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PUBLIC EXECUTIVE SUMMARY

The INTEGRATE (Inverse Network Transformations for Efficient Generation of Robust Airfoil and
Turbine Enhancements) project developed a new inverse-design capability for the aerodynamic design
of wind turbine rotors using invertible neural networks. Training data was obtained from improved
turbulence and transition models for RANS and hybrid RANS/LES solvers with machine-learned
physics-based data-augmented corrections and then using the resulting neural-network(s) augmented
RANS model to run thousands of 2-D and 3-D CFD simulations.

This Al-based design technology can capture complex non-linear aerodynamic effects while being
several orders of magnitude times faster than design approaches based on purely computational fluid
dynamics. The results from this project enable innovation in wind turbine design by accelerating time to
market through higher-accuracy early design iterations to reduce the levelized cost of energy.

Specifically, this work enabled: (1) Getting new designs with desired performance on a laptop in under
one second; (2) Accelerating time to market by improving early design iterations with more certainty;
(3) Increasing design space exploration for improved performance and robustness; (4) Capturing
complex nonlinear aerodynamics in design several orders of magnitude times faster than comparable
approaches; and (5) Increasing annual energy production by up to 2% compared to traditional design
approaches.
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ACCOMPLISHMENTS AND OBJECTIVES

Next-Generation Aerodynamic Tools

This award allowed The National Renewable Energy Laboratory (NREL), in partnership with
the University of Maryland, to develop the next generation of aerodynamic tools for 2D airfoil
and 3D wind turbine blade design.

Researchers leveraged a specialized invertible neural network (INN) architecture that learns
complex relationships between airfoil or blade shapes and their associated aerodynamic and
structural properties.

This INN architecture accelerates designs by providing a cost-effective alternative to current
industrial aerodynamic design processes, including;:

e Blade element momentum (BEM) theory models: limited effectiveness for
design of offshore rotors with large, flexible blades where non-linear aerodynamic
effects dominate

¢ Direct design using computational fluid dynamics (CFD): cost-prohibitive

e Inverse-design models based on deep neural networks (DNNs): attractive
alternative to CFD for 2D design problems, but it is quickly overwhelmed with
increased number of design variables in 3D problems.

1 m

. DNN
... SURROGATE
“o, P=d

., B
.

CoST

INNOVATION,

1980s 2019§

Linear Non-Linear
Aerodynamics Aerodynamics

Innovation potential versus cost for competing

technology pathways. lllustration by Brittany
Conrad, NREL

Page 3



The Approach

INTEGRATE'’s specialized INN architecture—along with the novel dimension-reduction
methods and airfoil/blade shape representations developed by collaborators at the National
Institute of Standards and Technology (NIST)—learned complex relationships between airfoil
or blade shapes and their associated aerodynamic and structural properties. The INN was
trained on data obtained using the University of Maryland’s Mercury Framework, which has
with robust automated mesh generation capabilities and advanced turbulence and transition

models validated for wind energy applications.
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Technology Transfer Demonstration: INN-Airfoil + WISDEM

As part of a technology transfer demonstration, researchers integrated the inverse-design tool
for 2D airfoils (INN-Airfoil) into the Wind-Plant Integrated System Design and Engineering
Model (WISDEM), a multidisciplinary design and optimization framework for assessing the
cost of energy. The traditional approach to wind turbine design involves creating a 3D blade
from a preselected set of 2D airfoils. However, the multidisciplinary nature of design means
that the most aerodynamically efficient airfoils may not be the best choice for all types of
design constraints for wind turbines.

