "system" directories and then "library" directories. You can
specify each directory using an absolute or a relative path name (relative to your current
working directory) . Specify your own source code files as "system", and any library source
code files you need as "library" . . Terminate the list by entering a carriage return on a fresh
line. •

7) The next prompt is: Build Environment from spec in file,
"{outputdir}/OOBR"? (y or n)

Enter y

8)Thefinalpromptis: Build Environment in a background process? (y or
n)

Enter n (in order to monitor what happens)
The oo-Browser starts scanning all of the files in the directory tree underneath the directories you
specified. When it finishes, your database is made and you are ready to start browsing.
A couple of useful keys are f and v. f displays an expanded (full) summary of the member
functions belonging to the selected class. If you enter v with the cursor on a class name, the source
file that defines the class (usually a header file) is displayed for viewing. Enter e to display it for
editing. If you enter v with the cursor on a member function name, it displays the source code for
that member function (usually an implementation file). If there are many functions in the same file,
the browser places you at the correct line number for the selected function.

November 26, 1997

1. A knowledgeab}e source .suspects that these messages are the result of a bug and will go
away in a future release. She has heretofore ignored them with no ill effects.

Editors 11-9

1t

11.3.3 NEdit

NEdit is very similar in appearance and operation to many PC text processing applications for
Windows. It is menu/mouse driven, with keyboard shortcuts available. Some UNIX shell
commands are available from within the editor. Make sure the NEdit product is installed on your
system. To set up NEdit, include in your login script or enter:

% setup nedit

To invoke NEdit, type:

% nedi t [filename]

Due to the user-friendly nature of the product, we present only a few basic commands to give you a
flavor of this type of editor if you are not familiar with it:

Open a file Open from the File menu; choose an existing file from popup window
Create a new file

Include a file
Select text
Cut/Paste text
Search for text
Fill paragraph
Spell check
Save the file
Close the file
Exit NEdit

New from the File menu
Include from the File menu
Use the mouse, or the shift and arrow keys together
Cut/Paste from the Edit menu
Find from the Search menu
Fill Paragraph from the Edit menu
spell from the Shell menu
Save from the File menu
Close from the File menu (you are prompted about saving)
Exit from the File menu

Further information is available from the man pages and a plain text document in the distribution
kit, but the on-line help in the program is complete and more convenient. The documentation is
also available on the Web in the product documentation area.

11.3.4 nu/TPU

nutrPU is an excellent port ofDigital's TPU (Text Processing Utility) programming language to
UNIX. The major component in nutrPU is software that can be used to build new text processors
and batch-oriented text manipulation routines. nutrPU is distributed with two editing interfaces:

• SI (Simple Interface), an EDT-style keypad map. This should be sufficient for users who do
minimal editing and wish to use an EDT-style keypad.

• a clone of the old EVE interface (from VMS V5.0) complete with the EVE_functions (but
not the EVE$functions!) from that version. This will probably not be satisfactory to users
familiar with the later version of EVE (VMS V 6.1), since it lacks many of the enhancements
and fault corrections.

The product tpu needs to be installed prior to use. To set up nutrPU, include in your login script
or enter:

% setup tpu

To edit using the SI interface by default, type:

% tpu [filename]

11-10 Editors November 26, 1997

To edit using the older EVE interface, enter:

% tpu -section=tpusec. ini [filename]

Once you are in the editor, on-line help is available via the PF2 key or the Help command.

For complete documentation on nu/l'PU, including documentation on all command-line options
and all nu/l'PU programming statements, you can order the nu/TPU Reference Manual. Look
under Editors on the UNIX Resources Web page for documentation on the TPU-edt editor for
GNU Emacs.

11.3.5 f ermitpu

The fermitpu product is layered upon nu/l'PU and contains a locally developed port of Digital's
EVE editing interface from VMS V6.1 (the version of VMS which is current during the VMS to
UNIX migration). Note that this is not the same as the VMS product fermitpu, which contains
many enhancements beyond the VMS V 6.1 EVE editor. Users who are familiar with programming
in EVE and TPU will probably be most comfortable with this editing interface.

The products fermitpu and nufl'PU must be installed prior to use. To invoke, include in your login
script or enter:

% setup fermitpu

% tpu [options] [filename]

Once you are in fermitpu, the on-line help (accessible via PF2 or the Help command) contains
documentation on all of the EVE callbacks and TPU built-fos.

Look under Editors on the UNIX Resources Web page for documentation on the TPU-edt editor
for GNU Emacs.

11.3.6 EDT+

d Support for EDT under UNIX is now frozen at release v6_3a.
This is a clone ofDigital's EDT which includes the enhancement to remove the hard-coded 24-line
display limit. The product edt needs to be installed. To setup EDT+, include in your login script
or enter:

% setup edt

To invoke for editing within the same terminal window, type:

% edt [options] [filename]

To edit in a separate display window (requires X), type:

% xedt [options] [filename]

EDT+ allows both line mode and full screen editing. Full screen editing employs a keypad, which
is located on the right-hand side of your keyboard. If you are in line mode when you first enter
EDT+, simply type c to change to full screen mode. Once in full screen mode, you can start
entering text, and your keypad is available for commands.
To return to line mode, enter <Ctrl-z>. At the prompt(*) you can type exit to exit and save, or
quit which exits without saving the file updates.

November 26, 1997 Editors 11-11

Remember that whert you're at the UNIX command prompt <Ctrl-z> is used as the suspend
character.
Further documentation is available from the man pages, and from the vendor Boston Business
Computing, Ltd.
Look under Editors on the UNIX Resources Web page for documentation on the EDT emulation
package for GNU Emacs.

11-12 Editors November 26, 1997

n ,

Ll

Chapter 12: UNIX Mail Systems

This chapter describes how mail forwarding is managed at Fermilab and discusses the UNIX mail
handlers that are currently available and supported.

Notice of Upcoming Changes

Electronic mail is an area that is currently undergoing rapid growth and development, and it is
important that we take advantage of new technologies that"are becoming available. In particular,
demand has been growing at Fermilab for a distributed mail system that allows users to access
their mail from any machine in the network, including a variety of UNIX and non-UNIX
platforms.

Of the available distributed mail technologies, IMAP (Interactive Mail Access Protocol) is the
one that offers the most flexibility and greatest performance. It is a client-server mail protocol
designed to permit manipulation of remote mailboxes as if they were local. A particular
advantage it offers over its competitors is access to remote saved-message folders. We are
currently investigating mail handlers that support IMAP, and will announce changes within the
next few months regarding the mail handlers that will be available to Fermilab UNIX users.
As of the release date of this manual, we are providing and supporting the same mail handlers as
previously documented, namely MH (including exmh and mh) and pine. We plan to continue
providing them after IM~P is implemented. However, new users should think about whether
they will eventually want to move to an IMAP-based mail handler before choosing MH or pine.
They should also be aware of a couple of disadvantages associated with the 'MH products:

MH does not and never will support IMAP. Furthermore, the MH suite of products is no longer
under development, at least partly because· its underlying structure doesn't support any of the
emerging distributed mail technologies. The future of MH is therefore uncertain. It is unlikely
that we will continue to build more versions of MH for OS upgrades once the new mail
recommendation is made. On the other hand, users who have already configured their mail in
accordance with MH should be able to continue using exmh or mh as long as it works , albeit
without the advantages of a distributed mail system.

New users may want to choose pine instead, since its native structure does support IMAP. The
disadvantage to pine is, of course, its non-GUI, single-window user interface. If you plan to
move over to an IMAP-based mail handler when it becomes available, and you choose pine in
the interim, we recommend that you not configure pine to store messages in MH format.

Since pine is well documented elsewhere, this chapter provides only some start-up information in
section 12.2.1 along with pointers to further information.
We cover the UNIX MH (Message Handling) products including both the standard line mode mail
reader (referred to as mh), and a GUI version of MH called exmh. And we provide the
information needed to get you up and running in mh or exmh as quickly and easily as possible,
with a minimum of up-front configuration.

November 26, 1997 UNIX Mail Systems 12-1

Appendix F contains information on how to customize exmh and mh, and how to take advantage of
some of the less essential but very useful features. If you wish to do more in-depth customization
of the MH products, we recommend the excellent reference bookMH andxmh - Email for Users &
Programmers by Jerry Peek, published by O'Reilly & Associates. An HTML version of this book
can be accessed through the UNIX Resources Web page.
Appendix G provides a quick reference for the mh commands described in this chapter.
Appendix H contains instructions on moving your VMS mail folders to UNIX and converting them
to the MH system format and organization.

You 'II also find a brief discussion of Berkeley mail at the end of the chapter, only because it is a
mail .reader available on all UNIX machines.

12.1 Mail Forwarding

12.1.1 The Fermilab Mail Server: FNAL

First, a general word on mail handling at Fermilab. FNAL formerly referred to the central Fermilab
VAX computing cluster, where most people at the lab had an account. As computing became more
distributed, a single mail serving node was set up to handle the mail flow. This mail server was
designated as FNAL, and the central VAX cluster was renamed to FNALV. FNAL will continue to
function as the Fermilab mail server.
The central mail server provides a simple, uniform mail address for all users at the lab:

username@fnal . gov

We strongly recommend that you take advantage of this capability and have all your mail routed
through FNAL. It is your responsibility to choose a node for reading mail and to make sure your
forwarding address on FNAL is set to this node. We step you through the forwarding process in •
section 12.1.3. However, we recommend that you work your way through the material in this
chapter in the order it is presented, and change your forwarding address on FNAL only when you're
ready to actually switch your mail activities to your chosen mail system on UNIX.

12.1.2 Forwarding on File-Sharing UNIX "Clusters"

Before getting started, you will need to choose a node for your mail activities. Once you do,
forwarding mail to that particular node requires creating a simple . forward file in your
$HOME directory. We show you how to do this in section 12.3 and again in F. 1. If your chosen
mail node is part of a UNIX "cluster'' like FNALU on which a file-sharing system is installed (for
example AFS or NFS), then creating a single . forward file in your common $HOME directory
is sufficient for the entire cluster. The contents of this file indicates your chosen mail node within
the cluster.
You might wonder why you need to choose a particular node in the case of a file-sharing cluster.
The reason is that incoming mail on UNIX is sent to a non-shared area of one node; you can't
change that, you can only specify which node you want used. From here the mail needs to be
incorporated into the mail system of your choice; we cover this topic in sections 12.3.3, 12.4.3, and
F.4. If you are working on a different node from the one receiving the incoming mail, you will be
able to send mail, but you will only see previously incorporated mail; you will not receive (and
cannot incorporate) new mail because it is inaccessible to this node.

12-2 UNIX Mail Systems November 26, 1997

[j

12.1.3 Recommended Forwarding Procedure

Advantages

The procedure we describe here for setting your mail forwarding has three advantages:
• Every time you change your mail node, you only need to change the forwarding address on

three nodes: FNAL, the old (or current) mail node, and the new mail node. If you have
accounts on many systems, this is a timesaver.

• All Fermilab users have a standard, stable email address: {u sername } @fnal . gov.

• No mail is left sitting in the system mailbox (except as yet unincorporated mail on your chosen
mail node).

Set Forwarding on your New Mail Node

As a first step, in your $HOME directory on your chosen UNIX mail node, create a . forward
file using your preferred editor. Enter the following expression as the contents of this file:
\ {use rname}@{node}.fnal.gov

where {username } is your login id on your chosen mail node, {node }. For example, user
"fred" who wants to receive mail on the FSUIOl node of the FNALU cluster would enter the line:
\ fred@fsuiOl.fnal . gov

This expression is an instruction to put incoming messages in this designated node's spool area.
The initial backslash(\) is required to prevent looping.
Later, you may decide to set up mail notification and/or unattended autoincorporation on your
chosen mail node. These options are discussed in Appendix F. If so, you will need to replace the
above expression with a different one in the . forward file on this node (or cluster) in order to
preveqt the redirection of incoming messages to two or more places.

Set Forwarding on FNAL

As a second step, you need to log on to the mailserver node FNAL and use the menu-driven
program to change the forwarding to your new mail node. If you don't know or don ' t remember
your FNAL password, send mail to compdiv@fnal and request a new one.
Make sure you set forwarding here on FNAL to your new mail node BEFORE you change the
forwarding on your old mail node to FNAL! Otherwise you get an infinite mail loop.

Once you're logged on to FNAL, you'll see the following menu:

November 26, 1997

User: USERNAME
Date: 11 / 1 0/ 95
Forwarding Address:

VMS Menu System V3.0

userna me@FN) LV. fnal .gov

Fermilab Mail Server Menu
F Set Forwar ding
P Set Password
U Unsubscribe from a LISTSERV
X Exit t h e Menu

Ti me : 12:33 PM
Select Option :

UNIX Mail Systems 12-3

Select option F Se t Fo rwarding. This brings you to_the following screen:

Please enter your new forwarding address below

Supported addressing formats

DECnet Node: :User-ID FNALV: : JONES
BITNET User-ID@Node JONES@FNALV
INTERNET User-ID@Node.domain JONES@FNALV . FNAL . GOV
Quickmai l User-ID . Mailcenter@QMGATE.FNAL . GOV JONES . Mailcenter@QMGATE . FNAL.GOV

Please do not enter quotes or standard prefixes (smtp %, JNET%, IN% ...)

Your curren t forwarding address is: usern ame@FNALV . FNAL.GOV

En ter fo r ward ing address [? for help]:

Set your new forwarding address here in the format:
{username}@{node}.fnal.gov

where { username } is your login id on your chosen mail node, {node }.

Set Forwarding on all Other Nodes (including old mail node)

On all other external systems where you might receive mail (excluding the cluster containing your
new mail node) , UNIX or otherwise, set your forwarding address to your FNAL address.
To do this on other UNIX systems, create a . forward file in your $HOME directory on each
separate node or file-sharing cluster. The co~tents of this file should be a single line containing the
expression:
{u sername }@fnal.gov

where {us e rname } is your login id on FNAL, the mail server. Note that there is no initial
backslash here.
For information on how to set forwarding on non-UNIX machines, consult your system-specific
documentation.

Set your "Reply To" Address

In most mail handlers, when a user directly "replies" to a message that you have sent (as opposed to
starting a new message in the normal fashion to send to you), the reply is sent by default to the
address from which you sent the original message, i.e., to the address in the "from" field. At
Fermilab, this is not desirable; we prefer that all messages, including replies, get addressed to
{ us ername} @fnal . gov. In order to accomplish this, the outgoing message must specify a
"reply to" address, and the mail handler that receives the message should be configured to send
replies to that address in preference to the "from" address.
For pine, you need to set some configuration parameters. We describe this under Configuring pine
in section 12.2.1.
For the MH mail handler, you can set your "reply to" address in the file c omponents. We
describe how to do this in section F.2.2. When replying to a message, the default behavior is to use
the address in the "reply to" field if it has been supplied, otherwise to use the "from" address.

12-4 UNIX Mail Systems November 26, 1997

f

[J

12.2 Overview of Mail Systems Available at Fermilab

As is typical for UNIX, there are many mail handling systems from which to choose. Here we
provide a brief introduction to the currently available mail handlers at Ferrnilab. The Computing
Division currently provides both pine and the MR system (which includes exmh and mh). Please
see the remarks at the beginning of this chapter regarding upcoming changes in available mail
handlers .
The simpler, less functional Berkeley mail is a mail reader that you will find on all UNIX
machines. Therefore we give a cursory treatment of it in this chapter, although we explicitly do not
recommend it.

First choose one UNIX node for your mail activities.
Secondly, we advise you to become familiar with the different mail systems and select the one
you want to use as your primary mail handler before you start your conversion process.
Although MR and pine can be made to work together (see section 12.2.1), they were designed
independently of each other, and by default organize and handle mail differently.

12.2.1 pine

pine (Program for Internet News and Email) is a popular menu-driven, non-graphic UNIX mail
system which the Computing Division supports. It can be configured to be ~ompatible with the
MR message storage structure, although it does not come this way "out-of-the-box".
The Computing Division no longer recommends using the MR message storage structure for pine.
We have not documented pine's functionality in this manual; however we provide some start-up
information for you. You will need to select from the wide variety of available documentation on
the Web and elsewhere tb learn how to use pine.
As a starting point for documentation on pine, see the UNIX Resources Web page. You'll find
information under the Mail heading. In addition, also from the UNIX Resources page, select Other
UNIX Resources followed by the UNIX Reference Desk, and click on Applications to find a good
introductory document on pine.

Using ·pine and MH Interchangeably

This is no longer recommended; see the introductory remarks to this chapter.
If you have converted your mail to UNIX using the methods described in Appendices A and H,
your mail folders are in MR format. See section 12.4.2 for more information on MR-style folders.
If you plan to use pine and one of the MH interfaces interchangeably, you should leave your
folders in MR format, and configure pine to recognize them. This involves creating appropriate
mail folder collections. Follow these steps to make message storage in pine compatible with MR:

November 26, 1997

1) Run setup mh or setup exmh to create your MR-style inbox folder.

2) Run setup pine

3) Invoke pine (from your $HOME directory) using the command pine. This creates the
pine configuration file $HOME/. pinerc.

4) Exit pine (type q to quit).

UNIX Mail Systems 12-5

5) Make sure the product mailtools is setup, then run the command fmh2pine 1. This
modifies the pine configuration, setting your pine inbox path to the default MH inbox
folder, and adding an MH folder-collection containing all your MH folders. This command
also makes your nested MH folders available to pine.

6) Run pine again.
Type L to select a folder to view. When you expand the folder collection lists and view the folders,
you will find that the contents of your MH inbox folder is included in INBOX in pine's
<mail/ [] > folder collection. Your other MH folders show up in the <#mh/ [] > folder
collection with their original names. Any nested MH folders you have defined will show up in
separate folder collections according to their "parent" folders.
Anytime you add or delete an MH folder, run fmh2pine to update pine's configuration
accordingly.
If you normally use exmh and only use pine from home, for example, include the commands
setup mh and inc in your . login or . profile. file so that new mail gets incorporated
and is displayed in pine.

Configuring pine

We recommend that you configure a few additional options.
fmh2pine sets folder-collections for you to the two values shown below thus
configuring pine for use with MH. (This is no longer recommended.)
In pine, messages are not by default moved from the system spool area on your mail node (where
they are initially deposited) into your home area. See The UNIX System Mailbox under section
12.4.3 for a discussion of the spool area. We strongly recommend that you properly set the options
that move messages into your home area (the variables defaul t-fcc and
read-message-folder, and the on/off feature auto-move-read-msgs). There are
several reasons for this, one of which is that if your mail node goes down, you can not access any
messages in the spool area.
Go to pine's SETUP CONFIGURATION menu. There are many options available, and they come
with on-line help. With the cursor on the option you want, press ? to get help on it. Some options
are variables which take one or more values. To set a value for one of these variables, first type A

. to add, then enter the value. Or type c to change an existing value. Other options ·are in the form
of a list of features that you can tum on or off individually. Enter X to enable a feature; leave
unwanted features blank. Here we provide some recommendations:

defaul t-fcc The default folder for messages you send out; make sure it
is not set to (uppercase) INBOX. Default is
sent-mail.

read-message-folder

user-domain=fnal.gov

The folder in which read messages are placed. Make sure
it is set, and that it is not set to (uppercase) INBOX.

This value specifies the domain part (right-hand side) of
your return address on outgoing email, thus setting your
"reply to" address to {username} @fnal.gov. This
value is also used as the default domain for email that you
send to a local usemame.

reply-always-uses-reply-to

12-6

Set this option so that pine uses the "reply to" field, if
present, when you reply to incoming messages.

1. fmh2pine is part of mailtools v2_2.

UNIX Mail Systems November 26, 1997

r

l

folde r-coll e ctions=mail / [l

This enables your basic set of pine mail folders.
folde r-coll e ctions=#mh/ [l

d e fault - fc c=#mh /ou t b ox

This enables your MH set of mail folders (no longer
recommended; see introductory remarks for this chapter).
Here we are assuming that in exmh you send your copies
of outgoing mail to the folder ou tbox. Set this to your
default outgoing folder to make your copies of outgoing
mail available to you when you get back to exmh.

The option list is rather lengthy, so we provide some further suggestions for you. We have found
the following features to be particularly useful. Explanations for the~ are in the on-line help:

auto-move-read-msgs
auto- zoom-after- select
auto- un zoom- a f ter-apply
customized -hdrs
default-composer- hdrs
e n abl e-aggregate-command-set
enable- a l tern ate- edi tor-cmd
e n able-bounce-cmd
enabl e-flag-command
e n able-full - headers-command
ena b l e-j ump -command
enabl e-susp e n d
e n abl e-un ix-pipe- cmd
e n able-expanded-~iew-of-add ressbooks
preserve-start-stop-characters
que l l-user-lookup- in-passwd-fil~

Using pine Exclusively

If you choose to use pine exclusively, you will need your folders in the pine format. First, get
ready to run pine:

1) Run setup pine

2) Invoke pine (from your $HOME directory) using the command pine.

3) Complete the configuration as described in the above sections, however do not run
fmh2pine and do not set inbox-path to #mh / inbox .

You can copy entire folders between the pine and MH collections as follows:

1) Go to the FOLDER INDEX screen for the desired folder.

2) Enter (semi-colon) to issue the pine Select command.

3) Enter A to select All messages.

4) Enter A to Apply the command.

5) Enter S for Save.
Use <Ctrl-n> or <Ctrl-p> as necessary to choose the destination folder collection, then enter the
new destination folder name. Or just type in a folder collection and name. Respond Y to create
the new folder.
To use pine exclusively, you'll want to move any folders in the <#mh / [J > folder collection to
the <ma i 1 / [J > folder collection.

November 26, 1997 UNIX Mail Systems 12-7

Printing from pine

You will find it useful to set up printing from pine.

1) Go to pine's SETUP PRINTER screen (enter S followed by P).

2) Move down to the Personally selected print command option. Enter S to
select this option.

3) Enter A to add a printer, then as prompted, enter the name of the printer (this name is for
your reference only) and the full command for the printer. For example:

Printer: printer _name

Command: flpr -qprinter _name

4) You may enter several printers. Enter S to select the printer you want to use.

5) Exit (E) and save changes.

12.2.2 MH Graphical Interface: exmh

exmh is the GUI implementation of MH, requiring the X environment. It is built with Tclffk. It is
quite customizable, yet for the most part satisfactory with a minimum of configuration. exmh
provides interfaces to many other powerful tools including a spell-checker, a fast-search
mechanism, www, and more. exmh can read and send MIME (Multipurpose Internet Mail .
Extensions) multimedia mail. 1 Note that exmh displays nonprinting characters as their ASCII hex
value. For example, embedded line-feeds (often included in mail messages originating from a PC)
are shown as \x0d.
Although we used to recommend exmh for users who most often work in the X environment, we no
longer recommend that new users choose it, due to its uncertain future .

12.2.3 MH Line-Mode Interface: mh

mh is the command line implementation of the MH system, and as such is suitable for occasional
use (when X-capability is unavailable) by those whose primary mail handler is exmh. pine may
also be used in this capacity (see section 12.2.1).
mh is a very rich, flexible, and configurable mail system on its own. MH commands are not a part
of a monolithic mail environment; each command is a separate program and the commands are
issued directly from a UNIX shell prompt. Therefore, all the features of UNIX shells (pipes,
re-direction of 1/0, and so on) work with mh. You can use the man pages to get information on the
MH commands.

12.2.4 Berkeley Mail

Berkeley Mail is an older mail system, and it is available on all UNIX systems. We do not
recommend using it, but like the vi editor, knowing a little about it may come in handy sometimes!
See section 12.5 for information on basic commands.

12-8

1. MIME allows you to read and send image files, sound files, and other items that require
encoding to be sent via the mail system. See section 9.6. The O'Reilly book referenced at
the beginning of the chapter includes an introduction to MIME.

UNIX Mail Systems November 26, 1997

J

l
u

d

d

12.3 The exmh and mh Mail Handlers
In this section we provide a guide to the basic commands and operations in both exmh and mh. Be
aware that many more features and functions are available in these products than you'll find
documented here.
We want to remind you that both mh and exmh are highly configurable interfaces to the powerful
MH system. You can customize your personal setup to your heart's content, however we
emphasize that neither mh nor exmh requires tweaking and tailoring beyond a very manageable
minimal amount. We provide you with the information necessary to set up these interfaces for
effective use in three places:

• We show you how to change fonts and editors in the basic command guide that follows in this
section.

• In section 12.4 you'll find information on signature lines, mail aliases, and customizing the
exmh folder display. We also provide information here on using exmh functions to
incorporate mail.

• In Appendix F we discuss several nonessential but commonly tailored items, including
customized mail notification (F.1.2) and message headers (F.2).

Recall that exmh and mh use the same underlying commands, although they have very different
user interfaces. We've organized this section by function, showing you how to perform each
selected function in both exmh and mh. This should make it easier to switch back and forth
between the two interfaces if you sometimes find yourself at a graphics-capable terminal, and
sometimes at an ASCII-only terminal.

We recommend that you perform couple of initial steps before starting to practice. These steps
relate to mail forwarding, and we recommend them at this stage because of the way incoming
mail is stored under UNIX (mail storage is discussed in section 12.4.3).

• Choose your mail node, and plan to do your practicing there.
• Create a file named . forward in your $HOME directory on this node containing the

single line:

\{username}@{node}.fnal.gov

where { username} is your login id on your chosen mail node, {node}. This ensures that
your "practice mail" will be available to you on the right node if you should need it later.

If you have an account on another machine, why don't you send a message or two to yourself on
your chosen mail node before getting started so you have some messages to read? This isn't
necessary, you can always send messages to yourself on your mail node.

12.3.1. Run Setup and Invoke the Application

exmh

% setup exmh

The use of exmh requires that you set your DISPLAY environment variable appropriately (see
section 9.2).

November 26, 1997 UNIX Mail Systems 12-9

When you setup exmh, you also setup several other products1 which exmh either needs or with
which it can interface. Among these is mh. If you've never run setup mh, then the first time
you run setup exmh the file . mh_profile is created in your $HOME directory, and a ·
message is sent to you (ignore the content of this message; it may be out of date). The
. mh_pro f i 1 e file defines your basic MH configuration ..
To invoke exmh, enter:

% exmh [&]

The first time you invoke exmh, you are asked if you want to create a message folder for message
drafts in your Mai 1 subdirectory. If you respond Yes, it adds a line to your . mh_pro f i 1 e
identifying the folder. 2 By default the folder is called drafts, but you are given the opportunity
to name it as you wish.

For the Compose, Reply, and Forward operations to work,
you need to have an MH drafts folder. Creating one
requires making a directory (you choose the name)
and adding a draft-folder: entry
to your .mh_~rofile.

Should Exmh help you do that now?

Folder name: drafts ~~ J
Click on Yes if you wish to continue.

1. Run the command ups 1 i st -1 exmh to see the list of product dependencies.
2. It will also add the lines unseen-sequence: unseen and repl: to your
.mh_profile.

12-10 UNIX Mail Systems November 26, 1997

Now an exmh window appears. The exmh window is split into three areas, which we also call
windows. The title bars in each of the three windows have command or pull-down menu buttons.
Actions are performed by clicking on the buttons and/or choosing from menu items.

I

1111 !d,-afts !

1111
inbox+ 2 rosgs (1- 2) New Flist Inc Coror~it Search ... Hore ...

MCl#&IIMil\¥tti4i t0fli,@IIQ@BH&i4■fo4Jii@l■fflliWli■Wdi
2 02/14 To;aheavel! , Starting out in exrnh((Th is i s a message I 've sent

