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Project Overview: Target Properties
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Phase I

Properties Project target
Creep Creep strain <2% at 200 MPa after 100 hours
Ductility RT elongation >1.5%
Fracture toughness >10 MPa·m1/2 at RT
Manufacturability with <0.1mm in variation among five tensile bars manufactured specified to the 

appropriate ASTM E8/E8M standard.

Phase II

Yield stress at 1300℃ >400 MPa 
Solidus Temperature ≥1500℃

Density ≤9.0 g/cm3

Thermal conductivity 9-12 W/mK at RT; >24 W/mK at 1300℃;
CTE from RT to 1300℃ <2% 

Thermo-mechanical fatigue >1000 cycles at 0.45% strain and R=-1 between 100-1300℃

Creep Coated samples retain creep strength (at 1300℃ under 200MPa for 100 hours) 
after exposure to air at 1700℃ for 100 hours

Manufacturability A generic turbine with dimensions between 3 and 6 inches with internal cool 
channels with critical dimensional variation < 1% among three samples.



Technical Approach
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• Arc melted buttons (250g)
• Structure & property 

assessment
• Simulate AM build.

Single & multi-pass beam 
scanning of the surface to 
assess effect of solidification 
rate on cracking, segregation 
and precipitate formation

• Direct Energy Deposition 
DED-AM

• Design of Experiments to 
interrogate processing 
parameters (laser power, 
powder flow & velocity) on 
the build.

• Computationally 
interrogate key 
parameters 

• Specify 
compositional 
range for alloy(s)



Technical Approach

3

0

0.2

0.4

0.6

0.8

1.0

P
h
a
se

 m
o
le

 f
ra

ct
io

n

500 1000 1500 2000 2500

Temperature_Celsius

AlTi3

BCC

MC

HCP

s

BCC#2

LIQBCC

BCC

T_BCC_Decomposition

DT1 DT2

Element Function

Nb, V, 
Ti

Provide for low density and high ductility

Nb, Ta, 
Zr, Hf, 
Ti, C

MC carbide formers for precipitation 
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‣ Alloys: Nb-Ti-Ta-Mo-V-Zr-Hf-Cr-W-Al-C system 

‣ HT CALPHAD: ThermoCalc TCNI8 database
– Screening criteria: T_solidus ≥ 1800C, T_MC precipitation ≥ 1400C, T_decomposition ≤ 1000C, density ≤ 9.5 

g/cm^3, price ≤ $115/kg (C103).  

Alloy Design: High Throughput CALPHAD 
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Alloy Design Details: HT CALPHAD 
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High Throughput Materials Design 
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High Throughput Materials Design 
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Quasi-Harmonic Approach: Helmholtz Energy
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Moruzzi et al., PRB (1988); Wang et al., IJQC 96 (2004).

‣ V - volume

‣ T - temperature 

‣ 𝑉𝑒𝑞 - can be obtained by solving V from 
𝜕𝐹

𝜕𝑉 𝑇
=0

‣ Ec - 0 K static total energy 

‣ Fvib - vibrational contribution

‣ Fel - thermal electronic contribution

𝐹(𝑉, 𝑇) = 𝐸𝑐 𝑉 + 𝐹𝑣𝑖𝑏(𝑉, 𝑇) + 𝐹𝑒𝑙(𝑉, 𝑇)

𝐹𝑣𝑖𝑏 𝑉, 𝑇 =
9

8
𝑘𝐵𝛩𝐷 𝑉 + 𝑘𝐵𝑇 3 𝑙𝑛 1 − 𝑒𝑥𝑝 −

𝛩𝐷 𝑉

𝑇
− 𝐷

𝛩𝐷 𝑉

𝑇



Existing Approaches to Calculate Debye Temperature 
from Energy-Volume Curve
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• Debye temperature by Moruzzi model

𝛩𝐷 = 𝛩0
𝑉0

𝑉

𝛾
 𝑤𝑖𝑡ℎ 𝛩0 = 67.48

𝑟0𝐵0

𝑀
 and 𝑉0 =

4𝜋

3
𝑟0

3

• Grüneisen parameter

𝛾 =
1

2
1 + 𝐵0

′ − 𝜆

𝜆 = ൞

2/3,  Slater expression for high temperature
1,  Dugdale − MacDonald for low temperature

4/3,  Vashchenko − Zubarev due to free − volume theory

Moruzzi et al., PRB (1988); Wang et al., Int. J. Quantum Chem. 96(2004);

Slater, J. C. Introduction to Chemical Physics; McGraw-Hill: New York, 1939;

Dugdale & MacDonald, Phys. Rev. 89(1953);

Vashchenko & ZubarevSov Phys. Solid. State 5(1963).