The integration of INN-Airfoil into WISDEM allowed for the design of airfoils and blades that
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meet the dynamic design constraints of cost of energy, annual energy production, and capital
costs. Through preliminary studies, researchers have shown that the coupled INN-Airfoil +
WISDEM approach reduces the cost of energy by around 1% compared to the conventional
design approach.
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Coupled INN-Airfoil + WISDEM approach. lllustration by Besiki Kazaishvili

Impacts

e Get new designs with desired performance on your laptop in under one second

e Accelerate time to market by improving early design iterations with more certainty

e Increase design space exploration for improved performance and robustness

e Capture complex nonlinear aerodynamics in design several orders of magnitude times
faster than comparable approaches

e Increase annual energy production by up to 2% compared to traditional design
approaches
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A number of tasks and milestones were laid out in the Technical Milestones and Deliverables, at the
beginning of the project. The actual performance against the stated milestones is summarized here:

Tasks Milestones and Deliverables
Mi.1: Validate the ML-augmented turbulence model used in CFD data
Validation of Field generation against available experimental data for 2D airfoils.
Inversion Machine Actual Performance: (04/07/21) Performer validated CFD
Learning (FIML) data against experimental data.

augmented turbulence
model

Demonstrate that the ML-augmented model shows 50%
improvement in predicting the stall angle and the max. CI
compared to traditional turbulence models.

Actual Performance: (04/07/21) Performer achieved desired
improvement.

M2.1:

Implement current
state-of-the-art DNN
inversion

Implement an invertible neural network that conforms to the
functional requirements established in M3.1.
Actual Performance: (10/07/20) NREL implemented.

Establish baseline complexity of brute-force inversion as a
benchmark toassess sparsification strategies insubsequent
milestones.

Actual Performance: (10/07/20) NREL established baseline.

M2.2: Demonstrate network sparsification capability that reduces the
Implement number of parameters by an order of magnitude.
sparsification Actual Performance: (07/07/21) Performer demonstrated
technique sparsification.
Compare performance of the sparsified network against the
performance baselines established in M2.1 and M3.1 with goal of
less than 5% error on lift and drag.
Actual Performance: (07/07/21) NREL achieved goal.
M=2.3: Explore transfer learning to extend 2D data to the 3D problem

Reduction of training
data requirements

and reduce training time. Apply shape manifold dimension
reduction techniques to reduce training data requirements.
Actual Performance: (01/07/22) Performer with NREL
explored and applied.

Achieve a 50% reduction in training requirements while
maintaining 95% of predictive accuracy.
Actual Performance: (01/07/22) NREL achieved goal.
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Ms3.1:

Functional
requirements for
inverse design of 2D
airfoil

Establish the requirements specification of the inverse design
model (i.e., inputs and outputs) such as geometry representation
(Class Function/Shape Function Transition, CST), Reynolds
number, lift and drag coefficient, stall margin, etc.

Actual Performance: (07/07/20) Performer established the
requirements.

M3.2:

Generate initial
training data for 2D
ML model training

Run CFD simulations (~4000 cases) for at least 3 different airfoil
families currently used in wind turbine designs, over the range of
Re from 1 million to 8 million. Create database of data generated
(including surface pressure distributions) in a form ingestible by
machine learning models. We will need at least O(k log(N))
simulations for a rank k active subspace dimension reduction
from original N dimensional space.

Actual Performance: (07/07/20) Performer ran cases over the
range of Re from 3 million to 12 million.

M3.3: Go/No-go milestone: Complete training of the inverse DNN

Go/No-go: Inverse model and test it for two different existing airfoils (representative

design of 2D airfoil of root and tip of the blade). The trained model must be able to
generate known airfoil designs given their aerodynamic
performance characteristics (established in M1.1) such that the
difference of the L2 norm of error of generated CST parameters
from actual geometry is <5%.
Actual Performance: (01/07/21) Performer with NREL met
Go/No-go milestone.

M4.1: Establish the requirements specification for the inverse design

Functional model capable of designing the full wind turbine blade.

requirements for
inverse design of 3D
blades

Actual Performance: (11/30/22) Performer established
requirements.