(no face) inbox:1
EXMH

~~~~~~[§]~~· 
Date: lied , 14 Feb 1996 15:53:14 -0600 t,. j 
From: aheavey (Anne Heave!:J) 
To: aheave!:J 
Sub,ject: EXMH new user 

lie l come to EXMH , 

Exroh i s a TCL (t i ck l e) based front end to the MH mai l •~stem. 
Mhen a X-w indows environment i s not avai I able, rnai 1 can be 
rirani pulated with a sMall list of HH commands. The basic 's of 
which are docuMented in The MH Pocket Guide. Should ~ou dec ide 
not to r ead i t , take note that EXl1H uses fi l e caches and 
modifi cat ions done with HH will ,~equire a manual rescan in Exrnh. 

For users previously using xmh <Frrih) there· are only a few 
differences. The first being ex~1h does not have the two 
level folder depth restriction and the mouse bottons work 
differentl~. For a brief description of the mouse differences 
1 oak. at the end of this P1essa9e. 

Mouse Buttons: EXMH XMH 

Folder se lecti on sect ion: 
c,.. 1 ,..,.. .. ,:,..1,-1,...., 

The three windows have different functions: 
Top 

Middle 

Bottom 

November 26, 1997 

displays one "button" for every defined message folder. The current 
folder button is highlighted. Select a folder (make it current) by 
clicking on it with the left mouse button. MH message folders are 
discussed in section 12.4.2. 
displays message headers in the current folder (the folder selected in the 
top box). The title bar for this area displays the current folder name and 
the number of messages. The header of the current message has a'+' 
next to its number and is highlighted. 
displays the current message (the message highlighted in the middle 
box). The title bar for this area displays the current folder name and the 
current message number. 

UNIX Mail Systems 12-11 



A general usage note: You can display any message by clicking the message header in the middle 
window with the left mouse button to make it the current message. To select multiple headers 
(useful for refiling, removing, etc. several messages at a time), hold down the shift key while you 
press the left mouse button to select each one. 

You may find that on your terminal the default font size for exmh is rather small. If you really 
want to change it, here's how. 
You ' ll need to include two lines at the top of your $HOME / . e xmh-de faul t s file (above the 
three comment lines ending with: ! ! ! Do n o t edi t b e low h e r e ). You will need to 
choose which font specifications to use. The format of these two lines is as follows ( don't 
include the curly brackets, see example below): 
*font: {new-font-spe cification } 

*fl_fo n t : {n e w-fo lde r-label-font-specifica tion} 

The * font line is for the text in the windows, and * fl_font is for the text in the folder 
label buttons. We recommend that you choose a fixed-width (as opposed to a proportionally 
spaced) font for text so that columns align properly in the middle (header) and bottom (message 
display) windows. 
The font specifications from which you can choose may be platform-specific. Execute the 
command xlsfonts I less to see what fonts are available for youa. Note that some of 
the font specifications will look short (for example vt 3 3 014 ); they are font aliases, and will 
work here, too. 
We suggest the following font specifications, if they are available on your system. Just add these 
two lines .to your . e xmh- d e faul t s file as discussed above: 

mh 

*fon t : - b&h- l uc idatypewriter - medium-r-normal -sans- 14-1 00-1 0 0 -100-m-80- i so8 859- 1 
*fl_fon t : -b&h- l ucidabrigh t-d emibold-r-normal--14-100-100-100-p-84- i so8859- 1 

a. xfontsel is a point and click interface for selecting font names; you may want to use this 
in addition to xlsfonts to determine which fonts are available on your system. 

To setup mh, enter: 
% setup mh 
You don't need to do this if you've already setup exmh. 
The first time you do this, it creates a file . rnh_c_Pro f i 1 e in your $HOME directory. It also 
automatically sends a message to you (ignore the content of this message; it may be out of date). 
Now all the mh commands are available for use. As mentioned earlier, there is no single invoking 
command; you simply type mh commands at the shell prompt as you need them. 

12.3.2 Compose and Send Messages 

J Remember to send yourself a message or two so you'll have something to read later on. 

12-12 UNIX Mail Systems November 26, 1997 



l 

For both exmh and mh, a default message header with the following contents is provided for 
sending messages: 

To: 
cc : 
Subject: 

If you wish to change the contents or appearance of the message header, you can create your own 
components file. See section F.2 for information. 

exmh 

To compose your message click on send in the bottom window. The word comp (for compose) 
will appear in the command menu bar .. Then a new drafts window will pop up in which you will 
write your message. exmh uses sedit (Simple Editor) as the default editor for composing 
messages. As a new user, you may just want to use this editor for a while to simplify your initial 
setup. 

To: 
cc: 
Subject : 

MIME t ype te JCt/pl ai n ; charset=i so-8859-1 

Fill in the information, using a tab between the header fields 1, and then type in the body of your 
message below the dashes. On many terminals <Ctrl-h> is used for character deletion. Alternately, 
you can select the text to delete and press your Backspace or Delete key2. Most mail programs • 
expect a carriage return at the end of each line of the message, so it is always wise to include it. 

November 26, 1997 

1. Note, however, that if you tab twice in rapid succession, the cursor will mo.v.e down to 
the message content area. You can use this feature to pass over all remaining fields if you 
don't want to enter information in them. 
2. If the backspace key doesn't work properly when sending mail, you can rebind it by first 
clicking on Bindings ... in the top line, then click on the Simple Edit submenu. In the 
backspace field, type Key-Delete. Click on Save. 

UNIX Mail Systems 12-13 



0 

0 

Note that if you set your preferences (go to Preferences button in top window) for Simple Editor 
to Format Mail Default On, you don' t need to explicitly include the carriage return at the end of 
each line, it will be done automatically for you after you exit the editor. This feature is only 
available for the sedit editor.1 Once you finish in the "Simple Editor Preferences" window, click 
Dismiss. Then click Save on the "Exmh Preferences" window. 
Once you have completed the message, you can send it to the recipient(s) by clicking on the send 
button. If you decide not to send it, you can either save it in the Mail·; drafts folder by 
clicking on Save&Quit, or discard the composition by choosing Abort. There are many useful 
options available on the drafts window under More ... such as Insert File and Spell. Under Text. .. 
you have some options for fonts, which only are useful if the destination machine/mail reader 
supports them. If not, the recipient will see things like <bold> {your message 
text}< / bold> in the message. 
If you don't want to use this editor, you can define a different default editor, or you can define a 
secondary editor and then select it from the More menu in the compose window (this secondary 
editor option is only available with sedit as primary editor). 

To define a different default editor, select Editor Support under the Preferences menu option 
in the top window. A pop-up window will appear. If your preferred editor "knows how to" 
create its own X window, e.g., emacs, nedit, enter in the Editor Command field: 

exmh-bg editor 

where editor is the editor of your choice. If your preferred editor does not have this capability, 
e.g. vi, you'll need to enter: 

exmh-bg xterm [-options] -e editor 

where - ·options are any options (i.e. font ~pecification, preferred colors, geometry, etc.) to the 
xterm command. If you don't know about your editor, you'll find that one of these strings 
works and the other doesn' t.a 

Your selected editor must be in your PATH; you cannot use an alias definition instead. 
Click on Dismiss when you're done, and then be sure you click on Save in the "Exmh 
Preferences" menu. 

a. If you have X-Authority, you can configure an editor using e:xmh-async editor. 

To send a message in which you want to include a file, compose the message, and use the "include 
file" command appropriate for the editor you're using. 
When you save the composed message you are presented with a "What Now?" dialog box (a 
feature of MH) that gives you options to Send, Re-edit, Dismiss (this "dismisses" the pop-up 
window and leaves the message in the drafts folder), or Kill the message. 

1. However, be aware that the line breaks inserted by sedit after you exit the editor may 
not be the places that looked like line breaks while you were in the editor. The line wrap-
ping width is controlled by the value of Max Line Length in the Simple Editor Prefer-
ences window, not by the width of the editing window. 

12-14 UNIX Mail Systems November 26, 1997 



[ 

mh 

mh will throw you into vi by default for composing a message. This is also true for forwarding and 
replying to messages. You can specify a different editor on the command line if you like. 
To compose a message in vi, enter: 

% comp This brings up a vi session. Compose your message. Then save the 
message file, and exit the editor. 

Remember to have the handy list of vi "survival commands" from section 11.3.1 with you! Just in 
case you get stuck, here's your emergency exit: hit the Escape key (or <Ctrl-[>) and then enter: 

:x 

:g! 

to save and exit, or 
to quit without saving 

Once you exit the editor, MH's What Now? program is automatically invoked to prompt you for an 
action. At the What Now? prompt, you can enter a carriage return to get a list of options. 
Normally you will enter one of these options: 

send 

quit 
quit -delete 

to send the message 

to save the message in Mail/ drafts but not send it 
to quit and not save. 

To compose a message in a different editor, enter: 
% comp -e editor This brings up a session in your selected editor. This option will 

override any editor qefaults. Compose your message. Then save the 
file, exit the editor, and respond to What Now? 

If you rea_lly want to avoid vi at all costs, we'll show you how to set a different default editor. 

To change your default editor for mh, add the following line to your . rnh~ro f i 1 e file: 

Editor: {editorname} 

where { edi torname} is your preferred editor, for example: 

Editor:. emacs 

If you want to send a text file rather than a message, use the mhmail command. Here is an 
example to illustrate the syntax (more options are available, see the man page): 

% mhmail joe@fnal -cc sue@fnal -subject "Here's the file!"<\ 
filename 

. To send a message in which you want to include a file, compose the message, and use the "include 
file" command appropriate for the editor you 're using. In vi enter: 

: r .filename 

In emacs, use [Ctrl-x] followed by i, then type in the filename at the prompt. 

12.3.3 Incorporate and Read Incoming Messages 

Mail incorporation refers to the process of moving inc&ming mail messages from the default mail 
holding area on your UNIX node into your personal area. Section 12.4.3 discusses this in more 
detail. You can't read messages until you incorporate them. As messages get incorporated 
according to MH default standards, they go to the directory $HOME/Mail/ inbox (inbox is 

November 26, 1997 UNIX Mail Systems 12-15 



called a folder), which was created for you during setup. Each message becomes a separate, 
numbered file in inbox. When you incorporate messages, you get all the messages in the spool; 
you cannot choose to incorporate some and not others. 

exmh 

There are a few ways to incorporate mail during an exmh session. You can incorporate your 
messages manually, or set options to incorporate mail either immediately upon invoking exmh, 
and/or periodically during your mail session. 
To incorporate messages manually from within exmh, click inc from the middle window's menu. 
By default your spooled mail is placed in your inbox folder. You should now see the headers of 
the messages you sent yourself in the middle window. (If you didn't already send yourself some 
mail, go back and do it now.) 
Once you incorporate your message(s), you can display any message by clicking the message 
header in the middle window with the left mouse button to make it the current message. The 
message displays in the bottom window. 
To set up immediate or periodic incorporation during your exmh session, see section 12.4.3. 

mh 

First, incorporate the new message(s) into the MH system using the command: 
% inc 

This will display the headers of the incorporated messages, with a plus sign ( +) next to the current 
message. The current message is the first unread one, usually the first one you just incorporated 
unless you had unread messages already in the folder. (If you didn' t already send yourself some 
mail, go back and do it now.) 

• After incorporating, you can use scan to display the. message header(s): 
% scan 

% scan last:n 

% scan m-n 

Display message fieaders from the current folder (since we haven't 
created any other folders, the current one is inbox ). 

Display the last n message headers from the current folder. 
Display message headers m through n, inclusive, from the current 
folder. 

Here's our first example of using mh commands together with standard UNIX commands. To 
select message headers in inbox according to a pattern, you could pipe scan to grep in this 
way (the +inbox specifically requests the inbox folder, and the -i option of grep 
indicates a case-insensitive search for pattern): 

% scan +inbox I grep -i pattern 
To read the current message, enter: 

% show [n] Display the current ( or specified) message. 
Note that the show command can be used with more than one message number. For example 
show n can be expanded to show m n . . . or to show m-n. 
Other commands to read messages are: 

% next 

% prev 

12-16 

Display the next message. 
Go back and display the previous message. 

UNIX Mail Systems November 26, 1997 



Li 

12.3.4 Reply to Messages 

The default reply header looks like this: 

To : 
cc: 
Sub j e c t : 
In-reply-to: You r message of "Day , date tirne 11 

<message- id> 

If you don't like the standard reply header, you can reformat it by creating your own replcomps 
file. See section F.2 for information. ' 
When you want to include the original message in your reply, it is often convenient to precede each 
line of the original message text by a > symbol, to distinguish it from your text. FUE sets this up 
automatically for exmh and mh. 
This formatting can be inconvenient if the recipient needs to work with the original text, and thus 
needs to remove all the >'s. You can avoid this by forwarding the message back to the original 
sender, instead ofreplying. Forwarding is covered in section 12.3.5. 
If you want to change the format of your replies, you can create a file called . mh_f i 1 ter in 
your $HOME directory. The O'Reilly MH book describes the different possible ways of setting 
this up. The contents of the default . mh_f i 1 ter is: 
body:component=" > ",compwidth=0 

exmh 

Select the message to which you want to reply so that it displays in the message (bottom) window. 
Then click on the Reply button in the bottom window. You get a menu of options. Reply to 
sender sends it just to the sender, while Reply all sends it to everyone listed in To : and Cc : .. 
To include the original message in the reply, choose one of the Reply menu options with /include. 
Once you have made a selection from the Reply menu options, a composition window pops up. 
The header fields will be filled in. You can edit the header if needed. Move the cursor to the body 
area and type in your reply. 
For sedit, click on the send button to send the reply. To skip the reply, click on Abort. 
For other editors, save the message and exit the editor. Then respond to the "What Now?" pop-up 
menu. 

mh 

By default, the repl command uses the vi editor. To avoid this, either use the -e editor option 
or set a different default editor in your . mh_profile. 
To reply to a message, enter: 

% repl [n] Reply to the current (or specified) message. By default, everyone who 
got the original message gets a copy (the sender, plus everyone in To : 
and cc:). • 

% repl_inc [n] Like repl, but include the original message. (This FUE command 
replaces the standard mh command rep 1 - f i 1 t er filter _file.) 

. Either of these opens an editing session for the reply. As with comp, save your message and 
respond to the What Now? prompt. 

November 26, 1997 UNIX Mail Systems 12-17 



The -query option used with either of these commands prompts about each recipient separately. 
To reply to selected addresses in the To: and cc: fields of the original message, enter: 

% repl -query Reply to the current message. You will be prompted for each address in 
tum, to which you reply y or n, for example: 
Reply to userl@FNAL.GOV? y 

Reply to user2@xxx.yyy? n 

. Use the -nocc headerfield option with either command to prevent all addresses in a particular 
header field from receiving the reply; for example: 

% repl -nocc cc [n] 

Reply to the current ( or specified) message, including all addresses 
except those in the original cc list. 

12.3.5 Forward Messages 

By default, forwarding uses a header file called forwcomps in the MH library directory. This 
file is similar to that used for the compose function (components). If you want your header for 
forwarding messages to be identical to that for sending messages, you can use the components file 
for both. Just include the following line in your . rnh_pro f i 1 e file: 
forw: -form components 

If you want to customize the header for forwarQing mail, you need to set up your own file called 
forwcomps in your $HOME/Mail directory. Edit it in the same manner as components 
(see section F.2). 

exmh 

To forward a copy of a message to someone, first select the message. You can select more than one 
message at a time. Then select Forward from the bottom window. A composition window comes 
up with a blank header and the_ message text. Fill in the header, and edit the message if you wish. 
Send or abort as explained earlier, according to your editor. 

mh 

By default, the forw command uses the vi editor. To avoid this, either use the -e editor option 
or set a different default editor in your · . rnh_pro f i 1 e. 

To forward a message, enter: 
% forw [n] Forward the current message (or the specified message). 

This opens an edit session. Fill in the header, and edit the message as you like. As with comp 
and repl, save your message and respond to the What Now? prompt. 

12-18 UNIX Mail Systems November 26, 1997 



l 
l 
l 

12.3.6 Print Messages 

exmh 

First set your print queue by selecting Printing under Preferences in the top window. It should 
look like the following, with your own print queue substituted: 

Exmh Preferences - Printi 

Text print command !flpr -qwh8" hp $file 

Postscript print command !flpr -ql'l:h8 >: ps $file 

Arbitrary UNIX command !cat $file > / dev/null 

Click Dismiss when you've completed the change on the "Printing Preferences" window, then 
click Save on the "Exrnh Preferences" window. 

To print the current message, use the Print option from the More ... menu in the bottom window. 

To print several messages from a single folder, select them in the middle window, and use the Print 
option from the More ... menu in the bottom window. 

mh 

To print a mail message, you use an mh display command piped to a UNIX print command 
(normally flpr under FUE). Any printing defaults you've set up for printing files will be used 
here (printing is covered in Chapter 8). 

To print message number n on queue, enter: 

% shown I flpr -g queue 
The option - showproc with the mhl argument formats the message a little differently so that 
it's easier to read (and nicer for printing), and pipes it to more. You would type: 

% show -showproc mhl n I flpr -g queue 

Especially good for printing multiple messages is the argument pr which separates mail messages 
onto successive pages: 

% show -showproc pr m n . . . I flpr -g queue 

12.3. 7 Extract Messages 

In MH format, each message is already a separate file, and can be manipulated as any other file. 
You may find however, that extracting messages is easier or quicker than standard UNIX file 
manipulation for some tasks. 

exmh 

To extract the current message to a file, use the Save to file option from the More ... menu in the 
bottom window. A window pops up to allow you to choose the file to create or to which you want 
to append the message. 

November 26, 1997 UNIX Mail Systems 12-19 



mh 

To extract a message into a file use standard UNIX output redirection: 
% show n > .filename 

This is essentially equivalent to the command: 
% cp $HOME/Mail//older/n .filename 

The show command includes one extra line that the cp command doesn't create: 
(Message {folde r}: {n}) 

12.3.8 Remove Messages 

First, a note about message removal: When you use rmm in mh, or the delete button in exmh, 
the files are not actually deleted. They are renamed with a comma (, ) or pound sign ( #) in front so 
that exmh/mh doesn't recognize them as messages. The files are still there consuming disk space, 

. and they don't go away unless YOU do something about them. 
You can choose to periodically go through and clean out the old files that you no longer need in 
order to recover disk space. In exmh, use the Purge All Folders button (under the More menu in 
the middle window). This will delete the message files older than (default of) 7 days which you had 
previously "renamed". Or manually use the UNIX command rm on all files beginning with a 
comma ( , ) or pound sign ( #). 
A better solution is to add an entry to your . mh_pro f i 1 e changing the behavior of the Delete 
button /rmm command: 
rmmproc : / bin / rm 
This will really delete the message files when you use rmm (mh) or when you hit the Commit 
button after deleting messages ( exmh). For clarity in the following text, we simply refer to deleting 
messages. 

exmh 

To delete one or more messages, first mark them for deletion by selecting the headers in the middle 
window then click on Delete from the bottom window. The message headers you selected will be 
highlighted; on some terminals they will be a different color or have a background pattern. If you 
are sure that you want to delete the marked messages, click on the Commit button in the middle 
window. If you change your mind before you commit, select the messages you do not want to 
delete and unmark them (UnMark is an option under More ... in the bottom window). 
Note that after selecting a message, the cursor may move down to the next one, making it current 
rather than the one you selected. Make sure the cursor is placed correctly before unmarking a 
selection. 

mh 

tJse the rmm command to remove messages: 
% rmm [n m ... ] Delete the current (or specified) message(s). 

12-20 UNIX Mail Systems November 26, 1997 



u 

12.3.9 Create, Change and Remove Folders 

exmh 

To create a new folder from within exmb, select New from the middle window. The following 
window pops up for you to fill in. When you're done, click OK to create your new folder. 

Create Folder 
Creati ng a new f older resul ts i n a new direct ory 
unde r / afs/ fnal .gov/fi l es/ home / room3/ aheavey/Mai l . 
Nes t ed f olders are al l oued. 
You need NOT put a + before the f older name . 
@ is shorthand fo r the current f olde r , so 
@foo => inbo,c/ foo 

Folder Name : 

To switch current folders, click on the desired folder name in the top window with the left mouse 
button and the message headers from that folder will display in the middle window. It is now the 
current folder. You can read and work with the messages from this folder. 
To view nested folders and their contents (see section 12.4.2),. click the "parent" folder with the 
middle mouse button, then select a nested folder with the left mouse button. 
To remove a folder, select it, then click on Delete folder under More ... in the middle window. 

mh 

When you refer to a folder on the command line, precede it with a plus sign ( + ). To create a new 
folder, enter: • 

% folder +new Jolder _name 

There are a few ways to reset the current folder to a different one. The most explicit command for 
this is: 

% folder +new_currentJolder 
Or, just running one of several commands with a different folder name changes the current folder 
until you again change it to something else. For example: 

% scan +folder _name 

% show +folder _name 

Display message headers from/older _name and set this 
folder to current. 
Display the current message in/older _name and set this 
folder to current. 

Note that the refile command (see section 12.3.10) accepts folder name arguments but doesn't 
change the current folder. 
To remove a folder, enter: 

% rmf +folder 

November 26, 1997 

Delete the specified folder. 

UNIX Mail Systems 12-21 



12.3.10 Refile Messages 

exmh 

To refile one or more messages into a different folder, first select the header(s) in the middle 
window, then click the right mouse button on the destination folder in the top window. If they're 
moving to a nested folder, first click on its parent folder with the middle mouse button, and then on 
the nested folder with the right mouse button. The messages are now marked for refile. The 
message headers will be highlighted; on some terminals they will be a different color or have a 
background pattern. Click the Commit button (middle window) to complete the refile operation. If 
you change your mind before you commit, select the messages you do not want to refile and 
unmark them (Un Mark is an option under More ... in the bottom window). 
Note that after selecting a message, the cursor may move down to the next message header, making 
it current rather than the one you selected. Make sure the cursor is placed correctly before 
unmarking a selection. 

mh 

To move the current message ( or specified messages) from the current folder to a different folder, 
enter: 

% refile +folder [n m .. . ] 

12.3.11 Search for Messages 

exmh 

To search messages in a folder, first select the folder in the top window. Then select Search ... 
from the middle window's menu and select the relevant option. You can get help on various items 
by looking into the search help. If you choose Find in table of contents, for example, you get a 
Find Tool window where you can type in a search pattern. 

The headers of the "found" messages are highlighted. You can then display only the headers of 
these messages by choosing List only selected messages from the More ... menu. 
The Pick by Attributes from the Search ... menu provides an interface to the MH pick 
command. This is a more sophisticated feature that allows you to set up complex logical search 
expressions. If you use the "before" or "after" search criteria, the date format accepted is 
nn-mmrn-yyyy, for example 1 2-j an-199 6. 

Pick from Seq/ msg(s ),._ja_ll _______ __. 

!Choose pi ck attribute! 

12-22 UNIX Mail Systems November 26, 1997 



You have the option of saving the sequence of the picked messages. MH sequences are stored lists 
of message numbers. When you've finished setting up your search criteria, click Pick. 

Another option you have is to use the glimpse utility, also available under the Search menu for full 
text searches. This requires building an index (use the menu option index under Glimpse full 
text), which may take a long time. For more information see the man pages for glimpse. 

mh 

Pick searches messages within a folder for the specified contents, and then identifies those 
messages. Two types of search primitives are available: pattern matching and date constraint 
operations. See the man pages for more information on pick. 

% pick -help Display a list of pick options. 

% pick options Select messages by content, date, sender, recipient, etc. 

You can use pick to find messages sent from someone, sent to someone, on a given date, before 
or after a date, and even search every line of every message in the current folder. To tell pick to 
scan through every line of every message in the folder recent_work and return the message 
numbers with the word."quark" in them, enter: 

% pick -search quark +recent_work 

Here is an example showing the selection of messages within a date range: 
% pick -after 1-dec-1995 -and -before 1-jan 1996 

You can use pick with sequences, which are described above in the exmh portion. Commands 
that accept message numbers accept sequences as well; just type the sequence name. For example, 
find all messages received from sendername, and store them in the sequence picked: 

% pick -from sendername -sequenc·e picked 

The result also tells you how many messages are picked. You can then scan these messages by 
typing: 

% scan picked 

You can search for a string within the sequence by typi'iig, for example: 
% pick -subject •quark substructure' -sequence picked 

You can use pick and scan together (note the use ofbackquotes here): 
% _scan 'pick -from sendername' 

12.4 Basic Configuration for MH 

12.4.1 Configuration Files 

In order to take advantage of the variety of features provided by the MH package, several 
configuration files can be used for both exmh and mh. In this section we list all the files discussed 
in this chapter and in Appendix F, and provide brief descriptions for reference. 

You're already familiar with two of them, .mh_profile and . forward. 1 See sections F.2.1 
and F.l , respectively, for more information on these two files. 

November 26, 1997 

1. The . forwar:d file is pot specific to the MH system; it may be used with any mail 
handler. 

UNIX Mail Systems 12-23 



.mh_profile 

.forward 

defines your basic configuration (where mail is stored, the editor to use, 
various MH options, etc.). Running setup mh or setup exmh 
the first time automatically creates a default . mh_pro f i 1 e for you 
in your $HOME directory. 
stores your forwarding address. It is used in mail forwarding (routing), 
notification, and unattended autoincorporation. You must create it in 
your $HOME directory. 1 

The following three files allow you to customize your mail headers. See sections F.2.2, F.2.3, and 
F.2.4, respectively, for more information on them: 

components defines message header format for sending mail. If you don't create 
your own copy in your Mail directory, the system default file in the 
MH library section will be used. 

replcomps defines message header format for replies. If you don't create your own 
copy in your Mai 1 directory, the system default file in the MH library 
section will be used. 

forwcomps defines message header format for forwarded messages. If you don't 
create your own copy in your Mail directory or elect to use the 
components file header format, the system default file in the MH 
library section will be used. 

In sections 12.3.4 and 12.4.5 we show you how to create: 
.mh_filter allows you to include the original message in a reply. It goes in your 

$HOME directory. 
{alias file} stores distribution lists and local aliases for long mail addresses (you 

define its name in your . mh_prof ile). It is assumed by default to be 
in your Mail subdirectory, but you can define it otherwise. 

In Appendix F we provide information on yet a few more configuration files! 
scan-form provides the format of display when you scan mail. The system default 

files iii the MH library section will be used if you don't have your own 
in $HOME/Mail. 

inc-form provides the format of display when you incorporate mail. The system 
default files in the MH library section will be used if you don't have 
your own in $HOME/Mail. 

. maildeli very controls how local delivery is performed with manual or background 
incorporation in exmh when the presort option is selected. It also 
controls how delivery is performed when unattended automatic mail 
incorporation is defined in . forward using slocal. No default is 
provided; if you need this, you must create it in your $HOME directory. 

12.4.2 MH Mail Folders 

MH uses the concept of mail folders to store messages. Folders are simply subdirectories of your 
Mai 1 directory which contain mail messages, one message to a file. To distinguish folders from 
files in MH commands, folders are prefixed with a plus sign ( +) in a command. 

1. If you only have an account on one machine (i.e. one node that is not part of a file-shar-
ing cluster) besides FNAL and if you don't want automatic mail incorporation or notifica-
tion, you don't need the . forward file. 

12-24 UNIX Mail Systems November 26, 1997 



i I 

u 

For example: 

% refile +admin 

is an MH command that moves (refiles) the current message in the current folder to the folder 
admin. 

Folders can be multi-level, for example ou tbox / f e b 9 6. Within a folder, the message filenames 
are incremented numbers starting at one (1 ). Running 1 s -1 on a folder, you will see a 
numbered file for each message (in "alphabetical" order), for example: 

tota l 296 
-rw-r--r-- 1 username g020 339 Nov 9 11 : 3 6 1 
-rw-r--r-- 1 username g020 864 Nov 9 11: 3 6 10 
-rw-r--r-- 1 username g020 3297 Nov 9 11 : 36 11 

- rw-:i:,--r - - 1 username g020 7 53 Nov 9 11: 36 2 
-rw-r--r-- 1 username g020 2628 Nov 9 11 : 36 20 

The command 1 s -1 t is convenient for listing them in reverse chronologicai' order. 

After a lot of refiling and deleting of messages, the messages in your folders may not be in order by 
date anymore, and you will undoubtedly have numerical gaps in the file names. To reorder and 
renumber the message files: 

exmh use the Sort folder and Pack folder options under the More .. . button in 
the middle window 

mh use the commands sortm and folder -pack, respectively 

12.4.3 Incorporation of Incoming Mail into Folders 

The UNIX System Mailbox 

Due to the wide variety of inail readers on UNIX and the configurability provided by many of them, 
incoming mail is not by default delivered to any particular file or area in your home directory. 
Instead it is collected in a system mailbox, a directory defined as the mail holding area, on each 
node. In FUE, the environment variable MAIL is defined to reflect the system-specific location of 
your mailbox file, set to / u s r / spool / mai 1 / { u sername } or 
/ u s r / mail / {us e rname}, depending on the UNIX flavor.1 For example, user fred has his 
unread, unincorporated incoming mail stored in chronological order in the file 
/ u s r / mail / fr e d. 

Your mail resides in this file until you incorporate it into a different file (mail folder) . How and 
where it gets incorporated depends on the mail reader you decide to use. Here we discuss 
incorporation into the MH mail folder structure. 

Options for Incorporating Mail 

When new mail arrives, by default it resides the system mailbox until you incorporate it into your 
mail folder. There are a few ways to incorporate mail during an exmh session (i.e. "attended" 
incorporation), as we mentioned in section 12.3.3. You can incorporate messages manually, or set 
options to incorporate mail either immediately upon invoking exmh, and/or periodically during 
your mail session. 

November 26, 1997 

1. See the file fermi. login (for C shell family) or f e rmi. profile (Bourne 
s~ell family) in Appendix C. On a SunOS 5 (Solaris) system, you may have to set the 
variable MAIL manually due to a bug. 

UNIX Mail Systems 12-25 



If you want to configure exmh so that it incorporates your mail at regular intervals and/or at 
particular times during your exmh session, first go to the Preferences menu in the top window. 

• Choose the Incorporate Mail menu. Do you want to incorporate new mail when you invoke 
exmh? Check the box. Do you want to incorporate waiting mail when you click to open the 
exmh icon? Check the box. Dismiss this window and save your preferences. 

• Choose the Background Processing menu. Do you want to incorporate new mail 
periodically? Check the Inc box. The period is set to 10 minutes by default, but you can 
change this value. Dismiss this window and save your preferences. 

Would you like exmh to sort your mail for you, automatically putting some messages in a particular 
folder? If so, you need to do two things: 

1) Create a . ma i l de l i very file describing how you want your mail sorted (see section 
F.2.6). 

2) Tell exmh to use this file. Go to the Preferences/Incorporate Mail menu, and under Ways 
to Inc, check the Presort box. ' 

We discuss unattended automatic mail incorporation in section F.4. This is different from attended 
automatic incorporation in that mail is automatically incorporated whether or not you 're running 
exmh, and whether or not you're even logged in. We do not recommend this method, although we 
include it here for completeness. 

12.4.4 Signature Lines 

To include a boilerplate signature to messages that you compose and send in exmh or mh, you need 
to create your own $HOME/Mai l / compone nt s file, and simply add the signature to the 
bottom of this file, underneath the dashed line. For information on the c omponents file, see 
section F.2.2. This file does not govern replying and may not govern forwarding (see section 
12.3.5). 
To add a boilerplate signature when replying to messages, you can add a signature to the end of 
your filter file, called . mh_f il ter in your $HOME directory (see section 12.3.4). This file 
gets used only when you're using the option to include the original text in the reply. 
If you're using your own $HOME / Ma il / forwcomps file for forwarding messages, include the 
signature lines at the end of this file. Note that your signature will appear above the text of the 
forwarded message. 

12.4.5 Mail Aliases 

You can send mail to many people at a time by defining an alias for the addresses of the recipients. 
You may also want to define aliases for long single addresses. Create a file (we call it mh_a lias 
for example purposes; you can call it what you like) in your $HOME/Mail directory, and include 
an Alias fil e linelikethefollowinginyour .mh_profil e: 

Aliasfil e : mh_a lias 

This example alias file shows the required format: 

12-26 

dOspokes : mont@fnal . gov,\ 
pgrannis@fnal.gov 

cdfspokes: carithers@fnal.gov,\ 
bellettini@fnal.gov 

UNIX Mail Systems November 26, 1997 



There cannot be any blanks after the backslash(\) in the aliases. To see your aliases you can use 
the command ali. For example if you type: 

% ali dOspokes 

you will get the response: 

mont@fnal.gov, pgrannis@fnal.gov 

12.4.6 Folder Order and Header Display ( exmh) 

Some further options available for exmh (but not for mh) to include in the . mh_pro f i 1 e file 
are: 

Folder-Order: inbox folder2 folder3 * drafts 
Header-Suppress: .* 
Header- Display : Date To Cc From Subject 

Folder-Order sets up the order of display of folders on your exmh window. Wildcards as used 
in filename expansion are allowed, so you only need to specify folders that you want displayed in 
particular places. In our example, we specify what folder to show first, second, third, and last. All 
the others will be sorted alphabetically between the third and the last. 
Header-Suppress and Header-Display control which headers you see when you read a 
message. The example above indicates that everything is suppressed except the Date:, To:, 
From:, _Cc:, and Subject : lines. 

12.5 Berkeley Mail 
In this section we discuss the simpler, less functional mail handler Berkeley mail because it is one 
that you will find on all UNIX machines. We describe how to read and send messages from the 
command line using the command mail or fermimail. In the Fermi files that run when you 
log in, the command mail is set to point to Berkeley mail by default (via the alias 
fermimail). 

12.5.1 Send Messages and Files 

To send a mail message, the command format is: 

% mail (-s subject] recipient [ < .filename] 

If you don't include the -s option with a subject (subject must be enclosed in quotes i_f it's more 
than one word), the system will prompt you for one after you hit carriage return. The recipient is a 
.user name in standard format. If you want to send a file instead of composing a message, use the 
input redirection (<)with the.filename (and path, as necessary). If you don't include a file, the 
cursor will be placed at the start of the first line under the command (no prompt) for you to start 
composing your message. Conclude the message by going to a new line and typing a period (.) 
followed by carriage return. You will be prompted for a Cc : before exiting. To abort a message 
that you are composing, use the standard kill control sequence (see section 2.4). 

November 26, 1997 ' UNIX Mail Systems 12-27 



A very simple example command line using this format to compose a message is: 

% mail butler@fnal 

An example using the subject option and sending a file is: 

% mail -s "Meeting minutes" butler@fnalb.fnal.gov < minutes 

12.5.2 Read Messages 

Assuming you have no autoincorporation set up, all of your unread incoming mail resides in the file 
designated by the variable MAIL (see section 12.4.3). When you log in, the system notifies you if 
this file contains any messages. It will not automatically notify you of incoming mail at other times 
during your session, unless you are in a mail reader. 
To read your messages in the system mailbox, simply type: 

% mail 1 

This puts you in command mode from which you can read messages. Enter ? to get a list of 
commands. If there are messages, after you read them and when you are exiting mail, the system 
automatically sends the messages to your $HOME/mbox file, and deletes them from your system 
mailbox file. If there are no messages to read, the system will tell you so and exit. 
For more information, see the man pages for mail. 

1. Note that on some systems the command may be mailx, Mail or fermimail. 

12-28 UNIX Mail Systems November 26, 1997 



! 
l 

I l 
ti 

Chapter 13: Connecting to Remote Systems 

Several utilities are available to enable you to transfer files between systems, to log into other 
systems on which you have an account, and to execute commands remotely. These features are 
described in this chapter. ' 
Note that to use any of the communication methods with a VMS node, the VMS node must be 
running software to allow tcp/ip communication. All Fermilab VMS machines are licensed to run 
TGV's MultiNet software, which provides the necessary tcp/ip transport capability. 

13.1 Transferring Files 

13.1.1 ftp 

ftp (File Transfer Protocol) can be used to transfer files to and from a remote system on which you 
have an account, and to manipulate the remote file system. The command format is: 

% ftp [-n] [-i] [host] 

If you specify host on the command line, you will be prompted for your (remote) usemame and 
password, and login will proceed. The option -n inhibits autologging on those systems on which it 
is enabled. The option - i eliminates prompting by the system, which can be tiresome when 
you're transferring many files. 
Some commands available in ftp are described here; for a complete list, see the man pages for ftp. 

November 26, 1997 

user username password 

bin or binary 

ascii 

put local _file [remote _file] 

mpu t local _Jiles [remote _Jiles] 

get remote_Jile [local_Jile] 

mget remote_Jiles [local_Jiles] 

Idetitification for the remote system. If auto-log is 
enabled, you will be prompted automatically for the 
usemame and password. If you don't specify the 
password, it will prompt you. 
Set transfer mode to binary image transfer. 
Set transfer mode to ASCII (for text files). 
Transfer a local file to the remote system. If the remote 
filename is not specified, the local filename is used. 
Similar to put, but you can use standard wildcard 
characters to transfer a series of files at a time. 
Transfer a remote file to the local system. If the local file 
name is not specified, it is given the name on the remote 
machine. 
Similar to get, but you can use standard wildcard 
characters to transfer a series of files at a time. 

Connecting to Remote Systems 13-1 



help [command] Display information about the meaning of command. If 
no command is specified, ftp displays a list of the 
commands. • 

quit Terminate the ftp session with the remote server and exit 
ftp. 

open host Establish connection with remote host. Needed if host was 
not specified on command line. 

close Close connection with remote host and return to ftp 
prompt. Doesn 't exit ftp. 

dir [remote_directory] [local_.file] Print listing of the directory contents of the remote 
directory and optionally put the output in local_.file. 

cd remote_directory 

led [directory] 

delete remote_.file 

! shell_command 

Change working directory on the remote machine to 
remote _directory. 

Change working directory on the local machine. If no 
directory is specified, your home directory is used. 
Delete the file remote_.file on the remote system. 
Run a shell command without exiting ftp. 

The following is an example ftp session where first one ASCII file, then a few binary files, are 
transferred from one UNIX machine to another. The usemame is unnecessary if the assumed one is 
correct. The password, as usual, is not displayed. 

<fsui02> ftp cdfsga 
Connected to cdfsga. fna l ._gov. 
220 cdfsga . fnal.gov FTP server ready. 
Name (cdfsga : aheavey): 
331 Password required for aheavey . 
Password : 
230 User aheavey logged in. 
ftp> ascii 
200 Type set to A. 
ftp > put README 
200 PORT command successful. 
1 50 Openin g ASCII mode data·connection for 'README' . 
226 Transfer complete. 
local: README remote: README 
121 bytes sent in 0 . 0009 1 second s (1 . 3e+02 Kbytes/s ) 
ftp > bin 
200 Type set to I. 
f t p > mput a ppx* 
mput app x_MH.ps? y 
200 PORT c ommand successful . 
150 Open i n g BINARY mode da t a con nection for ' appx_MH .ps ' . 
226 Tran sfer complete. 
l ocal: appx_MH .ps remo t e : app x_MH. p s 
63 902 bytes sen t in 0.33 seconds (1 .9e+02 Kbytes/s) 
mput app x_awk .ps? y 
2 0 0 PORT command successful . 
150 Op e n ing BINARY mode da t a connection for ' appx_awk.ps' . 
226 Transfer c omplete. 
l o ca l: appx_awk . ps remote: appx_awk.ps 
5 6271 by t es sen t i n 0 . 24 seconds (2.2e+02 Kbytes/s ) 
mput appx_convrt .ps ? n 
mpu t a ppx_ exmpl . ps? n 
mp u t appx_imp atient.ps? n 
mput a pp x_login. p s? n 
mpu t a ppx_ups. p s? y 
200 PORT comma n d successful . 
150 Openi ng BINARY mod e data connection for ' appx_up s .ps '. 
226 Transfer complete. 
l ocal: appx_up s.ps r emote : appx _ ups .ps 
1 076 83 bytes sen t in 1 .3 seconds (83 Kbytes/s) 
f t p > qu i t 
22 1 Goodbye. 
<fsui02> 

13-2 Connecting to Remote Systems November 26, 1997 



l 
l 

~ 

Note that the CERN utility zftp (z for Zebra) is available for transferring FZ and RZ files (ntuple 
files) between systems1. To use zftp, it must be installed on the server system, and you need to set 
up CERN library during the session (setup eern). 

13.1.2 rep 

Another way to transfer files is with the rep utility (stands for remote copy). You can use this 
command if both local and remote hosts support rep protocol. The basic format is: 

% rep [options] file] file2 

wherefilel andfile2 are the source and destination filenames, respectj.vely; or 

% rep [options] file] file2 ... directory 

where the files listed are to be copied to the directory. On a UNIX system the format of a remote 
directory or filename is hostname :path, and the MultiNet implementation is consistent with VMS 
usage, namely hostname: :path (note the double colon). If only filenames are given, they are 
interpreted relative to your home directory. Both the source and the destination may be on nodes 
other than the current machine. 
The available options are: 

- p 

-r 

Give each copy the same modification times, access times, and modes as 
• the original file. 
Copy each subtree rooted atfilel ,file2, etc. (for those that are 
directories) ; in this case the destination (last argument) must be a 
directory.· 

rep does not prompt for passwords. Your current local user name must exist on the remote host and 
allow remote command execution by rsh. rsh is a utility that connects to a remote host and either 
executes a specified command or logs you on via rlogin (see section 13.3). 
More information is available in the rsh and rep man pages. 
When you are using rep between VMS and UNIX, you must protect special characters from local 
interpretation by enclosing them in quotes. An example command to copy a file 
$HOME / progl . c from UNIX to the VMS node FNALV is: 

% rep progl . e fnalv:"[.e]progl.e" 

Here is an example showing how to copy a file from remote UNIX node FNSG0l to the home 
directory on the VMS node($ represents the VMS prompt): 

$ rep fnsgOl::"/usr/produets/bufio/vl_OO/sre" bufio.sre 

If you are using the C shell family, rep will not work if your . c s hrc or . login on UNIX, or 
your LOGIN. COM file on a remote VMS host, executes interactive or output-generating 
commands. You should check for non-interactive access, and exit before such commands are 
executed, as is done for a UNIX system in the FUE default . c s hrc file. The lines in . cshrc 
that check this are the following: 

if Pl ace any items that you want executed even for non-interactive use here 
# Ski p if not interact i ve shell 
if ( $?USER== 0 I I $?prompt== 0 ) exit 

1. zftp is known to be likely to break in the AFS environment. 

November 26, 1997 Connecting to Remote Systems 13-3 



On a VMS system, check for OTHER (TCP/IP is not NETWORK): 

$ IF (F$MODE () .EQS. "OTHER") THEN $ EXIT 

Although you can specify a username and password with rep (see the local man pages or HELP), 
you can also have a kind of "proxy login" by creating a spec;:ial file (named . rhosts) on the 
remote machine containing the names of the systems and users on those system that should be 
allowed access. 

13.1.3 The .rhosts File 

To use many of the file transfer utilities, you need to set up what is known as'a . rhos ts file on 
the remote machine. This file must include a list of the names of the systems to be allowed remote 
access without login, and the usernames, where each system-username combination is separated by 
a space. If the username is left off, it is assumed to be the same as on the current system. If there 
are problems with name servers, you can be most assured that your address will be understood if . 
you specify three lines for each connection requested: 

1) one line with the complete Internet address, 

2) one with the Internet number1, and 

3) one with the local name. 
An example . rhos ts file showing a single connection in the three specified formats: 

fnsg01.fnal.gov 
131.225.8.178 
fnsg01 judy 

When writing a . rhos ts file on a UNIX host to allow access via remote commands (known as 
r-commands2) from a VMS cluster, you must include an entry for each cluster member and 
username from which you might access the UNIX host. 
The following command line is an example of the command to copy a FINGER. PLN file from an 
account on FNALA to the file . plan in the same person's account on the UNIX node FNSG0l. 
In order for this example to work, there must be a file named . rhos ts _on FNSG0l containing a 
line fnala. fnal. gov, and the username must be the same in both places. 

$ RCP FINGER.PLN FNSG0l::.PLAN 

where $ is the VMS prompt. 

1. Use nslookup node to get the number. On VMS, you must enter MULTINET 
NSLOOKUP hostname. 
2. r-commands execute on remote hosts, and use . rhos ts for authentication. They are 
variants of UNIX commands without the "r", and include for example rsh (remote 
sh) and rlogin (remote login). 

13-4 Connecting to Remote Systems November 26, 1997 



l \ 

13.2 Logging in to Other Systems 

13.2.1 telnet 

telnet is a remote terminal protocol which allows you to establish a connection to a login server at 
a remote site. telnet in the UNIX world is analogous to SET HOST in the VMS world. You can 
connect to other UNIX machines, or you can connect to VMS machines if the appropriate software 
is installed on the system (e.g., with MultiNet for which Fermilab has a site license). The format 
is: 

% telnet [host] 

If you include the host, you are prompted for the usemame 1 and password. If you do not include the 
host, you go into command mode. You can enter help at this point for help on the commands. 

13.2.2 rlogin 

Another way of Jogging into a remote computer from another system on the network is by use of 
the rlogin utility. One difference between telnet and rlogin· is that if the communications 
package is configured for it and you create an appropriate . rhos ts file (see section 13.1.3), you 
can log in to the remote system using rlogin without typing the password. The format from a 
UNIX machine is: 

% rlogin rhost [-1 username] 

where: 
rhost is the remote host to which you want to log in 
username is the usemame if the name is different on the remote system than the 

originating system 
From a VMS machine, the format is: 

$ RLOGIN /USERNAME=username rhost 

AFS If your system uses AFS and you experience permission problems after using rlogin, run pagsh . 
- followed by klog. Please see the discussion of these commands in section 7.3.1. 

13.3 Executing Commands Remotely: rsh 
You can execute commands on a remote system and have the output displayed on your terminal 
with rsh. rsh stands for remote shell. In order for this to work, there must be an appropriate 
. rhos ts file on the remote machine (see section 13.1.3). 

The format is: 

% rsh rhost [ -1 username] command 

November 26, 1997 

1. Some systems may not prompt you for a usemame; they will use your current login id. 
If you need to log in with a different usemame, enter a carriage return at the password 
prompt. Then the system will prompt you for a usemame. 

Connecting to Remote Systems 13-5 



where: 
rhost 
username 

is the remote host on which the command is to be executed 
is the username on the remote system if different than the originating 
system 

command is the command to be executed on the remote system 
The command may be a single command or a shell script to be executed on the remote system. 
Metacharacters in the command must be quoted for proper interpretation on the remote machine. 
The MultiNet implementation on VMS is: 

$ RSHELL [ /INPUT=in.file] [ /OUTPUT=out.file] [ /USERNAME=username] - hostname commandline 

The MultiNet implementation does not handle metacharacters like the UNIX implementation does. 
The /INPUT and /OUTPUT options in the MultiNet implementation allow you to execute a task on 
a UNIX machine which reads and writes files on VMS. 
If the command is omitted, you will be logged in to the remote host using rlogin. 

13-6 Connecting to Remote Systems November 26, 1997 



I 
I I 

Chapter 14:· Batch Processing Environment 

In this chapter we provide introductory information on LSF (Load Sharing Facility), the standard 
batch processing system at Fermilab, and on fbatch, the locally-written interface to LSF. We also 
list the related software components that can be used with LSF/fbatch. 
You should be able to run and manipulate most batch jobs easily after reading this chapter. 

14.1 The Standard Batch System at Fermilab: LSF 
LSF, developed by Platform Computing, is a general purpose resource management system that 
unites a group of UNIX computers into a single system to make better use of the resources on a 
network. The single system is referred to as a cluster. LSF collects resource information from all 
nodes in the cluster, and uses it to allocate the available host machines for execution of batch jobs. 

LSF distinguishes between client machines and server machines. A job can be submitted from 
either type, but run only on a server (a host). Under LSF, jobs that are run remotely behave just like 
jobs run on the local host. Even jobs with compljcated terminal controls behave transparently to 
the user as if they were being run locally. 
LSF is fully documented on-line; see the LSF User's Guide. To find it, select Batch Services from 
the Computing Division home, and look under LSF v3.0 Documentation. There is also a link to it 
in the Computing Division document database under fbatch. 
For the purposes of this chapter, a batch job ( also called simply a job) is any UNIX executable that 
is submitted to the LSF batch system. Job control information (e.g., name of executable, queue, 
required resources, and so on) is passed to LSF via command line arguments supplied when 
submitting ajob. 

14.1.1 Job Queues 

Batch jobs are submitted to LSF viajob queues. LSF administrators generally configure job 
queues to control host resource access according to user and application type. A queue can be 
defined to use a particular subset of the hosts in the LSF cluster; the default is to use all hosts . 
Each queue represents a different job scheduling and control policy. Users select the job queue that 
best fits each job. All jobs submitted to the same queue share the same scheduling and control 
policy. There is a nice value associated with each queue (see section 5.5.1), and jobs submitted to a 
queue are automatically "reniced" accordingly. 

November 26, 1997 Batch Processing Environment 14-1 



14.1.2 Load Monitoring on Hosts 

LSF monitors the load of each host in the batch cluster by comparing the values of several built-in 
load indices against the allowable load thresholds defined by the LSF administrator. A load index 
is simply a measurement of the processing load on a batch host. On an overloaded host, batch jobs 
can begin interfering with each other or with interactive jobs. Therefore, LSF begins suspending 
jobs on a host when it becomes overloaded (i.e. when one or more load indices exceed the 
predefined suspension threshold). LSF resumes any suspended jobs once all the load indices read 
below the release threshold. 
If a job queue has been defined with a time window (measured in real time), LSF suspends any jobs 
running on that queue when the current time falls outside of the window. These jobs get released 
when the time window reopens. 

14.1.3 Host Selection 

The resources available for processing LSF jobs on each host are defined by an LSF administrator. 
Only nodes having resources that match or exceed the resource requirements of a given job are 
potential hosts for that job. LSF compares the resource requirements specified for the job against 
the load on each of these nodes, arid chooses the most favorable host. 
If no resource requirements are specified for a job, a host of the same model and type as the 
machine on which the job was submitted is chosen. 

14.1.4 Job Priority 

LSF schedules, suspends, and releases submitted jobs by balancing job priority and available 
resources. Job priority is governed by several factors: 

• the options and arguments specified on the command line during batch submission 
• the priority of the queue on which the job was submitted; according to LSF's FCFS (first 

come first serve) protocol 
• the number of shares that a job has used, according to the FSS (Fair Share Scheduling) 

protocol. A share is a portion of the resources available on the host or hosts; queues may be 
defined to limit the number of shares jobs can utilize. 

When a host's suspension threshold is reached, LSF suspends lower priority jobs first unless the 
scheduling policy associated with a particular job dictates otherwise. A suspended job can later be 
resumed by LSF if the host's release threshold is again reached (or, if the suspension was due to a 
time window, as mentioned above, the job resumes when the time window reopens). · 

[J=> LSF does not override the UNIX scheduler. 

14.2 Local Interface to LSF: fbatch 
The UPS product fbatch supplies the commands that you enter to run and manipulate batch jobs. It 
is a set of locally-written shell scripts and C programs that provides a wrapper around LSF, and 
thus characterizes the batch processing environment on a cluster. fbatch is installed on many 
Fermilab systems, including FNALU. fbatch supports all the LSF batch functionality, and 
provides in addition: 

14-2 Batch Processing Environment November 26, 1997 



1 

• a consistent interface to LSF commands, regardless of UNIX flavor 
• supplementary commands not directly supported by LSF 
• an interface to the Fermilab products spacall and needfile (see section 14.3) 
• AFS token renewal at job execution time 
• a remote shell facility allowing commands to be executed from any host; if the host is neither 

a client nor a server, fbatch issues the LSF command via the rsh facility (see section 13.3) 
• case-insensitive resource names 

You need to run the command setup fbatch before accessing fbatch commands. 
When you setup fbatch, you will also be able to access the man pages for these commands. 
Running man fbatch returns a list of all the commands supported under fbatch. For a 
complete description of the fbatch product, refer to thejbatch User 's Guide (PU0152). 
Several of the fbatch commands are illustrated below, organized by function. For complete 
information on each of the ~ommands, see the man pages. 

14.2.1 View Host Information 

To see which hosts and resources are defined in your cluster, you can issue the command: 

% fbatch_hostinfo 

The configuration information returned includes: host name, host type, host model, CPU factor, 
number of CPUs, total memory, total swap space, whether the host runs LSF servers or not, 
available resources denoted by resource names. The host name, host type, and host model fields are 
truncated if too long. The CPU factor is used to scale the CPU load value so that differences in 
CPU speeds are considered by LIM 1. The faster the CPU, the larger the CPU factor. 
The output is returned in this format: 

HOST_NAME type model cpuf ncpus rnaxrnern rnaxswp server RESOURCES 
fsgi02 SGl R4400Ch2 84.0 16 511M 2755M Yes (irix any fsgi02) 
fsui02 SUNSOL ULTRA167 93.0 4 320M 889M Yes (spare any sun fsui02) 
fibb0l AlX 1560 39.0 1 192M 400M Yes (aix any fibb0l) 
fncll0 AlX 1370 49.0 1 128M 1136M Yes (aix any clubs fncll0) 
fibi0l AlX 1590 62. 0 No () 

fsgi0l SGl 14D420 30.0 No () 

14.2.2 View Queue Information 

The fbatch_queues command lists the available LSF batch queues: 

% fbatch_queues 

The output returned is in the following format. A dash ( - ) in any entry means that the column does 
not apply to the row. In this example some queues have no per-queue, per-user or per-processor job 
limits configured, so the MAX, JL / U and JL / P entries are dashes. The man page describes 
each of the fields. 

November 26, 1997 

1. Load Information Manager (LIM) is a daemon process that keeps track of the load indi-
ces. 

Batch Processing Environment 14-3 



QUEUE_NAME PRIO STATUS MAX JL / U J L/P JL /H .NJOBS PEND RUN SUSP 
test_queue 99 Op en :Active 0 0 0 0 
e831_1ong 1 6 Open:Active 1 1 0 0 0 0 
e83l_short 1 4 Open:Act i ve 10 0 0 0 0 
30min 10 Open:Active 5 1 1 0 0 
30min_disk 1 0 Open:Active 5 3 3 0 0 
4hr 8 Open: Act i ve 5 2 0 1 1 
4hr_disk 8 Open:Active 5 5 2 3 0 
12hr 6 Open :Act i ve 5 3 3 0 3 0 
12hr_di sk 6 Open :Act i ve 5 2 7 4 3 0 
l day 4 Open :Active 5 1 0 0 0 0 
lday_disk 4 Open:Active 5 1 7 0 7 0 
4day 2 Open : Ac t ive 5 0 33 17 12 4 

You can submit jobs to a queue as long as its STATUS is Ope n . However, jobs are not 
dispatched unless the queue is Active . 

14.2.3 Submit a Batch Job 

The fbatch_sub command is used to submit a job to the batch system. The most common 
arguments used are -q (queue name), -R (resource requirements), -o (stdoutredirection), -e 
(stderr redirection), and -N (notify via email). 
As an example, here we submit a script called myj ob to the 4hr queue, specify an IRIX host, 
and request notification. The stdout is redirected to myj ob. out, and the stderr to myj ob. err: 

% fbatch_sub -N -q 4hr -o myjob.out -e myjob.err -R "irix" myjob 

On systems running AFS, fbatch will prompt you for your AFS password 1: 

En ter AFS Password . . . 
Reenter AFS Password . . . 
fbatch_sub execu tin g LSF command locally on fsui02 .. . . 

When your job begins, you will automatically receive a renewed AFS token on the execution host. 

14.2.4 Monitor Submitted Batch Jobs 

fbatch provides several commands that allow you to monitor your job. The usage examples below 
use a sample job number 1022: 

Display a listing of running jobs 

% fbatch_jobs 

If no options are supplied, the list will contain only your running jobs. To see all running jobs, use 
the - u al 1 option. Output is returned in this format: 

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST J OB_NAME SUBMIT_TIME 
1022 a h eavey PEND 30min fsui02 s l eepl Sep 10 09: 56 

Display the stdout and stderr of a job 

% fbatch_peek 1022 

The format of the output varies according to the files. 

1. Your password gets encrypted by fbatch using PGP. 

14-4 Batch Processing Environment November 26, 1997 



I 
L 

I I 

Display history information about a job 

% fbatch_hist 1022 

Output is returned in the format: 
Summary of time in seconds spent in various states: 
JOBID USER JOB_NAME 

1022 aheavey sleepl 
PEND 
7 

PSUSP RUN 
0 35 

14.2.5 Control Submitted Batch Jobs 

USUSP 
0 

SSUSP UNKWN TOTAL 
0 0 42 

For jobs that are in a queue awaiting execution, fbatch provides commands to move jobs within the 
queue, and to modify the resource requirements of the job. The usage examples below use a sample 
job number 1022: 

Move Job within Queue 

Move job to the bottom of the queue: 

% fbatch_bot 1022 

Move job to the 2nd position from the top of the queue: 

% fbatch_top 1022 2 

The fbatch_bot and fbatch_top commands, above, move jobs within queues relative to 
the user's own jobs. You cannot move your job ahead of another user's job with these commands. 

Change Job Parameters 

Change the resource requirements of job: 

% fbatch_modify -R aix 1022 

Migrate a batch job to another host: 

% fbatch_mig -m newhost 1022 

Suspend, Resume, or Kill a Job 

Suspend (stop, but do not cancel) job: 
% fbatch_stop 1022 
Resume job: 
% fbatch_resume 1022 

Cancel job: 
% fbatch kill 1022 

' . -

November 26, 1997 Batch Processing Environment 14-5 



1't 

14.3 Related Software Components 
This section describes other software components that can be used with the LSF/fbatch batch 
system. 

needfile 

needfile is an interface to the HPSS/Unitree central mass storage system. The needfile system 
provides two functions. If the user's data does not yet exist in HPSS, needfile tells the system to 
copy the data there from its original medium. needfile then provides access to this data for the user. 
This data remains in the HSM based on a least-recently-used policy. There is no guarantee how • 
long data will remain in the HSM. 
To access needfile, first run the command setup nt (setup not required if accessed via fbatch). 
A needfile reference manual exists on the Web. To find it, start on the Computing Division home 
page, select Mass Storage under Systems and Networking and thenftnss to find needfile tool. 
There is also documentation there on HPSS. 

spacall 

The spacall utility (space allocator) provides scratch disk storage for a job. spacall is invoked 
under fbatch by submitting a job to a specially defined queue; for example, on FNALU the 
* _disk queues have been configured for it. The path to the scratch space is stored in the 
environment variable $CLUBS_WORKDIR. 

14-6 Batch Processing Environment November 26, 1997 



I I 

u 
I 

Chapter 15: Tape Handling 

In this chapter we discuss the principal tape handling software and facilities available at Fermilab. 
Start-up information for running and monitoring OCS tape mounts is provided, and the OCS X 
interface is introduced. Several tape I/0 packages are briefly described. 

OCS manages tape drive allocations and operator-assisted mounts, whereas RBIO and DAFT are 
tape I/0 packages. FTT is a low-level C subroutine library common to OCS, RBIO and DAFT; it 
can also be used directly for tape I/0 and tape drive testing. FMB includes features for both tape 
mounting and I/0. These are all UPS products, and are accessible in the standard way via the 
setup command. 

Since many groups and experiments have customized their tape-handling routines, some or all of 
the applications described here may not be available or appropriate for you. Contact your group 
leader to find out what procedures have been established for your group. 

15.1 Operator Communications Software (OCS) 

OCS is a package that performs and manages tape drive allocations, operator-assisted tape mounts 
and tape drive use statistics. Its logical-to-physical tape device name translation helps not only 
human communication, but hides many platform-specific idiosyncrasies from users. The latest 
version as of this writing is v3.0. 

[J=' OCS is not a tape 1/0 package. It works well with such packages (e.g., RBIO, FMB, DAFT). 
OCS functions are available via three separate interfaces: 

• FORTRAN/C library of subroutines 

• Command line tools 

• X Motif tools 
The features available in each of these interfaces overlap to a great extent. However, since the 
different interfaces are by their nature geared towards different uses, the functionality is not 100% 
duplicated across them. The FORTRAN/C subroutines provide the most flexibility and 
functionality for users requiring multiple mount requests, the command line tools are generally 
used in shell scripts, and the X interfaces are very useful for monitoring tape drive statistics. 

The X interfaces are fairly intuitive, so we give you enough information to bring them up (section 
15.1.2), but we do not describe them in detail. 

The OCS functions are fully described in the OCS Reference Guide, document number GA0012, 
available on the Web. The reference guide and other documents are also available wherever OCS is 
installed and setup, in the directory $OCS_DIR/ doc. 

November 26, 1997 Tape Handling 15-1 



15.1.1 OCS Basics 

Monitoring Tape Mounts 

During the course of your work, you may need to monitor different aspects of the job and possibly 
contact the operators. OCS provides functionality to perform these job management activities. For 
your convenience, we list the appropriate command next to the function in the table below, and 
indicate whether you can perform the function using one of the X interfaces. You will need to see 
the OCS Reference Guide for usage information on these commands and for the associated 

· FORTRAN/C subroutines. 

Function Command X interface 

Mark a tape drive broken so that it will not be ocs_broken xocs 
allocated until it is repaired 

Log statistics as to how much the drive was used ocs_report_stat 

ocs init stat - -

Send an attention message to the operator ocs_message 

Send a request to the operator to run a cleaning ocs_clean_it 
tape through a tape drive 

Display status of tape drives in the OCS database ocs_tape xocs 

Display pending mounts ocs_pending 
' 

xocs 

xtapeview 

Display tape drive statistics ocs_devstat xocs 

ocs stats -

Display tape mount log ocs_mrlog xocs 

Display tape drives that may need to be cleaned ocs_clean - list xocs 

Sample Tape Mounting Process 

Here is a sample tape mounting process using the command line tools . Read through it to see what 
steps are involved and what kind of response to expect from the system at each step. Note that the 
OCS commands come with many options that are not shown here. 
First, display the list of available tape drives: 

% ocs_tape 

HOSTNAME DEVI CE TYPE ALLOCATED STATUS VSN 
bastet dumdl t4 DLT4000 a llocated wor king -
bastet isis2 EXB-8505 unalloctd work ing -
bast et hor us EXB-8200 unalloctd work ing -

USERNAME UID AUTH 
root 0 n 

n 
y 

Request allocation of a tape drive so no other user may access it (notice only one device shows 
authorization as "yes"): 

% ocs_allocate 

bastet horu s 

15-2 Tape Handling November 26, 1997 



I 

Send a request to the operations staff to mount a tape on the drive you have allocated: 

% ocs_request -t horus -w -v FGMS04 

ocs_reguest: success 

Verify that the tape was mounted correctly: 

% ocs_check_label -t horus -w -v FGMS04 

ocs_check_label: Success 

Set the tape drive characteristics according to your needs (we recommend that you always do this; 
don't assume the drive has been left in any particular state): 

% ocs setdev -t horus 

Request the appropriate device file for reading and/or writing the tape according to the 
characteristics you 've set: 

% ocs_devfile -t horus 

/dev/rrnt/tps0d3nrv 

Perform your task on the loaded tape. Normally this involves running a program that calls tape 1/0 
routines from RBIO or another 1/0 package. For simplicity in this example, we just use the UNIX 
dd utility to get the tape contents (we have loaded an ANSI initialized tape with no data): 

% dd if=/dev/rmt/tps0d3nrv conv=unblock cbs=80 

VOL1FGMS04 
HDRl 
0+2 records in 
0+l records out 

ftt 4 

A useful feature to include in this example is the device statistics function. It provides more 
detailed information for the end user than the X interface implementations, which were designed 
more for administrative purposes. 

% ocs_devstat -t horus 

Collecting Tape Drive Statistic----------------- -- Thu Oct 2 12:43 : 27 1997 

November 26, 1997 

Host Name 
Device Name 
Device Filename 
Device Type 
Controller 
Vendor Id 
Product Id 
Firm~are Id 
Serial Number 
Number of Hours On 
Count/KBytes Read 
Errors 
Comp Ratio 
Compres ion 
Dens i ty 
Media fype 
Block Size 
Block Total 
Coun t Origin 

Read 
Read 

Remain Tape/KBytes 
SCSI Sense Code 
SCSI ASCQ 
Track Retry 

bastet 
horus 
/dev/rmt/tps0d 3 
EXB-8200 
SCSI 
EXABYTE 
EXB-8200 
268N 

-1 In Motion 

= NO 
8200 
133 

= 0 

2200 Write 
0 

-1 
Write 
Write 

2294048 
Exabyte_Extended_Sense 
2290569 
0 

= 0 
-1 

Tape Handling 

-1 

-1 
-1 
-1 

15-3 



Cr 

Stop/Start Count -1 
SCSI Test Unit Ready= 0 
SCSI Sen se Key NO_SENSE 

Tape Not Present: N I Write Prat : N I Cl ean Bit : N I Drive Cleaned: N 
Begi nning of Tape: N I At Fi l e Mark: N I End of Media : N I End of Tape: N 
Ready Bi t: Y I Power Fail: N I SCSI ILI Bit: N I 

Dismount the tape (i.e. rewind and unload it): 

% ocs_dismount - t horus 

ocs_dismount: Success 

Finally, deallocate the tape drive so that someone else can use it: 

% ocs_deallocate -t horus 

ocs_deallocate : Deal l ocated :horu s 

Tape Mounts with Batch Jobs 

Most of the time, users run tape mounts in conjunction with batch jobs. We strongly recommend 
that you include the tape mount allocation, mount request, dismount and deallocation within your 
batch job. If you don' t, you risk preventing others from using the tape drive while your job is 
waiting to run and after it has finished. A - q option is provided for the ocs_allocate 
command to allow you to queue for tape drive allocation so that your job won't fail if a drive isn't 
immediately available when it starts to run. 

Here is a sample batch job script that incorporates these recommendations: 
# ! /bin/csh 

15-4 

setup ocs 
set td='ocs_allocate - q -h localhost -d exabyte_850x I cut -f2 -d" " -
if ( $status != 0 ) then 

echo ocs_allocate failed with message: $td 
exit 1 

endif 
set drive='echo $td I cut -f2 -d" " -
ocs_request -t $drive -v fr3147 -r 
if ( $status ! = 0 ) then 

e ndif 

echo ocs_request failed 
ocs_deallocate -t $dri ve 
exit 1 

set dfile= 'ocs_devfile - t $drive' 
if ( $status != 0 ) then 

echo ocs_devfile failed with message: $dfile 
ocs_dismount -t $drive 
ocs_deallocate -t $drive 
exit 1 

endif 
ocs_setdev -t $drive -v - d 8500 
if ( $statu s != 0 ) then 

endif 

echo ocs setdev failed 
ocs_dismount -t $drive 
ocs_deallocate -t $drive 
exit 1 

setenv MY_DEVFILE VAR $dfi l e 
e831job.run 
ocs_dismount -t $drive 
ocs_deal l ocate -t $drive 
exit 0 

Tape Handling November 26, 1997 



f \ 

r 

15.1.2 The OCS X Interfaces 

Remember that your DISPLAY environment variable needs to be set properly for X windows 
applications (see section 9.2). 

xocs 

xocs is an X interlace that you may find useful for viewing tape statistics and history. It allows you 
to perlorm a subset of the functions available through text commands. After setting up OCS, enter 
xocs at the command line. You' ll see the following screen (shown for version v3.0): 

Matching Tape Drives 
~~~! ~; ~!ce ;~~~8500 ~~!~~:!!~: d ~!~~~~~- -~~~;:·. •• •• uic> ••• ····i;-io 