Myg.2:

Complete training data
generation for 3D wing

sections

Run CFD simulations (~6000 cases) to create database of
spanwise performance metrics that can be used to train different
aspects of the ML model. The simulations will use baseline CST
parameters from turbine geometries available to NREL (e.g.,
NREL-5MW, DTU 1o0MW, NM80) and apply random
perturbations to explore the design space. The simulations will
generate data for Re over the range of 1-8 million. Will need at
least O(k log(N)) simulations for a rank k active subspace
dimension reduction from original N dimensional space.
Actual Performance: (07/07/21) Performer ran cases over the
range of Re from 3 million to 12 million.
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Complete training of the sparsified inverse DNN model and

M4.3: . generate a 3D blade section design given spanwise aerodynamic
Inve:rse design of a 3D performance and structural constraints (spar thickness) targeting
section an overall integrated thrust and power coefficient for this blade
span. Perform CFD analysis of the resulting design to establish
that the aerodynamic performance of the wing section is within
5% of the integrated performance design parameters provided to
the ML model.
Actual Performance: (10/07/21) Performer with NREL did
this using WISDOM with BEM and 2-D airfoil inverse DNN.
Ms5.1: Demonstration of the complete inverse design model, that follows
. the functional requirements in M4.1, showing that the model can
gle)nll)(lsiiriiis(l)in generate aerodynamic shapes that conform to the structural
design constraints. Verify using CFD analysis that aerodynamic
performance of the resulting geometry is within a 5% margin of
the design inputs.
Actual Performance: (11/30/22) Performer with NREL did this
using WISDOM with BEM and 2-D airfoil inverse DNN.
M6.1: Initial Commercialization Plan developed and communicated to
.. ARPA-E that includes: (a) an explicit identification of the software
Initial Dra}ft o £ US and/or data that is expected to be a primary outcome of the
Commercialization . . A
Plan project and subject to the U.S. Commercialization Plan and

requirements set forth in Attachment 4, (b) targeted markets and
customer segments; (c¢) customer value proposition, (d)
competing alternatives, (e) potential strategic partnerships
required for deploying the solutions (f) preliminary business
model hypothesis, (g) IP strategy, (h) anticipated benefits to the
US economy, and (i) a plan to report to ARPA-E the utilization of
the software and data specified in the Commercialization Plan for
a period of 10 years following its reporting. (This report is to
include a description of any modifications made to the software or
data and the manner in which such modifications are being
commercialized.)

Additional requirements that must be included in the Plan can be
found in the clause in Attachment 2 entitled Intangible property
(University awardee) or Rights in Data (for profit awardee). Any
draft of the Commercialization Plan that has been approved by
ARPA-E, supersedes any prior approved draft and is automatically
incorporated by reference as part of this Agreement by the
provisions of Attachment 2.

Actual Performance: (07/07/20) Done by NREL.
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M6.2: Commerecialization plan updated to include: (a) preliminary
cost/benefit analysis; (b) definition of potential launch markets,

gﬁiﬁ;‘ig{;;ﬂ;ﬁg : including critical performance and design features needed

Plan and Updates to facilitate customer acceptan(;e; (©) pgtential follow-on funding
Data arrangements an'd. (d) a detailed business model based on selected
Acquisition/Storage markets/competitive landscape.

and Software Additional requirements that must be included in the Plan can be
Development Plans found in the clause in Attachment 2 entitled Intangible property

(University awardee) or Rights in Data (for profit awardee). Any
draft of the Commercialization Plan that has been approved by
ARPA-E, supersedes any prior approved draft and is automatically
incorporated by reference as part of this Agreement by the
provisions of Attachment 2.

Data acquisition/storage and software development plans
updated if necessary.

Actual Performance: (10/07/21) Done by NREL.

M6.3: Commerecialization plan updated to include results of technical
investigation, cost/benefit analysis, and market analysis to assess
. v impact, value, and plans for further technological development.
Commercialization and| Specifi dates include: (a) refined cost/benefit lysis; (b)
Formal Reporting of pecific updates include: (a) refined cost/benefit analysis;
the Software results of market outreach, including formalization of
partnerships with other entities to support next-stage
development; (c) target performance characteristics of final
prototype necessary to spur adoption; (d) revision/update of
business model(s); (e) revision and/or expansion of IP plan; (f)
propose organizational development requirements necessary to
succeed in next-stage development activities.
Report the completion of the software and data specified in the
Commerecialization Plan to ARPA-E per the procedures specified
in Attachment 4 of the Award.
Additional requirements that must be included in the Plan can be
found in the clause in Attachment 2 entitled Intangible property
(University awardee) or Rights in Data (for profit awardee). Any
draft of the Commercialization Plan that has been approved by
ARPA-E, supersedes any prior approved draft and is automatically
incorporated by reference as part of this Agreement by the
provisions of Attachment 2.
Actual Performance: (11/30/22) Done by NREL.

Final iteration of U.S.

Developed
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Description of the computer model, key assumptions, how the model was validated, are given in the peer-
reviewed publications, conference papers and datasets as listed in the project outputs.

PROJECT ACTIVITIES

The INTEGRATE (Inverse Network Transformations for Efficient Generation of Robust Airfoil and
Turbine Enhancements) project developed a new inverse-design capability for the aerodynamic design
of wind turbine rotors using invertible neural networks. This Al-based design technology can capture
complex non-linear aerodynamic effects while being several orders of magnitude times faster than design
approaches based on purely computational fluid dynamics. This project enabled innovation in wind
turbine design by accelerating time to market through higher-accuracy early design iterations to reduce
the levelized cost of energy.

PROJECT OUTPUTS

A. Journal Articles

Jung, Y. S,, Vijayakumar, G., Ananthan, S., and Baeder, J., “Local Correlation-Based Transition Models for High-
Reynolds-Number Wind-Turbine Airfoils,” Wind Energy Science, Vol. 7, No. 2, 2022, pp. 603-622.

Marepally, Koushik, et al. "Uncertainty quantification of wind turbine airfoil aerodynamics with geometric
uncertainty." Journal of Physics: Conference Series. Vol. 2265. No. 4. |OP Publishing, 2022.

B. Papers

Glaws, Andrew, Vijayakumar, Ganesh, King, Ryan, Doronina, Olga, Baeder, James, Lee, Bumseok, Marepally,
Koushik, & Grey, Zachary (2022). Invertible Neural Networks for Aerodynamic Design of Wind Turbine
Blades.

Vijayakumar, G., Jung, Y. S., Baeder, J. D., and Ananthan, S.: Design-space exploration for inverse-design of
wind turbine blades using data-driven methods, in: SCiTECH 2022, 3—7 January 2022, San Diego, CA, and
online, AIAA 2022-1293, https://doi.org/10.2514/6.2022-1293, 2021.

C. Other Products (e.g. Databases, Physical Collections, Audio/Video, Software, Models, Educational
Aids or Curricula, Equipment or Instruments)

Vijayakumar, G., King, R., Glaws, A., Baeder, J., Doronina, O., Lee, B., Marepally, K., Jasa, J., & Grey, Z. (2021).
INTEGRATE - Inverse Network Transformations for Efficient Generation of Robust Airfoil and Turbine
Enhancements. [Data set]. Open Energy Data Initiative (OEDI). National Renewable Energy Laboratory (NREL).
https://doi.org/10.25984/1868906

Ramos, Dakota, Andrew Glaws, Ryan King, Bumseok Lee, Olga Doronina, James Baeder, Ganesh Vijayakumar,
and Zachary Grey. Airfoil Computational Fluid Dynamics-2k shapes, 25 AoA's, 3 Re numbers. No. 5970. DOE
Open Energy Data Initiative (OEDI); National Renewable Energy Laboratory (NREL), 2023.
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