0

PGi~ ~~~201 · : ij!
baja b j 02 , EXB-8200 allocated worki n g root O 18426 18426 IGNORE ' :
bastet dumdlt4 DL T4000 Unallocated worki n g - j ' '
bastet horus EXB-8200 Unallocated work i n g - - FGMS04 ! ·,
bastet i s i s2 EXB-8505 Unallocated working -
-fakeacpmaps -fake 1 EXB-8500 Unallocated working -
-fakeacpmaps -fakes2 EXB-8500 Una llocat e d working -

Alioca/t011

V Allocated

y-.. Uncllocatcd

◊ Any

Host O/S Flavor Status Device Type

◊ !RIX ,) Working ,) EXB- 8200 --., DLT2000

◊ A IX V Broken </ EXB- 8500 v DL T4 000

.• _,-Sw10S ◊ Any ◊ EXB-8505 ◊ Any

◊ OSFl ,) EXB-8900

◊ Any

Allocrrled bJ>: !
Hostname: ,..,-.. -. ------~

lastllSN: !
Group:!.--.. .. ------ ~

The menu options under View and Action include most of the features you will need.

xtapeview

Another X interlace to OCS which allows you to view pending mount requests is xtapeview. As a
user, you are not permitted to respond to mount requests, only view them. Invoke this interlace
with the command xtapeview. A window will appear from which you can choose a node.
Click on the node you want, then you'll see a window like the one below which shows the drives
associated with that node, and any pending mounts.

November 26, 1997 Tape Handling 15-5

Taped rive VSN Tapeset R/W Bin Type
io··c:1~·i11di,4 "··"···· · ""····,,M. •, - .. ,, ,, ,,,, ... ··01
rt=r ;;·~~~s~•-•w••"M""'""'w,.,M .. ~WM-M"'"'""'"""=:=~:=w ,, .. .,,, .. _.., ,,, _,,_,,, ••• , ••••• "ww ,,, ,,- ---□l

1o•••i~i;2M W•-•w••-------•.W•-•••••••••••W-W••.W•.W.W••m.w.,WNN•.WNWmM.W.W••----••••••••-·•--·•••M .. ••W•••••w•M•.••--•-•-□i

If y;ou have a color screen, the banner at the top is blue when no mounts are pending, and red if one
or more are. The status button (to the left of the drive name) will be red if a mount is pending on
that drive. If you don't have a color screen, there are gray-tone representations of blue and red. See
$0CS_DIR/doc/xtape .ps (recall that $OCS_DIR is defined during setup) for a full
description of this application, and to see how to customize the color scheme.

15.1.3 Using Provided Examples to Get Started

Examples are provided in the $OCS_DIR directory (defined during setup). You can look at
$OCS_DIR/doc/viewgraphs. ps _for more single-command examples and their expected
output.
The directory $OCS_DIR/examples provides sample programs forFORTRAN,.C and Bourne
shell script which are intended to help you understand how OCS works. The executables are
named ocs_ctest, ocs_ftest, and ocs.,...btest for C, FORTRAN and Bourne shell,
respectively. Each program carries almost identical functionality. You may want to use the source
of these programs (ocs_ctest. c, ocs_ftest. fs and ocs_btest. sh) as ail aid in
developing your own programs. The $ OCS_D IR/ ex amp 1 es / READ ME file explains how to use
the examples.
These example programs can actually send a mount request to operations staff: please keep
this in mind if you experiment with OCS on Fermilab Computing Division systems such as
FNALU.

15.2 Raw Buffered 1/0 (RBIO)
The RBIO (Raw Buffered 1/0) library provides an 1/0 interface that is FORTRAN- or C-callable,
medium-independent, and UNIX flavor-independent. It allows your FORTRAN or C program to
perform buffered 1/0 on a file object, which may be a regular file or a labeled tape. The RBIO
library is used in the compilation, linkage, and execution phases. The actual reading/writing level
is at the primitive logical record level; RBIO does not understand record contents.

~ RBIO is documented in the RB/O User's Guide, document number SU0033.

15-6 Tape Handling November 26, 1997

15.3 DAta From Tape (DAFT)

DAFT (DAta From Tape) consists of a set of routines written by the DART collaboration to provide
event-level reading and writing from DART-formatted records to/from disk and tape. Information
on DART can be found under Projects & Working Groups on the Computing Division home page.
DAFT performs the following functions:

• retrieve data written on tape or disk in the format used by DART
• write data on tape or disk in the DART format

The routines in DAFT are widely portable, and currently run on the supported UNIX platforms
IRIX, Solaris, AIX and OSFl. They offer a FORTRAN interface.
DAFT was written in two layers to allow for a lower level that is easily portable. Therefore, two
sets of access routines are provided:

• a "low-level" set that embeds the different levels of platform-dependence and delivers records
to the higher level routines

• "high-level" routines that unpack events from the records and provide the event interface
The DART on-line format packs events into logical records, where each record may contain more
than one event, in order to keep the drives streaming at full speed. The routines handle large events
spanning records (the maximum record length is 64 Kbytes), and correct the byte ordering of data
on platforms of different endianship.

For more information on DAFT, see the DAFT (DAta From Tape) User's Guide, document number
PN504.

15.4 Fermi Tape Tools (FTT)

The Fermi Tape Tools (FTT) product is a low-level C subroutine library. It provides:
• basic tape 1/0
• support for obtaining and tracking available tape statistics
• a set of informational and support subroutines for tools that allocate and control tape usage

(i.e. OCS)
FTT has been designed to provide platform- and drive-independent 1/0 on the UNIX platforms
supported at Ferrnilab. It has also been designed to be portable to other platforms and drives. In
addition to its use as a transparent layer of software in several products (namely DAFT, OCS, and
RBIO), the FTT subroutine library can be called directly by user-written programs. FTT also
includes an interactive test program which, among other things, can verify that tape drives are
behaving properly.

~ FTT is documented in the Fermi Tape Tools Library User's Guide, document number PU0236.

15.5 Fermi Modular Backup (FMB)

The Fermi Modular Backup (FMB) system is a locally-written set of utility scripts used for backup,
restore, and other similar administrative tasks. It was designed for use on the supported UNIX
flavors. FMB uses short, simple-to-write modules to provide different tape rotation schemes, tape
mount systems, archive formats, and so on. It also supports backup of remote machines, and/or
remote tape drives.
See the Fermi Modular Backup System User's Guide, document number PU0164.

November 26, 1997 Tape Handling 15-7

15-8 Tape Handling November 26, 1997

r

1

l

Chapter 16: Software Development

This chapter gives an introduction to UNIX software development tools in common use at
Fermilab, providing information on: •

• Supported languages

• Compiling and linking in C, C++ and FORTRAN

• Debugging

We do not include a discussion of general programming here, but rather, aspects of software
development particular to UNIX. You will need to reference the man pages and the vendors'
manuals for more system-specific details. •

Useful documents relating to FORTRAN, C, and C++ programming can be found under Software
Development on the UNIX Resources Web page.

Many software development subjects of interest to Fermilab users are beyond the scope of this
manual. Among them are:

• Object Oriented programming techniques including NextStep

• CASE tools

• Neural Network methods

• Lattice Gauge techniques used in ACP-MAPS, CANOPY, et.al.

• Data Mining methods available in the CAP facility.

• Many excellent commercial tools for building Graphics User Interfaces , debugging, migrating
and analyzing performance of user code, building Database interfaces, etc.

16.1 Overview of Programming Languages and Tools

This is a short overview of some common programming languages. Our aim here is to give you a
general idea of what tools are available, and how they can be used. The list is ordered from low to
high level, and indicates common uses:

November 26, 1997

Assembler not used at Fermilab

C
FORTRAN

C++

Perl

Python

Tk

system services, user interface, general utilities

FORmula TRANslation (physics calculations)

object oriented general programming

interpreter, general purpose

object-oriented and/or general purpose interpreted scripting language

interpreter, GUI interfaces

Software Development 16-1

~

Assembler

Traditionally, assembler has been needed for a couple of reasons:
• Access to system services and hardware
• Tuning program efficiency

Assembler programming is not generally necessary or desirable on the RISC based UNIX systems
presently in use. RISC system performance is so heavily dependent on pipelining and various
caches that it is extremely difficult, if not impossible, for an individual to write more efficient
assembler code than is generated by the higher level language compilers. The C language provides
all the hardware access and system service capabilities traditionally provided by Assembler.

C

As noted above, C has filled the programming niche traditionally occupied by Assembly language.
In addition to its normal use as a high-level programming language, C can act as a universally
portable Assembler.
Because the C language was created, has evolved, and has become standardized hand-in-hand with
the UNIX operating system, it is the language of choice for applications involving system services
and user interfaces. Using C is discussed in several of the following sections.
Now that an ANSI C standard exists and is widely implemented, portability of C code is much
improved. ANSI C compilers are the default on most Fermilab systems. Likewise, adoption and
availability of POSIX standards for operating system services has greatly improved program
portability.
An excellent reference book for C programming is The C Programming Language by Kernighan
and Ritchie published by Prentice-Hall.

FORTRAN

FORTRAN remains the most effective language for mathematical calculations. This is due partly
to decades of research which has produced highly efficient optimizing compilers, and partly to the
millions of lines of tested, portable code already in use.

C++

C++ adds object oriented programming constructs to the C language. At the risk of
oversimplifying, it seems that C++ is substantially harder to learn and to use for writing new
programs, but the resulting programs are much better structured, more maintainable, and more
shareable than traditional C or FORTRAN programs.
An additional advantage of C++ is the availability of class 1 libraries. A Standard Template Library
will come with most compilers soon. This library will contain many useful low level classes for
such things as strings and streams 1/0. Also, some vendors include other commercial class libraries
as added value to their compilers. In addition to the vendor-supplied versions, C++ is available as a
part of Gnu C. This has increased its popularity.
The C++ language standard is (still!) in the process of adoption by the ANSI and ISO standards
committees. Since the C++ standard has not been finalized (although it changed significantly in
December 1996), there are at this time (November 1997) cross-platform porting issues. None of
our major vendors (SGI, IBM, GNU) are yet providing a draft-standard-compliant compiling and
runtime toolkit. The safest bet for generating portable C++ code is to avoid using newer features
such as exceptions and templates, which may be implemented differently (or not at all) by the

1. A class is similar to a structure definition in C.

16-2 Software Development November 26, 1997

r / various C++ compiler vendors, at least until the vendors catch up with the standard. As an
alternative, use the g++ command to run the Gnu integrated CIC++ compiler on all platforms.
Using the g++ command instead of gee gives you appropriate C++ linking.
For documentation, you may refer to:

• the CC (upper case), gee and g++ command man pages
• The C++ Programming Language, Addison-Wesley, by Bjarne Stroustrup

Perl

perl is installed at Fermilab as part of the shells product. The man page for perl gives a good brief
description:

perl is an interpreted language optimized for scanning arbitrary text files, extracting
information from those text files, and printing reports based on that information. It's also a
good language for many system management tasks. The language is intended to be practical
(easy to use, efficient, complete) rather than beautiful (tiny, elegant, minimal).

There is an excellent text published by O'Reilly & Associates, Inc. on perl.

Python

Python is an interpreted, interactive, object-oriented programming language often compared to
Tel, Perl, Scheme and Java. Python combines remarkable power with very clear syntax. It has
modules , classes, exceptions, very high level dynamic data types, and dynamic typing. There are
interfaces to many system calls and libraries, as well as to various windowing systems (e.g. , XU,
Motif, Tk, Mac, MFC, STDWIN). New built-in modules are easily written in C or C++. Python
is also usable as an extension language for applications that require a programmable interface.
An on-line document for Python is available in the CD documentation database.

Tk

Tk is an XU toolkit that provides the Motif look and feel, and is easy to use for building graphical
interfaces largely because it is built on an interpreted language. It can be used with a variety of
languages including Tel (Tk used to be solely implemented using Tel), Perl, and Python.
The best reference for Tk is the book Tel and the Tk Toolkit1, by John K. Ousterhout, published by
Addison-Wesley. The README file under the tk directory in $TK_DIR (created during
setup) points to a draft of this book. Also see .the man pages for information on these languages.

Other Languages and Language-Related Tools

Other tools exist that are commonly used as languages in the appropriate context. These include,
for example, the various UNIX shells (as discussed in section 4.4), and awk, sed, yacc, and lex, for
which O'Reilly & Associates, Inc. provides excellent texts.
There are many other languages which are not widely supported or are not in general use at
Fermilab. These include Pascal, Modula-2, Lisp, Forth, Bliss, and others. We do not discuss them
in this document

November 26, 1997

1. Some publishers' catalogues use an ampersand(&) rather than the word "and"; check
both in database searches.

Software Development 16-3

16.2 Introduction to C and FORTRAN on UNIX

16.2.1 The C Compiler: cc

cc (lower case) is the vendor-supplied C compiler command on all Fermilab-supported UNIX
systems (except LINUX, where it is gee). ANSI C compilers are the default on most Fermilab
systems. To compile one or more C source files (filename.c), you run the cc utility. cc
automatically invokes the link editor Id unless the option -c, which explicitly suppresses linking,
is used.

16.2.2 The FORTRAN Compiler: f77

All the Fermilab supported UNIX systems have good FORTRAN 77 compilers, which provide
some minimal extensions. These compilers also recognize most DEC-supported VAX-FORTRAN
extensions.

f77 is the FORTRAN compiler command on all Fermilab-supported UNIX systems (except
LINUX, where it is g77). The f77 command controls both compilation and linking functions
automatically using appropriate FORTRAN runtime libraries. f77 can produce object modules,
partially linked objects, or executable programs, as appropriate. The option -c explicitly
suppresses linking.

[y? Note that on AIX, to get help on f77 you need to type man xlf rather than man f77 .

16.2.3 C and FORTRAN Compiling Basics

UNIX compilers, including f77 and cc, generally use both,filename extensions and the file content.
to determine how to handle the files listed on the command line. The commonly used extensions
are:
Fore

C

For FORTRAN
f

For both
0

a

C source, e.g., myfil e . c

FORTRAN source, e.g., my file. f

object file, e.g., myfile. o

archive library, e.g., my lib. a
(none) executable image, e.g., myfile

For historical reasons the UNIX linkers produce by default an executable named a. out; the
option -o filename is available to override this default.
We list here some basic compiling and linking examples. In these examples, we use a source file
named foo. c, where c is the standard extension for C. In all instances shown here c can be
directly replaced by f, and cc by f77, for FORTRAN .

To produce: . . . enter the command:
foo. o object module cc -c foo.c
foo executable from source cc -o foe foo.c

16-4 Software Development November 26, 1997

r
r
(

foo executable from source+ object file
cc -o foo foo.c myobj.o

foo executable from source+ library
cc -o foo foo.c $CERN_DIR/lib/libmathlib.a

foo executable from source+ XI I/Motif (standard system libraries)
cc -o foo foo.c -lXm - lXt -lXll

The options used with the cc and f77 commands are discussed in later sections.

16.2.4 Linking Order

Most UNIX linkers process source, object and library files in the order that they occur on the
command line. Backward library references, from a file to an earlier library, will not be satisfied,
except under AIX. It may be necessary to list a library more than once for successful linking.

AIX loads the entire content of all libraries into memory, eliminating ordering problems, but
potentially creating memory usage problems. Listing a library more than once is unnecessary, and
positively undesirable under AIX.

16.2.5 Displaying Active Options

You may wish to know which options are active for a given compilation, in order to verify that the
defaults are what you expect. Each platform seems to provide this information somewhat
differently:

Platform Option Result

AIX -q listopt Source listing with options, to file * .1st

IRIX -v Options and other details, to stdout

OSFI -v Source listing with options, to file * . 1 (FORTRAN only)

SunOS not available

16.2.6 Option Passing

At each stage of compilation, any unrecognized command line options are passed on to the next
stage. Options that could be valid for more than one stage can be explicitly passed to a particular
stage. To direct an option to a specific phase of compilation or linking, use the option 7 w (for
AIX, IRIX, OSFI) or -Qoption (for SunOS). The phase is identified by the letter immediately
following the -w. Thus, for example, -Wl, -m tells f77 or cc to pass the option string -m to the
1 (link) phase. The f77 command line might read:

% f77 -Wl,-m foo.f for AIX, IRIX, or OSFI, and

% f77 -Qoption ld -m foo.f
for SunOS (where ld is the loader program)

November 26, 1997 Software Development 16-5

16.3 Introduction to C++ on UNIX
cc (upper case), g++ and gee are all C++ compiler commands on the Fermilab-supported
UNIX systems that provide C++ (see section 16.1 for a brief discussion). Just as C++ is a superset
of C, the C++ compilers are very similar to C compilers in that their options are usually a superset
of C compiler options. The basic compiling information about C in section 16.2.3 is also
applicable to C++, with the following exceptions 1:

• Source filename extension conventions are compiler-dependent. Check the man pages for cc
(upper case) to determine the extensions used on your system. Extensions include:

C (upper case)

C

CXX

cpp

cc
c++

(lower case)

• The C++ compiler is invoked with CC (upper-case), g++ or gee
• There are additional compiler options specific to C++; see the man pages.

0 The C++ compiler may not yet be installed on your Fermilab UNIX system.

16.4 . C and FORTRAN Compiler Options
The default compiler options will produce a usable program on any of the supported platforms,
however they may not be optimal for many situations. Several additional options are discussed in
this section.
A caveat: One very annoying "feature" of the f77 and cc commands is that some of the opti9ns
must be specified with whitespace (at least one blank character) between the option identifier and
the option value, others without whitespace and still others with or without, according to the user's
choice. For instance, on IRIX systems, there must be whitespace between -o and the name of the
executable file but there must not be any whitespace between -1 and the library file name.
If compilers are upgraded it is possible that some of these options could change. For full details on
all the options, see the man pages and the vendor compiler documentation.

16.4.1 Commonly-Used Options

-c suppress linking, produce object file * . o. The linker is called as part
of the compilation process by default.

- L directory add directory to the default linker search list; not needed for user
libraries. The -L option adds directories to the linker's default search
path. -L directories are searched ahead of system library areas. A
user library could accidentally match the name of an obscure system
library, with startling results.

16-6

1. This doesn't apply to Gnu C++. The compiler command for both Gnu C and Gnu C++
is gee, and the available Gnu compiler options are different from the vendor compiler
options.

Software Development November 26, 1997

I

-1.file search library 1 ib.file. a, from the default areas (the 1 ib gets
prefixed and the . a appended automatically)

With user-written libraries, specify the libraries on the command line with their true file names and
a full path, without using the -L and -1 options.

-o file (lower case o) produce executable program.file rather than a. out

-on

-w

-P

-p

(upper case O) optimize at level n where n is 0, 1, 2, 3, or 4. The
meanings of the different optimization levels vary from system to
system. See the man pages for details.
suppress informational and non-fatal compiler warnings
(upper case P) run cpp (C preprocessor) only to produce
listing

* • . i source

(lower case p) enable profiling; see the man pages for details
Other commonly-used C compiler options are:

- I directory _name extend include path
-D set value of preprocessor macro

Other commonly-used FORTRAN compiler options are:
-u IMPLICIT NONE
-c (upper case C) check runtime subscript range

16.4.2 Recommended Options for General Use

As mentioned earlier, the default options may not be optimal for a number of very common
situations, namely for debugging, moving binary code between non-identical machines, or tuning
for best performance. Even for general usage, some non-default options have proven helpful in
avoiding internal compiler limits and providing better compatibility for migrated code.
This list shows options by platform which apply to all situations, and which we recommend for
general use. They can be used in addition to other options you might choose based on your specific
needs. As stated above, if compilers are upgraded it is possible that some of these options could
change, so you should always consult the man pages.

AIX

IRIX
OSFl
SunOS

-qextname -qrndsngl

-qflttrap=invalid:overflow:zerodivide:enable
-trapuv -lfpe

(none)

-xl -fnonstd

Discussion of General Options

-qextname

-qrndsngl

November 26, .1997

(AIX) append underscore(_) to external names (default at Fermilab).
This is needed if you use any Fermilab or CERN libraries. Better to just
make it a habit.
(AIX) standard IEEE math on intermediate REAL* 4 results. This
produces bitwise identical results to IRIX/OSFl/SunOS for most
programs, making port testing easier.

Software Development 16-7

-qflttrap

-trapuv

-lfpe

.-xl

-fnonstd

(AIX) detect and report floating point errors. Without this, errors occur
silently, and incorrect results may be produced. Unlike other platforms,
these would not be NaN 1, but legitimate floating numbers. Do not use
the : imprecise option here, as it appears to disable error detection
entirely (AIX 3, XLF 2).
(IRIX) set uninitialized variables to NaN, to help catch nonportable
code and latent bugs at runtime.
(IRIX) use the Floating Point Exception library, to report or core dump
on errors. Without -lfpe, errors produce NaN values silently . . Must
be combined with the TRAP _FPE environment variable, or calls to
handl e _fpes, to be effective. TRAP _FPE must be set to the value:
OVERFL=ABORT;DIVZERO =ABORT;INVALID=ABORT

See section 9 .1 for setting environment variables.
(SunOS) Extended Language, for Fermilab-required extensions (see
section 16.2.2)
(SunOS) trap floating point errors.

16.4.3 Debugging Option

• The -o's here are all upper case, for optimization.
-g include full symbol table for debugger. This option interacts with the

?Ptimizer differently on each platform, so we provide some usage notes:
AIX you should not use -o with -g

IRIX
OSFl

SunOS

-g forces optimization off; use -g3 to permit optimization
-g changes default optimization to -oo (dash, letter-O, zero)
An additional OSFl option, -synchronous_exceptions, puts
traps after each floating point operation. This is very slow, but will
precisely locate floating point errors. Use this only for code which is
known to produce floating point exceptions.
you should use -01 with -g

16.4.4 Portability Option for AIX

-qnomaf Turns off Multiply/Add instructions in order to enhance portability.

16.4.5 ABI Options Under IRIX 6

Under IRIX 6, there are three Application Binary Interface (ABI) options available. The selected
option specifies at compile time which subset of the processor chip 's capabilities is to be used. In
previous releases of IRIX, and in all releases of the other supported UNIX flavors (as of this

16-8

1. NaN is the IEEE standard Not-a-Number bit pattern produced when a floating point
operation generates invalid results.

Software Development November 26, 1997

!

}!

writing), the user is not given a choice of ABI. Under IRIX 6, choosing an ABI is generally
necessary if you're doing mixed-language programming or using any libraries other than those
supplied by the vendor. The available ABis and their associated command line options are:

032 (-3 2) conforms to the ABI used with all prior IRIX releases

N64 (-64) puts the processor into full 64-bit mode

N32 (-h32) leaves the processor in 32-bit mode but talces advantage of a number of
newer features and generally produces more efficient code on the newer
processors

This topic is discussed in the Web page /RIX 6 Application Binary Interfaces, available under
Physics Appli<;ations on the CD home page (look under Cem Library at Fermilab).

16.4.6 Speed Optimization Options

Note that on most platforms a combination of options is required for best optimization. Recall that
these options may be used in addition to general recommended and other options. The -o's here
are all upper case.

AIX
IRIX
OSFl
SunOS

-02

-03 -rnips2

- 03 -feedback -tune host

-03 -cg92 -librnil

Discussion of Speed Optimization Options

Platform Options Comment

IRIX -rnips2 Use full R4000 instruction set. This is important on R4000 and
later systems.

OSFl -feedback Order routines for best cache performance, based on actual
program execution statistics.

-tune host Use best optimizatl.on for given generation of chip. The code
will run anywhere, but is tuned for local speed.

SunOs -cg92 SuperSPARC V8 instruction set Sparcstation 2 and later. See the
man fpversion document.

-librnil Hardware-specific inline math

16.4.7 Load Map Option

The load map option is actually a linker option. On AIX, IRIX and OSFl this requires passing to
the link phase the option that controls production of a load map.

November 26, 1997 Software Development 16-9

Platform Option Output

AIX -Wl, -bmap :file file

IRIX/OSFl -Wl, -m stdout (SysV style list of input/output)

IRIX/OSFl -Wl,-M stdout (BSD style primitive map)

SunOS -m stdout

Additionally, under AIX two related options are available:
-Wl, -bloadmap provides additional internal loader information
-Wl, -bxref provides additional cross reference information

16.4.8 Special FORTRAN Compiler Options

Source Code Listing Option

Each platform has an option that produces a source code listing. The file extensions for these
listings are platform-dependent.

Platform Option Listing Extension

AIX -qsource 1st

IRIX . -listing L

OSFl -v 1

SunOS -Xlist 1st

Saving Local Variables

The FORTRAN 77 standard allows subprogram local variables to become undefined between calls,
unless saved with a SAVE statement. Many UNIX rn compilers require the SAVE statements for
retained local variables. SAVE'd variables are usually called static, and unSAVE'd variables are
called automatic. For programs not yet properly equipped with SAVE statements, f77 command
line options are available as follows:

Platform Static Option Automatic Option

AIX (default) -qnosave

IRIX -static -automatic (default)

OSFl -static (default) -automatic

SunOS (default) -stackvar

16-10 Software Development November 26, 1997

1
•-·"

\ '

C Preprocessor

The C preprocessor (cpp), a macro processor, is used in f77 for conditional compilation, macro
expansion and source inclusion. If you plan to run cpp, remember to double any backslash
characters(\\) in your code to prevent their misinterpretation as cpp escapes. The option shown in
parentheses is the default option for the corresponding platform:

IRIX
OSFl
SunOS
AIX

(-cpp) -nocpp

-cpp (-nocpp)

any input file name * . F is automatically preprocessed by cpp

(see below)
The C preprocessor cannot be invoked through the £77 command on AIX systems. It can,
however, be invoked under AIX as a separate command:

% /lib/cpp -P -c in.file out.file

See the man pages for cpp syntax and usage information.

Extend Search Path for INCLUDE

Use the £77 command line option -I path to extend the search path for the INCLUDE
statement on AIX/IRIX/OSFl (not supported on SunOS), where path is the path to the directory
where the include files are found.

Internal Compiler Limits

You may need to set one of these if you are compiling a very large single source file.
AIX -NQ20000

Larger internal compiler tables. This value should be big enough for
almost all programs.

IRIX/OSFl -Olimit 1500
Allows somewhat larger routines to be optimized.

16.5 FORTRAN Programming
There is. some additional information about using FORTRAN in the UNIX environment that you
will find useful to know.

16.5.1 External Reference and Entry Point Names

In order to avoid conflicts with the C runtime library when FORTRAN and C programs are
included in a single program, most UNIX f77 compilers internally append an underscore to
FORTRAN external references and entry point names. At Ferrnilab we have set up all f77
compilers to do this by default.

November 26, 1997 Software Development 16-11

16.5.2 Separate Compilation of FORTRAN Subprograms: fsplit

By default, most t77 compilers pre-link all the source code being compiled, even when you specify
the -c option. If you compile a library with a single f7 7 statement, it will usually contain a
single module, and be linked as a whole.
The fsplit utility identifies and extracts subprograms from the original FORTRAN source file into
individual files in the current directory. These files can then be compiled separately so that they
retain their identity when assembled into a library.
The names of the extracted' individual files are taken from their corresponding subprogram names.
On some systems fsplit will overwrite any pre-existing file, including the original source file,
whose name matches any of the subprogram names.
See the man pages for more information on fsplit.

16.5.3 AIX-Specific Issues .

You must CALL EXIT to avoid having a STOP message printed on stdout at program
termination.
The OPEN statement parameter 'READONLY is unavailable. All files are opened with WRITE
access. This makes file sharing problematic under AIX.

16.5.4 Loading Block Data Modules

Many UNIX t77 compilers enforce the standard restriction that variables in COMMON must be
initialized only in BLOCKDATA subprograms.
To ensure the load:. 1g of BLOCKDATA subprograms from libraries, declare the BLOCKDATA
program name as EXTERNAL in some important module which you know will be loaded.

16.5.5 Program Control

Command Line Arguments

A FORTRAN program can easily evaluate arguments included on the command line that runs the
program. A couple of examples follow.

• The IARGC function returns the number of command li~e arguments:
N = IARGC () Sets N to the number of command line arguments

• The GETARG subprogram returns the value of a specified argument:
CALL GETARG (I , STR) Puts the I'th argument into string STR

Environment Variables

The GETENV subprogram provides the values of environment variables. For example, to copy the
value of variable MY_OUT into string OUTFILE, include in your source file:

CALL GETENV ('MY_OUT' , OUTFILE)

16-12 Software Development November 26, 1997

(

l

Printing

The usual FORTRAN carriage control characters placed in the first column of formatted output
files are not interpreted by most UNIX text handling utilities. Use the UNIX asa utility to convert
such FORTRAN output files to an equivalent standard ASCII text form. asa handles blanks, 0, 1
and + in column 1, removing any other characters. See the man pages for asa for details.

16.5.6 Future FORTRAN Enhancements

AIXXLF3

This document describes the AIX XLF 2 compiler. IBM's standard f77 compiler, XLF 3, is not yet
available at Fermilab.

FORTRAN90

The FORTRAN 90 standard includes FORTRAN 77 as a subset, and makes standard many of the
extensions in common use. FORTRAN 90 is not yet commonly installed at Fermilab, and in fact
we recommend that you avoid using FORTRAN 90 extensions until it is widely available. This
document is written for f77 users.

16.6 Obsolete Programming Features
You may encounter these.features in older code.

AIXXLF

Some years ago the AIX FORTRAN compiler command was xlf. The standard f77 command
is now available under AIX, and should always be used in place of xlf . However, as mentioned
earlier, you still need to type man xlf to access the man pages.

Calling BLOCKDATA

Some systems (VS-FORTRAN) required an explicit call to each BLOCKDATA routine if you
wished to force loading of that routine from a library. This is not necessary on any· supported
UNIX system.

BUFIO

The Fermilab bufio product for accessing raw variable length records on tape and disk is no longer
supported. Improved capabilities are being supported in RBIO and DAFT (see sections 15.2 and
15.3).

RANLIB (SunOS/4)

The RANLIB utility added necessary library symbol tables under SunOS/4. This is done
automatically under SunOS 5.

November 26, 1997 Software Development 16-13

d

ar -s Option (ULTRIX)

The ar - s option added necessary library symbol tables under Digital's ULTRIX 1 and some
earlier operating systems. This is done automatically under all Fermilab supported systems.

16.7 C and FORTRAN 1/0
This section mainly applies to FORTRAN. For C, all you need to know is that the RBIO and
DAFT libraries mentioned below are available.
Recall that file names in UNIX are case sensitive. It is customary to use lower case for normal
files, reserving upper case names like README for documentation and control files.
Note that you cannot use the shell metacharacter tilde (-) to specify a home directory within a C or
FORTRAN program; - is valid only on a UNIX shell command line (for all shells but sh).
logdir can be used within programs for this purpose (see section 6.1.2).

16.7.1 Records

The UNIX operating system treats a disk file as a sequence of bytes. Interpretation of data as
records is entirely up to individual applications. The FORTRAN 1/0 libraries provide the
necessary record handling for FORTRAN programs. READ statements return only the content of
the records, and not the control words mentioned below.
Formatted'records are terminated by a new-line character <Ctrl-1> (lower case L), consistent with
other UNIX text handling programs. •
Unformatted records are both preceded and followed by a 32 bit integer containing an exclusive
byte count.

16.7.2 Tapes

Tapes of course have real physical records, and must be handled differently than disk files . A tape
• file is sometimes called 'character special' to indicate that it is not accessed on a
character-by-character basis. Tape handling is covered in Chapter 15.
There are no industry-wide standard tape 1/0 routines callable from FORTRAN. Fermilab makes
use of several locally-written packages, including:

RBIO labeled and directoried tape access (see document SU0033)
DAFT raw binary tape access (see document PN0504)

You can find C and FORTRAN examples in Appendix B of the DAFT User's Guide, document
PN0504.

1. ULTRIX has been superseded by Digital UNIX (uname returns OSFl).

16-14 Software Development November 26, 1997

/I

/ \

16.7.3 Standard Input and Output

In conformance with the FORTRAN standard, READs and WRITEs to unit * are directed to
st din and stdout. You can READ and WRITE to units 5, 6, and 0 without an OPEN. They
are preconnected to stdin, stdout, and stderr, respectively. If you OPEN and write to
any other unit number # without specifying a file name, a default name of fort.# will be
used.

16.8 Performance Tuning for C and FORTRAN

16.8.1 Optimization

Using the compiler -o (upper case) options can improve program execution speed by factors of 3
or more, depending on the application, over unoptimized code. Note that your libraries must also
be compiled at the same level in order for this to be effective.
Beware that there are some optimizer bugs. You should always do a limited run initially with and
without optimizer options, and check your answers.
For production running, use the appropriate hardware-specific optimizations for the systems
running the code. These options typically tune for cache sizes, instruction sets, and other internal
hardware features, resulting in sizeable speed gains. On some systems this produces an executable
that will run only on the targeted architecture.
It is common practice to retain debugger symbol tables in production programs, with only a small
speed penalty. You may have to exercise care that the -g option does not also disable
optimization of such production programs. Under IRIX, you must use -g3 to get both
optimization and symbol t~bles.
See the suggested speed optimization options, and vendor documents for details.

Floating Point Errors

You can obtain substantial speed increases on some systems, especially AIX, by disabling the
detection and trapping of floating point errors such as overflow, division by zero, and invalid values.
On the systems with the biggest gains, this practice can produce apparently normal, but incorrect,
results. For example, 1000./0. can produce the result 1000. It is hardly necessary to point out that
this sort of thing can produce surprising physics results! For this reason our recommended options
for general use are set to at least detect and report floating point errors.
Qualifiers which force precise trapping of floating point errors are generally only used when
tracking down known problems, as they can impose a large performance penalty.

16.8.2 Word Length

It may be tempting to use arrays of short words to 'save memory'. On previous generations of
computers this could also speed execution. On RISC systems there is a big performance penalty for
this practice.
The current generation of RISC processors are optimized for 32 and 64 bit operations: Operations
on 8 bit or 16 bit words are performed several times more slowly. The processor must extract the
necessary data into a longer word, perform the operation, and mask the result back into the original
location.

November 26, 1997 Software Development 16-15

Alignment of variables is important for the same reason. A misaligned 32 bit word requires even
more shifting and masking than a 16 bit word, with an even greater performance penalty. If you
must combine different length variables in a data structure such as a COMMON, place longer
words earlier in the data structure.

16.8.3 Feedback

The speed of a program can be limited as much by memory access as by processor speed. Effective
use of memory cache is critical to getting good performance.
Cache usage can depend on the details of the linking process. Arbitrary changes in the ordering of
modules in the executable can result in nearly 20% differences in execution speed, for typical
physics code. Small changes like switching between static and shared libraries, or modifying a
single subroutine call in your code, can 'result in substantial changes in linking order and hence in
performance.
For this reason, some vendors provide mechanisms for setting optimized module ordering in the
executable, based on data from a trial run of the application. Under OSFl, use the compiler
-feedback option; see the 177 or cc compiler man page for details and examples.

16.8.4 Inlining

Mariy compilers provide options for replacing calls to external modules with equivalent inline code,
to permit better optimization and reduce subroutine call overheads.
Physics code does not generally benefit measurably from such inlining. Inlining within a library
makes the inlined modules nonreplaceable at link time, leading to confusing results and difficult
debugging. In our recommended speed optimization options we stop short of the levels that
introduce inlining.

16.9 C and FORTRAN Mixed Programming

It is possible, with a little care, to combine C and FORTRAN modules in the same program. Some
of the issues that need attention include:

• variable types
• array indexing
• external names
• arguments
• commons

• 1/0

• linking
For newly written C programs, you may wish to use the cf ort ran . h header file available in the
cern product.
The July/Sept 1994 CERN Computer Newsletter (217) contains an extensive tutorial by Alfred
Nathaniel on C and FORTRAN interfacing, available locally under the heading Software
Development from the UNIX Resources Web page.
If you're programming under IRIX 6, you will need to choose an ABI. Refer to section 16.4.5.

16-16 Software Development November 26, 1997

I

t

f I

We give here a summary of the techniques used on the Fermilab UNIX systems. In Appendix I you
can find an example that illustrates much of the information in this section.

16.9.1 Variable Types

Generally, these variable types are equivalent:

FORTRAN C

INTEGER*l char

INTEGER*2 short

INTEGER*4 int

REAL float

REAL*8 double

LOGICAL (unavailable)

C strings are zero-terminated, and have no intrinsic length. FORTRAN character variable lengths
are given by an internal descriptor. FORTRAN character variables passed to C routines should be
copied and zero-terminated before they are used.
The· internal representation of FORTRAN LOGICAL variables is usually non-0/0 for
.TRUE.I.FALSE. respectively, but it is best not to count on this.

16.9.2 Array Indexing

By default C starts indexes at O and FORTRAN starts them at 1. C and FORTRAN multiple index
ordering is reversed. FORTRAN substring selection appears as the first C string index. See the
following equivalence table:

FORTRAN C

intv(j) intv[j-1]

intv(j,k) intv[k-1] [j-1]

char (j) (k : k) char [k-1 J [j -1 J

16.9.3 ExternalNames

By default on Fermilab UNIX systems, the f77 compiler modifies FORTRAN subprogram and
other external names. It forces each name to lower case, and appends an underscore. Thus
FORTRAN label SUBPROG would become C label subprog_. For AIX, make sure the
-qextname option is set (see section 16.4.2).

November 26, 1997 Software Development 16-17

16.9.4 Arguments

FORTRAN subprogram arguments are always passed as addresses (C pointers). C programs can
specify arguments as either pointers or values. FORTRAN CHARACTER arguments are passed as

. pointers, followed by a set of additional values (not pointers) at the end of the argument list, giving
the length of each CHARACTER argument.
C routines can always call FORTRAN routines, with due attention being given to arguments.
FORTRAN routines cannot call arbitrary C routines.

16.9.5 Commons

FORTRAN COMMON's are accessible in C as extern structs, with the same name mapping as is
used for entry points.

FORTRAN C

COMMON / FOO / I extern struc t { int i ; } foo - ;

K = I k = foo.i ;

It is best to keep your FORTRAN COMMON variables aligned on natural boundaries1, in order to
avoid potential padding words which may be inserted differently by various FORTRAN and C
compilers. You get natural alignment easily by putting longer variables before shorter variables in
the COMMON.

16.9.6 1/0

Mixed C/FORTRAN 1/0 to the same file is not advisable. Mixed C/FORTRAN 1/0 to stdout,
where stdout is the terminal, will usually work reasonably well, making debugging easier.

16.9.7 Linking

The easiest and safest way to link C/FORTRAN programs is to use the f77 command, which
automatically includes both C and FORTRAN run time libraries. If you insist on linking with the
cc or ld commands, remember to add the options:

-1F77 -1I77 -lrn

16.10 Executing a Program
Once you create an executable, you run it the way you do a normal UNIX command, that is by
typing its name followed by appropriate options or parameters.

1. Keep all n-byte variables' addresses an exact multiple of n, for example 0, 4, 8, .. . for a
4-byte quantity.

16-18 Software Development November 26, 1997

, 1

You must be aware that if you have not included "dot" (.) in your path, whenever your executable
is in a directory not explicitly included in your path, you will need to prefix the executable name
with . / to run it. This was also mentioned in section 9.2 under PATH.

16.11 Debugging

16.11.1 FORTRAN Source Code Analyzer: FLINT

FLINT is a FORTRAN source code analyzer, a proprietary,product of IPT. At Fermilab, FLINT is
available for SunOS 5 and IRIX 5. The FLINT User Manual for UNIX is available on the Web
(document number PU0099) and on-line in the file $FLINT_DIR/MANUAL wherever FLINT is
installed and setup.
FLINT provides several analysis features:

• local and global analysis
• cross reference tables
• program statistics
• calling trees

FLINT reports the following error conditions:
• inappropriate arguments passed to functions or subroutines
• inappropriate library calls
• inconsistencies in common-block declarations
• non-portable code
• type usage conflicts across different modules
• unused functions, subroutines and variables
• variables which are referenced but not set

FLINT Options and Files

Use the -s (upper case) option to specify an output file name. The default extensions listed
below are used. A separate file will be created for each component of the listing according to the
additional option shown:

lnt

xrf

tre

stt

Analysis output
Xref table (-x)

Call tree (-t)

Statistics (- s)
Use the -L option to create a *. lbt FLINT library, containing all subroutine interface
information needed for subsequent call usage tests. This library may be specified as FLINT input
in place of the original source.
Use the -B option to create a *. fdb database file, containing all the symbol information
needed for subsequent cross reference and call tree analysis. This database file may be specified as
FLINT input in place of the original source.
Lowercase options may be combined. Use a double dash to disable an option (e.g., - -w); this is
useful for disabling a default option.

November 26, 1997 Software Development 16-19

Uppercase options take parameters (with or without a space between the option and the parameter,
depending on the option) and do not combine.
When original source is not available, *. lsh ASCII files may be created to describe calling
sequences. The file $FLINT_DIR/unixlib. lsh describes the standard UNIX system calls.

FLINT Usage Examples

To see the standard analysis warnings for Isajet, enter:

% flint $ISAJET_DIR/isajet.f

To see a calling tree of the Isajet program, without warnings, enter:

% flint -t -Tcondensed --w $ISAJET_DIR/isajet.f

To see an options summary, enter:

% flint"-?"

16.11.2 dbx

dbx is a utility for source-level debugging and execution of programs written in C, C++, and
FORTRAN. dbx allows you to trace the execution of a specified object file. You can step through
a program on a line-by-line basis while you examine the state of the execution environment.
Programs compiled with the -g option of cc (and other compilers) produce an object file. This
object file contains syinbol table information, including the names of all source files that the
compiler translated to create the object file.
dbx also allows you to examine core files via its where command. A core file contains the core
image produced when the object file was executed, providing information about the state of the
program and the system when the failure occurred. A core file named core is produced by
default.
dbx commands can be stored in a start-up . dbxini t file that resides in the current directory or
in your home directory. dbx executes these commands just before reading the symbol table.
There are some UNIX tools which provide a more sophisticated interface to dbx. See your local
system documentation for information on GUI-based dbx tools. The product ddd (originally an
interface for gdb) works as a front end for dbx in its more recent releases. It is currently available
at Ferrnilab as part of the gee product, but we expect to release it as a separate product soon. See
the DDD User's Guide on the Web, document number DS0230.

Runningdbx

To invoke dbx, enter the following command:

% dbx [options] [object_file [core.file]]

where object_file is the name of the file you want to debug.
Once dbx is running, you should see the (dbx) prompt. At this point you can start issuing dbx
commands.

Commands

There are many dbx commands, all described in the man pages. Some of the basic commands are
run, where, print, stop, list, cont, and quit:

16-20 Software Development November 26, 1997

I \

I r/

/1
I
,,,

I \

run [arguments]

where [n]

print [expressions]

stop restriction [if cond]

Begin executing the object file, passing optional
command-line arguments. The arguments can include
input or output redirection to a named file.
List all active functions on the stack, or only the top n.

Print the values of one or more comma-separated
expressions . To print values of two-dimensional
FORTRAN array elements use the format: print
array _name [1, 2]

Stop execution if specified restriction is true. Restrictions
include (this is a partial list):

at (source line) n

if cond

in (procedure or function) June

cond (condition) is a Boolean expression; if it evaluates to
true, then execution is stopped.

list [nJ [,n2]] or list June

cont 1 [at n] [sig signal]

status C > file 1

delete [n]

quit

Example

List the source text between lines nl and n2, or on lines
surrounding the first statement ofjunc. With no
arguments, list the next ten lines.

Continue execution from the point at wbich it was stopped
if no arguments. Resume from source line n or, if a signal
name or number is specified, resume process as if it had
received the signal.

Show active trace, stop, and when commands

Remove traces, stops, and whens corresponding to each
command number n, given by status. If n is all
remove all.
Exit dbx.

You may want to start by using dbx to set some break points within your code. To step through
your code at the very beginning, you need to stop in the MAIN routine if you are debugging an
object file created from FORTRAN source code (stop in main if your source is in C language).
For example, you would type:

(dbx) stop in MAIN

Now you can issue the run command to start execution of your object file. You will get the
process id and the name of the object file being executed.

(dbx) run

At this point, you may use the list command for the first 10-line listing of the source code:

(dbx) list

Use the stop command to set break-points at various lines or procedures within the object-file:

(dbx) stop at 10

(dbx) stop in subl23

November 26, 1997 Software Development 16-21

(dbx) stop in sub456 if i == 24

The execution will stop in the example above at line 10, or in subroutine subl 2 3 , or in subroutine
s ub4 5 6 when i is equal to 2 4 . To continue execution at any point in your debugging, issue the
cont command:

(dbx) cont

To restart your debugging session, issue the rerun command:

(dbx) rerun

To exit dbx, type quit :

(dbx) quit

Usage Note

A user reports that when using dbx object_file core he has found it useful to tum on all but
. one of the IEEE arithmetic traps, in order to stop execution when the arithmetic fault occurs

(instead of continuing with some default action and then reporting that the following IEEE
arithmetic flags had been set). He located a spurious division by zero in this manner. The f77
man page for Solaris describes the necessary flag value on the f77 command line:
- ftrap=%al 1, no%inexact. We have not researched this for the other UNIX flavors.

16.11.3 gdb

gdb, a GNU product, can do four general types of things to help you debug your programs:
• Start your program, and indicate anything that might affect its behavior.
• Make your program stop on specified conditions.
• Examine what has happened when your program stops.
• Modify your program, allowing you to experiment with correcting one bug and go on to find

another.
You can use gdb to debug programs written in C or C++.
You can also debug programs written in FORTRAN, although gdb does not yet support entering
expressions, printing values, or similar features using FORTRAN syntax. Furthermore, it may be
necessary to refer to some variables with a trailing underscore.
See the document Debugging with GDB, document number PU0l 72.

16.11.4 purify

purify is a commercial product that detects memory corruption and finds memory leaks in your
executable programs. purify is currently available on FNALU for Solaris. The command to run it
is purify.

~ See the man pages for information on its syntax, options and uses.

16-22 Software Development . November 26, 1997

I I

16.11.5 CASEVision

CASEVision is an advanced debugging environment for SGI. It is currently av'ailable on both of
the SGI interactive nodes on FNALU. The command to run CASEVision is cvd.

See the man pages for more information. Additionally, documentation is available through the SGI
on-line documentation tool insight (see section 3.1.3).

November 26, 1997 Software Development 16-23

16-24 Software Development November 26, 1997

(
I

Chapter 17: The make Utility

The UNIX make utility is a tool for organizing and facilitating the update of executables or other
files which are built from one or more constituent files. Although make can be· used in a wide
variety of applications, in this chapter we concentrate on its use in the area of software
development. We describe how to define relationships between source, object, library and
executable files for use by make, and how to invoke make in its simplest and slightly more
complex forms.

17.1 An Overview of the make Utility
make is a command execution utility. You can use it to essentially automate any task in which Qne
or more "target" file(s) requires updating via a shell command when changes have been made to
any of its "required" files (files from which the targets are built). There is some preparation to do,
but once that is complete, all you do is enter the make command!
make compares the modification dates of target files to those of their required files . For each file
that needs updating, make issues the predefined update command(s) for the file. For example, if
file A is a required file of file B (the target), and if file A has a more recent "last modified date" than
file B, then make re-makes file B by issuing the specified update command(s). Target files that are
found to be more recent than all their required files are skipped over.

make is especially useful in long-term software development projects that involve large numbers of
source files, libraries, and executables connected by a complex set of relationships. You can use it
with any programming language whose compiler can be run with a shell command.

make obtains information about the files, their relationships, and the specific update commands
from one or both of the following:

• a specially formatted, user-supplied control file called the Makefile (see section 17.2)

• make's set of built-in default rules (see section 17.6)

In preparing to use make, you generally need to write a Makefile. The Makefile defines the
relationships among the constituent and target files of your project by listing the required files for
each target file, and stating the sheB commands that must operate on the required files to create or
update the target(s). make implicitly treats all required files as targets, in an iterative manner. A
file listed as a required file in one definition statement may also explicitly appear as a target in
another statement. For example, in a program, typically the executable file (the final target) is
created from object files, which are in turn created by compiling source files. Once you have a
working Makefile, you just run the make program to perform all your updating tasks.
The make man pages give a full description of the command, its optiops and features, as well as the
format and usage of the Makefile.
We have included two examples in Appendix I that illustrate many of the points discussed in this
chapter.

November 26, 1997 The make Utility 17-1

17 .2 The Makefile and its Components

The Makefile is a blueprint that you design and make uses to create or update one or more target
files based on the most recent modify dates of the required files. The make command line syntax
remains quite simple in the case where a Makefile is used:

% make [-f make.file_name] [other options] [targets]

If the - f option is not used, make checks for a Makefile of a particular name: it first looks in the
current directory for a file named make f i 1 e , then for Make f i 1 e . If the Makefile is still not
found, make looks in a couple of other places (see the man pages). In order to keep things simple
and standard, we recommend that you always use the filename Makefile for your Makefile(s).
Following this convention, you'll have only one Makefile in a directory. Your Makefile can contain
instructions for building many different targets. When executing make, you can specify the desired
target(s) on the make command line.

We can categorize the types of statements that can go in a Makefile as follows:

macro definition

target definition

suffix rules

suffix declarations

A macro is a name that you define to represent a variable that may occur
several times within the Makefile.
A target definition lists the target file, its required files, and the
commands to execute on the required files in order to produce the target.
(You can opt to specify the totality of this information in separate target
definitions.)
Suffix rules indicate the relationship between target and source file
suffixes (filename extensions). For example in FORTRAN, object files
(*. o) are created from source files with_a suffix of f (i.e. *. f). Ifno
source file is explicitly given on a target definition line; make uses suffix
rules to determine what source file to use to produce the target.

Suffix declarations are lists of suffixes (file extensions) used in suffix
rules.

Each new line in the Makefile starts a new definition, except that in target definitions:

• shell commands with leading tabs are part of the previous definition (a standard Makefile
format that you need to recognize, but that we suggest you avoid using for reasons explained
in section 17.2.2.)

• shell commands can be continued in standard UNIX format, using a trailing backslash(\)
Blank lines are permitted between definitions. Comments can be included after a pound sign (#).
To use a literal pound sign, precede it with a backslash, i.e. \ #.

17 .2.1 Macros

A macro is a name that you define to represent a variable that may occur several times within the
Makefile, or that needs to be updated frequently. Macros make maintenance of your Makefile
much easier. They are commonly used to define settings, platform-specific commands, lists of
required files for a target, lists of command options, and so on. make reads all the macro
definitions before executing any commands. It is often convenient to put all the macro definitions
at the head of the Makefile, but this is not necessary.

17-2 The make Utility November 26, 1997

(

L

Format and Usage

Macro definitions are of the form:

macro _name = value

where macro _name is the name you want to use in place of the longer value. Everywhere in the
Makefile that macro _name is found, make substitutes value. For portability, if value contains any
blank spaces that it is supposed to have, the value · string must be enclosed in quotes in the definition
statement. 1 Backslashes can be used to continue the same line; you cannot put a new line in a
macro value.
Once a macro is defined, you refer to its value in the form $ (macro _name) . If macro _name is a
single character, you can omit the parentheses.

As an example, let's define a macro FFLAGS to set some FORTRAN default options to use with
the f 7 7 command:

FFLAGS = "-02 -w -Olimit 1500 -nocpp " ·

You can now refer to the value of FFLAGS within the Makefile in the form $ (FFLAGS) . For
example, you might include a target definition line like the following (the format is explained below
in section 17 .2.2):

foo : foo.f ; f77 -o foo $(FFLAGS) foo.f

Special Macros

To be sure that make uses the standard, portable Bourne shell, always include in your Makefile a
macro of the form:

SHELL= /bin/sh

Some versions of make default to your current interactive shell if you don't include this explicit
SHELL macro in your Makefile. The standard Makefile format that we describe in this chapter
assumes sh as the command interpreter.

Macro Sources

Macro definitions are similar to and can take default values from environment variables. make gets
additional macro definitions from .the following sources, and applies them in the order shown:

1) currently defined environment variables

2) built-in make rules

3) definitions in the Makefile

4) definitions on the command line
In other words, this list is in order of reverse precedence; a value from a source later in the list
overrides a value applied from an earlier one. Using the -e option on the make command line
swaps the first two; see section 17 .3.1.

November 26, 1997

1. Be aware that this quoted value is what make hands to the shell. The shell then hands
the macro, e.g., $ (FFLAGS) to a program to execute. If you want leading or trailing
spaces in value to be included in the command, specify the macro in double quotes in the
command statement, e.g., "$ (FFLAGS) ".

The make Utility 17-3

Symbols Used in Macros

$ $ maps to a literal dollar sign
$ * is used in suffix rules (see section 17.2.3); it refers to the filename without the suffix
$@ is the current target make is processing
$ < is the implied source in a suffix rule

17 .2.2 Targets

Targets are the files that you want to update or create. A complete target definition includes the
name of the target, the files needed to build it (its required files), and the commands that must be
executed to recreate the target.

Format

The standard Makefile format using Bourne shell conventions calls for:
• a space between listed targets
• a colon (:) between the last target and the first required file
• a space between listed required files
• a semi-colon(;) after the last required file if commands follow on the same line
• a semi-colon (;) between the successive listed commands

A simple target definition with a single target, required file, and command can be written in the
form:

target : required_file ; shell_command

or, using a more traditional format, listing the command on the next line (note that the semicolon
(;) is omitted here):

target : required_file

{tab}shell:._command

In this traditional Makefile format, the commands beyond the first line of a definition must have
leading tabs, and there must be no intervening blank lines.
There are two reasons to avoid this second format: first, when working with the Makefile it is hard
to see the difference between a tab and blanks, and secondly, some editors change tabs to blanks (or
vice versa), which causes problems (neither emacs in default mode nor vi changes tabs to blanks).
You can check your file to see if it contains tabs or blanks by running the command:

cat -tev filename

We propose as an alternative that you use the backslash character(\) to continue the single
definition line down as many physical lines as you have to go. Also, note that under AIX the
standard "tabbed" format can be unpredictable; it is therefore safer for several reasons to use our
suggested format on this platform. •

This "safer" format which we suggest if the entire definition doesn't fit on the first line is:

target : required_file; \

shell_command

17-4 The make Utility November 26, 1997,

L

A target definition line can contain more than one of each element type. Or, it may contain only
two of the three element types. A more complex definition in our suggested format looks like:

target_] target_2 ... : required_file_l required_file_2 ... required_file_n \
required_file_n+l ... ; \
shell_command_l ; shell_command_2; shell_command_3; ... ; \

... ; shell_command_m

If there is more than one target (e.g. target_] target_2) in one definition, the commands are
attempted separately for each target.

If you find it easier, you can list multiple required files for a single target in separate target
statements. However only one statement for a given target can include commands, and therefore
must include all the commands. Here is an example of this alternative format:

target: required_file_l
target: required_file_2
target: required_file_3
target: ; shell_command_l ; shell_command_2; shell_command_3; ...

It can be confusing if you separate a series of statements like this from one another in the Makefile;
if you use this format, keep the statements together!

Usage

The relative ·modification times of the target and the required_file(s) determine whether the listed
commands will be executed. If the target file is found to be missing or to be older than any of its
required files, make executes the commands to rebuild it. make treats the required files iteratively
as targets, whether or not they are explicitly listed as targets in subsequent target definitions, and
rebuilds them as necessary before rebuilding the final target.

17 .2.3 Suffix Rules

A suffix is essentially a file extension. A suffix rule defines the relationship between target and
required files by their file extensions. A suffix rule is much like a target definition except that it
uses implied rather than explicit file names for target (output) and required (input) files.

A suffix rule is of the form:

. insuffix . outsuffix : ; command

The dots are really part of the suffixes themselves. As an example, assume you have a set of target
files to rebuild whose filenames are all of the form * . b. The required files for these targets have
filenames of the form * . a. Define the suffix rule:

. a. b : ; command(s)

November 26, 1997 The make Utility 17-5

make expands this to the following target definition for all files ending in . a in the current
directory:

filename . b : filename. a ; command(s)

If you define suffix rules specifically for intermediate files in a process, you still need to include a
rule for the final and original files, for example, if you define:
.tex .dvi: ; latex$ * #late x cmd makes .dv i fil es from .tex file s
. dv i.ps : ; dvips $* #dv ips cmd makes .ps fil e s from .dv i fil es
You still need to provide the rule:
.tex .ps : ; latex$* ; dvips $ * #ma k e .ps file s from . t ex fil e s
make is not sophisticated enough to do the transitive closure on suffix rules.

[j:> Note that suffixes don't have to start with a dot (.).

17 .2.4 Suffix Declarations

Any suffix that you use in a suffix rule must be listed explicitly in a . SUFFIXES declaration in
the same Makefile unless it is included in make's built-in suffix declarations (see section 17.6). A
suffix included in the built-ins can also be included in a suffix declaration in the Makefile.
Suffix declarations are really target definitions for a special target named . SUFFIXES and they
contain no commands. 1 They are of the format:

.SUFFIXES : .a .b

where . a and . b are suffixes. This example suffix declaration would allow you to include the
suffix rule from 17 .2.3 in your Makefile:

. a. b : ; command(s)

You may combine all the suffixes you use in the Makefile into one . SUFFIXES declaration, or
group them into separate statements.
Suffixes that you declare add to the built-ins; they do not replace them.

17 .2.5 Control Files within a Makefile

You may encounter situations where it is useful to pipe input or output of one command to another
within a Makefile. You can echo a small control or data file within the Makefile, rather than
maintaining a separate external file. In the following target definition example from an Isajet
Makefile, several control statements are echoed into the patchy utility in order to extract
isaint . f from the isaj et . car patchy library:

isaint.f : i sajet . c a r ; \
(echo " +USE,* I SAJET,$ (MACHINE). "; \
e cho " +USE , INTERACT.
ech o " +EXE .

INTERACTIVE PATCH "; \
It; \

echo " +PAM , T=C. ". \
ech o "+QUIT . " ;) \

I ypa t c hy i saj et.car isaint. f \& genint .lis . GO

1. Most versions of make have other special targets (sometimes called magic targets)
besides . SUFFIXES. These special target names always start with a dot (.).

17-6 The make Utility November 26, 1997 .

(

1

17 .3 Running make

17.3.1 General Usage

The make utility is invoked with the make command. The command syntax is:

% make [options] [targets]

Several options are available, and are described in the man pages for make. We provide a list of
some of the commonly used options:

-n Preview the commands, don't execute. Very useful for
testing.

-d Debug; list the operations used and why ("read make's
mind"). Available on all platforms except OSFl .

-e Environment variables override built-ins.

- f makefile _name If your Makefile has a name other than make f i 1 e or
Makefil e , use this option followed by the file's name to
identify it (leave a space between the option and the
filename) .

-p -f /dev/null [lless] Printthebuilt-inrules(seesection17.6).

The targets , as mentioned earlier, are the files that you want to create or upd~te. make searches the
Makefile to find a target definition statement for each target listed on the command line.

You can include macro definitions on the command line which get applied after the assignments
made in the Makefile. For example:

% make "CC = gee" target

17 .3.2 Usage without Specifying Target

When make is invoked without a specified target, the first non-suffix target in the Makefile is used.
The command is simply:

% make [options]

For larger products, it is standard practice to name this target all in the Makefile, and in the list of
required files to list the individual targets which together actually produce the full product. For
example, the first Isajet target definition is:

a ll : isadecay . dat \
isatext. d oc \
i sajet.a \
i saint \
isasusy

Notice that here no commands are listed. They would appear in the subsequent target definitions.

November 26, 1997 The make Utility 17-7

17.3.3 Usage without a Makefile

The extensive built-in rules let you use make quite effectively without having your own Makefile.
Section 17.6 provides a brief explanation of the built-in rules. make will look for any file whose
name matches that specified on the command line and which has a file extension that identifies it as
a reasonable source. For example, to produce the executable foo (the target) from a foo. c or
f oo . f source that exists in the current directory, enter:

% make foo

make will look for the C or FORTRAN file as the source file for this target. Taking the FORTRAN
program and no options as an example, this command.is equivalent to (see section 16.2.3):

% f77 -o foo foo.f

• 17 .4 "Housekeeping" Targets

It is common practice to have a "housekeeping" target which removes stray files from the working
directories. Typically you would run make on this target after you've completed the make
operation on your principle target(s). It is conventional to call this target clean. Here is an example
which removes unnecessary generated files from several different directories. The target definition
has no required files:

clean: ; \
rm -f *.bak ; \
r m - f * . l i s ; \
rm - r f Ma ketemp ;\
cd example/isaplt ; r m -f * . lis* ; \
cd . . / j et rm - f jet.log*

You need to determine what stray files will be generated in your case, and define your commands
accordingly. Run make on the clean target by entering:

% make clean

You may wish to define different levels of housekeeping targets. One that clears out everything,
leaving only the original files you had before running make, is often named clobber.

17 .5 Portability

It is desirable for your Makefile to be portable across different UNIX platforms. Why might this be
a problem to implement? As mentioned earlier, make does all macro processing before any
commands are executed. Therefore environment variables set in shell scripts executed by make
have no effect on make's macro definitions. And standard make doesn't support conditional macro
definitions. So, how can you write a portable Makefile?

A Solution

1) Create a script for setting environment variables.

2) Have make run this script ("source" it; see section 4.4) from within the Makefile.

3) After it runs the script, have make rerun itself with a different target and the original
command line options. A $(MAKE) macro which causes make to rerun itself is a standard
feature.

17-8 The make Utility November 26, 1997

An example of this technique follows.

Example

Create a portable shell script (named, for example, Makeenv) which sets appropriate environment
variables for the Makefile. Here is a simple Make env script which defines the macro F7 7 based
on the current platform as determined by the command uname -s:

export F77 MACHINE

case unarne -s i n
IRIX)

F77= " f77 -02 -w -Olimit 1500 - n ocpp "

OSF l)
F77 =" f77 -01 - w - Olimit 1500 - n ocpp -static "

esac

The Makefile is below. Run make with the target isaint . The Makefile runs Makeenv, then
make reruns itself with the target do_i saint and the correct F7 7 value:

isai nt isai n t .f . Makeenv; $ (MAKE) do_i s aint
do_ isain t : i s aint .f ; $ (F7 7) isa int.f - o isain t

Other Utilities

There are other utilities available for more complicated cases:

• gmake (Gnu make), part of the Fermilab gtools product, has some nice portability features,
and supports other advanced features like parallel compilation on multiprocessor systems.

• There are preprocessors for building locally tailored Makefiles in very sophisticated ways,
including gnu configure, premake, and imake.

17.6 make's Built-in Rules
make comes equipped with a long list of built-in defaults to make your job easier. · You are free to
override any of them in your Makefile. The defaults fall roughly into four categories:

1) macros that reflect your current environment variables

2) macros that define standard compilers and options

3) suffix rules for finding required files when building targets

4) a list of known suffixes

To get a listing of all the built-in macros and rules, enter the command:

% make -p -f /dev/null [I less]

Depending on your platform, there may be nearly a thousand lines of definitions, so you might want
to pipe this to less, or redirect the output to a file.

November 26, 1997 The make Utility 17-9

17. 7 A Few Caveats ...

1) Recall that in the traditional Makefile target definition format successive commands are
entered on successive lines, each starting with a tab. Be aware that each of these command
lines runs in a different shell. 1\vo important implications of this are:

a) if you have issued a change directory (cd) command, it. does not carry over to the
following line(s)

b) environment and shell variables do not carry over to the following line(s)

The format which uses a single logical line for the entire definition avoids this problem.

2) If you use non-shell commands (for example 1 s) in definition statements, be aware that the
output may vary from platform to platform. For this reason it is best not to rely on the
specific output format of these commands.

17-10 The make Utility November 26, 1997

Chapter 18: Code Management

lu=
~

This chapter introduces the recommended code management solution for UNIX, CVS (Concurrent
Versions System). We also introduce an alternative that is currently being used by a couple of
Ferrnilab experiments, UCM (UNIX Code Management)1. Both packages use RCS (Revision
Control System) as the underlying protocol.. We provide basic information only, and refer you to
the complete manuals for these utilities for detailed information.

RCS provides a version control system with which you can record the history of your source files.
An RCS file contains multiple revisions of text, an access list, a change log, descriptive text, and
some control attributes. Only the differences between versions are kept.

CVS and UCM implement the RCS features differently, but both assume availability of RCS
commands. CV~ allows concurrent development, whereas UCM was created to replace CMS (a
VMS source code management system) and implements the same sequential development
philosophy of that system. Both systems provide easy extraction of either a release version or the
latest version, and they allow you to create tags for release versions of the software.

See Code Management under the Software Development heading on the UNIX Resources Web .
page for more information. Alternatively you can search the on-line product documentation
database for CVS, product number PU0189, or UCM, product number PU0254.

18.1 CVS
The CVS product allows many programmers to work on the same code simultaneously, each in his
or her own directory, and it merges the changes when they are finished. There is no built-in
mechanism to prevent concurrent development.
CVS stores all files in a central repository, a directory populated with a hierarchy of files and
directories. The files are organized in modules, where a module is made up of one or more files,
and can include files from several directories. It is typical to define one module per project.
Although the structure of the repository and modules file interact with your build system (e.g.,
Makefiles), they are essentially independent.

18.1.1 Accessing CVS and Obtaining the Manual

To set up the CVS product:

% setup cvs

1. UCM is currently supported only within the experiments using it; although it is pro-
vided as a UPS product, it is not centrally supported at Ferrnilab.

November 26, 1997 Code Management 18-1

The CVS document (in postscript format) can now be found in the directory pointed to by
$CVS_DIR/ doc. You can also find documentation on the Web for CVS, product number
PU0189.
CVS points to the editor defined in your EDITOR variable for entering log messages (see the cvs
comrni t command below). If it is not set, the editor defaults to vi.

18.1.2 Basic CVS Commands

Normally you never access files in a repository directly; you use the CVS commands to get your
own copy of files. The common commands and their functions are listed below (we do not provide
information on options here; see the document referenced above):

% cvs import

% cvs co module

% cvs checkout module
% cvs commit

installs new release of source in CVS repository the first
time
creates new directory called module, populates it with
source files; this allows you to "checkout" your own
working copy of the source module
equivalent to cvs co module
commits changes you have made; opens editing session
for entry of log message

% cvs rtag release_number module
tags a release

% cvs export -r release_number module
extracts the specified release without CVS administrative
directories

18.2 UCM
UCM is a replacement for CMS which has been widely used at Fermilab on VMS systems. To
enforce sequential development, it uses a reservation system to ensure that a second programmer
cannot change a module that another programmer is currently editing. RCS (Revision Control
System) is a readily available UNIX product which is very similar to CMS except that it operates
on individual files rather than on libraries. The component of UCM which actually replaces CMS
is called UVM (UNIX Version Management), and it is an interface to RCS. UCM also contains
tools which extend its use beyond the scope of simple source code management.

18.2.1 Accessing UCM and Obtaining the Manual

To access UCM, y~u first need to set it up. 1 Include in your login files or enter:

% setup ucm

1. On some systems, you will have to setup CVS to access RCS before using UCM. This
is not necessary where FUE is installed.

18-2 Code Management November 26, 1997

l't UCM, product number PU0254, is fully documented on the Web. Once the product is set up, you
can also find the UCM manual in the directory pointed to by $UCM_DIR / doc. In addition to
providing more in-depth information on the concepts and commands introduced here, it provides
examples of updating include file directories, updating an object library, and maintaining release
versions.

18.2.2 Basic UCM Commands

You use UCM by executing eommands provided by two of its constituent utilities, uvma and uvmi.
The uvma commands are used for creating and maintaining libraries, and the uvmi commands
provide information to the user. These two command sets can be invoked directly through uvma
and uvmi, or indirectly through the generic command uvm.
Typing uvm, uvma, or uvmi without any commands, arguments or options will display the list
of commands available to the corresponding command set.
Some basic uvma commands are listed below with brief descriptions of their functions:

% uvm create library library

creates a UVM source code library
% uvm create element library/file

creates a UVM element in the library
% uvm fetch library/file creates a copy of the specified UVM element(s) in the

user's local area
% uvm reserve library/file extracts a working version of the latest revision of the

specified UVM element(s) into the user's local area and
locks the RCS file 1

% uvm replace library/file creates a new revision of the specified UVM element(s)
from working file(s) in the ust;r's local area

% uvm tag library/file -n tagname

assigns a symbolic tag name, tagname , to the specified
revision of the UVM element(s)

% uvm group library/file -g groupname

adds a UVM element to a group specified by the - g
option

1. Elements must be reserved before they can be changed.

November 26, 1997 Code Management 18-3

18-4 Code Management November 26, 1997

Appendix A. VMS Migration for the Impatient

So, you've decided you're ready to convert (or you've run up against a deadline!), but you don' t
know the first thing about UNIX. Here's enough information to get you moved over. You can use
the rest of the manual to learn about UNIX afterwards.
See the introductory remarks to Chapter 12 before continuing.

Read this entire appendix before running any of the shown
commands!!

Keep these typeface conventions in mind as you read the commands:
typewriter-bold In text, used to indicate commands and prompts. In

command formats, indicates what the user types "as is".
bold-italic In command formats, indicates variables for which the

user must make context-specific substitutions.

A.1 The Two Necessary Commands
To convert to UNIX, you need to move your mail and your files over from your YMS node
(vmsnode). To accomplish this while preserving the mail folder and directory structures you had
set up on VMS, enter the following two commands exactly as shown from your new UNIX node.
(In case you really haven't read any part of this manual yet, the % represents the UNIX prompt.)
For your mail, use the command:

% setup mh ; fvms2mh -vms vmsnode

Note that vmsnode must be an individual node, not a cluster alias. For your files, the command is:

% mkdir vms; rep -r vmsnode:' [...]*.*' vms

A.2 OK, What's the Catch?
You're right, there's a little more to it. You must have selected a UNIX host to which you will copy
your mail and other files. On the FNALU cluster, we suggest that general users choose the FSUI02
node. You must have learned to log in to UNIX, edit and manage your files, and must have selected
a mail reader (presumed to be mh, exmh or pine).
In addition:

• You must have rep access from your UNIX to your VMS account. This takes two steps:

November 26, 1997 VMS Migration for the Impatient A-1

1

fsgi02.fna l .gov
fsgi02 aheave y
fdeiOl.fnal . gov
fdeiOl aheavey

2

Create a . RHOSTS file in your VMS SYS$LOGIN directory
containing one line for each UNIX host that needs automatic access to
your VMS account. If your username is different on any machine,
include a second line with your username. For example, the contents
might look like:

Make sure your SYS $ LOGIN: LOGIN . COM does not print anything
out. To ensure this, include the following line at the top of the file :
I F (F$MODE () . EQS . " OTHER ") THEN EXIT ! ' F$VERIFY (0)

If you can no longer log in to edit your files, send mail to
compdiv@jnal, and someone can fix it for you.

• For the mail copy, be sure you are using mailtools v2_2 or later, as installed on the FNALU
nodes and most other public nodes at Ferrnilab. Earlier mailtools versions do not support the
fvms2mh command name described here, and may have quota arid cleanup problems. To see
whether mailtools v2_2 is current, type ups list -a mail tools. Ifit is not current,
select it explicitly by typing setup mail tools v2_2.

• The utility fvms2mh brings your mail folders over in MH format. If you plan to use pine but
want to leave your folders in MH format, pine must be configured to recognize them. To do
this, go to pine's SETUP CONFIGURATION menu. There are many options available. Your
configuration list should include at least the,.following:

inbox-path = llmh / inbox
use r - domain = fna l.gov
folde r-col l e ctions = mail / []

llmh / [J

[X] enabl e - aggre gate -command- s e t
[X] e n abl e-al ternate -editor- c md
[XJ quell-user- lookup- in- passwd- fi l e

• If you choose to use pine exclusively, you will want your folders in the pine format. First
complete the configuration above (with the exception of inbox-path). You can move
entire folders between the pine and MB collections as follows:

1 While in pine, go to the F OLDER INDEX screen for the desired
folder.
Enter (semi-colon) to issue the pine Select command.
Enter A to select All messages.
Enter A to Apply the command.
Enter S for Save.

2

3
4
5

6 Use <Ctrl-n> or <Ctrl-p> as necessary to choose the destination folder
collection, then enter the new destination folder name. Or just type in a
folder collection and name. Respond Y to create the new folder.

A-2 VMS Migration for the Impatient November 26, 1997

J

A.3 Whoa! Too Fast!
If converting in two easy steps doesn't suit your style, you can take somewhat smaller steps.

November 26, 1997

1) You should probably first forward your current new mail to UNIX, and get used to the exmh
or pine mail readers.

2) Once you've stopped receiving VMS mail for a while, run the first command in section A.1.
As a yet more conservative option, check out the "semi-automatic" mail conversion method
in Appendix H.

3) Then, when you're happy with the UNIX copy of your mail, delete the original VMS mail
files . You may wish to back them up or archive them before deleting.

4) Now to convert your files, run the second command in section A.1 exactly as shown.
Changes to any of the wildcarding is likely to do nasty things (for instance, moving the .
oldest rather than most recent version of each file, or dumping everything into a single
directory rather than keeping your directory hierarchy intact).

VMS Migration for the Impatient A-3

A-4 VMS Migration for the Impatient November 26, 1997

Appendix B. UNIX Product Support (UPS) Overview

In this appendix we discuss the Fermilab product support structure, UPS. We recommend that you
read and understand this material before performing any of the tasks described in Chapter 10.

The information in this appendix has been taken from UNIX Product Methodology at Fermi/ab:
Guide to Using UPS v3 and UPD v2for Product Maintenance, Installation, Distribution and
Development (GU0014), but covered here in much less detail, appropriate to the different audience.
We refer you to that document if you need further information.

Notice of Upcoming Changes

UPS and UPD are currently undergoing redevelopment with a significantly different design.
The new versions and accompanying documentation are due for release in the first half of 1998.

B.1 Introduction '
The methodology and infrastructure for product support and distribution under FUE is provided via
a software support toolkit called UNIX Product Support (UPS). UPS was developed with the goal
of.providing a uniform and consistent interface for the management, distribution, installation and
use of all the UNIX software it makes available.
UPS consists of two parts:

• one or more databases

• a set of procedures/programs to manipulate database
A UPS database is a directory containing an ASCII file for each individual product. This file
contains information about and pointers to all of the installed copies of the product. Product
maintainers use UPS commands to add, delete and modify product information in these files (these
activities are beyond the scope of this document). Products supported under this structure are
called UPS products. A UPS product is comprised of one or more applications, each of which is
invoked by its associated command or commands 1.

UNIX Product Distribution (UPD) is a companion product to UPS, and provides the functionality
for distributing products, generally stored as tar files, from a remote host to a local system. A
convenient menu interface is provided that includes the UPD and UPS functionality necessary to
complete an entire process of listing available product instances on the distribution node, copying a
product instance from the distribution node, installing it on the local node, and declaring it to the
local UPS database. The UPD interface also can be used to list the files in or extract a file from a
remote tar file.

November 26, 1997

1. Most applications have a single invoking command. However some applications have a
set of commands, each of which invokes a different function. See section 10.2.4.

UNIX Product Support (UPS) Overview B-1

B.2 The UPS Environment
On a FOE-compliant system the standard default login files (also known as Fermi files 1) set your
environment to facilitate UPS operations, among other things. Regarding shells, UPS supports
both UNIX shell families, C (Berkeley) and Bourne2. At login time, the environment variable
UPS_SHELL gets set to indicate the family of the shell in use. Any shell within that family can
then be used for UPS operations.

The Fermi files are designed for interactive use only and will break if they are called from a
non-interactive script. You need to explicitly include the following actions in the order shown in
any script that you will use to setup products (i.e. in which you use the setup command to
access one or more products; setup is described in ~ection 10.2.2):
For the C shell family:

source /usr/local/etc/setpath.csh

source /usr/local/etc/setups.csh

For the Bourne shell family:
/usr/local/etc/setpath.sh

/usr/local/etc/setups.sh

The setpath script sets a reasonable default starting path. The setups script (read "set
UPS") sets the UPS environment variables described below3.

The login files also set the alias for setup. Note that if you change shells or processes, this
alias js no longer available to you. In this case you need to manually re-source the setups
script in your new shell.

If you have made any changes to your login files, make sure that the following lines are still
included before using UPS:
Forthe C shell family:

. cshrc includes

. login includes
source /usr/local/etc/ferrni.cshrc

source /usr/local/etc/ferrni.login

For the Bourne shell family:
. prof i 1 e includes /usr/local/etc/ferrni.profile

/usr/local/etc/ferrni.shrc . shrc includes
Three environment variables get set by the setups script at login:

PRODUCTS If only one UPS database is defined, this points to it; if two or more are
defined, this variable can be set as the space-separated list of UPS
databases. The order of the databases in this list reflects the order of
precedence for accessing products.

B-2

UPS_DIR This points to the top level directory (called the product root directory)
of the current instance of UPS (read sections B.8 through B.10 -- they're
short! -- to understand the term "current instance").

UPS_SHELL As mentioned above, this indicates the shell family in use; it is set to
either sh or csh. '

1. See Chapter 9 and Appendix C for descriptions and listings of the Fermi files.
2. The C shell family includes csh and tcsh; the Bourne shell family includes sh, ksh,
bash and zsh. zsh is not supported at Fermilab.
3. These scripts are included in the FUE package systools.

UNIX Product Support (UPS) Overview November 26, 1997

You can use the environment variable PRODUCTS to list all the available products. For example, if
it is set to the following list of UPS databases:

/home/dcdsv0_lv0 /aheavey/ups_play /ups_database /dec lared

/usr/products / ups_database/ d ec lare d

/afs/fnal /products/ups_database/d eclared

then the command:

% ls $PRODUCTS

will yield information similar to the following (edited for brevity)1:

/afs/fnal/products/ups_database/declared :
I

acrobat frame lund tel
admintools fslib mad tclx
afsemu ftcl mail tools tex
... text removed . ..
flint ktevana softwindows xpdf
fmb lapack stdhep zephyr
fmss libgpp .obs systools

/home/dcdsvO_lvO/aheavey / ups_play/ups_database/declared :
cedit exmh fermitpu glimpse juke www

/usr/products/ups_database/declared :
altuascvs fulib lund qq tk WWW

chekker funkern inbone reg tpu xemacs

conv2html futil mgui sdsscvs uas_build x imagetools
. .. text removed . ..
flint html ntp tel upp
fmb ispell oc~ tclx ups
fonts juke o l scvs teleserver webservers

When you setup a product, the environment variable (PRODUCT}_DIR gets defined, where
(PRODUCT} is the name of the product in upper case, for example WWW_DIR. This variable
points to the root directory of the particular copy of the product that you setup; for example after
running:

% setup www v2_7

the variable WWW _DIR is defined as something like
/ {ups_dirs} /products / SunOS+S / www / v2_ 7. You can then run a command like the
following:

% ls -al $WWW_DIR

November 26, 1997

1. Notice that the 1 s command does not list the databases in the order of precedence
according to the PRODUCTS variable, but rather, alphabetically.

UNIX Product Support (UPS) Overview B-3

which returns a list of the files and subdirectories in the product root directory for www version
v2_7, for example:

total 40
drwxr-xr-x 7 products g150
drwxrwxrwx 5 root root
-rw-r--r-- 1 products g150
-rw-r--r-- 1 products g150
drwxr-xr-x 2 products g150
drwxr-xr-x 2 products g150
drwxr-xr-x 2 products g150
drwxr-xr-x 4 products g150
drwxr-xr-x 2 products g150

B.3 UPS Products

2048 J un 19 18:54 .
2 048 Sep 9 23:16 . .

165 Jun 18 11 :31 BUILD_INFO
4703 Oct 16 1995 Makefile
2048 Aug 9 18:19 bin
2048 May 5 1996 etc
2048 May 5 . 1996 include
2048 May 5 1996 lib
2048 May 5 1996 ups

Products distributed and managed by the UPS system on a distribution or user node are often called
UPS products. UPS products can be maintained on different disks, and/or in different directories.
To be included under the UPS umbrella on a node or cluster, products must be installed (preferably
in an area specially designated for products, although UPS does not require this) and declared to a
UPS database. Product declaration can be done in UPD (see section 10.3.1) or via the UPS
command ups declare (not covered in this manual).
On the distribution node, all the constituent programs and/or data files of a particular copy of a :tJPS
product (collectively called an instance, see section B.8) are grouped into a directory tree which has
been packed up into a single binary file for distribution, generally a tar file. The structure of the
directory tree is not dictated by UPS, but generally it includes (at least) areas for the executables
(b in), for files accessed by UPS tools (ups), and for documentation (e.g., ups/toma n, docs ,
html). During product installation on a user node, this file can be unwound using tar (optionally
with UPD as an interface) and installed into its product root directory.

B.4 UPS Databases
A UPS database is, simply put, a directory. Within the directory, there is a product file for each
individual product that is accessible via UPS on the system. A product file, described in section
B.5, contains identifying information for, and pointers to, each of the installed copies of a product.
UPS commands refer to the database directory via the environment variable PRODUCTS,
described in section B.2.
The environment variable PRODUCTS can be set to point to one or to several directories, thus
allowing support for multiple databases. This allows users to maintain one or more private
databases in addition to or instead of the common one(s). Creating additional databases is
discussed in GU0014. In UPS operations, the databases are searched in the order they appear in
PRODUCTS.

B.5 UPS Product Files
The information that UPS needs in order to identify, locate and retrieve a product and its
requirements (requirements are described in section B .11) resides in an ASCII product file specific
to that product in the UPS database. The name of each product file is simply the product's name

B-4 UNIX Product Support (UPS) Overview November 26, 1997

(see the list of product files obtained by the command ls $PRODUCTS in section B.2). The file
identifies the product, the UPS database version, the declared instances of the product and the
defined chains. Instance is defined in section B.8, and chain in section B. 10.

B.6 Product Versions
UPS supports multiple concurrent versions of software products. Each version of a product is
installed and accessed independently of other versions. When a new version of a product becomes
available, an existing directory tree is not replaced with another; rather, a branch is added for the
new version.
Maintaining multiple, self-contained versions of a product on a single system is often necessary
and/or desirable for several reasons. For example, in critical situations like data acquisition, if
something goes wrong, you don't want to lose time. UPS allows you to back out of a new software
version completely and assuredly, and immediately start up a previous tried-and-true version. You
can also overlap development and production use of a product, and support many users sharing
workstation resources. •

B. 7 UNIX Operating System Flavors

B. 7 .1 What is "Flavor"?
Many programs require separate compilation for the different UNIX operating systems. In UPS,
we maintain different directory trees for the separate compilations (and related files) of the same
product. We therefore need to distinguish between OS-dependent compilations. To indicate the OS
dependency, we use the termfiavor. This additional term allows us to maintain the same product
name and version across the different operating systems and releases, which is desirable since the
same program source files are used in the separate compilations.
On a given system, several different copies of a product may exist. When you use UPS commands
to manipulate or use a product, the system needs to have enough information to select the
appropriate one. Many UPS commands support a - f option allowing you to specify
flavor-related information.

B. 7 .2 Simple Flavors
Simple flavors (as opposed to extended flavors) are the UNIX operating system names, as returned
by the command funame - s (for example IRIX or Sun OS). This is sufficient for products
which can run on multiple releases of a single OS. For products which have no compiled programs,
and are thus operating system-independent, a special flavor of NULL is used.

B. 7 .3 Extended Flavors
In addition to differentiation by OS, some products require separate compilations for different
releases of the same operating system (e.g., IRIX+5 and IRIX+6). For this purpose, UPS supports
extended flavors , which are designations that include both OS (simple flavor, e.g., IRIX) and OS
release (e.g., +5). This allows a mixed cluster (e.g., IRIX+5 and IRIX+6) to share a single UPS
database.
Extended flavors may further include information about options used by the product developer at
compilation time (e.g., +debug).

November 26, 1997 UNIX Product Support (UPS) Overview B-5

Extended flavor is designed to accomplish two goals:
• identify the most appropriate compilation of a product for the given operating system and

release
• allow the product developer to specify additional compilation options such as debug,

optimized, etc.; the user can then select and run one of these compiled instances of a
product for special purposes

B.8 Instances
Each installed, declared copy of a product in UPS is called an instance of the product. Each
instance has a unique combination of product name, version and (extended) flavor. The concept of
chains, discussed in section B.10, allows users to easily access the appropriate instance, without
needing to remember its version number and (extended) flavor.

B.9 Flavor Specification
When a UPS command is issued, the system must determine which product instance or instances to
act upon. For some UPS commands multiple instances can be retrieved, as is often the case for
ups list, for example. The product name and version are generally specified unambiguously,
but the extended flavor can be specified such that it requires some interpretation by the system.
This allows UPS to do some of the instance selection work for you. In fact for some operations you
can choose not to specify flavor at all and let UPS determine it completely. If you need to specify
the flavor (generally you shouldn't) use the -f option:

% ups _command - f flavor [other options] product

The system will then only retrieve an instance exactly matchingjla,vor.

B.10 Chains
We mentioned earlier that UPS supports multiple versions of software products on a machine. End
users do not find it convenient to specify product version numbers each time they setup a product.
This is especially true if product setups are needed at login. Most users want to run the latest,
tested, approved version of products without having to keep track of the version numbers.
To allow users to specify the version of a product according to its status rather than by its version
number, UPS supports chains to product versions. A chain is a UPS database entry (i.e. a clause in
a product file) that points to a particular instance declaration in the database (an instance clause in
the same product file) . It must match the (extended) flavor and version of the instance declaration
exactly. It "attaches" a chain name to a product instance, thereby tagging the product instance
according to its status.
Five statuses, or chains, have been defined for use: current, new, test, old, and development.

Chain Option Usage

current -c default instance recommended for general use

new -n tested instance that is not yet current

test -t instance installed for testing

B-6 UNIX Product Support (UPS) Overview November 26, 1997

Chain Option Usage

development -d instance under development

old -o older instance that was previously current

In UPS commands, the command line option associated with the desired chain (status) is used to
specify the product instance to retrieve. Using chains is optional, but recommended. Both chained
and unchained instances of a product may be declared to UPS; the user can still retrieve any
instance, chained or not, by using its product version number.

B.11 Product Dependencies (Use and Build Require-
ments)
Many UPS products rely on other products being installed, declared and setup for proper .
functioning or for use of special features. These are generally referred to as product dependencies
or use requirements1. The coupling of products with their dependencies facilitates product setup.
You need only setup a single UPS product to access any and all of the products listed as its
dependencies. Each of the dependencies can be setup in its own right, as well.

Requirements can exist across databases. The databases must be included in $PRODUCTS for this
to work. When you declare a requirement, UPS searches the databases in $PRODUCTS and uses
the first instance of the required product it finds; you cannot specify the database in which a
requirement resides.
Multiple levels of requirements are possible, and use requirements are setup recursively by default.
As an example, the mail product exmh has several use requirements, one of which is www. www
in tum has use requirements, one of which is ghostview. When you setup exmh, you also
implicitly setup all its use requirements including www, and all the next level use requirements
including ghostview, and so on.

B.12 Notes on Setup and Unsetup
The setup command was discussed in section 10.2.2. As simple as it is to use in everyday
situations, setup contains some subtleties. It is equipped with a host of options that allow you to
specify various parameters. We refer you to the man pages for specifics; here we attempt to provide
a summary/clarification of the available options. You can specify:

• which chained instance of the product to setup
• which use or build dependencies to setup along with main product (you cannot setup both)

• an option string to pass to the setup script via the environment variable UPS_OPTIONS

• enable any optional functionality in the setup script.
By default, the use requirements are setup recursively along with the main product unless the -j
option is used to restrict the setup to just the specified product and none of its dependencies.
setup also comes equipped with a -b option that allows you to setup the build requirements
instead of the use requirements. Build requirements are not setup recursively; in fact they are not
generally distributed with the products. Most users never use -j or -b.

November 26, 1997

1. There are also s.uch things as build requirements. These need to be in place only for
building the main product, and are usually omitted on end-user systems.

UNIX Product Support (UPS) Overview B-7

The last two features are rarely if ever implemented, and require knowledge about the setup script
by the user. They are included here for completeness only.
When you unsetup a product, any use-dependent products get deactivated (unsetup) automatically
at the same time unless the -j or the -b option is used:

- j unsetup just the specified product and none of its dependencies
-b unsetup the build requirements of the product (useful only when the product was

setup with the -b option)
The man pages list other options, but in practice, unsetup scripts aren't coded to exploit them.

B-8 UNIX Product Support (UPS) Overview November 26, 1997

Appendix C. Fermi Login Files

This appendix contains file listings of the FlJE-customized default login files (the "Fermi Files")
used to set up your UNIX environment. 1 If you are on a FlJE-compliant system, you are supplied
with a copy of each file in your home directory (except for the fermi . * and s e tup.* files
which are executed directly from / u sr / l ocal / e t c). The files are reprinted here in their
entirety except for the copyright disclaimers.

C.1 C Shell Family

C.1.1 .cshrc
The default FlJE . c s hrc file is found in / u sr / loc al / e tc / s tdcsh rc.

ii . cshrc defaul t settin gs for al l users

@(ii) stdcshrc 1.10 Delta: 93/08/19 1 4:51 :27 Extraction 94/07/06 1 5: 16:15 @(ii)

execute ferrni. cshrc first
if (-r / usr/local/etc/fermi .cshrc) then

source / usr /loca l /etc/fermi.cshrc
endif

ff Place any items that you want executed even for non-interactive use h ere

#skip i f not interactive shel l
if ($?USER== 0 I I $?prompt== 0) exit

set noclobber
set ignoreeof

ilprevent overwrite whe n redirecting ou tput
#prevent accidental logouts

ii Have mail point to fermimail which is a Berkely mai l version. Some packages
ii expect mail to b e a Sys t em V version of mail. If you are having problems
ff of this type, you may need to remove the alias.
alias mail fermima i l flFermi recommended Mail

#Define various aliases; user selects d esired alias by removng the I sign
#alias a al i as
ii alias killit k ill - 9 ti guarantees that a p rocess is killed
tlalias h 'history tail '
#alias 11 l s - 1
#alias la l s -a ti see hidden files
tlalias lf ls - CF #check file TYPE (exe, dir ..)
ff alias rmi rm -i #confirm before de l etion
#alias home cd llHOME

1. The setpath. * and setups . * files reprinted here are part of the FlJE product
funkem v5.0. All other files are part of FlJE's systools v4.3.

November 26, 1997 Fermi Login Files C-1

lfalias side
#alias down
italias up

'cd
'Cd
cd

.. /\ ! *,
\ ! *'

ltside
#down
fop

#alias cpi
#alias cd

cp
'Cd

- i
\ ! * ; echo

lino overwrite of output file
$cwd'

ltalias mvi mv - i ltconfirm before moving
ltNe xt alias replaces standard info command on SGI platforms
#alias info

Info #get list of info articles

itVMS type commands
jf

ltalias dir
ltalias copy

ls -1
cp

i~alias rename rnv

. cshrc executes / usr /local /etc / fermi. cshrc.

C.1.2 fermi.cshrc
The default FUE fermi . cshrc file is .found in / usr /local/etc / fermi. cshrc.

lt @(#). fermi.cshrc 4.32 Delta: 94/09/29 22:22:46 Extraction 94/09/29 22:34:39 @(
jf)

it fermi.cshrc settings for all users; wi ll be called by the default .cshrc

set MACH_ID='/usr/local/bin/funame -n'
set MACH_TYPE='/usr/local/bin/funame -m'
set MACH_ OS = '/usr/local/bin/funame -s'

itDetermine if this is the first time the fermi . cshrc file has been executed
tton this machine
if ($?FERMICSHRC) then

else

endif

if ($FERMICSHRC == "$MACH_ID") then
set firsttime=0

else
set firsttime=l
setenv FERMICSHRC "$MACH_ID "

endif

setenv FERMICSHRC "$MACH_ID"
set firsttime=l

#Execute the things that are onl y done the first time through
if ($firsttime == "1") then

set path
if (-r /usr/local/etc/ setpath.csh) then

source /usr/local/etc/ setpath.csh
endif
tt
Establish MANPATH

setenv MANPATH /usr/produ cts/catman : /usr/products/man:/afs/fnal/products

/catman:/afs/fnal/products/man:/usr/catman:/usr/man :/usr/share/catman:/usr/share
/man:/usr/ l ocal /catman:/usr/local/man

endif

ltE)(ecute the items done each time (basically only aliases)

fl
it Setup UPS

C-2 Fermi Login Files November 26, 1997

ti
if (-r /usr/local /etc/setups.csh) then

source /usr/local /etc/setups.csh
e ndif

switch ($MACH_OS)
case IRIX :

alias fermimail '/usr/sbin/Mail'
breaksw
case SunOS:

alias fermimail ' /usr/ucb/Mail '
alias i:nan 'man -F '

breaksw
case AIX:

al ias fermimail ' /usr/ucb/Mail'
breaksw
case ULTRIX :

alias fermimai l '/usr/ucb/Mail'
breaksw
case OSFl:

alias fermimail ' /usr/bin/Mail'
breaksw
case HP-UX:

alias fermi mail 1 /usr/bin/mailx '
breaksw
default

breaksw
endsw

if (-x /usr/ucb/Mail) then
alias fermimail ' /usr/ucb/Mail'
endif

if (-x /usr/sbin/Mail) then
alias fer mimail '/usr/sbin/Mail'

endif
if (-x /usr/bsd /Mail) then

alias fermimai l ' /usr/bsd/Mail'
endif
if (-x /usr/bin/mailx) then

alias fermimail '/usr/bin/mailx'
endif
if (-x /usr/bin/Mail) then

a lias fermimail ' /usr/bin/Mail'
endif

ll Berkely mail

Berkely mail

#Berkely Mail

ll Berkely Mail

Berkely Mail

#Berkely Mail

llBerkely Mail

j/Berkely Mail

#Berkely Mail

#Berkely Mail

llBerkel y Mail

Check for existance of local.cshsrc file. This is the file admins should
ll put in any changes , additions , etc. so that they don ' t need to re-edit this
file every release.

if (-r /usr/ local /etc/ local.cshrc) then

source /usr/local /etc /local.cshrc
endif

f ermi. cshrc calls / usr /local / e t c/ setpath. csh to set the shell variable path, and it
executes / usr / local / etc/ setups. csh to set up ups.

C.1.3 setpath.csh
The default FUE setpath. csh file is found in / usr / local /etc/setpath. csh.

@(ll) setpath.csh 1.7 Delta: 95/03/22 22:13 : 29 Extraction 95/03/22 22:13:53 @(lt
)

if ($?HOME == 0) then
setenv HOME/

November 26, 1997 Fermi Login Files C-3

endif

set path='"'
foreach DIR (/usr/sbin \

/opt/SUNWspro/bin
/usr/ccs/bin \
/usr/lang \
/usr/bsd \

end
ii

/bin\
/usr/bin
/usr/lbin \
/usr/ucb
/etc\
/usr/etc
/usr/afsws/bin \
/usr/openwin/bin
/usr /bin/Xll \
/usr/kinet/bin
/usr/local/bin
/usr/bi n/mh \
/usr/sccs)
if (-d $DIR) then

set path=($path $DIR)
endif

ii Add your HOME/bin and bin. "flavor"
Put your Sun executables in a bin named bin.SunOS,
j/ your IRIX executables in bin . IRIX ,
JI your AIX "bin . AIX,
II . .. etc . . ."
j/

j/ Do not do this if you are root, because / /bin is your
$HOME/bin, and do not put current directin in root's path
if ($?MACH_OS == 0) then

set MACH_OS='funarne -s
endif
if ("$HOME" ! = "/") then

foreach DIR ($HOME/bin.$MACH_OS $HOME/bin
if (-d $DIR) then

end

set path=($DIR $path)
endif

set. path=($path .)
endif

C.1.4 setups.csh
The default FUE setups . csh file is found in / us r / l ocal / etc/ s e tups. csh.
#Set environment for UPS
if (! -r ~/.noupsproducts) then #start if .noupsproducts

set MACH_OS='funarne -s'

C-4

set setprod=no
if ($?PRODUCTS== 0) then

set setprod.=yes
else

set fchar='echo $PRODUCTS I cut -cl'
if ("x/" != x"$fchar") then

set setprod=yes
e ndif

endif
if ($setprod == "yes") then #start if $PRODUCTS already set

if ($?UPS_EXTRA_DIR == 0) then

Fermi Login Files November 26, 1997

OD'

) ·then

set UPS_EXTRA_DIR=""
endif

unsetenv PRODUCTS
Add other directories areas that might be product databases
jf to the foreach list
foreach PROD _(SUPS_EXTRA_DIR

end

/'funame -n'/products/ups_database/declared
'logdir products'/ups_database/declared \
/usr/products/ups_database/declared \
/afs/fnal/products/ups_database/declared)
if (-d $PROD) then

endif

if ($?PRODUCTS) then
set exists='echo $PRODUCTS I grep -c $PR·

if ($exists== "0") then
setenv PRODUCTS "$PRODUCTS $PROD

endif
else

setenv PRODUCTS $PROD
endif

endif #end if $PRODUCTS already set

if ($?PRODUCTS) then #set if $PRODUCTS set
set setups=no
if ($?UPS_DIR == 0) then

set setups=yes
else

endif

set fchar='echo $UPS_DIR I cut -cl '
if ("x/" ! = x"$fchar") then

set setups=yes
endif

if ($setups== "yes") then #start if $UPS_DIR already set
set setups=no
set full=$(MACH_OSJ+'funame -r'
foreach PROD ($PRODUCTS)
if (-r $PROD/ups) then

if ('grep -c "current. $MACH_OS" $PROD/ups' 0

continue
endif
foreach i ('grep "current.$MACH_OS" $PROD/upsla

wk '(print $2)' I sort -r'

end

if ($full=- Si*) then
set flavor=Si
break

endif

if ($?flavor
continue

0) then

endif
tlcharacater after $(flavor} and before " is tab (next 2 l ines)

set CURRENT='grep "current.$(flavor}
ups lawk '{print $3)''

" $PROD/

setenv UPS_DIR 'grep "Ainstance: .*$ (flavor}
"$(PROD}/upslgrep \"${CURRENT}\ "lawk '{print $4)''

endif

November 26, 1997

set fchar='echo $UPS_DIR I cut -cl'
if ("x/" == x"$fchar" then

set setups=yes
break

endif

Fermi Login Files C-5

end
if ($?UPS_DIR) then

endif

if (-r $UPS_DIR/ups/ups_init) then
source $UPS_DIR/ups/ups_init
setup ups

endif

endif #end if $UPS_DIR already set
JtEven though UPS_DIR may have already been setup, aliases aren' t always
JI passed along , thus we need to always do the source of ups_i nit and
the setup . csh file . We can't simply do a setup of ups , because then you
get the current version of ups instead of the version of UPS when you
entered this process . The setup of ups relies on UPS_PROD_VERSION being
set (although not in a serious way). This process assumes the version is
JI the last component of the $UPS_DIR directory. This isn ' t guaranteed to be
ii correct , but will work ok for this situation.

if ($?UPS_DIR) then #start if $UPS_DIR is set
if (-r $UPS_DIR/ups/ups_init) then

setenv UPS_PROD_VERSION 'basename $UPS_DIR'
source $UPS_DIR/ups/ups_init
if (-r $UPS_DIR/ups/setup . csh) then

source $UPS_DIR/ups/setup.csh
endif
unsetenv UPS_PROD_VERS I ON

else
ech o ' $UPS_DIR set, but $UPS_DI R/ups/ups_init do

esnt exist, ups environment not setup '
endi f

else
echo ' Unable to set $UPS_DIR, ups environment n ot setup'

endif Jlend if $UPS_DIR set
else

echo 'Unable to set $PRODUCTS, ups environment not setup'
endif ilend if $PRODUCTS set

endif Jlend if .noupsproducts

C.1.5 .login
ThedefaultFUE .login fileisfoundin / u sr/ l ocal /etc/stdlogin.

. login default settings for all users

#@ (ii) stdlogin 1.6 Delta: 92/ 11 /05 14: 17 : 45 Extraction 94/07/06 15:16:16 @(JI)

11
.login defaul t sett i ngs for all users

execute fermi. l ogin first

if (-r / u sr/local/etc/fermi . login) t h en

source /usr/local/etc/fermi . login
endif

defines alias for cedit, comment ou t if not wanted

if (I -e -/ . noupsproducts) then

setup cedit
endif
11
Next l ine sets prompt to <machine_name>
11
set prompt="<$MACH_ID>"

C-6 Fermi Login Files November 26, 1997

fl The standard fermi.profile does not attempt to include /usr/Sbin
ll (in SunOS) in your PATH. /usr/Sbin contains the UNIX System V version
of several commands. By including /usr/Sbin first, you will get the
System V version before the BSD version. Uncomment one of the following
j/ if you so desire:
j/

j/set path= (/usr/Sbin $path)
#set path=($path /usr/Sbin)

fl The savehist & history settings maybe expanded to 100
fl

set savehist=20
set history=20

#save last 20 commands for next session
#retain the las t 20 commands

j/ Uncomment the following to change . . .
j/

l/stty kill •Au'
ttstty erase 1 "H'
#stty intr ' A?'

sets line kill to <ctrl-u>
ll sets erase to backspace
sets interrupt to delete

[J=> The . login file executes the file /usr /local/etc/ferrni . l ogin.

C.1.6 f ermi.login
The default FUE f errni. login file is found in /usr / local / etc/ f errni. login.

ll @(#) fermi . login 4 .. 31 Delta : 94/09/29 22 : 31 :20 Extraction 94/09/29 22 : 34:39 @(

ll)

j/

ll fermi.login settings for all users; cal l ed by the default .login
Set the umask so that newly created files and directories will be readable

fl by others, but writable only by the user.
j/

umask 022

ll Following put in to handle NQS
j/

if ($?ENVIRONMENT) then

endif
ti

if ($ENVIRONMENT

ll Determine terminal type

"BATCH") exit

set ttype='echo $term lcut -cl'
switch (x$term)
case x:
case xunknown.:
case xarpanet:
case xnetwork:
case xnet:
case xdialup:
case xdumb:

set term=vtl00
stty erase '"?'

breaksw
default

if (-r / usr / lib/terminfo/$ttype/$term I I -r /usr/share/lib/terminfo/$tt
ype/$term) then

November 26, 1997

switch ($term)
case iris-ansi:
case iris-ansi-net:

Fermi Login Files C-7

else

case hp:
stty erase ' "h '

breaksw
default

stty erase 1 ,...?'

breaksw
endsw

set bterm='echo $term I cut -cl-3'
if (-r /usr/lib/terminfo/$ttype/$bterm I I -r /usr/share/lib/ter

minfo/$ttype/$bterm) then

else

endif
endif

C-8

set term=$bterm
stty erase 1"?'

switch ($MACH_OS)
case IRIX:
case SunOS:
case AIX:

breaksw

switch ($bterm)
case vt2:
case vt3:

set term=vt220
stty erase· '"?'

breaksw
default

set term=vtl00
stty erase ' "? '

breaksw
endsw

case ULTRIX:

breaksw

switch ($bterm)
case vt3 :

set term=vt300
stty erase '"? '

breaksw
case vt2:

set term=vt200
stty erase ' "'?'

breaksw
default

set term=vtl00
stty erase '"? '

breaksw
endsw

case OSFl :

breaksw
default

breaksw
endsw

switch ($bterm)
case vt2 :
case vt3:

stty erase '"?'
breaksw
default

breaksw
endsw

set term=vtl00
stty erase ' "? '

set term=vtl00
stty erase ,,...7 ,

Fermi Login Files November 26, 1997

breaksw
endsw

Set DISPLAY
lt
if (! $?DISPLAY) then

set TTYPORT;'tty'
if ($TTYPORT ;; /dev/console) then

setenv DISPLAY "localhost:0"
else if ($?REMOTEHOST) then

setenv DISPLAY "${REMOTEHOST}:0"
else

set TTYNAME;'echo $TTYPORT lcut - c6-'
set REMOTEHOST;' who I grep "$TTYNAME" I awk ' {print $6} ' I sed 's/ (/ / '

I sed 's/) / /''
setenv DISPLAY "${REMOTEHOST} : 0"

endif
endif
JI
JI Who are you?

if ($?LOGNAME) then

else

else

endif
JI

if

if

setenv LOGNAME
($?USER } then
setenv I.;OGNAME
($?REMOTEUSER
setenv LOGNAME

"$LOGNAME"

"$USER"
} then
"$REMOTEUSER"

ll The switch statement is to set t h e mail variable
ll based on machine type. Al so motd and news are
ll dependent on system type. Some systems automatically
JI display motd (and thus shouldn't be repeated here.
ff Others don't have news.

switch ($MACH_OS)
case IRIX:

breaksw

setenv TZ CST6CDT
if ('funame -rlcut -cl' ;; 3 } then

set mail ; /usr/mail/$LOGNAME
if ({ /bin/mail -e }) then

echo ' You have mai l .'
endif

endif
if ({ test -d /usr/news }) then

/usr/bin/news
endif

case SunOS:
setenv TZ CST6CDT
set mail;/usr/spool/mail/$LOGNAME

breaksw
case AIX:

setenv TZ CST6CDT
/bin/news
setenv MAIL "/usr/spool/mail/$LOGNAME"
setenv MAILMSG " [YOU HAVE NEW MAIL]"
if ((test -s $MAIL} } then

e cho ' You have mail.'
endif
setenv EMULATE none

breaksw
case ULTRIX:

set mail;/usr/spool/mail/$USER
breaksw

November 26, 1997 Fermi Login Files C-9

case OSFl:
/usr/bin/news
set rnail;/usr/spool/rnail/$USER

breaksw
case HP-UX:

breaksw
case

setenv TZ CST6CDT
cat -s /etc/rnotd
/usr/bin/news
set rnail;/usr/mail/$LOGNAME
if ({ /bin/mail -e}) then

echo 'You have mail. '
endif

#If for some reason funame -s returns NULL, as opposed to returning
#something that isn ' t recognized , do nothing

breaksw
default

cat -s /etc/motd
if (-x /usr/bin/news) then

/usr/bin/news
endif
if (-x /bin/news) then

/bin/news
endif
if (-d /usr/spool/mail } then

set mail;/usr/spool/rnail
endif
if (-d /usr/mail) then

set mail;/usr/rnail/$LOGNAME
endif
if (- x /bin/mail } then

if ((/bin/mail -e }) then
echo 'You have mail.'

endif

breaksw
endsw

endi f

If Establish PAGER

if (-r /usr/local/bin/less) then
setenv PAGER /usr/local/bin/less

else
setenv PAGER more

endif

Common terminal characteristics

stty intr ' ""c, # set interrupt key to <ctrl -c>
stty kill '"'x' # set kill key to <ctrl-x>
stty echoe # erase ERASEd characters
echo "Terminal Type is $TERM"
/usr/local/bin/In fo -new

Some systems the user doesn't own his tty device (Sun OpenWindows) so
redirect stderr

/bin/chmod 622 'tty' >& /dev/null

Check for existance of local.cshsrc file. This is the file adrnins should
ff put in any changes, additions , etc . so that they don't need to re-edit this
file every release.

if (-r / usr/local/etc/local.login) then

C-10 Fermi Login Files November 26, 1997

source /usr/local/etc/local.login
endif

C.2 Bourne Shell Family

C.2.1 .profile
ThedefaultFUE .profile fileisfoundin /usr/local/etc/stdprofile.

@(#) stdprofile 1.6 Delta: 92/11/05 14:19:26 Extraction 94/07/06 15:16:17 @(#)

. profile default settings for all users
ti
ti Execute fermi .profile first!

if [-r /usr/local/etc/fermi.profile
then

/usr/local/etc/fermi.profile
fi
ff
PSl sets prompt to <machine_name>
PS2 sets secondary prompt to <more>
II
export PSl;
export PS2;

PS1="<$(MACH_ID}> "
PS2="<rnore> 11

II HISTSIZE is the number of commands retained in history

export HISTSIZE;
ff

HISTSIZE=20 I/ r etain the last 20 commands

EDITOR is used as your default editor, emacs or vi typically
VISUAL is used as your command line editor, emacs or vi typically
To use the emacs version, comment out or remove the vi references
and uncomment the emacs verisons ...

ffexport EDITOR; EDITOR=emacs
II export VISUAL; VISUAL=emacs
II
export EDITOR; EDITOR=vi
export VISUAL; VISUAL=vi

The standard fermi.profile does not attempt to include /usr/5bin
(in SunOS) in your PATH. /usr/5bin contains the UNIX System V version
of several commands. By including /usr/5bin first , you will get the
System V version before the BSD version . Uncomment one of the following

ff if you so desire:

PATH=/usr/5bin:$PATH
ti PATH=$PATH : /usr /5bin
ti

ENV is the location of your shell alias file

export ENV;

ENV=-/.shrc

ff Uncomment the following to change ...
Ii
ffstty kill Au

/lstty erase
tlstty intr A ?

II

November 26, 1997

ff
sets line kill to <ctrl>U

sets erase to backspace
sets interrupt to delete

Fermi Login Files C-11

if ["'basename $SHELL l sed 's/(0-9)//''"
then

$HOME/.shrc
fi

"sh") && [-r $HOME/.shrc)

0 This file calls / u sr/ l ocal /bi n/ f e r mi, p r o fil e.

C.2.2 fermi.profile
The default FUE fe rmi . p r ofil e file is found in / u s r / l ocal /e t c/ f e rmi, p r ofi l e,

it @(ff) fermi.profile 1.33 Delta : 94/10/31 22 : 14:25 Extraction 94/11/02 16:56:08
@(#)

it fermi.profile settings for all users ; called by the user bourne/korn . profile
it Set the umask so that newly created files and directories will be readable
by others, but writable only by the user.
umask 022
MACH_ID="' /usr/ l ocal/bin/funame -n'"
MACH_TYPE="'/usr/local/bin/funame -m'"
MACH_OS="'/usr/ l ocal/bin/funame -s'"

Set the PATH appropriately

if [-r /usr/local/etc/setpath . sh
then

/usr/local/etc/setpath.sh
fi

ff

ff Set a respectable MANPATH

MANPATH=/usr/products/catman:/usr/products/man:/afs/fnal/products/catman:/afs/fn
al/products/man:/usr/catman:/usr/man:/usr/share/catman:/usr/share/man:/usr/ l ocal
/catman:/usr/local/man

Following put in to handle NQS
it Only do rest if non-interactive sess i on
it

if ["$ENVIRONMENT" != '.'BATCH") && ["x'logname'" != "x")
then

Determine the terminal type

TTYPE='echo $TERM I cut -cl'
case $TERM in
"" larpanet lnetl;1etworkldialupl unknown l dumb)

TERM=vtl00
stty erase '"'?'

*)

if [-r /usr/lib/terminfo/$TTYPE/$TERM - o - r /usr/share/lib/terminfo/$TT
YPE/$TERM)

then

else

C-12

case $TERM in
iris-ansi*lhp)

stty erase '"h'

*)
stty erase ' "?'

esac

Fermi Login Files November 26, 1997

f

'

l

BTERM='echo $TERM I cut -cl-3'
if [-r /usr/lib/terminfo/$TTYPE/$BTERM -o -r /usr/share/lib/ter

minfo/$TTYPE/$BTERM l

November 26, 1997

then
TERM=$BTERM
stty erase 1 "? '

else
case $MACH_OS in
IRIXISunOS IAIX)

ULTRIX)

OSFl)

HP-UX)

*)

case $BTERM in
vt [213))

TERM=vt220
stty erase ' A? '

*)

TERM=vtl00
stty erase '"?'

esac

case $BTERM in
vt3)

TERM=vt300
stty erase I"'? I

''
vt2)

TERM=vt200
stty erase I"? I

' '
*)

TERM=vtl00
stty erase I"? I

''
esac

case $BTERM in
vt [213))

stty erase '"'?'

*)

TERM=vtl00
stty erase '"? '

esac

case $BTERM in
vt3)

TERM=vt320
stty erase I "'? I

''
vt2)

TERM=vt200
stty erase I "'? I

''
*)

TERM=vtl00
stty erase I A? I

''
esac

Fermi Login Files C-13

stty erase '"? '

esac
fi

fi

esac
. 11
Set the DISPLAY

if [x"$DISPLAY" = x)
then

TTYPORT='tty'
if ["$TTYPORT" = "/dev/console"
then

DISPLAY="localhost : 0"
elif " $REMOTEHOST" = ""]
then

TTYNAME='echo $TTYPORT I cut -c6-'
REMOTEHOST='who fgrep "$TTYNAME" lawk '{print $6) ' lsed 's/(//' fsed

's/)//''
DISPLAY="${REMOTEHOST}:0 "

else
DISPLAY="${REMOTEHOST}:0"

fi
fi

II Who are you?

if ["x$LOGNAME" = "x"
then

fi
11

if ["x$USER" = "x"
then
if ["x$REMOTEUSER" ! = "x")
then

LOGNAME="$REMOTEUSER"
fi
else

LOGNAME="$USER"
fi

11 The case statement is to set the mail variable
ff. based on machine type. Also motd and news are
dependent on system type . Some systems automatical ly
display motd (and thus shouldn't be repeated here.
Others don ' t have news.
fl
case $MACH_OS in
IRIX)

C-14

TZ=CST6CDT
if ["' f uname -r I cut -cl,,,= " 3"
then

MAIL=/ usr/ma il /$LOGNAME
/bin/mail -e
if [$? = 0]
then

fi
fi

echo 'You have mail . 1

if - d /usr/news
then

/usr/bin/news
fi

Fermi Login Files November 26, 1997

SunOS)

AIX)

ULTRIX)

f OSFl)

HP_UX)

,,,,)

*)

November 26, 1997

TZ=CST6CDT
MAIL=/usr/spool/mail/$LOGNAME

TZ=CST6CDT
/bin/news
MAIL="/usr/spool/mail/$LOGNAME"
export MAILMESG;MAILMESG="[YOU HAVE NEW MAIL]"
if [-s $MAIL J
then

echo 'You have mail. '
fi
EMULATE=none
export EMULATE

MAIL=/usr/spool/mail/$USER

/usr/bin/news
MAIL=/usr/spool/mai l /$USER

TZ=CST6CDT
cat -s /etc/motd
MAIL=/usr/mail/$LOGNAME
/bin/mail -e
if [$? = o J
then

echo 'You have mail. '
fi
/usr/bin/news

ll Catch for the "funame returns null" bug

cat -s /etc/motd
if [-x /usr/bin/news
then

/usr/bin/news
fi
if -x / bin/news
then

/ bin/news
fi
if -d /usr/spool/mail
then

MAIL=/usr/spool/mail
fi
if -d /usr/mail
then

MAIL=/usr/mail/$LOGNAME
fi
if -x /bin/mai l
then

/bin/mail -e
if [$? 0 l
then

echo 'You have mail. '
fi

fi

Fermi Login Files C-15

esac
fl
ii Establish PAGER
ii
if -x /usr/local/bin/less
then

PAGER=/usr/local/bin/less
else

PAGER=more
fi
fl
ii Common terminal characteristics

stty intr 'Ac ' ii set interrupt key to <Ctrl-c>
stty kill 'Ax' # set kill key to <ctrl-x>
stty echoe ii erase ERASEd c haracters
echo "Terminal Type is $TERM"
if [-x /usr/local/bin/Info J
then

/usr /local/bin/Info -new
fi
ii Some systems the user doesn't own his tty device (Sun OpenWindows) so
ii redirect stderr
/bin/chmod 622 'tty' >/dev/null 2>&1
export DISPLAY MAIL TZ TERM PATH PAGER MANPATH

fi # This is end of if statement for interactive use.

Check for existance of l ocal.profile fi l e. This is the file admins should
ii put in any· changes , additions, etc. so that they don't need to re-edit this
ii file every release .
JI
if [-r /usr/local/etc/local.profile
then

/usr/local/etc/local.profile
fi

ferrni. profi l e executes / u sr / l ocal /etc/ se t path. sh to set the path variable.

C.2.3 setpath.sh
The default FUE set path. s h file is found in / u sr / l ocal / etc/ s e t p ath. sh.

@(#) setpath.sh 1.9 Delta: 95/01/18 15:29:38 Extraction 95/03/22 22:13 : 53 @(#)

if ["x"$HOME = "x"]
then

HOME=/
fi

PATH=""
for DIR in /usr/sbin \

C-16

/opt/SUNWspro/bin
/usr/ccs/bin \
/usr/lang \
/usr/bsd \
/bin\
/usr/bin \
/usr/lbin \
/usr/ucb \
/etc\
/usr/etc \
/usr/afsws/bin \

Fermi Login Files November 26, 1997

do
if [-d ${DIR} J
then

fi
done
ff
fl zsh bug fix

PATH=${PATH}${DIR}:

PATH='echo $PATHl/bin/sed 's/\.//g''
if ["x"$MACH_OS = "x" J
then

MACH_OS='funame -s
fi

/usr/openwin/bin
/usr/bin/Xll \
/usr/kinet/bin
/usr/local/bin
/usr/bin/mh
/usr/sccs

ti do not do this if you are root, because //bin is your $HOME/bin , and
do not put current directory in root's path
if ["$HOME" != "/"]
then

ff
ti Add your HOME/bin and bin." flavor"
ti Put your Sun executables in a bin named bin. SunOS,
ti your IRIX executables in bin. IRIX ,

your AIX
ti . . . etc ...
t(

"bin .AIX ,

for DIR in ${HOME}/bin.${MACH_OS} $HOME/bin
do

if -d ${DIR} J
then

PATH=${DIR} :${PATH}
fi

done
PATH=$ {PATH}.:

fi

export PATH

C.2.4 .shrc
The defaultFUE . shrc file is found in /usr /local /etc/stdshrc.

ff .shrc default settings for all users

#execute fermi.shrc first
if [-r /usr/local/etc / fermi.shrc
then

. /usr/local/etc/fermi.shrc
fi

tlPlace items that you want run even when not interactive shell here

#skip if not interactive shell
if ["x$USER" = "x" J I I ["x$PS1"
then

e lse

"x" J

November 26, 1997 Fermi Login Files C-17

if ["'basename $SHELL l sed 's/[0-9]// ' '" ! = "sh"
then

set -o noclobber
set - o ignoreeof

#prevent overwrite when redirecting output
#prevent accidenta l logouts

ff Have mail point to fermimail which is a Berkely mail version. Some packages
ti expect mail to be a System V version of mail. I f you are having problems
ti of this type , you may need to remove the alias .

alias mail='ferrnimail'

ti Define various aliases; user . selects desired alias by removng the 11 sign
ti ONLY IF YOUR SHELL SUPPORTS ALIASING !

11alias a; ' alias'
#alias logout='exit'
tlalias killit= 'kill -9 ' 11 guarantees that a process is k

il l ed
11alias ll= ' ls - 1 ' ti generate a long listing
/lalias la='ls -a' ti see h i dden files
#alias lf='ls -CF ' ti c heck file TYPE (exe, dir ..)
#alias rmi='rm -i ' # confirm before deletion
11a l ias cpi== ' Cp -i' 11 no overwrite of output f i le
tlalias mvi='mv -i ' II confirm before moving
#alias more='less ' ti when you explicitly "more''

i l e

#Next alias repl aces standard info comman d on SGI platforms
#alias i n fo= ' Info ' #get l i st of i n fo artic l es

tlVMS type commands
#alias
#alias
ti alias

else

dir= 'ls - 1'
copy= ' cp'
rename='mv'

a

Have mail point to fermimail which i s a Berkely mail version. Some packages
ti expect mail to be a System V version of mail. If you are havi ng problems
ti of this type, you may need to remove the alias.

mail ()
{

fermimail 11 $@"

f

#Define various f unctions; u ser sel ects desired functions by removng the# sig
n

#Provided for shells that do not support a l iasing .
#killit ()
#{

kill -9 # guaran tees that a process is killed
#}
#11 ()
#{

11 l s -1
#)
#la (}
#{

l s -a
ti)
#lf ()
ti{

"$@"

"$@"

11 ls - CF "$@"
#)

#rmi ()
11(

rm -i "$@"
#)

11 generate a l ong l isting

see hid den files

display file type , columnwise

confirm before del ete

C-18 Fermi Login Files November 26, 1997

#cpi ()

ti{
ti cp - i "$@" # no overwrite of output file (see also set noel

obber)
ti)
tlmvi ()

ff{
ti mv -i "$@ " ti confirm before moving

ti)
#more ()

#{
ti less "$@" # wheri you explicitly ''more" a fi l e

ti}

#Next function replaces standard info command on SGI platforms
#info ()

fi

j/{

ti Info "$@"
ti}

tlVMS type commands
tldir ()
ti{

ff l s -1 "$@"
tf}
tlcopy ()

ff{
ti cp "$@"

ti}
tlrename ()

ti{
ti mv 11$@"

#}

fi

ff get list of info articles

0 The . shrc filecalls / usr / local /etc/fermi.shrc.

C.2.5 f ermi.shrc
The default FUE fermi . shrc file is found in / u s r / local / etc/ fermi. shrc.

ti @(ti) fermi. shr c 1.10 Del ta: 94/09/29 22 : 22:52 Extraction 94/09/29 22:34:43 @(ti
)

ff fermi.shrc settings for all users; will be called by the default .profile

ti
ti Setup UPS
ff
if [-r /usr/local/etc/setups . sh
then

. /usr/local/etc/setups . sh
fi

tlDo machine dependent functions:
case $MACH_OS in
IRIX)

fermimail ()

/usr/sbin/Mail "$@"

SunOS)

November 26, 1997 Fermi Login Files C-19

fermimail ()

/usr/ucb/Mail "$@"

man ()

/usr/bin/man -F "$@"

AIX)
fermimail ()

/usr/ucb/Mail "$@"

ULTRIX)
fermimail ()

/usr/ucb/Mail "$@"

OSFl)
fermimail ()

/usr/bin/Mail "$@"

HP-UX)

fermimail ()

*)

/usr/bin/mailx "$@"

if [- x /usr/ucb/Mail
then

fermimail ()

/usr/ucb/Mail "$@"

elif [-x /usr/sbin/Mail
then

fermimail ()

/usr/sbin/Mail "$@"

elif [-x /usr/bsd/Mail
then

f ermimail ()

/usr/bsd/Mail "$@"

elif [-x ./usr /bin/mai l x
then

fermimail ()

/usr/bi n/mailx "$@"

elif [- x /usr/bin/Mail
then

fermimail ()

/usr/bin/Mail "$@"

fi

C-20 Fermi Login Files November 26, 1997

]

esac
ll
ll Check for existance of local.shsrc file. This is the file admins should
put in any changes , addi tions, etc. so that they don ' t need to re-edit this

file every release.
j/

if [- r /usr/local/etc/local.shrc
then

/usr/local/etc/local.shrc
fi

fermi . shrc executes /usr/ l ocal /etc/setups . sh.

C.2.6 setups.sh
The default FUE setups. sh file is found in / u sr / l ocal/ etc/ set ups. s h .

ll @(ll) setups.sh 2.2 Del ta: 95/01/09 15:48:34 Extraction 95/03/22 22:13:54 @(U)

IISet environment for UPS
if [-r $HOME/ .noupsproducts J llstart if .noupsproducts
then

November 26, 1997

MACH_OS='funame -s
fchar='echo ${PRODUCTS:-} /cut -cl'
if ["x$fchar" ! =· "x/" J #start check if $PRODUCTS already set
then

prod9et=no
unset PRODUCTS
II Add any other dir;ectories that are UPS databases in the
II for. list
for PROD in $UPS_EXTRA_DIR \

do

done

/'funame -n'/products/ups_database/declared
'logdir products'/ups_database/declared \
/usr/products/ups_database/declared \
/afs/fnal/products/ups_database/declared

if [-d $PROD J
then

fi

if ["$prodset" = "no"
then

else

fi

PRODUCTS=$PROD

exists='echo $PRODUCTS I grep -c $PROD'
if [$exists= "0"]
then

PRODUCTS="$PRODUCTS $PROD"
fi

prodset=yes

export PRODUCTS
else

prodset=yes
fi #end check if $PRODUCTS already set
if ["$prods et" = "yes" ·i llstart if $PRODUCTS is set
then

fchar='echo ${UPS_DIR:-} / cut -cl'
if ["x$fchar" != "x/" J #start if $UPS_DIR already set
then

setups=no
full=${MACH_OS)+'funame -r'

Fermi Login Files C-21

for PROD in $PRODUCTS
do
if [-f $PROD/ups
then

if [grep -c "current . $MACH_OS" $PROD/up s' -eq
o J

then

fi
flavor=x

continue

for i in grep "current.$MACH_OS" $PROD/upslawk
' (print $2)' I sort -r'

do
case "$full'' in
$i* flavor=$i

break;;
*) ; ;

esac
done
if [$f l avor= x J
then

continue
fi

ffcharacter after ${flavor) and before quote is tab (next two lines)
CURRENT='grep "current.$(flavor)

ups l awk '(print $3) •'
UPS_DI R='grep "Ain stance: . *${flavor)

) /ups I grep \"${CURRENT)\" I awk '{print $4)' '
fi

else

fchar='echo ${UPS_DIR:-) I cut -cl'
if ["x$fch ar" = "x/"]
then

fi
done

setups=yes
break

if ["$setups" = "yes"
then

fi

export UPS_DIR
if [-f $UPS_DIR/ups/ups_init.sh J
then

fi

. $UPS_DIR/ups/ups_init . sh
setup ups

setups=yes
fi #end if $UPS_DIR already set

·11Even though UPS_DIR may have already been setup , aliases aren ' t a l ways
ff passed along , thus we need to always do the source of ups_init and
the setup.sh file. We can ' t simpl y do a setup of ups, because then you
ff get the current version of ups instead of the version of UPS when you

" $PROD/

" ${PROD

entered this process. The setup of ups relies on UPS_PROD_VERSION being
set (although not in a serious way) . This process assumes t h e vers i on is
the l ast component of the $UPS_DIR directory. This isn't gu aranteed to be
ff correct , bu t will work ok for this situat i on.

C-22

if ["$setups" = 11yes 11 J
then

if [-f $UPS_DI R/ups/ups_init . sh
then

. $UPS_ DIR/ups/ups_init.sh
UPS_PROD_VERSION='basename $UPS_DIR'
if [-f $UPS_DIR/ups/setup.sh J
then

$UPS_DIR/ups/setup . sh

Fermi Login Files November 26, 1997

.,

fi
unset UPS_PROD_VERSION

else
echo "\$UPS_DIR set , but \$UPS_DIR/ups/ups_init.

sh doesn ' t exist . No ups environment setup . "
f i

else
echo "Unable to set \$UPS_DIR, ups environment not setup

fi
else

echo "Unable to set \$PRODUCTS, ups environment not setup"
fi llend if $PRODUCTS is set

fi llend if .noupsproducts

November 26, 1997 Fermi Login Files C-23

C-24 Fermi Login Files November 26, 1997

Appendix D. awk's Programming Model

This appendix is adapted from a section of the same name in the book sed & awk, published by
O'Reilly & Associates. It describes the gerieric structure and organization of an awk program.
An awk program consists of what is called a main input loop. A loop is a routine that is executed
over and over again until some condition exists that terminates it. You don't write this loop, it is
given; it exists as the framework within which the code that you do write will be executed. The
main input loop in awk is a routine that reads one line of input from a file and makes it available for
processing. The actions you write to do the processing assume that there is a line of input available.
In another programming language, you would have to create the main input loop as part of your
program.
The main input loop is executed as many times as there are lines of input. This loop does not
execute until there is a line of input. It terminates when there is no more input to be read.

awk allows you to write two special routines that can be executed before any input is read and after
all input is read. These are the procedures associated with the BEGIN and END rules, respectively.
In other words, you can do some pre-processing before the main input loop is ever executed using
the BEGIN procedure, and you can do some post-processing with the END procedure after the
main input loop has been .terminated. The BEGIN and END procedures are optional and they do
not need to be defined.
You can think of an awk script as having potentially three major parts: what happens before,
during, and after processing the input. The "what happens during processing" part is where most of
the work gets done. Inside the main loop, your instructions are written as a series of pattern/action
procedures. A pattern is a rule for testing the input line to determine whether or not the action
should be applied to it The actions can be quHe complex, consisting of statements, functions, and
expressions.

November 26, 1997 awk's Programming Model D-1

D-2 awk's Programming Model November 26, 1997

Appendix E. VMS to UNIX Command Reference

This appendix l.s intended as a convenient UNIX command reference for the migrating VMS user.
The UNIX equivalents of commonly used VMS commands are listed in tabular format. No
information on syntax, options, or arguments is presented here, however some of the listed
commands are described elsewhere in UNIX at Fermilab.

Commands which are Fermilab-specific or AFS-specific are indicated as such.

E.1 UNIX Equivalents for Many VMS Commands

Symbols used in table:

These symbols are not part of any UNIX command with which they appear.

*

**

for systems running AFS, the command may not work as documented

your system may be configured to use an alternate Fermilab command
to perform this action

+

AFS-specific commands

local Fermilab commands

Actions VMS

Actions on files and directories

create directory CREATE/DIR

change working directory SET DEFAULT

display working directory SHOW DEFAULT

display list of files DIRECTORY

DIRECTORY/FULL

display list of subdirectories only

display contents of file TYPE

display file with pauses TYPE/PAGE

November 26, 1997 VMS to UNIX Command Reference

UNIX

mkdir

cd

pwd

ls

ls -1

ls -llgrep '"d'

or
find* -typed ' -prune -print

cat

more, less

E-1

Actions VMS UNIX

display first few lines of file TYPE/PAGE head

display last few lines of file TYPEffAIL tail

copy a single file COPY cp

copy all files oldfile. * to newfile. * COPY OLDFILE. * Create shell script; see
NEWFILE.* section E.2.

find file DIRECTORY find

find file containing a specified expression or SEARCH. grep
string egrep

fgrep

compare files DIFF diff
cmp

rename file RENAME mv

rename all files oldfile. * to newfile. * RENAME OLD FILE.* Create shell script; see
NEWFILE.* section E.2.

delete file or directory DELETE rm
rmdir

merge files COPY or APPEND cat

three-way file merge MERGE merge

sort or merge files SORT sort

assign (link) files ASSIGN ln

DEFINE setenv
SET FILE/ENTER

deassign files (remove link) DEASSIGN rm

convert and copy file EXCHANGE dd

update last modified date of file OPEN/APPEND touch

print file PRINT lpr
flpr #

format text file RUNOFF nroff
troff
groff #

octal, decimal, hex, or ascii dump of file DUMP ad

change file protection SET FILE/PROT chmod *

E-2 VMS to UNIX Command Reference November 26, 1997

Actions VMS UNIX

change file ownership SET FILE/OWNER chown *

chgrp *

list ACL settings on an AFS directory fs listacl +

set ACL settings on an AFS directory fs setacl +

General Commands

get help HELP man
apropos

logout LOGOUT logout
exit

change password SET PASSWORD passwd *
kpasswd+
yppasswda

obtain AFS (Kerberos) authentication klog+

discard AFS tokens unlog+

display iogged-in users SHOW USERS who
finger

display environment settings SHOW LOGICAL alias

setenv
printenv

set

display date and time SHOW TIME date

display free disk space SHOW DEVICE df
du

display disk quota SHOW QUOTA quota -v

(On AFS, shows AFS volume quota; see fs listquota
section 7.5.) pathname +b

write to screen WRITE SYS$OUTPUT echo

stop process STOP kill

display print queue SHOW QUEUE lpq
flpq#

display print entries SHOW ENTRY lpq
flpq#

delete print entry DELETE/ENTRY flpk #

November 26, 1997 VMS to UNIX Command Reference E-3

Actions VMS UNIX

display processes SHOW SYSTEM ps

tape archiverc BACKUP tar

change terminal settings SET TERMINAL setenv LINES

setenv COLUMNS
stty (for Solaris)

talk to another user PHONE talk

disable messages SET mesg n
NOBROADCAST

connect to remote node SET HOST telnet
riogin

copy file to a remote node COPY rep

FTP ftp

Commands for Executables, Procedures, and Batch Jobs

compile FORTRAN program FORTRAN f77

link FORTRAN program LINK f77

see the entry point names in a library LIBRARY/LIST/NA odwnp -Cd

MES

execute program RUN prog_name

debug program RUN/DEBUG dbx

create or manipulate library LIBRARY ar

execute a command procedure (shell script) @prog_name prog_name

submit a batch job SUBMIT/QUEUE qsub
fbatch_submit #e

check batch queue SHOW QUEUE gstat
fbatch_q #

stop batch job DELETE/ENTRY gdel

kill
fbatch_cancel #

a. for use with NIS (see section 2.7)
b. For normal Berkeley-style systems, the UNIX command quota -v indicates how
much of your disk quota you have available. On an AFS system, the quota is based not' on
individual users, but rather on AFS volume. So, if you have a shared volume, it just tracks
the quota of the entire volume. For more information, enter man f s_listquota (the
underscore is required).
c. See section E.3 for information on VMS backup save-sets.
d. under IRIX and OSFl

E-4 VMS to UNIX Command Reference November 26, 1997

e. fbatch is a FUE interface used with the LSF job scheduling product, described in Chap-
ter 14.

E.2 Shell Scripts for Copying/Renaming Multiple Files
In the above table, the UNIX command equivalents for copying/renaming a set of files require short
shell scripts. In this section, we give you the script formulas.

The most efficient way to copy all files oldfil e . * to n ewfil e . * in UNIX is to create a
short shell script. Its contents are shown for both the Bourne and the C shell families .
sh, ksh, or bash:

for file in oldfi le.*
do

newname='ech o $file I sed -e ' s/oldfile/newfile/ ' '
mv $file $newname

done

csh ortcsh:
l!/usr/ l ocal/bin/tcsh
foreach file (o ldfile.*)

set newname='echo $file I sed -e 's/ol dfile/newfi l e/ ' '
mv $file $newname

end

Note that the shell variable newname in each case is set to the output of the command that follows
the equals sign (=). This entire command string must be enclosed in back quotes C ... '). The
argument for the -e option in the sed command is enclosed in normal single quotes
(apostrophes). sed is not covered in this manual; most texts discuss it, and the book sed & awk
published by O'Reilly & Associates covers it thoroughly.

E.3 Unpacking VMS Backup Save-sets
If you made VMS backup save-sets, the UNIX utility vmsbackup is a tool that lets you unpack the
save-set, converting the files to UNIX format. vmsbackup is a separate UPS product which must
be installed first (see section 10.3.1). The default operation of the program is to go through an
entire VMS-generated tape, extract each file, and write it to disk. Several options are provided; we
refer you to the man pages for a discussion of them.
Once vmsbackup is installed on your machine, you need to run setup vmsbackup before
using it.

O You cannot make save-sets with this utility; you can only unpack existing save-sets.

November 26, 1997 VMS to UNIX Command Reference E-5

E-6 VMS to UNIX Command Reference November 26, 1997

Appendix F. mh and exmh Customization

This appendix contains information for further customizing the mh and/or exmh mail readers.
Given the multitude of customizable features in these mail readers, we cannot provide you with a
comprehensive treatment of the subject here. The information preseqted in Chapter 12 and this
appendix should be sufficient for most users. •
We refer you to the on-line help and to the O'Reilly book, MH & xmh - Email for Users &
Programmers by Jerry Peek, for further information.

F.1 Forwarding and Notification
The . forward file is a general mail forwarding file, and is used no matter which mail package
you choose to use. It tells the system what to do with your mail; whether to leave it in the system
spool area, forward it to the spool area on a different node, forward it to a differ~nt system entirely,
or (in some cases) deliver it to your preferred local mailbox automatically. It may also be used as a
means of notifying you that mail has arrived.
Note that comment lines are generally not permitted in the . forward file. Some OS versions
and versions of sendmail (an underlying, transparent internet mail forwarding tool) do allow
comment lines in . forward. The comment lines must be preceded by a pound sign (#).

F.1.1 Forwarding Address
The first line of your . forward file tells the system where to put your mail. On your chosen
mail node, it should look like:
\{username}@{node}.fnal.gov

where { us ername} is your usc;mame, and {node} is the name of the node where you plan
on reading mail (e.g., \j oe@fsui02. fnal. gov). The backslash prevents infinite loops in a
"clustered" environment where more than one node sees the same . forward file in your login
area. 1

On all other systems, we recommend that you forward your mail to FNAL, the lab's central mail
server. For these systems, the first line of each . forward file will look like:
{username}@fnal.gov

e.g., j oe@fnal.gov. Note that this doesn't have the backslash or the node name. The
backslash is not necessary if you are forwarding to a node that does not share the same login area.
See sections 2.6 and 2.7 for a discussion of shared login areas, or what we call UNIX clusters.

November 26, 1997

1. If you choose to use unattended autoincorporation, which delivers your mail directly
into your login area rather than leaving it in the system spool area, the first line of your
. forward file will look significantly different from this example. Unattended autoin-
corporation is covered in section F.4.

mh and exmh Customization F-1

F.1.2 Mail Notification
Another use of the . forward file is to allow you to customize the type of notification you
receive when new mail arrives. Usually, the second line of your . forward file will control if
and how you receive notification.
FUE provides minimal notification of incoming mail by default, however most people like to
receive notification of individual messages as they come in. If you want to scan your new mail
when you log in, include the commands inc and scan +inbox unseen to your . login
or .profile file.
The use of the MH program rcvtty provides notification of new mail whether or not you have a
mail reader active. To set this up, you need to edit your . forward file.

Basic Configuration

Even if you don't know what biff/comsat is, you will need to determine if it is running on your
system. How do you tell? Follow these instructions and you should get one concise notification
message per incoming mail message if it is not running. If you get two notifications, one of which

· is quite verbose, then biff/comsat is running, and you'll need to change your configuration as
described below. •

If you're on a cluster where some nodes run biff/comsat and some don't, set up notification
according to your chosen mail node. This procedure assumes that MH is installed and configured
on all nodes within the cluster.
First, you need to make sure you have set up the proper file access permission. Activate tty user
execute permission by using the command:

% chmod u+x 'tty'

where the quotes around tty are both single back quotes.
You can include this in your . login or . profile file to run it automatically on all sessions.
Be sure to include it after the call to fermi. login or fermi. profile since these files set
it differently. Or, if you prefer to have notification only in one window, just run this command in
that window.
The second line of your . forward file should look like:

"I / usr / local / products / mh / current / lib / rcvtty -biff"

When mail arrives, rcvtty should send a notice containing the time, sender, subject, and message
sample to all user tty sessions with proper file access permission in the default format:

time: SENDERNAME subject << first line of text (truncated)

If this type of notification is what you get, skip to "Customizing rcvtty Output", below. If instead
you get a multiline notice, biff/comsat is running, and you'll have to make a couple of changes.
Some systems run biff with comsat for notification purposes. biff/comsat and rcvtty (without the
bi ff option) can work together, however this yields double notification (both comsat's verbose
notice and rcvtty's single line notice) because the r-w-x permissions (see section 6.6.1) need to
be different for biff/comsat and rcvtty.
To get rcvtty to work properly on systems running biff/comsat follow these steps:

1) Enter biff n to deactivate comsat (best to include in . login or . profile file).

F-2 rnh and exrnh Customization November 26, 1997

2) In . forward, replace:
"I / usr / local / products / mh /current / lib/rcvtty -biff"
with:
"I /usr/local/product:s/mh/current/lib/rcvtty"

3) Enter ls -lL 'tty' to see your default tty setting. If o+w (that is, if write permission
for other; see section 6.6.1) is not set, use the command chmod o+w 'tty' to set it
(again, best to include in . login or . profile file) .

Customizing rcvtty Output

You can reformat the output of rcvtty if you like. To do this you need to create a form file
describing the syntax of the output you want to see, and you need to modify the rcvt ty
command. For example, if you wish to use the same format as scan-form (see section F.2.5)
the form file used for incorporating or scanning mail, the line in . forward would look like this
(shown in the format used when biff/comsat is not running):

" I /usr/ local / products /rnh/current/ lib/rcvtty -bi ff -form scan-form"

F.2 Files Used to Customize mh and exmh
Your personal configuration for MH is primarily defined via the . mh_pro file file. It defines,
among other things, where mail is stored and what editor to use. Some additional files are available
if you wish to customize further. These were listed in section 12.4.
Each MH mail composition command, (comp, repl, forw for mh; Send, Reply, Forward
for exmh) uses its own template file to define the message header format:

• comp or Send uses the components file
• repl or Reply uses replcomps
• forw or Forward uses forwcomps

If you don't have these template files in your $HOME/Mail directory the system default files in
the MH library are used.
Options for incorporating mail were discussed in Chapter 12. The scan-form and inc-form
files provide the format of the display when you scan and incorporate ntail. You can control how
local delivery is performed by creating a . ma i 1 de 1 i very file.

F.2.1 .mh_profile
It also allows you to specify options to MH commands. If you have run setup mh or setup
exmh, you already have a simple one in your home directory. You can tailor your . mh_prof i 1 e
file to suit your taste. Following are some of the extra lines you can add:

November 26, 1997

Path: Mail Directory for your MH transactions.
Unseen-Sequence: unseen Name of the unseen sequence of messages.
Draft- folder: drafts Name of the default folder for drafted, unsent mail.
Editor: emacs Sets up emacs as editor for comp, repl, forw, dist

(use any editor you want) .1

rmmproc: /bin/rm Causes mail to be truly deleted when requested (see
section 12.3.8). Recommended!

1. exmh ignores any editor defined here (defining an editor is optional for MH).

mh and exmh Customization F-3

Aliasfile: rnh_alias •
Scan: -form scan-form
inc: -form inc-form

File containing MH aliases (distribution lists).
Provides format of display when you scan mail.
Provides format of display when you incorporate mail.

Signature: John Peoples Your signature. Appears in From: header field.
The Path is taken to be relative to your $HOME directory. The files/directories used for
Draft-folder, Aliasfile, Scan, and inc areassumedtoberelativetothedirectory
specified by Path.

F.2.2 components
The default template file for composing (sending) a message is called components and looks
like:

To:
cc:
Subject:

You can add other fields to the header by making your own components file. For example, an
enhanced components file may include the additional fields shown below:

Reply-to: (usernarne}@fn al .gov
To:
cc:
Bee :
Fee : +yourfolder
Subject:

The Reply-to: field should give your FNAL address. It is not needed if you want the reply to
come to the node from which you are sending the message. The repl command in MH (and
some other mail agents as well) will route replies to this address rather than the From: address.
The "blind carbon copy" Bee: field can be used to send copies of the message to addresses that
are not seen by the people specified in the To: and cc: fields . This is like forwarding a copy
of the message to someone else after sending it, except that here you can do it at the time you send
the original message. Bee: can also use distribution lists or aliases.
You can send a copy to yourself by specifying a folder for your copies in the Fee: field. Fee
stands for folder copy. This copy goes directly to the specified folder, and only to that folder.

F-4 rnh and exrnh Customization November 26, 1997

F.2.3 replcomps
The replcomps file controls the header in replies. The default file is given below:

%(lit)% '(formataddr %<{reply-to}%?{frorn}%?{sender}%?{return- path}% >)\
%<(nonnull)%(void(width)) %(putaddr To:)\n%>\
%(lit)%(forrnataddr{to})%(formataddr{cc})%(formataddr (me))\
%<(nonnull)%(void(width))%(putaddr cc:)\n%>\
%<{fcc}Fcc: %{fcc}\n%>\
%<{subject}Subject: Re: %{subject}\n%>\
%< {date}In-reply-to: Your message of " \
%<(nodate{date})%{date}%1% (pretty{date})%> ." %< {message-id}

%{message-id}%>\n%>\

The first two lines in the file build the To : address field for your reply draft. It talces the first
available address by searching the Reply to:, From:, Sender: and Return-path:
fields, in that order. Lines 3 and 4 build a cc: address field by talcing all the To: and cc:
addresses from the original message and including your address as well. It then builds an Fee :
field by testing a -fee switch on the command line or in the . mh_profile. The subj ect :
field is talcen from the subject in the incoming mail preceded by Re : . The last three lines malce up
the field that says "In-reply-to: Your message of ... " with the date and message number at the end.
The default reply header talces the form:

To:
cc:
Subject:
In-reply- to : Your message of "Day, date t.ime "

<message- id>

You can customize this formatting by modifying your own r eplcomps file (note that no spaces
are allowed after the backslash(\) on each line). You will most likely need to reference the
O'Reilly MH text for this task.
As you now know, replcomps controls the format of the message header. You can also
customize the format of the message body for replies via a file called . mh_f i 1 ter in your
home directory. The O'Reilly MH book describes the different possible ways of setting this up.
The contents of the default . mh_f il ter is:

body:component=" > ",compwidth=O

F.2.4 forwcomps
The forwcomps file is used as the template header for forwarded messages. This file may look
very similar to the components file, in fact the default files are identical. If you create your
own components file and you want to use it for both sending and forwarding, include the
following line in your . mh_pro f i 1 e file:

forw: -form components

You would only need a separate forwcomps file if you wanted the headers on forwarded and
original mail to be different.

November 26, 1997 mh and exmh Customization F-5

F.2.5 scan-form and inc-form
These files provide the format of the display when you scan and incorporate mail. If you aren' t .
satisfied with the default scan format, we recommend that you simply set up a scan -form file,
and use it for both situations (set both Scan: and inc : to s can-form in
. mh_prof il e). The scan- form file's format is also used by rcvtty to provide messages. An
example of a simple scan-fo rm file showing incoming mail only and set up in a VMS-style
format is shown below:

%4 (msg) \
%21(addr{from))\
%02 (mday{date)) - %3(month{date})-%4(year{date))\
%02(hour{date}) : %02(min(date))\
%{subject)

This example produces output in the format:

msg# s ender_address date time s ubj ect
Some sample output follows:

18 helpd esk 13-Nov-1995 16:30 1017699 Problem Report
19 lauri 14-Nov-1995 10:56 VY0124 damaged
20 STUART@fnald . fnal.gov 14-Nov-1995 11 :28 Problems with an fnaldb
21 wolbers@fsu i0l.fnal .g 14-Nov-1995 15 : 31 Department Meeting

tape drive

An slightly more complicated example is shown below. It allows display of both incoming and
outgoing messages:

%4(msg)\
%<(cu r)+%[%>\
%<(forwarded)F%l %>\
%<{repl ied)R%1 %>\
%<(mymbox{from)) <- %19(friendly{to)) %1 -> %20(addr(from)) %>

%02(mday{date))-%03(month{date)) - %4(year{date})\
%02 (hour{date)) :%02(min{date})\
%{subject)

This example produces output in the format:

ms g# (arrow) (sende r or recipien t a ddres s) date time subj e ct
The arrow indicates whether the mail is from you (< -) or to you (- >) . If it is from you, the address
field shows who you sent it to. Sample output looks like:

258 -> b hat 14-0ct-1995 12:15 batch job 341: <run - small> D
260 <- joe@fnal 13-0ct-1995 17:24 Program a n d Working Groups -
261 <- lhn@sld.slac.stanford.edu 13-0ct-1995 16:31 e+w- Workshop, November 16-1
262 <- martha@fnal 13-0ct-1995 17:24 re: revised ma i l chapter
263 -> STROVINK@d0sfa 1 6-0ct-1995 09:21 Re : FYI re d i rections in NN

F.2.6 .maildelivery
The . mailde li very file controls how local delivery is performed. This file can be quite
simple, or very complex. Within the file you can configure options to:

• restrict notification to mail received only from certain senders
• control notification format and content

F-6 mh and exmh Customization November 26, 1997

• specify further processing such as delivery to one or more specific folders
• start up certain processes depending on information in the mail message header

Note that if you use the mh command inc (at the shell prompt) instead of incorporating within
exmh, your mail will not be sorted. It will be filed into your inbox folder. The
. ma i 1 d e 1 i very file is only used when you 1) incorporate within exmh (described in section
12.4.3) and 2) check the Presort box in the Incorporate Mail window under Preferences. The
. mailde li very file is also used with unattended autoincorporation (see section F.4).

Simple Case: Send All Incoming Mail to inbox Folder

If you simply want to send all incoming mail to your inbox folder, your . mai lde l i v ery
file needs only to consist of the following one line:

* - "A " / u s r / local / products / mh / curre nt / lib / r cvstore +inbox "

If you want to do something more sophisticated, continue reading this section.

File Format

Lines starting with # are comments. Fields are separated by one or more spaces. Each record in
the file has the following fields in this order:

header field the message header field that you 're sorting on (e.g., from, to,
s ubject)

match pattern

action

result

file or command

the text string found in the header field that you want to match (enclosed
in quotes if it includes spaces). If the header field argument is
d e fault or *, this should be - (a dash).
what to do if pattern is matched. Set to file or > to send the
matched message to a file. Set to qpipe or " to directly execute a
-command without invoking a Bourne shell. Set to pipe or I to
invoke a Bourne shell to execute the command. I(your command has
special characters in it, you will need to use pipe or I, otherwise
qpipe or " is more efficient.
a code indicating whether to set matched message to "delivered" , or not.

A: if field and pattern matched, action will be performed,
and if successful, then set message to "delivered".
R: same as A, but don' t set message to "delivered" so that
further entries in . mailde li v e ry can act on it.
? : perform the action if message not yet set to "delivered''.
by a previous entry. If action succeeds, set message to
"delivered".

depending on action, this.is either a file (if action says "send message to
a file"), or a command (if action says "execute a command"). Always
include full pathname.

O Note that some MH systems expect this file to have the mode 644 (u+rw, g+r, o+r).

November 26, 1997 mh and exmh Customization F-7

Examples

The following examples should provide you enough information to modify your
. rnai lde li ver y file to suit your tastes. We'll start with an annotated version of the simple
. rna ilde li v e ry file discussed above in which all your incoming mail gets placed in inbox:

11 execute rcvstore to put all as-yet-undelivered incoming mail into i nbox (sets messages
11 to "delivered")
#hdr pattern action result command

A "/usr/local/products/mh/current/lib/rcvstore +inbox "

Here is a slightly more complex example. The comments explain what is being done in each line:

File mail with fsui in the To: l ine into file $HOME/fsui .log
To fsui file A fsui.log

ff Pipe messages from daemon@fnck to the (local) program err-message-archive
From daemon@fnck pipe A err-message- archive

Put anything with Sender: address "mh- users" into $HOME/mh. l og if not yet filed
Sender mh - users file? mh . log

ti If the address is "uas-admin " , send an acknowledgmer,,t copy back
addr uas - admin A A " /bin/resendR-r $ (repl y-to)"

ti Destroy anything from daemon@.f n ck !
From daemon @fnck destroy A -

ti For anything not matched yet, execu te rcvstore to put into inbox folder
* A ? " /usr/local/products/mh/cur·rent/lib/rcvstore +inbox "

If you plan to create a significantly different set of criteria, you may need to see the man pages for
slocal or the O'Reilly MH text referenced at the start of this appendix.

F.3 Automatic Reply to Incoming Mail
There is a handy UNIX program called vacation that you can use to send an automatic reply to
emails that arrive while you're away. To enable vacation, enter simply:

% vacation

This program can be used to answer your mail automatically when you go away on vacation .
You n eed to create a message _ file i n
/afs/fnal . gov/files/home/room3/aheavey/.vacation.msg first.
Please use your editor (emacs) to e d it this file.

The editor invoked is determined by either the VISUAL or EDITOR environment variable. The
default otherwise is vi. The default message is displayed in the editor window for you to edit.
When you finish, the system returns:

You have a message fi l e in /afs/fn a l. gov/fi l es/home/room3/aheavey/.vacation .msg .
Woul d you like to see it?

If you answer y, the file contents gets typed to the screen, and you are given the opportunity to
re-edit the file. If you choose not to re-edit it, the system goes directly to:

F-8

You have a . forward file in your home directory containing:
(file contents displayed here)
Would you lik e to remove it and disab le the vacation feature?

mh and exmh Customization November 26, 1997

Respond n. At this point the dialog ends, and you need to go to your . forward file and add the
line:
\ {usernarne}, 11 I /usr/bin/vacation {usernarne} 11

where { us ernarne} is your usemame, for example:

\aheavey, 11 1/usr/bin/vacation aheavey"
Now the message in . vacation. rnsg will get sent in reply to all subsequent incoming email
messages.
To disable vacation when you return, simply remove the above line from your . forward file1.

~ Run man vacation to get the full documentation.

F.4 Unattended Autoincorporation
It is possible, though not recommended in a clustered environment (see section 2.7 about clusters),
to use the . forward file to automatically deliver your mail from the system mail spool area
directly into your mail area, whether or not you are reading mail, or whether or not you are even
logged in! This is called unattended autoincorporation. It has a number of attractive features:

• since mail doesn't really stop in the system spool area, but rather is delivered directly to your
inbox file, you are no longer restricted to reading and receiving mail on one particular node
of a cluster

• reduces the startup time (and de-iconizing time) of exmh because it doesn't have to "catch up"
on lots of spooled messages

• mail can be automatically filed to specified folders as it is being delivered (otherwise only
possible for exmh, not for the line-mode mh)

However, unattended autoincorporation also has a number of drawbacks and caveats which make it
a less attractive option:

• in a clustered environment where several separate nodes (hence several separate mail spool
areas) see the same mail destination inbox file, file locking can become a serious problem.
It can happen that a deadlock results in no mail being delivered while an overload of processes
attempt to deliver mail in vain. This problem is especially serious for people who receive a lot
of mail, and is exacerbated by the use of rcvtty (mail notification; see section F.1.2).

• exmh does not update the visual display as new mail gets autoincorporated. Therefore, while
you may have saved the time of incorporating at startup, you will need to manually Rescan
all Folders (under the More ... button in the middle window) in order to see that you have new
mail (and in which folders) when you are running exmh.

Because of the detrimental effect that unattended autoincorporation can have on a system, and the
fact that when it breaks, mail is not delivered, we do not recommend its use in most
circumstances. In particular, we believe that it should not be used in clustered environments. It is
documented here for completeness only, and should not be taken as an endorsement.

F.4.1 In Standard UNIX Environment
To configure unattended autoincorporation on a node:

1) create a . rnaild.eli very file describing your mail sorting preferences (see section F.2.6)

November 26, 1997

1. Some OS versions and sendmail versions support comments in . forward. You can
test to see if yours does. If it does, you can leave the vacation line in the file, and just com-
ment it out with a pound sign (#) when you don't need it.

rnh and exrnh Customization F-9

2) remove the line of your . forward (generally the first line) which contains something
similar to \ {username}@ {node} . fnal. gov

3) replace it with " I /usr / local / products/mh/current/lib/slocal -user
{username}" (include the double quotes but not the braces)

where {username} is your login id.

F.4.2 In AFS Environment
Proper ACL settings (AFS directory permissions, discussed in section 7.6.2) must be made for
autoincorporation in MH. The easiest way to set your mail folder ACLs is to run the utility
fixmailperms from your $HOME directory. This allows the mail folders that you've designated
for receiving mail to work with slocal, and it sets all your mail folders to be readable only by your
account and the system administrator's. fixmailperms is part of the UPS product mailtools. To
see a brief explanation, enter:

% fiJa11ailperms -help

The command is entered as:

% fiJa11ailperms lfolder_l folder_2 ... folder_n]

The folder specifications are taken as relative to your Mail subdirectory. You need to specify all
the folders into which you plan to automatically incorporate mail, and only those folders.
ff you do not specify a minimum of one folder when you execute fixmailperms, unattended
autoincorporation will not work.
For example, if you have a simple setup in which all incoming mail gets sent to your inbox
folder, you'd enter:

% fiJa11ailperms inbox

ff this is satisfactory to you, skip to the next section. ff instead you choose to set your ACLs
individually (and not set your folders private), these are the ACLs you will need:

system: anyuser rl for $HOME

system:anyuser 1

system:anyuser li

for Mail

for Mail /{ folder }1

Go to the directory whose ACL you want to change, and use the command syntax:

% fs setacl . system:anyuser xy

wherexy is rl, 1, or li, depending on the directory. Run fs listacl to see the current
setting.

1. This folder should be your inbox or equivalent, e.g., Mail/ inbox. You may need to
set this for several folders, depending on the complexity of your autoincorporation set up.

F-10 mh and exmh Customization November 26, 1997

1

Appendix G. mh Command Reference

This appendix provides an alphabetical reference to the subset of mh commands discussed in
Chapter 12.
Remember to use the man pages if you need help on any of these commands.

Command

% comp [-e editor]

Description

Compose a message. This brings up a vi (or specified
editor) session. Then save the message file, and exit the
editor (see box below for more information).

Emergency vi exit: hit the Escape key (or <Ctrl-[>) and then enter:

:x to save and exit, or

to quit without saving
At the What Now? prompt, you can enter a carriage return to get a list of options. Normally
you will enter one of these options:

send
quit
quit -delete

to send the message

to save the message in Mail / drafts but not send it

to quit and not save

To send a message in which you want to include a file, compose the message, and use the
"include file" command for vi:

November 26, 1997

: r .filename

% folder +new Jolder _name Create a new folder.

% forw [n]

% inc

% next

% pick -help

% pick options

% prev
% refile +folder

% repl [n]

% repl_inc [n]

[n m ...]

Forward the current message (or the specified message).

Incorporate new incoming message(s).

Display the next message.

Display a list of pick options.
Select messages by content, date, sender, recipient, etc.

Display the previous message.

Move the current message (or specified messages) from
the current folder tq a different folder.
Reply to the current (or specified) message. By default,
everyone who got the original message gets a copy (the
sender, plus everyone in To: and cc:). Respond to
the What Now? prompt.
Like repl, but include the original message. Respond to
the What Now? prompt.

rnh Command Reference G-1

% rmf +folder
% rmm [n m ...]
% scan [+folder_name]

% send file

% setup mh
% show +folder _name

% show [n]
% shown flpr -q
% shown > .filename

queue

Delete the specified folder.
Delete the current (or specified) message(s).
Display message headers from current folder (or
folder _name, and set this folder to current).
Send.file to all the destinations defined, namely To : at a
minimum, and cc:, if it's filled it in. (If you change your
header to include Bee: (blind copy), Fee: (folder
copy), it will send it to addresses in these categories as
well.)
Setup the mh_ product.
Display the current message in/older _name and set this
folder to current.
Display the current (or specified) message.
Print message number non queue.
Extract current (or specified) message into a file.

% show -showproc mhl n I flpr -q queue
Print and format the message a little differently so that it's
easier to read (and nicer for printing), and pipe it to more.
Then send it to the printer.

% show -showproc pr m n . . . I flpr -q queue

G-2

Print messages and separate them onto successive pages.
Then send it to the printer.

mh Command Reference November 26, 1997

Appendix H. Mail Conversion from VMS

This appendix is intended to guide you through a mail conversion process from VMS to the UNIX
MH (Message Handling) system. Two options for conversion are presented.

CJ? See the introductory remarks to Chapter 12 before continujng.

H.1 Preparation for Conversion
Moving your VMS mail folders to UNIX is a process initiated from the UNIX system. It uses ftp
(see section 13.1.1) or the rep and rah commands (see sections 13.1.2 and 13.1.3). Therefore,
before you start, you need to set up two files :

• on your VMS machine (the remote node for this operation), a file named . RHOSTS that
includes records for the UNIX node you're using as your mail destination. Section 13.1.3
describes the contents of this file, appropriate for both UNIX and VMS. •

• . mh___prof ile on your UNIX mail node. To create this automatically, run setup mh or
setup e:xmh. The file will contain the line Path: Mail, and that's all you need.

Make sure that v2_2 of mailtools is current. Enter:

% ups list -a mailtools

to see which version is current. If it is not v2_2 or higher, select the right version explicitly by
typing:

% setup mailtools v2_2

If you are moving from FNALV, you should encounter no disk quota problem. The
USR$SCRATCH area onFNALV is used to hold temporary files. If that is not set up on your VMS
machine, you need to ensure that you have enough disk space on your UNIX system and enough
disk quota on the VMS node to hold duplicate copies of all of your mail. For VMS, we suggest the
commands:

$ SHOW QUOTA

to see how much space you have available, and

$ DIR/SIZE=ALL/GRAND *.MAI;*

(from the directory containing your mail) to see how much space you'll need.
For the UNIX side, as usual, it's not so cut and dried. You may be able to use quota -v or df
to provide you the information; check the man pages on your system. On some systems (for
instance FNALU running AFS), individual quotas may not be established.

November 26, 1997 Mail Conversion from VMS H-1

H.2 Choosing the Process to Use
Now you're ready to convert your VMS mail folders to UNIX MH mail folders. You can use a
"semi-automatic" process, or a totally automatic one.
For either process, the mail messages will be read and extracted into individual filenames in folders
for use in MH or exmh. The filenames are incremented numbers starting at one (1), or the next
highest available number for an existing MH folder. The MH folder name will be the same as the
name of the mail folder on the VMS node (unless you rename it during a semi-automatic transfer);
e.g., folder SMITH will become / Mail /smith . .

The script used in both processes is fvms2mh. For full documentation on the fvms2mh
command enter:

% fvms2mh -h lless

As mentioned above for those of you for whom USR$ SCRATCH: [username] is not available
or lacks sufficient quota, you need to have enough space on VMS for duplicate copies of your mail
while you're doing the conversion. If you use the automatic method, you cannot use any scratch ·
space (there is no "standard" way of assigning scratch space, therefore the automatic method has no
way of knowing where it is). However, if you use the semi-automatic method, you can use scratch
space for the EXTRACT/ALL second copy, the copy you bring over to your UNIX node.

H.3 Using the Semi-Automatic Process
This process won't take long unless you have many mail folders on VMS to convert. You can see
and control all the steps using this method. Perform the following the steps:

1) Log in to the VMS node where your mail is kept.

2) For each folder in your MAIL file (and for each MAIL file that you maintrun), enter:

MAIL> SET FOLDER foldername

MAIL> EXTRACT/ ALL tempfile

3) Log in to the UNIX node where you intend to store your mail and use ftp or rep to copy over
to your $HOME directory the tempfile containing the ·extracted VMS mail messages.
Sections 13.1.1 and 13.1.2 describe these file transfer utilities.

• Do not create a $HOME/Mai 1 directory and copy files directly there! Step 4 takes care of this.

4) Now you're ready to convert the copied mail files to MH mail folders. If for some reason
you haven't run either setup mh or setup exmh on UNIX, do so now. Then, for
each tempfile you copied over, enter:

% fvms2mh tempfile

H.4 Using the Automatic Process
This process simply automates all the steps of the semi-automatic process.
The fvms2mh script invoked in its simplest form:

% fvms2mh -vms vmsnode

H-2 Mail Conversion from VMS November 26, 1997

performs the "EXTRACT/ALL" command on each of the VMS mail folders in your MAIL. MAI
file in your default mail directory. Each folder is extracted into a separate file on the VMS node.
Each file is then copied to the UNIX node and converted into MH format.

& Note that vmsnode must be an individual node, not a cluster alias.
If you have other mail files, you '11 need fo convert them separately. For example, if all of your mail
files are in the same (default) mail directory on vmsnode, you can enter the command as:

% fvms2mh -vms vmsnode -file "*"

We use the UNIX quoting syntax here to pass the asterisk wildcard to VMS so that all mail files are
handled.
If your login id on VMS is different from your UNIX id, you'll need to add the -1 switch:

% fvms2mh -vms vmsnode -1 vms_login_id

November 26, 1997 • Mail Conversion from VMS H-3

H-4 Mail Conversion from VMS November 26, 1997

Appendix I. Programming Examples

This appendix contains examples of programs that illustrate information presented in Chapters 16
and 17.

1.1 Interfacing C and FORTRAN
The following C/FORTRAN program illustrates some of the points discussed in section 16.9. Our
executable is called cfort . We assume use of the make utility and Makefiles in this example.
These are described in chapter 17.

The Makefile:
SHELL=/bin/sh
cfort cf.a fc.o f77 - o cfort cf.a fc.o
fc.o fc.f f77 -c fc . f
cf. o cf.c cc - c cf. C

The FORTRAN routine:

November 26, 1997

PROGRAM CFORT

* Test C/FORTRAN mixed programming techniques

* Place COMMON variables in order REAL*8 , REAL/INTEGER , INTEGER*16 , BYTE
COMMON /MIXED/ DCOMM, FCOMM, ICOMM
REAL*8
REAL
INTEGER

DCOMM
FCOMM
ICOMM(2)

Arguments used i n I CF f unction call
INTEGER
REAL

INTE(2)
FLO

CHARACTER*l0 STR

* Initialize

DCOMM 1.
FCOMM 2.
ICOMM(l) = 3
1COMM(2) 30
INTE (l) = 4
INTE (2) 40
FLO 5.
STR ' From £77'

C Write initial values

WRI TE (*, *)
WRITE (* , *) I I I From FORTRAN
WRITE (* , *) DCOMM DCOMM
WRITE (*, *)' FCOMM' = FCOMM

I I I

Programming Examples 1-1

WRITE (*'.) ICOMM ICOMM
WRITE (*'.) INTE INTE
WRITE (*'.) FLO FLO
WRITE (*'.) STR STR
WRITE (*'.)

C Use C function icf_ , which prints, c hanges, and reprints COMMON and
C Argument values

IRET = ICF (INTE , FLO , STR

C Write values after call to ICF
WRITE (*' *) I I I Back in FORTRAN I I I
WRITE (*' *) DCOMM DCOMM
WRITE (* ' *) FCOMM FCOMM
WRITE (*' *) ICOMM ICOMM
WRITE (*' *) INTE INTE
WRITE (* ' *) FLO FLO
WRITE (.'.) ' STR STR
WRITE (.' *) IRET IR!i:T
WRITE (* ' *)

STOP
END

The C Routine (icf_):

1-2

/* Test of mixed C/FORTRAN features */

int icf_(•int* inte , float* f l o , char* str , int lenstr) {
extern struct {

double dcomm ;
float fcomm ;
int icomm[2]
} mixed_;

printf (• / / / Into C / ·; /\n\
DCOMM %f\n\
FCOMM %f\n\
ICOMM %d %d\n\
INTE %d %d\n\
FLO %f\n\
STR ' %.l0s'\n\
LENSTR %d\n\n"

mixed_ .dcomm , mixed_.fcomm, mixed_.icomm[0] , mixed_.icomm[l]
*inte, *(inte+l) , *flo , str, lenstr} ;

mixed_ .dcomm 10000 .
rnixed_.fcomm 20000.
mixe d_. icomm [0 l 30000
mixed_.icomm[l] 330000
*inte 40000
*(inte+l) 440000
*flo 50000.

strcpy str ' •out of c·)

printf (■ I I I Out of C I I /\n\
DCOMM %f\n\
FCOMM %f\n\
ICOMM %d %d\n\
INTE %d\n\
FLO %f\n\
STR ' %.10s'\n\n•

Programming Examples November 26, 1997

mixed_.dcomm, mixed_.fcomm, mixed_.icomm[OJ , mixed_.icomm[l]
*inte , *flo , str) ;

return (lenstr) ;

Program Execution (see section 16.10):
/ / / From FORTRAN/ / /
DCOMM
FCOMM
ICOMM
INTE

1.000000000000000
2 . 000000

3
4

FLO 5.000000
STR From f77

I I Into C / / /
DCOMM 1 . 000000
FCOMM 2.000000
ICOMM 3 30
INTE 4 40
FLO 5.000000
STR 'From f77
LENSTR 10

I I I Out of C / / /
DCOMM 10000.000000
FCOMM
ICOMM
INTE
FLO
STR

20000 . 000000
30000 330000
40000
50000 . 000000
' Out of C'

I I I Back in FORTRAN/ / /
' 10000. 00000000000

20000.00

30
40

DCOMM
FCOMM
ICOMM
INTE

30000
40000

330000
440000

FLO 50000 . 00
STR Out of C
IRET 10

1.2 Makefiles and the make Process

1.2.1 A Simple make Process
Our "Hello World" example is quite simple, and illustrates many of the features we have discussed
in Chapter 17. First we'll run a file listing to see the files that are involved:

-rw-r--r-- 1 aheavey g020 515 Dec 20 16: 27 Makefile
-rw-r--r-- 1 aheavey g020 91 Dec 20 16: 27 mcprog.f
-rw-r--r-- 1 aheavey g020 88 Dec 20 16:27 modell . f
-rw-r--r-- 1 aheavey g020 88 Dec 20 16: 27 model2.f

The contents of the FORTRAN source files that will be used as required files follows:

November 26, 1997

<fsui01> cat mcprog.f
WRITE (*,*) 'Hello world '
CALL MODELl
CALL MODEL2
STOP

Programming Examples 1-3

END

<fsui01> cat modell.f
SUBROUTINE MODELl
WRITE (*,*) ' Hello from MODEL 1 '
RETURN
END

<fsui01> cat model2.f
SUBROUTINE MODEL2
WRITE (*,*) ' Hello from MODEL 2 '
RETURN
END

Our Makefile illustrates the use of macro definitions, iterative target defintions, the use of a library
in addition to other required files, comment lines, and macro expansion (described in the man
pages). It provides two levels of "housekeeping" at the end, clean to remove just the "stray" files,
and clobber, which gets rid of all resulting files thus allowing you to run make again under the
same initial conditions.

<fsuiOl> cat Makefile
#use/bin/sh within make
SHELL ; /bin/sh

11 Standard FORTRAN command and flags
F77 f77
FFLAGS; - 02

ii Build the 'mcprog' program from mcprog.f and libmc.a
mcprog mcprog.f libmc.a ; $(F77) $(FFLAGS) -o mcprog mcprog . f libmc.a

Move any missing modules into libmc.a
libmc.a modell.o model2.o ; ar -r libmc.a $(?)

11 Compile missing or out-of-date modules
modell.o modell.f $(F77) $(FFLAGS) -c $(?)

model2 .o model2.f $(F77) $(FFLAGS) -c $(?)

clean ; rm -f * .o

clobber : ; rm -f *.o ; rm -f mcprog; rm -f libmc.a

Run make without specifying a target, and it will use the first target it encounters, mcprog.
Notice that make displays its progress on the screen, creating the library libmc. a prior to
building the executable mcprog:

1-4

<fsui0l> make
f77 - 02 -c modell . f modell.f
modell.f:

modell:
modell.f:

modell:
f77 -02 -c model2.f model2.f
model2.f:

model2:
model2 .. f:

model2 :
ar -r libmc . a modell.o model2.o
ar: creating libmc.a
f77 -02 -o mcprog mcprog.f l ibmc.a
mcprog.f:

MAIN:

Programming Examples November 26, 1997

Run another file listing to see that our target and some intermediate files were created:
-rwxr-xr-x 1 aheavey g020 13452 Dec 20 16:34 mcprog*
-rw-r--r-- 1 aheavey g020 2712 Dec 20 16 : 34 libmc.a
- rw- r - -r- - 1 aheavey g020 1248 Dec 20 16:34 model2.o
-rw-r- -r-- 1 aheavey g020 1248 Dec 20 16:34 modell . o
-rw-r- - r -- 1 aheavey g02 0 91 Dec 20 16:27 mcpr og.f
-rw-r--r-- 1 aheavey g 020 88 Dec 20 1 6:27 model2.f
-rw-r-- r-- 1 aheavey g020 88 Dec 20 1 6 : 27 modell . f
- rw- r- - r - - 1 aheavey g020 515 Dec 20 16 : 27 Makefile

Run the executable, mcprog:
<fsuiOl> mcprog

Hello world
Hel l o from MODEL 1
Hello from MODEL 2

Run make clean to remove the object files :
<fsui01> make clean
r m - f * . o

A directory listing shows the object files were deleted:
-rwxr-xr- x 1 aheavey g020 13452 Dec 20 1 6:34 mcprog*
-rw-r--r-- 1 a h eavey g020 2712 Dec 20 1 6:34 l ibmc.a
- rw-r--r-- 1 a h eavey g02 0 91 Dec 20 1 6:27 mcprog . f
- rw- r- - r - - 1 a h eavey g020 88 Dec 20 16:27 mod e l 2.f
-rw-r--r-- 1 a h eavey g020 88 Dec 20 16 : 27 model l . f
-rw-r--r-- 1 aheavey g020 515 Dec 20 16:27 Makefile

Finally, run make clobber to remove all the created files:
<fsui01> make clobber
rm - f *. o ; rm - f ·rncprog ; r m .-f lib mc . a

... and check the final directory listing, which should match the original one: .
-rw- r --r- - 1 a h eavey g020 515 Dec 20 16:27 Makefile
-rw- r- - r -- 1 a h eavey g020 91 Dec 20 16 : 27 mcprog . f
- rw-r--r-- 1 a heavey g020 88 Dec 20 16 : 27 modell . f
-rw- r- - r - - 1 a h eavey g020 88 Dec 20 16:27 model2.f

1.2.2 A Physics Makefile
The following is an example physics Makefile with FORTRAN and C sources.

111HI 111Hl####ll
MACROS 11

#####11###### ###

Al ways force t h e shell to be /bin/sh, for portability

SHELL=/bin/sh

s ome var iabl es come f r om the environment e xist ing wh en make is r u n

11 CRNLIB (from ' setup cern ')
11 HISTO_DIR (from 'setup h i sto ')

MCFAST_ DIR (a g roup l i b rary from 'sou rce -bphys lib/mcfast/mcenv')
MCFIO_ DIR (a g r oup library from ' sour ce -bphyslib/mcfast/mcenv')

11 macros for directories con ta i n i n g INCLUDE fi l es:

I NCl = $ (MCFAST_DIR)/in c/even t

November 26, 1997 Programming Examples 1-5

I-6

INC2 = $(STDHEP_INC)

JI macro for MCFAST object library directory

LIB= $(MCFAST_DIR)/lib.IRIX

JI macro listing all USER object routines

OBJS
usr_analysis.o \
usr_before_trigger.o
assign_off_mass.o \
costh.o \
fin_init.o \
find_b_psiks.o

ti macros for object libraries from products HISTO and CERN

HISTLIB
PACKLIB
MATHLIB
KERNLIB

$(HISTO_DIR)/lib/libFHistoHB.a
$(CRNLIB)/libpacklib.a
$(CRNLIB)/libmathlib.a
$(CRNLIB)/libkernlib.a

macro for the SGI exception handler library

FP_EXCEPTION = /usr/lib/libfpe.a

JI macro for all linked libraries

LOADLIBS= \
$(LIB)/libgen.a \
$(LIB)/libdatafile.a
$(LIB)/libio.a
$(LIB)/libutil.a
$(MCFIO_DIR)/lib.IRIX/libFmcfio.a
$ (HISTLIB) \
$(PACKLIB) \
$(MATHLIB)
$(KERNLIB)
$(FP_EXCEPTION)

macros for compiler option flags

CFLAGS
FFLAGS

-g
-g -I$(INC1) -I$(INC2)

###############
JI TARGETS #
Jt##############

f77 is used to run the link editor here.
ff FORTRAN and C compilation is done via the rules defined below.

mcfast: $(0BJS) $(LOADLIBS); f77 -o mcfast $(0BJS) $(LOADLIBS)

###############
JI SUFFIXES #
###11#11#########

You must list all suffixes used in this Makefile's rules

.SUFFIXES : .c .F .f .o

#O########llffll#
RULES

Programming Examples November 26, 1997

I 1

j
November 26, 1997

ll ti# ff ti# ii 1t ti######

ti RULES for building *. o files from *. f or *. c

ti The$? internal macro expands to the list of *.for *.c files which are
newer than their corresponding *.o file.

ff Macros CFLAGS and FFLAGS are defined above with compiler options

.f .o: f77 -c $(FFLAGS) $?

.c.o: cc -c $ (CFLAGS) $?

Programming Examples 1-7

1-8 Programming Examples November 26, 1997

Index

Symbols
4-5
! 5-2, 5-5
- 6-4
! command (ftp) 10-9
!! 5-5
!$ 5-5
!? 5-5
!?text? 5-5
!n 5-5
!text 5-5
"2-6, 5-14
4-4, 9-13
#! 4-4
$ 2-3, 2-6, 4-2,, 5-2, 5-4, 5-5, 5-14, 9-2, 9-3
% 2-3, 4-2, 5-16
& 2-6, 5-15
&&2-6
* 5-14, 6-5
+ 5-14
,6-4
. 4-5, 4-6, 5-14, 6-1, 6-3, 6-4, 9-4, 9-9
·* 5-14
.. 6-1, 6-3, 6-4, 6-17
J 4-5, 9-4
/ 2-5, 2-6, 6-1, 6-3, 6-4
/afs/fnal.gov AFS cell 7-1
; 2-6
< 5-8, 5-9
> 5-8, 5-9
>! 5-8
>& 5-8
>&! 5-8
» 5-8, 5-9
>>& 5-8
? 5-14, 6-5
@9-13
[] 5-14
\ 2-5, 2-6, 5-2, 5-14, 16-11
"5-14, 9-13
"-9-13
"> 9-13

6-4
12-6, 3-3, 5-8, 5-9, 5-10
112-6
~ 6-2, 6-3, 9-4, 16-14
'2-6

Hid den Files
.cshrc file 2-2, 4-5, 6-4, 6-20, 9-1, 9-7, 9-8, B-2, C-1

use with AFS 7-3
.emacs file 11-6

initialization file (emacs and xemacs) 11-6
.exmh_defaults file 12-12
.flpprc file 8-3
.forward file 12-2, 12-3, 12-9, 12-23, 12-24, F-2, F-3
.login file B-2
.login file 2-2, 2-3, 2-4, 5-7, 6-4, 9-7, 9-8, 9-12, C-6, F-2

use with AFS 7-3, 7-4
.logout file 2-2, 6-4, 9-7, 9-8
.mailcap file 3-5, 9-11

format 9-11
.maildelivery file .12-24, F-6

examples F-8
format F-7

.mh_filter file 12-17, 12-24, 12-26

.mh_profile file 12-10, 12-12, 12-15, 12-18, 12-23, 12-24,
12-26, F-3, H-1

.pinerc 12-7

.pinerc file 12-5

.plan file 3-8

.profile file 2-2, 2-3, 2-4, 5-7, 6-20, 9-8, 9-9, 9-12, B-2,
C-11, F-2

use with AFS 7-3
.rhosts file 13-4, 13-5, A-2, H-1

·sample file 13-4
.shrc file 2-2, 4-2, 4-4, 4-5, 9-8, 9-9, B-2, C-17

use with AFS 7-3

A
a2ps 3-3, 8-3
Absolute pathname 6-1
Access a UNIX system 2-1
Access Control Lists 7-7
Access mode 6-19
Access permission, UNIX 6-19
Access to files , lose (AFS) 7-4, 7-16
Accessing products via setup command 10-2, B-2
ACLrights 7-7
ACLs 7-7, E-3, F-10

list E-3, F-10
set F-10

Add command to search path 5-7
AFS 1-2, 2-7, 7-1

November 26, 1997 UNIX at Fermilab Index IDX-1

"busy volume" error 7-17
Access Control Lists 7-7
ACLs 7-7, F-10
add/verify/de! members of group 7-13
advantages over other file systems 7-1
at5-17, 7-3
authentication 7-2, E-3
CERN cell 7-1
change owner of group 7-12
combination rights (ACLs) 7-7, 7-9
create protection group 7-13
cron 5-17, 7-3
destroy token 7-4
determine if installed on system 7-1
examine quota 7-6
expired token, get back 7-4
external processes unauthenticated 5-17, 7-3
Fermilab cell 7-1
file locking issues 7-16
file permissions 7-7
file system (fs) command 7-5
fs command options 7-5
group name format 7-8, 7-9
help on commands 7-5
list permissions 7-8
mail forwarding 12-2
protection groups 7-7, 7-9

predefined 7-9
protection server (pts) command 7-10
remove a group 7-13
remove ACLs on directory 7-9
set permissions list 7-8
show owned groups 7-11
system:administrators group 7-9
system:anyuser group 7-4, 7-9
system:authuser group 7-9
token passing for remote login 7-5
translator mode 7-1
unlog 7-4
using find 7-16
view current tokens 7-4
Web page permissions 3-6

AFS authentication
for subprocesses 7-2

AFS cell 7-1
AFS commands

man pages 3-2
AFS directory

listACLs E-3
set ACLs·E-3

AFS file permissions
fixmailperms F-10

AFS password (see Kerberos password) 7-2
AFS permissions

add/chg/de! ACLs 7-8
for Web pages 7-9
list ACLs 7-8

AFS protection group
add/verify/de! members 7-13

AFS token
discard E-3
obtain E-3

AFS token (see Kerberos token) 7-2
AIX 1-10, 16-13
ali 12-27

IDX-2

Alias 5-2
alias 5-2, 6-15, 9-6, E-3
Alias file 12-24, 12-26
Alias for setup command B-2
Andrew File System 2-7, 7-1
ANSI C standard 16-2
ANSI labeled tapes 15-6
ANSI standards 16-2
answerbook 3-4
apropos 3-3, E-3
arE-4
Archive file 6-11
Archive tapes E-4
Arguments 5-4, 16-18
Arrow keys in ksh 2-5
asa 16-13
Assembler 16-1, 16-2
Assign files E-2
at 5-17
Authentication, to AFS 7-2
awk 5-10, 5-11, 5-12, 5-14, 16-3, D-1

features 5-12

B

main input loop D-1
pattern matching features 5-13
program structure and organization D-1
programming model 5-13, D-1

Back quotes 1-3, 2-6
Background jobs 5-15

output redirection 5-15
Background processes 5-1, 5-15
Backslash character 2-5, 16-11
Backspace character 2-4
Backspace key 5-4

trouble with 2-4
bash 4-3
Batch job

definition under LSF 14-1
kill E-4.
stop E-4
submit E-4
tape mounts in 15-4

Batch processing
batch job definition under LSF 14-1
fbatch (Fermilab interface to LSF) 14-2
fbatch (Fermilab interface to LSF) 14-1
FCFS (First Come First Serve protocol) 14-2
FSS (Fair Share Scheduling) 14-2
host machine selection under LSF 14-2
job priority under LSF 14-2
job release threshold 14-2
job suspension threshold 14-2
load index 14-2
LSF (Load Sharing Facility) 14-1
nice value of queue 14-1
queues 14-1
resources for processing jobs 14-2
shares 14-2
time window for jobs 14-2

Batch queue
checkE-4

UNIX at Fermilab Index November 26, 1997

]

Berkeley Mail 12-1, 12-8, 12-27
read a message 12-28
send a file 12-27
send a message 12-27

bg 5-16
biff/comsat F-2
Bourne shell family 4-1, 9-6

. 9-9

.profile 2-2

.shrc 2-2
/bin/sh links to ksh 4-2, 4-4, 9-8
alias 9-9
execute command to affect current shell 9-9
Fermi files 9-8
shell functions 9-6

Bourne shell variables 9-3
define 9-3
export to environment 9-3

Browser commands 3-7
Browsers 3-5
Buffered 1/0 15-6
bufio 16-13
Build requirements (UPS products) B-7
Built-in commands 4-3, 5-1

C

help on 5-2
platform-specific 5-2

C 6-3, 16-1, 16-4, 16-18
arguments 16-18
cache usage I 6-I 6
calling FORTRAN routines 16-18
compiler options 16-6
dbx 16-20
debugging 16-8, 16-20
execute program E-4
extern struct 16-18
external names 16-17
feedback 16-16
file extensions 16-4
floating point errors 16-15
gdb debugger 16-22
Gnu C 16-2
indexes 16-17
inlining 16-16
interfacing with FORTRAN 16-16
IRIX 6 ABI choice 16-8, 16-16
library references 16-5
link editor 16-4
linking 16-18
list active compiler options 16-5
load map 16-9
pointers 16-18
speed optimization 16-9, 16-15
variables 16-17
word length 16-15

C compilers 16-4
C language 16-1, 16-2
C preprocessor 16-11
C programs 16-4
C shell family 4-1

.cshrc 2-2

.login 2-2
alias 9-6
·execute commands to affect current shell 9-8
Fermi files 9-7
fork new process 9-7
invoke new shell 9-7
variables set at startup 9-2

C++ 16-1, 16-2, 16-6
ANSI standards 16-2
compiler options 16-6
dbx 16-20
debugging 16-20
file extensions I 6-6
gdb debugger 16-22
ISO standards 16-2

C++ language 16-1
Case sensitivity 16-14

commands 5-4
filenames 6-4

CASEVision 16-23
cat 5-9, 6-7, 8-4, E-1, E-2

format 6-8
cc 16-2, 16-6
cc 16-4
cd 5-2, 6-1, 6-2, 6-3, 6-17, 7-1, E-1
CDF UNIX information 1-1
cedit 5-5
Cell, AFS 7-1
C-FORTRAN

linking 16-18
mixed 1/0 I 6-18

Chain
current B-6
definition B-6
development B-6
newB-6
oldB-6
test B-6

Change directory E-1
Change file ownership E-3
Change file permissions E-2
Change mail folders 12-21
Change mode 6-19
Change password 2-7, E-3

on AFS system 7-3
Change terminal settings E-4
Character class 6-5
Character matching 5-14, 6-5
Characters, special 2-5, 2-6, 6-4
Check batch queue E-4
chgrp E-3
Child process 5-1, 9-1
cbmod 4-5, 6-19, 6-21, 7-7, E-2, F-2

absolute form 6-19
alternate form 6-20

Choosing a UNIX platform 1-8
chown E-3
clear 9-7
Clear the screen 9-7
CLUBS

accounts 1-11
Cluster 2-7
cmp E-2
CMS 18-1
Code management 18-1

November 26, 1997 UNIX at Fermilab Index IDX-3

concurrent development 18-1
Command arguments 5-4

optional 5-3
Command files 4-1
Command format 5-3
Command interpretation by shell 5-2
Command interpreter 1-7
Command line editing 4-3, 5-5
Command line errors

correct typing 5-4
Command options 5-4
Command procedure, execute E-4
Command recall 5-5

cedit 5-5
Command separator 5-4

&2-6
&&2-6
; 2-6
1:2-6
112-6

Commands 1-8, 5-1
AFS 7-5
alias 5-2
ambiguous 6-4
arguments 5-3, 5-4
built-in 4-3, 5-1
case-sensitivity 5-4
conditional 5-4
continue to next line 5-4
detennining executable file 6-4
directory shortcuts 6-3
edit 5-5
execute remotely 13-5
filter 5-10
group 5-4
group options 5-4
history list 4-3
how shell . finds them 5-7
interactive 5-1
locate via path variable 9-4
looping 5-4
option listing 3-2
options 5-3, 5-4
parentheses in 5-2
platform differences 5-3
recall 5-5
scripted 5-1
sequence of 4-4
type ahead 5-4

comp 12-15, F-3, G-1
Compare files E-2
Comparison of editors 11-2
Comparison of shells 4-3
Compilation options in extended flavor B-5
Compile FORTRAN program E-4
Compilers

C 16-4
C++ 16-2
FORTRAN 16-4

Completion mechanism 4-3
components file 12-13, 12-24, 12-26, F-4, F-5

customize F-4
Compose a mail message 12-13, G-1
compress 6-12
Compression, file 6-12

IDX-4

Computing Division support 1-10
Computing Division WWW page 1-11
Computing systems updates 3-8
Concatenate files 6-8, E-2
Concurrent Versions System 18-1
Conditional commands 5-4
Configuration files for MH 12-23
Connect to remote host 13-3, E-4
Continue commands to new line 2-5
Control characters 2-3, 9-13

backspace 2-4
ctrl-c 2-4
ctrl-d 2-4
ctrl-o 2-4
ctrl-q 2-4
ctrl-r 2-4
ctrl-s 2-4
ctrl-w 2-4
ctrl-x 2-4
ctrl-z 2-4
DEL2-4

Conventions, notational 1-3
Conversion, mail

disk space required H-1
Convert and copy file E-2
Converting from VMS A-1, H-1
Converting mail A-1, H-1
Copy a file 6-8, E-2
Copy file to remote node E-4
Copy set of files E-5
Copy to archive file 6-11
Core file 16-20
Correct command typos 5-4
Count characters in file 6-15
Count lines of file 6-15
Count words in file 6-15
cp 6-8, 6-10, 9-5, 12-20, E-2

format and options 6-8
cpp 16-11
Create a directory 6-17, E-1
Create a library E-4
Create mail folders 12-21
Create mh folder G-1
Create Web page 3-6
cron 5-19
crontab 5-19
csh 4-3, 5-5

reexecution commands 5-5
ctrl-] 5-6
ctrl-c 2-4
ctrl-d 2-4, 4-2, 5-7
ctrl-o 2-4
ctrl-q 2-4
ctrl-r 2-4
ctrl-s 2-4
ctrl-w 2-4
ctrl-x 2-4
ctrl-z 2-4, 5-17
current chain B-6
Current directory 6-1, 6-4, 6-17
Current shell, detennine 4-1
Customer Support 3-9
Customize mail message headers F-3
Customize mail reply header 12-17
Customized code, storage of 9-10

UNIX at Fermilab Index November 26, 1997

i

cvd 16-23
CVS 18-1

common commands 18-2
documentation 18-1
editor 18-2

cvs checkout 18-2
cvs commit 18-2
cvs export 18-2
CVS import 18-2
CVS rtag 18-2

D
DO UNIX information 1-1
DAFT 15-1, 15-7, 16-13, 16-14
DART 15-7
Datab'ase manipulation 5-11
Database, UPS B-4
DateE-3
date E-3
dbx 16-20, E-4

commands 16-20
ddd interface 16-20
format 16-20
GUI front ends 16-20

dd 15-3, E-2
ddd debugger interface 16-20
Debug program E-4
Debugging 16-20

CASEVision 16-23
dbx 16-20
gdb 16-22
purify 16-22

Default home page 3-7
Default login files C-1

.cshrc C-1

.login C-6

.profile C-11

.shrc C-17
fermi.cshrc C-2
fermi.Jogin C-7
fermi.profile C-12
fermi.shrc C-19
setpath.csh C-3
setpath.sh C-16
setups.csh C-4
setups.sh C-21

Default shell 9-5
DEL2-4
Delete a directory 6-11, 6-18, E-2
Delete a file 6-11, E-2
Delete a mail message 12-20, G-2
Delete key 5-4

trouble with 2-4
Delete mail folders 12-21
Delete mh folder G-2
Delete print entry E-3
Delimiters 2-6
Delivery of mail, customize 12-24
development chain B-6
Devices

November 26, 1997

logical 5-7
null 5-8, 5-9

df7-1, E-3, H-1
diff E-2
Digital UNIX 1-10
Directory 3-8

change E-1
change working directory 6-17
create 6-17, E-1
current 6-1
delete 6-18, E-2
display current E-1
format of listing 6-7
home 6-2, 6-3, 6-17, 16-14
link 6-7, 6-10
list contents 6-6, 6-16
list subdirectories E-1
make 6-17
manipulate 6-16
mode 6-7
move 6-18
parent 6-17
permissions 6-21

AFS 7-7
print working directory 6-16
protection 6-19
reference 6-10
remove 6-18
root 2-5, 2-6
shortcut commands 6-2
shortcuts 6-3
working 6-1

Directory files 6-4
Directory permissions 6-19

AFS 7-7
AFS protection groups 7-9
change 6-19

Disable messages E-4
Disk 1/0 15-6

FORTRAN format 15-6
read/write DART-formatted records 15-7

Disk quota
display E-3

Disk space
display E-3

AFS E-3
Disk space for mail conversion H-1
Display current directory E-1
Display current terminal settings 2-4
Display date and time E-3 •
Display disk quota E-3
Display environment settings E-3
Display file contents 6-7, E-1
Display free disk space E-3

AFS E-3
Display logged in users E-3
Display message G-2
Display message headers G-2
Display multimedia files 9-11
Display next message G-1
Display output 5-10
Display previous message G-1
Display print entry E-3
Display print queue E-3
Display processes E-4
Display status of processes 5-1
Display to screen E-3

UNIX at Fermilab Index IDX-5

DISPLAY variable 3-5, 9-4, 11-3, 15-5
Display variables

set 9-3
Display, restart 2-4
Distributed file systems 2-7

AFS 2-7, 7-1
Distribution lists for mail 12-24, 12-26
Document numbers, Fermilab 1-12
Documents, Fermilab 1-11
Domain name 3-4
domainname 2-7
Dot (in pathname) 6-1
Double quotes 2-6, 5-2
Double-sided printing 8-4
duE-3
Dump a file 6-15, E-2
Duplex print mode 8-4
dxbook 3-4

E
echo 4-1, 5-2, 6-2, 6-3, 6-5, 6-11, 9-2, 9-3, E-3
ed 5-14
Edit commands 5-5
Edit files, can't 7-16
Edit files, can't (AFS) 7-4
Editing

command line 4-3
multiline 4-3

EDITOR variable 5-6
Editors 1-9, 11-1., 11-2

comparison of 11-2
EDT+ 2-5, 8-5, 11-1, 11-2

pros and cons 11-3
setup 11-11

EDT, UNIX version of 11-1
egrep 5-14
emacs 2-5, 5-6, 8-5, 11-1, 11-2

commands 11-4
file extension-language map 11-6
flow control 11-6 •

• help facility 11-5
initialization file 11-6
key bindings 11-6
pros and cons 11-2
tpu/edt emulation 11-7

End-of-file 5-7
Entry points in library E-4
env 4-1, 6-15, 9-2
ENV variable 9-8
Environment

customize 9-7
display settings E-3

Environment for UNIX process 9-1
Environment variables 9-1, 9-2
eof 2-2, 2-3, 2-4, 5-7
Erase screen contents 9-7
EVE, UNIX version of 11-1
exec 5-1
Executable files 5-7
Executables 5-1

run from current directory 9-4
Execute a program 16-18, E-4

IDX-6

Execute command procedure E-4
Execute permission 6-7, 6-19

directory 6-21
file 6-19

Execute shell script 4-5, E-4
exit 2-2, 2-3, 4-2, E-3
Exit a shell 4-2
Exit UNIX 2-2
exmh 12-1, 12-8

.maildelivery 12-24
abort a message 12-14
alias file 12-24, 12-26
change current folder 12-21
change editor 12-14
commit an operation 12-20, 12-22
compose a message 12-13
configuration files 12-23
create drafts folder 12-10
create new folder 12-21
customize 12-2
customize message headers F-3
default editor 12-13
define basic configuration 12-24
define forwarding header format 12-24
define message header format 12-24
define reply header format 12-24
display a message 12-16
displayed message header 12-27
distribution lists 12-24, 12-26
extract a message 12-19
folder display order 12-27
folder window 12-11
font size 12-12
forward a message 12-18
glimpse 12-23
immediate message incorporation 12-25
inc-form 12-24
incorporate messages 12-16
insert file in message 12-14
interfaces 12-8
manual message incorporation 12-16
message display window 12-11
message header window 12-11
nested folders 12-21
periodic message incorporation 12-16, 12-25
pick messages by attributes 12-22
print a message 12-19
print multiple messages 12-19
refile messages 12-22
remove messages 12-20
reply to a message 12-17
reply-to field F-4
scan-form 12-24
search for messages 12-22
sedit 12-13
select multiple message headers 12-12
send a message 12-14
sequence of picked messages 12-23
set up and invoke 12-10
unattended message incorporation 12-16
use of the window 12-11
What Now? dialog box 12-14

Expansion, file 6-12
export 2-3, 9-3
Expressions, regular 5-14

UNIX at Fermilab Index November 26, 1997

I

J

Extended flavor B-5
compilation option specification B-5
OS release specification B-5

Extensions on filenames 6-5
EXTERNAL http

//www.fnal.gov/cd/UNIX/UnixResources.html#Code
16-1

External names 16-17
Extract a message 12-19

F
f77 16-4, 16-13, E-4

option passing 16-5
fbatch

Fermilab interface to LSF 14-2
fbatch E-5

Fermilab interlace to LSF 14-1
Kerberos token renewal 7-2

fbatch_cancel E-4
fbatch_q E-4
fbatch_submit E-4
Fermi files 1-10, 2-2, 9-7, B-2, C-1

Bourne shell family 9-8
.profile 9-9, C-11
.shrc 9-9, C-17
fermi.profile 9-9, C-12
fermi.shrc 9-9, C-19
setpath.sh C-16
setups.sh C-21

C shell family 9-7
.cshrc 9-7, C-1
.login 9-7, 9-8, C-6
.logout 9-7, 9-8
fermi.cshrc 9-7, C-2
fermi.login 9-8, C-7
setpath.csh C-3
setups.csh C-4

Fermi Modular Backup 15-7
Fermi Tape Tools 15-7
Fermi UNIX Environment 1-9

brief description 1-9
fermi.cshrc file 9-7, B-2, C-2
fermi.login file 9-8, B-2, C-7, F-2
fermi.profile file 9-9, B-2, C-12, F-2
fermi.shrc file 9-9, B-2, C-19
Fermilab at Work WWW page 1-11, 3-7
Fermilab Cu_stomer Support 3-9
Fermilab documents 1-11

numbers 1-12
Fermilab helpdesk 3-9
Fermilab home page 3-7
Fermilab mail server 12-2
Fermilab product numbers 1-12
Fermilab products 1-12
Fermilab standard mail address 12-3
Fermilab systems-related information 3-8
Fermilab URLs 1-11
fermimail 12-27
FermiTools 10-7
fermitpu 2-5, 8-5, 11 -1, 11-2

pros and cons 11-3
setup 11-11

fg 5-16
fgrep E-2
file 3-6, 6-13, 6-16

format 6-16
File dump

ascii E-2
decimal E-2
hex E-2
octal E-2

File expansion 2-6
File locking in AFS 7-16
File overwrite protection 9-5
File permissions 6-19

change 6-19
in AFS 7-7

File protection 6-19
File specifications 6-4
File systems 1-8, 2-6

AFS 2-7, 7-1
distributed 2-7
NIS 4-2
primary 2-6
root 6-1
standard UNIX 2-6, 4-2

File transfer 13-1
.rhosts file 13-4
from VMS cluster 13-4
FZ file 13-3
RZ file 13-3

File Transfer Protocol (ftp) 13-1
File type, determine 6-16
Filename expansion 5-2, 5-14

tum off (in csh) 6-6 •
Filename extensions 6-5
Filenames 6-1 , 6-4, 6-7

extensions 6-4
using dash (-) in 6-4

Files 6-4
access permission 6-19
ascii dump E-2
assign E-2
audio 9-11
browse 6-8
change ownership E-3
command 4-1
compare E-2
compression 6-12
concatenate 6-8, E-2
convert and copy E-2
copy 6-8, E-2
copy a set of E-5
copy to remote node E-4
deassign E-2
decimal dump E-2
delete 6-11 , E-2
determine file type 6-16
directory 6-4
display beginning 6-8
display contents 6-7, E-1
display end 6-8
display first lines E-2
display last lines E-2
display list E-1
dump 6-15
executable 5-7

November 26, 1997 UNIX at Fermilab Index IDX-7

expansion 6-12
find 6-13, E-2
find differences E-2
find those containing string E-2
FZ 13-3
hex dump E-2
hidden 6-4, 9-7
image 9-11
link 6-7, 6-10, E-2
list contents 6-8
list directory contents 6-6, 6-16
list in reverse date order 6-7
merge E-2
MJME types 9-11
mode 6-7
move 6-9
octal dump E-2
ordinary 6-4
overwrite 6-4
overwriting 6-4
permissions E-2
print 8-1, E-2
protection E-2
reference 6-10
remove 6-11
remove link E-2
rename 6-9, E-2
rename a set of E-5
RZ 13-3
search contents for pattern 5-11
search for 6-13
searching 6-14
send G-2
set permission at file creation 6-20
size 6-7
sort E-2
sort lines in 5-13
tar 6-12
text, formatting E-2
transfer 13-1
update last modified date E-2
versions 6-4
video 9-11

Files, can't access 7-16
Files, can't access (AFS) 7-4
Filters 5-10

awk 5-11
grep 5-11
less 3-3, 5-10
more 5-10
sort 5-13

find 6-13, E-2
caution for AFS 7-16
format and options 6-13

Find file E-2
Find file containing string E-2
finger 3-8, 4-1, E-3

.plan 3-8
on the Web 3-8

fixmailperms F-10
Flavor 1-8, B-5

extended B-5
NULLB-5
simple B-5

FLINT 16-19

IDX-8

FLPHOST variable 8-1
flpk 8-1, E-3
flpq 8-1, E-3
FLPQUE variable 8-1
flpr 3-3, 8-1, 8-5, 12-19, E-2

defaults 8-3
options 8-1

flpr.defaults file 8-3
FMB 15-1, 15-7
fmh2pine 12-6
fMHvms2mh H-2
FNAL 12-2, 12-3

set forwarding 12-3
FNALU 1-8, 2-7

accounts 1-11
AFS 2-7, 7-1
batch system (LSF) 14-1

Folder
create G-1
d~lete G-2
remove G-2

folder 12-21, 12-25, G-1
Font size

exmh 12-12
Foreground jobs 5-15
Fork a process 5-1
Format

command 5-3
Format text file E-2
Formatting

man pages 3-2
FORTRAN 6-3, 16-1, 16-2, 16-4, 16-13

adding library symbol tables 16-13
AIX source code notes 16-12
AIX XLF 2 16-13
AIX XLF 3 16-13
arguments 16-18
asa 16-13
automatic variables 16-10
BLOCKDATA 16-13
BLOCKDATA modules 16-12
cache usage 16-16
calling C routines 16-18
carriage control characters 16-13
character special files 16-14
command line arguments 16-12
COMMON 16-18
compileE-4
compiler options 16-6
compilers 16-4
compiling files separately 16-12
conditional compilation 16-11
converting output to ASCII text 16-13
copying value of variables 16-12
cpp 16-11
DAFT 16-14
dbx 16-20
debugging 16-8, 16-20
environment variables 16-12
execute program E-4
executing a program 16-18
external names 16-17
external references 16-11
extracting programs 16-12
feedback 16-16

UNIX at Fermilab Index November 26, 1997

I \

I
J

l1

file extensions 16-4
FLINT 16-19
floating point errors 16-15
force loading of a library routine 16-13
formatted records 16-14
fsplit 16-12
gdb debugger 16-22
GETENV 16-12
1/0 16-14, 16-18
include files I 6-11
INCLUDE statement 16-11
indexes 16-17
initializing variables in COMMON 16-12
inlining 16-16 •
interfacing with C 16-16
IRIX 6 ABI choice 16-8, 16-16
library references 16-5
linkE-4
linking 16-18
list active compiler options 16-5
load map 16-9
macro expansion 16-11
option passing 16-5
passing options to next stage 16-5
printing 16-13
program execution 16-18
RBIO 16-14
record handling 16-14
retaining local variables 16-10
SAVE statements 16-10
source code analyzer 16-19
source code listing 16-10
source inclusion 16-11
speed optimization 16-9, 16-15
standard input and output 16-15
static variables 16-10
tape access 16-14
tape files 16-14
unformatted records 16-14
variables 16-17
word length 16-15
xlf 16-13

FORTRAN 90 16-13
FORTRAN-C

linking 16-18
mixed 1/0 16-18

forw 12-18, F-3, G-1
Forward a message 12-3, 12-18, G-1

mail header format 12-24
Forward slash character 2-6
forweomps file 12-18, 12-24, 12-26, F-5
fs listacl 7-8, E-3, F-10
fs listquota 7-6
fs setacl 7-6, 7-8, E-3, F-10
fsplit 16-12
ftp 3-4, 3-6, 13-1, E-4, H-1

! command 10-9
command list 13-1
for product distribution 10-1
get 10-9
ntuples 13-3
run shell command 10-9
sample session 13-2

ftp to KITS 10-6
readme file 10-7

registration file 10-7
ftp.fnal.gov product distribution node 10-6
FTT 15-1, 15-7
FUE 1-9, 2-2, 9-7

default login files C-1
FUE description 1-9
funame 1-10, 9-4, 9-10
funame command B-5
fvrns2mh A-1, A-2, H-2
FZ files 13-3

G
g++ 16-3
g77 16-4
gawk 4-6, 5-11
gee 16-3, 16-4

ddd debug interface 16-20
gdb 16-22
Getting help 3-9, E-3
glimpse 12-23
GNUC 16-2
GNU make 17-9
gopher 3-6
grep 4-2, 5-10, 5-11, 5-14, 6-13, 6-14, 7-1, E-2

format and options 6-14
groff 3-2, E-2
Group permission 6-19

in AFS 7-7
Grouping commands 5-4
Groups in AFS 7-9
gtools 17-9
gunzip 6-12
gzip 6-12

H
Hard link 6-10
hash 4-5, 5-7
Hash table 4-5
head 6-7, 6-8, E-2

format and options 6-8
Help on AFS commands 3-2
Help on filenames 3-4
Help on shell commands 5-2
Help, online E-3
Helpdesk 3-9
Hidden files 6-4, 9-7
history 5-5
History list 4-3
history variable 9-8
Home directory 6-1, 6-2, 6-3, 6-17, 16-14

-9-4
HOME variable 9-4

Home page 3-6
HOME variable 6-3, 9-4
home variable 9-2
Host name 3-4
HTML files 3-5, 3-6
http 3-6
HyperText Markup Language 3-5

November 26, 1997 UNIX at Fermilab Index IDX-9

1/0 5-9, 16-18
buffered 15-6
C 16-18
FORTRAN 16-18

1/0 redirection 5-2, 5-7, 5-9
failure 5-8, 5-9
grouping 5-8, 5-9
input 5-8
suppress output 5-8

Identify system 9-4
ignoreeof 2-2, 2-3
IMAP 12-1
inc 12-16, G-1
inc-form file 12-24, F-6
Incorporate mail messages 12-15, 12-25, G-1
Info 3-8
info(AIX) 3-4
Information distribution system 2-7
!node number 6-4
!node table 6-4
Input redirection 5-7, 5-8
Input/Output redirection 2-6
insight 3-4, 16-23
INSTALL_NOTE file 10-5
Instance B-6
Interactive command entry 5-1
Interface to LSF (fbatch) 14-2
Interfacing C and FORTRAN 16-16
Internet 3-4

domain name 3-4
ftp 3-4
host name 3-4
IP address 3-4
mail 3-4
navigation tools 3-4
news 3-4
services 3-4
telnet 3-4
WWW3-4

Interpretation of commands by shell 5-2
Interpretive language

awk 5-11
Interpretive programming language 4-1 , 4-4, 4-6
Interrupt process 2-4
IP address 3-4
IRIX 1-10
ISO standards 16-2

J
Jobs

background 5-15
foreground 5-15
kill 5-17
list 5-16
move to background 5-17
move to foreground 5-16
priority 5-15
scheduling 5-17, 5-19
start in background 5-15

IDX-10

stop 5-16
stop 5-17
suspend 5-16, 5-17
terminate 5-17

jobs 5-16

K
Kerberos authentication E-3
Kerberos password 7-2, 7-3

security issues 7-3
Kerberos token 7-2

destroy 7-4
for batch execution 7-2
get back expired one 7-4
pass to remote login session 7-5
pass to subprocesses 7-2

Kernel 1-8, 4-1
Keys, special 2-3
kill 5-16, 5-17, E-3, E-4
Kill batch job E-4
Kill process E-3
KITS area 10-1, 10-7
klog 7-3, 7-4, 7-5, 7-16, E-3
knews 3-7
kpasswd 2-7, 2-8, 7-3, E-3
ksh 4-3

arrow keys 2-5

L
LAN2-7
Languag(,s, programming 16°1
Id 16-4
less 3-3, 5-10, 6-7, 6-16, E-1

/pattern 5-11
format 6-8

lex 16-3
Library

create E-4
manipulate E-4

Library entry points E-4
Link directories 6-10
Link editor 16-4
Link files 6-10, E-2
Link FORTRAN program E-4
Links 6-7, 6-10

hard 6-10
symbolic 6-10

LINUX 1-10
List ACLs E-3
List files E-1
List jobs 5-16
List subdirectories E-1
Literal interpretation of character 2-5
Literal string interpretation 2-6
In 6-10, E-2

format and options 6-10
Load map 16-9
Load Sharing Facility (LSF) 14-1
Load Sharing Facility (LSF) E-5
Local area network 2-7

UNIX at Fermilab Index November 26, 1997

1

Local interface to LSF (fbatch) 14-2
Log in 2-1, 9-1
Log in remotely 13-5
Log out 2-2, 2-3, E-3

ctrl-d 2-2, 2-3
exit 2-3
terminate processes 2-2, 2-3

logdir 6-2, 16-14
Logical devices 5-7
Login directory 6-1, 6-17
Login files 9-1, 9-7, B-2, C-1
Login id 2-1
Login name 2-1
Login scripts 1-10, 2-2
Login to remote systems 13-3, 13-5
login.com (VMS) A-2
logout 2-2, E-3
Looping commands 5-4
Ip 8-5
lpq E-3
lpr 8-1, 8-5, E-2
ls 3-1, 5-8, 5-9, 6-4, 6-5, 6-6, 6-16, 6-19, 12-25, E-1

format and options 6-6
lynx 3-5

M
m 5-5
Machine identification 9-4
Macro 17-2 •

format in Makefile 17-3
Magic file 6-16
Magic numbers 6-16
Mail 3-4

alias file 12-24, 12-26
Berkeley 12-27
choose e~tor F-3
choose node to read mail 12-2
configuration files 12-23, F-3
default delivery area 12-6
define basic configuration 12-24
define forwarding header format 12-24
define message header format 12-24
define reply header format 12-24
delete a message 12-20
delivery customization 12-24
distribution lists 12-24, 12-26
extract a message 12-19
folders 12-5, 12-21, 12-24
forwarding 12-2
forwarding at Ferrnilab 12-2
IMAP 12-1
incorporate format 12-24
incorporate messages 12-15
multilevel folders 12-25
refile messages 12-22
remove a message 12-20
reply header, customize 12-17
reply-to address 12-4
scan format 12-24, F-6
search for a message 12-23
search for messages 12-22
signature lines 12-26

for forwarding 12-26
for replies 12-26

spool area 12-6
standard Ferrnilab address 12-2
text search

glimpse 12-23
mail 12-27
Mail conversion 12-2, A-1, H-1

automatic process H-2
disk space required H-1, H-2
fMHvms2mh H-2
fvms2mhH-2
MH folders H-2
semi-automatic process H-2
VMS scratch space H-2

Mail folders 12-6, 12-21, 12-24
change 12-21
create 12-21
MH vs pine 12-5
multilevel 12-25
nested 12-25
remove 12-21
renumber messages 12-25
reorder messages 12-25

Mail forwarding 12-2, 12-3, 12-9
choose mail node 12-9
file-sharing systems 12-2
set on chosen mail node 12-3
set on external nodes 12-4
set on FNAL 12-3

Mail holding area 12-25
Mail notification F-2

customize output F-3
default format F-2
double F-2

Mail readers 1-9
Mail systems 1-9

exmh 12-1
future underlying protocol 12-1
MH 12-1
mh 12-1
upcoming changes 12-1

MAIL variable 12-25
Mailbox directory 12-25
mailto 3-6
mailtools 12-6, A-2, F-10
Maintain customized code 9-10
make 17-1

$MAKE macro 17-8
action 17-9
Bourne shell 17-3
built-in rules 17-3, 17-9
command syntax 17-7
defaults 17-9
environment variables 17-8
GNU make 17-9
list built-in macros and rules 17-9
macro 17-2
Makefile 17-2
options 17-7
remove stray files 17-8
SHELL variable 17-3
suffix definition 17-2
suffix rule 17-2
target 17-2

November 26, 1997 UNIX at Fennilab Index IDX-11

use without Makefile 17-8
Makefile 17-1, 17-2, 18-1

blank lines in 17-2
commands and shells 17-10
definition types 17-2
environment variables 17-10
file modification times 17-5
first target (default) 17-7
housekeeping target 17-8
implied target 17-5
including control files 17-6
macro 17-2

format 17-3
sources 17-3

portability 17-8
preprocessors 17-9
remove stray files 17-8
required files 17-4
shell commands in 17-2
shell variables 17-10
special macros 1 7-3
SUFFIX declaration 17-2, 17-6
suffix rule 17-2, 17-5
tabs in 17-4
tabs vs. blanks 17-4
target 17-2
target "all" 17-7
target definition 17-4, 17-5

format 17-4
platform variance 17-10
successive commands 17-10

target usage 17-5
use ofline continuation character 17-4
variables 17-2

man 3-1 , E-3
AFS commands 7-6
AFS commands 3-2

man page formatting 3-2
man pages 3-1

built-in commaI)ds 5-2
directories 9-5
exit 3-3
filename option 3-4
keyword option 3-3
print 3-3
quit 3-3
search for pattern 3-3
shell commands 5-2

MANPATH variable 9-5, 9-9
Match characters in regular expressions 5-14
Match single character 6-5
Memory corruption 16-22
Memory leaks 16-22
merge E-2
Merge files E-2
mesgnE-4
Message

compose G-1
delete G-2
display G-2
display headers G-2
display next G-1
display previous G-1
forward G-1
incorporate G-1

IDX-12

print G-2
refile to different folder G-1
removeG02
reply G-1
reply and include original text G-1
select by criteria G-1
send G-1

Message header format 12-24
Messages

disable E-4
Metacharacters 2-5, 2-6, 5-7, 5-13, 6-4
Methodology, product support 1-10
MH 12-1

command line implementation 12-8
configuration files 12-23
convert mail to 12-2
disadvantages re: IMAP 12-1
exmh 12-8
folders 12-5, 12-6, 12-24
graphical interface 12-8
mh 12-8

mh 12-1, 12-8
.maildelivery 12-24
.mh_profile 12-15
alias file 12-24, 12-26
change current folder 12-21
change editor 12-15
choose editor 12-15, F-3
command reference 12-2
comp 12-15
compose a message 12-13, 12-15
configuration files 12-23
create a folder 12-21
customize 12-2
customize message headers F-3
define basic configuration 12-24
define forwarding header format 12-24
define message header format 12-24
define reply header format 12-24
display a message 12-16
display next message 12-16
display previous message 12-16
distribution lists 12-24, 12-26
extract a message 12-20
forward a message 12-18
inc-form 12-24
include a file 12-15
incorporate messages 12-16
pick 12-23
print a message 12-19
quit 12-15
refile messages 12-22
remove folder 12-21
remove messages 12-20
reply to a message 12-17
reply-to field F-4
save a message but don't send 12-15
scan message headers 12-16
scan-form 12-24
send 12-15
send a file 12-15
send a message 12-15
sequence of picked messages 12-23
set up and invoke 12-12
use UNIX shell features with 12-8

UNIX at Fermilab Index November 26, 1997

I

use with UNIX shell commands 12-16
vi as default editor 12-15

mh commands G-1
MTh1E 9-11, 12-8
mime.types file 3-5, 9-11

format 9-12
mkdir 6-17, A-1, E-1
Mode 6-7
Mode bits 6-19
Monitor batch queue E-4
more 5-10, 6-7, 6-8, 6-16, E-1

format 6-8
Mosaic 3-5
Mount point 2-6
Mount tapes 15-1, 15-6

in batch job 15-4
Move a directory 6-18
Move a file 6-9
Multimedia support 9-11
MultiNet 3-8, 13-3, 13-5, 13-6
Multiple commands on a line 5-4
Multipurpose Internet Mail Extensions 9-11
mv 6-9, 6-10, 6-18, 9-5, E-2 .

format and options 6-9
mvdir 6-18

format 6-18

N
Navigating to WWW documents 1-11
nawk 5-11
NEdit 2-5, 8-5, 11-1, 11-2

commands 11-10
pros and cons 11-2

needfile 14-3
Nested mail folders 12-25
NetNews 3-7
Netscape 3-5
Network Information System 2-7
new chain B-6
News 3-4
News 3-7
news 3-6
Newsgroups 3-7
Newsreaders 3-7
next 12-16, G-1
NFS 2-7

mail forwarding 12-2
nice 5-15, 14-1
NIS 2-7, E-4

password file 2-8
nn 3-7
noclobber variable 5-8, 5-9, 9-5
noglob variable 6-6
Non-printable characters, in file dump 6-15
Notational conventions 1-3
Notification of incoming mail F-2
nroff 3-2, E-2
nu/fPU 2-5, 8-5, 11-1, 11-2

pros and cons 11-2
setup 11-10

Null device 5-8, 5-9
NULL flavor B-5

0
oawk 5-11
obtain printcap 8-5
ocs

X interface 15-5
ocs 15-1

X interface 15-5
ocs_allocate 15-2, 15-4
ocs_broken 15-2
ocs_check_label 15-3
ocs_clean_it 15-2
ocs_clean_list 15-2
ocs_deallocate 15-4
ocs_devfile 15-3
ocs_devstat 15-2, 15-3
ocs_dismount 15-4
ocs_init_stat 15-2
ocs_message 15-2
ocs_mrlog 15-2
ocs_pending 15-2
ocs_report_stat 15-2
ocs_request 15-3
ocs_setdev 15-3
ocs_stats 15-2
ocs_tape 15-2
od 6-13, 6-15, E-2

format and options 6-15
odump-cE-4
old chain B-6
Online help E-3

apropos 3-3
man pages 3-1
UNIXHeJp 3-7
vendor-provided utilities 3-4

Operating System flavor 1-8
Operator Communications Software (OCS) 15-1
Option passing 16-5
Options 5-4

grouping 5-4
separator 5-4

Ordinary files 6-4
OSFI 1-10
Other permission 6-19
Output

display screen by screen 5-10
Output redirection 5-7, 9-5

background jobs 5-15
force overwrite 5-8
overwrite existing file 5-8

Output, suppress 5-8, 5-9
Overwrite file protection 9-5
Overwrite files 6-4
Owner permission 6-19
Ownership of file E-3

p

p 5-6
pack 6-12
pagsh 7-3, 7-4, 7-5, 7-16
Parent directory 6-4, 6-17

November 26, 1997 UNIX at Fermilab Index IDX-13

Parent process 5-1, 9-1
Parentheses in commands 5-2
passwd 2-7, 7-3, E-3
Password 2-1, 2-7

AFS (see Kerberos) 7-2
change 2-7, E-3
Kerberos 2-8, 7-2
Kerberos vs . standard UNIX 7-3
NIS 2-8
on FNALU7-2
standard UNIX 2-7

Password entry file 4-2
Password file, NIS 2-8
Password, changing 2-7
Path 5-7
PATH environment variable 10-3
Path name separator 2-5, 2-6
PATH variable 4-5, 5-7, 9-4, 9-9

include dot . 9-4
path variable 5-7, 9-2
Pathname 6-1

absolute 6-1
relative 6-1

Pattern matching 5-13
Pattern, search for 5-11
Pattern-matching characters 2-6
perl 4-6, 16-1, 16-3
Permissions 6-7, 6-19, E-2

AFS 6-19, 7-7
AFS combination rights 7-7
change 6-19
determine current settings 6-19
directory 6-21
file access 6-19
group 6-19
other 6-19
owner (user) 6-19
set when file is created 6-20

Personnel directories 3-8
Phone user E-4
pick 12-23, G-1
pine 12-1, A-2

configuration 12-5
folders 12-6, 12-7
move messages from spool area 12-6
printing configuration 12-8
suggested options 12-7

Pipe output of commands on a line 2-6
Pipeline 5-10
Pipes 3-3, 5-10
Pointers 16-18
POSIX standards 16-2
Postscript files

printing duplex 8-4
pr 8-3
Pre-print options 8-3

a2ps 8-3
pr 8-3
psnup 8-3

prev 12-16, G-1
Prevent interpretation of special characters 5-2
Preview command 5-6
Print a message 12-19
Print entry

delete E-3

IDX-14

display E-3
Print file E-2
Print message G-2
Print queue

display E-3
printcap file 8-5
printenv 9-2
Printing 8-1

ascii to postscript 8-3
both sides of paper 8-4
check queue 8-1
duplex mode 8-4
flpr 8-1
kill job 8-1
postscript files in duplex mode 8-4
text files in duplex mode 8-4

Printing man page 3-3
Priority 5-15
Process 5-15

background 5-1, 5-15
child 5-1, 9-1
display E-4
display status 5-1
fork 5-1
interrupt 2-4
kill E-3
move to background 2-4
parent 5-1, 9-1
stop E-3 •
subprocess 5-1
suspend 2-4

Product database 10-1
Product dependencies B-7
Product distribution menu interface (UPD) 10-4, B-1
Product distribution services, register for 10-1
Product distribution via anonymous ftp 10-6
Product file B-4
Product flavor B-5
Product instance B-6

selection by chain B-6
Product numbers, Ferrnilab 1-12
Product requirements B-7
Product root directory 10-4

definition B-2
product root directory B-4
Product support methodology 1-10
product support methodology B-1
Product tar files 10-6
PRODUCT_DIR environment variable 10-2, B-3
PRODUCTS environment variable B-2, B-3, B-4
Products, Fermilab 1-12
Program execution 16-18, E-4
Program, debug E-4
Programming languages 16-1
Programming languages, interpretive 4-6
Programs 5-1
Prompt

default 4-2
FNALU4-2
shell 4-2

Protection groups
change owner 7-12
create 7-13
in AFS 7-7
remove 7-13

UNIX at Fermilab Index November 26, 1997

show groups by owner 7-11
Protection, file and directory 6-19, E-2
ps 4-1, 5-1, 5-16, 6-15, E-4
psnup 8-3
pts 7-10
Public domain shells 4-3
purify 16-22
pwd 5-2, 5-8, 5-9, 6-16, E-1
Python 16-1, 16-3

a
qdel E-4
qstat E-4
qsub E-4
Queue, batch (under LSF) 14-1
quit 12-15, G-1
quota -v E-3, H-1
Quotes

back 2-6
double 2-6
single 2-6

Quoting character Ch!ickslash) 2-5, 5-4

R
Raw Buffered 1/0 15-6
RBIO 15-1, 15-6, 16-13, 16-14
r-commands 13-4
rep 7-5, 13-3, A-1, E-4, H-1

.rhosts file 13-4
non-interactive access 13-3
options 13-3
proxy login 1 _3-4
VMS system 13-4

RCS 18-1
rcvtty F-2

customize output F-3
scan_form file F-6

Read permission 6-7, 6-11, 6-19
directory 6-21
file 6-19

readme file (KITS) 10-7
Recall commands 5-5
Redirect output 5-4

to file and to a command 5-10
Redirection metacharacters 5-7
Redirection of 1/0 5-2, 5-7, 5-9, 9-5

failure 5-9
force overwrite 5-8
grouping 5-8, 5-9
overwrite existing file 5-8
suppress error 5-8
suppress output 5-9

Reexecution commands 5-5
preview 5-6
substitute 5-6

Reference directories 6-10
Reference files 6-10
refile 12-21, 12-22, G-1
Refile mail messages 12-22, G-1
Registering for product distribution services 10-1

Regular expressions 2-6, 5-2, 5-13, 5-14, 6-14
rehash 4-5, 5-7
Relative pathname 6-1
Remote command execution 13-5 •
Remote connections 13-1
Remote copy 13-3
Remote login 13-3, 13-5

AFS issues 7-5
rlogin 13-5
telnet 13-5

Remote node, connect E-4
Remove a directory 6-11, 6-18, E-2
Remove a file 6-11, E-2
Remove a mail message 12-20, G-2
Remove file link E-2
Remove mail folders 12-21
Remove mh folder G-2
Remove print entry E-3
Rename a file 6-9, E-2
Rename set of files E-5
Renumber messages in folder 12-25
Reorder messages in folder 12-25
rep! 12-17, 12-18, F-3, F-4, G-1
repl_inc 12-17, G-1
Replace variable name with value 5-2
replcomps file 12-17, 12-24, F-5

customize F-5
Reply address for mail 12-4
Reply header format 12-24
Reply to a message 12-17, G-1
Reply to message G-1
reply-to field in MH F-4
Required file 17-1
requirements

determining 10-5
Restart display 2-4
Restore from archive file 6-11
Retrieve from archive file 6-11
Revision Control System 18-1
RISC-based UNIX systems 16-2
rlogin 2-1, 7-5, 7-16, 13-3, 13-5, 13-6, E-4

.rhosts file 13-5
from VMS system 13-5
password 13-5

rm 6-11, 6-18, E-2
format and options 6-11

rmdir 6-18, E-2
rmf 12-21, G-2
rmm 12-20, G-2
m3-7
Root 6-1
Root directory 2-5, 2-6
rsh 7-5, 13-3, 13-5, 14-3, H-1

password 13-3
shell script usage 13-6

Run executables from current directory 9-4
RZ files 13-3

s
s 5-6
savehist 5-5
savehist variable 9-8

November 26, 1997 UNIX at Fermilab Index IDX-15

scan 12-16, 12-21, 12-23, G-2
scan-form file 12-24, F-3, F-6

example F-6
Scheduling jobs 5-17, 5-19
Screen, clear 9-7
Script execution 4-5
Script, shell 44
Scripted command entry 5-1
Scripts

as job 5-15
default shell 4-4
execution 4-5, E-4
shell 4-1
source 4-5

Search engines 3-6
Search for files 6-13
Search for mail messages 12-22
Search for pattern 5-11, 6-14
Search on text patterns 5-14
Search on users 3-8
Search path 5-7

add command 5-7
sed 5-14, 16-3, D-1, E-5
sedit 12-13

line breaks 12-14
set preferences for 12-14

send 12-15, G-1, G-2
Send a mail message 12-13, G-1
Send file G-2
Separate commands on a line 2-6
Separator, path name 2-5, 2-6
set 5-2, 9-1, 9-3, E-3
SetACLs E-3
set correct 5-6
set prompt 2-3
setenv 8-2, 9-2, E-2, E-3
setpath.csh 9-4, C-3
setpath.csh file B-2
setpath.sh 9-4, C-16
setpath.sh file B-2
Setting default home page 3-7
setup 10-2, 15-1, B-2

alias for B-2
options B-7
pass options B-7
unchained instance 10-2

setups.csh _C-4
setups.c.sh file B-2
setups.sh C-21
setups.sh file B-2
sh 4-3, 6-2

/bin/sh links to ksh 4-2, 4-4, 9-8
Shell 1-7, 1-8, 1-9

default 9-5
Shell change in UPS B-2
Shell choice 4-3
Shell command 5-1

help on 5-2
platform-specific 5-2

Shell comparison 4-3
Shell features 4-3
Shell functions 9-6
Shell program 4-2
Shell prompt 2-3, 4-2
Shell script execution 4-5

IDX-16

Shell scripts 4-1, 4-4, 5-1
affect current shell 4-5
default shell 4-4
execution 4-5, E-4
source 4-5

Shell support policy 4-4
SHELL variable 9-5
Shell variables 4-3, 9-1

PSl variable 2-3
Shell, current 4-1
Shells 4-1

bash 4-3
Bourne family 4-1
C family 4-1
command interpretation 5-2
completion mechanism 4-3
csh 4-3
exit 4-2
features 4-3
finding commands 9-4
interpretive programming language 4-4
Korn 4-1
ksh 4-3
public domain 4-3
sh 4-3
start 4-2
supported 4-4
tcsh 4-3
vendor4-3
zsh 4-3

shells 4-6, 16-3
show 12-16, 12-19, 12-20, 12-21, G-2
Signature lines

for forwarding mail 12-26
for replying to mail 12-26

Signature lines for mail 12-26
Simple Editor 12-13
Simple flavor B-5
Single back quotes 2-6
Single quotes 2-6, 5-2, 6-14
Size of file 6-7
Solaris 1-10
sort 5-10, 5-13, E-2
Sort files E-2
Sort lines in files 5-13
sortm 12-25
source 4-5, 5-2, 9-8, 9-9
spacall 14-3
Special characters 2-5, 2-6, 6-4, 6-14

extended set 5-14
prevent interpretation 5-2

Special keys 2-3
Special symbols 5-14
Specify terminal type 9-12
Spool area for mail 12-6
Standard error 5-7, 5-9
Standard input 5-7, 5-9

get from stdout of previous command 5-10
Standard output 5-7, 5-9

connect to stdin of next command 5-10
Start a shell 4-2
Start display 2-4
start key 2-4
stderr 5-7, 16-15
stdin 5-7, 16-15

UNIX at Fermilab Index November 26, 1997

J

stdout 5-7, 16-15, 16-18
stop 5-16, 5-17
Stop batch job E-4
Stop process E-3
Stop tenninal output 2-4
Stopped jobs 2-2, 2-3, 5-16
Store to archive file 6-11
Storing temporary files 6-21
String, literal interpretation 2-6
stty 2-1, 2-4, 5-16, 9-12, 9-13, E-4

"- 9-13
"> 9-13
tostop 5-16

Submit batch job E-4
Subprocess 5-1
Subshell 4-2
Substitute output for string 2-6
Substitute string in command 5-6
Suffix declaration 17-2
Suffix rule 17-2
SunOS· 1-10
Support policy for shells 4-4
Supported operating systems 1-10
Supported platforms 1-10
Supported shells 4-4
Suspend process 2-4
Suspended jobs 5-16
Symbolic link 6-10
System calls 5-1
System identification 9-4
Systems updates 3-8

T
Tabs 2-4
tabs 2-4
tail 6-7, 6-8, E-2

format and options 6-8
talk E-4
Talk to user E-4
Tape archiver E-4
Tape drive

allocate 15-1
manipulate 15-5
mount request 15-1, 15-6
test program 15-7
use statistics 15-1
view mount requests 15-5

Tape 1/0 packages 15-1
DAFT 15-7
FMB 15-7
FTT 15-7
RBIO 15-6

Tape mount 15-1 , 15-6, 15-7
in batch job 15-4

Tapes
access 16-14
ANSI labeled 15-6
archive E-4
backup 15-7
copy to 6-11
operator assisted mounts 15-1
read/write DART-fo~atted records 15-7

restore from 6-11
rotation schemes 15-7
VMS labeled 15-6

tar 6-11, E-4
extracting set of files 6-12

Tar files 6-12
creating 6-12

Target 17-1, 17-2
Tcl/Tk 16-3
tcsh 4-3
tee 5-10
telnet 2-1, 3-4, 7-5, 7-16, 13-5, E-4

password 13-5
Temporary disk 6-21
term variable 9-2
Tenninal control functions 2-3

set 9-12
Tenninal output, stop 2-4
Tenninal settings

change E-4
display 2-4

Tenninal type 2-2
specify 9-12

Terminate batch job E-4
Tenninate process E-3
Tenninate processes at logout 2-2, 2-3
test chain B-6
Text file

format E-2
Text patterns

search on 5-14
Tilde 6-2, 9-4, 16-14
TimeE-3
Tk 16-1, 16-3
TMPDIR variable 6-21
Token

destroy 7-4
get back expired 7-4
pass to remote login session 7-5

Token, Kerberos 7-2
tokens 7-4
tostop 5-16
touchE-2
Transfer files 13-1

.rhosts file 13-4
from VMS cluster 13-4

trn 3-7
troff E-2
tty F-2
Type ahead 5-4

u
UCM 18-1, 18-2

kpp 18-2
obtain manual 18-3
sequential development 18-2
uvmbld 18-2

umask 6-20
uname 1-10
Unattended automatic mail incorporation

.maildelivery file F-6
AFS file pennissions F-10

November 26, 1997 UNIX at Fermilab Index IDX-17

customize F-6
fixmailperms F-10

Universal Resource Locator 3-6
UNIX cluster 2-7
UNIX Code Management 18-1
UNIX commands

VMS equivalents E-1
UNIX flavors 1-8
UNIX flavors supported 1-10
UNIX OS support 1-10
UNIX password 2-7, 7-3
UNIX password, standard 2-7
UNIX process, environment 9-1
UNIX Product Distribution 1-10
UNIX Product Support 1-10, 10-1
UNIX prompt 2-3, 4-2
UNIX Reference Desk 3-7
UNIX Resources WWW page 1-11
UNIX shell 9-1
UNIX system mailbox 12-25
UNIX system, log in 2-1
UNIXHelp 3-7
unlog 7-4, E-3
unset 9-1, 9-3
unsetup 10-3

options B-8
UPD 10-1, B-1
upd 1-10
UPD menu interface

default values provided 10-6
executing functions 10-6
intstructions for use 10-4
setting parameters 10-6

Update file's last modified date E-2
Updating files 17-1
UPS 1-10, 10-1, B-1

chains B-6
database B-4
dependencies B-7
extended flavor support B-5
instance selection B-6
mixed UNIX cluster support B-5
multiple product flavor support B-5
multiple product version support B-5
product file B-4
product flavor specification B-6
product identification and retrieval B-4
product instance B-6
product instance selection B-5
product version B-5
product version maintenance 10-3
products distributed and managed by B-4
requirements B-7
shell support B-2
support of multiple releases of OS B-5

ups 1-10
ups list 10-2
UPS products

communicate changes to 10-5
definition B-4
installation instructions (brief) 10-5
tape mounting and I/0 15-1

UPS_DIR environment variable B-2
UPS_OPTIONS environment variable B-7
UPS_SHELL environment variable B-2

IDX-18

URL 1-11, 3-6
Computing Division pages 1-12
Fermilab pages 1-12

Use requirements (UPS products) B-7
Usenet News 3-7
User id 2-1
user variable 9-2
Users

display E-3
phone E-4
talk E-4

Users, information on 3-8, 3-9
uvma create element 18-3
uvma create library 18-3
uvma fetch 18-3
uvma group 18-3
uvma replace 18-3
uvina reserve 18-3
uvma tag 18-3
uvmi information commands 18-3

V
Variable name replacement 5-2
Variable types 16-17
Variables

Bourne shell family 9-3
C shell family 9-1
define in Bourne shell 9-3
delete 9-1
display value 9-2
environment 9-1 , 9-2 .
shell 4-3, 9-1
unset 9-1

Vendor shells 4-3
Vendor-provided online help 3-4
Version control system 18-1
Versions of files 6-4
vi 2-5, 5-6, 5-14, 8-5, 11-1, 11-2, 12-8, 12-17, 12-18

commands 11-3
pros and cons 11-2

VMS backup save-sets, unpack and convert E-5
VMS commands and UNIX equivalents E-1
VMS labeled tapes 15-6
VMS source code management

CMS 18-1
VMS tcp/ip, MultiNet 13-3
VMS, converting from H-1
vmsbackup E-5

w
WC 6-13, 6-15
Web Browsers 3-5
Web site 3-6
What Now? 12-14
whatis 3-4
where 16-20
which 6-4
White space 5-4

in command interpretation 5-2
who 3-9, 5-8, 5-9, 5-10, 6-15, E-3

UNIX at Fermilab Index November 26, 1997

l)

who am i 3-9
Wildcard replacement 5-2
Wildcards 2-6, 5-14
Working directory 6-1
World Wide Web 3-5
Write permission 6-7, 6-11, 6-19

directory 6-21
file 6-19

Write to screen E-3
WWW3-4, 3-5

addresses 3-6
AFS permissions for Web pages 3-6, 7-9
browser commands 3-7
browsers 3-5
create Web page 3-6
directories 3-8
Fermilab at Work 3-7
Fermilab Home Page 3-7
Fermilab pages 1-11
file 3-6
ftp 3-6
gopher 3-6
HTML files 3-5, 3-6
http addresses 3-6
links 3-6
mailto 3-6
news 3-6
newsgroups 3-7
product database 10-1
protocol 3-6
search engines 3-6
UNIX Reference Desk 3-7
UNIXHelp 3-7
URL3-6

WWW 3-5, 9-11
WWW Browsers 3-5

lynx 3-5
mosaic 3-5
netscape 3-5
WWW 3-5

WWW directories 3-8

X
X display

DISPLAY variable 11-3
X terminal

configuration 9-10
NCO 9-10
Tektronix 9-10

X windows applications
DISPLAY variable 9-4

XII toolkit
Tk 16-3

X-based browser commands 3-7
xemacs 11-4

commands 11-8
emacs commands used in 11-8
file extension-language map 11-6
initialization file 11-6
oo-Browser 11-8
pros and cons 11-2
tpu/edt emulation 11-7

xfontsel 12-12
xlf 16-4, 16-13

• xlsfonts 12-12
xocs 15-5
xrn 3-7
xtapeview 15-5

V
yacc 16-3
Yellow pages 2-7
ypmatch4-2
yppasswd 2-7, 2-8, E-3

z
zftp 13-3
zsh 4-3

November 26, 1997 UNIX at Fermilab Index IDX-19

IDX-20 UNIX at Fermilab Index November 26, 1997