Solution for Thermodynamic Calculations for HEAs with 
Arbitrary Compositions

Welcome to dfttk’s documentation! — dfttk 0.3.4 documentation

‣ In this work, we propose:

– 𝛾(𝑉) = 𝛾0
𝑉

𝑉0

𝜹

‣ For reference pure elements/species:

– Calibrate the parameters to reproduce the experimental CTE, heat capacity, 
and entropy 

‣ For compounds with arbitrary composition:

– The parameters are determined by arithmetic/geometric average over pure 
elements/species by composition

‣ Implemented in DFTTK (density functional theory toolkit) package:

– Welcome to dfttk’s documentation! — dfttk 0.3.4 documentation

10Q1 Review: Rapid Design of High-Performance Materials for Turbine Blade Application above 1300oCAugust 12, 2021

https://www.dfttk.org/en/master/


CTEs for Pure Elements
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Lines: theoretical; Other symbols: experimental or critical evaluations



Predictions for C103, NiAl and Ni3Al
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Lines: theoretical results

Symbols: experimental data



Predictions for equimolar RHEAs
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Predicted mean CTE (10-6 K-1) for equal molar system at the temperature 300, 900, and 1500 K.



Predictions for non-equimolar RHEAs
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Predicted mean CTE (10-6 K-1) for non-equimolar system at the temperature 300, 900, and 1500 K.



Predictions for NETL RHEAs
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Predicted mean CTE (10-6 K-1) for new RHEAs system at the temperature 300, 900, and 1500 K.



Coefficient of Thermal Expansion (CTE)
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Ab initio molecular dynamics (AIMD) simulations



‣ Our approach is to sum Peierls stress and solid solution strengthening for single BCC phase

– 𝜎 = 𝜏𝑝 + 𝜎𝑦 𝑇, ሶ𝜖

‣ As a simple approximation, the Peierls stress is calculated using the following analytical formula (Joos et al., 

Phys. Rev. Lett. 78(1997)2)

– 𝜏𝑝 = 𝐺𝑎𝑙𝑙𝑜𝑦
2𝜋

1−𝜈𝑎𝑙𝑙𝑜𝑦
exp −

2𝜋

1−𝜈𝑎𝑙𝑙𝑜𝑦

ℎ

𝑏

‣ The solid solution strengthening is calculated by the theoretical model developed by Maresca and Curtin (Acta 

Mater. 182(2020)235-249). The main equations for the model are for the calculations of zero temperature yield 

stress 𝜎𝑦0, the energy barrier for dislocation motion 𝐸𝑏 and the yield stress at finite temperature 𝜎𝑦 𝑇, ሶ𝜖 .

– 𝜎𝑦0 = 0.0915𝐺𝑎𝑙𝑙𝑜𝑦
1+𝜈𝑎𝑙𝑙𝑜𝑦

1−𝜈𝑎𝑙𝑙𝑜𝑦

4/3
σ𝑖 𝑐𝑖Δ𝑉𝑖

2

𝑏6

2/3

– 𝐸𝑏 = 0.874𝐺𝑎𝑙𝑙𝑜𝑦𝑏3 1+𝜈𝑎𝑙𝑙𝑜𝑦

1−𝜈𝑎𝑙𝑙𝑜𝑦

2/3
σ𝑖 𝑐𝑖Δ𝑉𝑖

2

𝑏6

1/3

– 𝜎𝑦 𝑇, ሶ𝜖 = 𝜎𝑦0[1 −
𝑘𝐵𝑇

Δ𝐸𝑏
ln(

ሶ𝜖0

ሶ𝜖
)

2/3
]
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Alloy Design Details: Yield Stress Modeling 

𝐺𝑎𝑙𝑙𝑜𝑦=the shear modulus

𝜈𝑎𝑙𝑙𝑜𝑦=Poisson’s ration

𝜎𝑦0 = yield stress at T=0K

𝐸𝑏=the energy barrier for dislocation motion

𝜎𝑦 𝑇, ሶ𝜖  =yield stress at finite temperature

Δ𝑉 = volume misfit

𝑐𝑖 = the alloy concentration for element i

[1] F. Maresca et al., Acta Materialia 182 (2020) 235. [2] C.H. Lee et al., Nature Communications 12(1) (2021).
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Intrinsic Ductility: D-Parameter 
𝛾𝑠𝑢𝑓=(1-10) surface energy; 𝛾𝑢𝑠𝑓=(1-10)[111] unstable stacking fault energy

Y.J. Hu, A. Sundar, S. Ogata, L. Qi, Screening of generalized stacking fault energies, surface energies and intrinsic ductile 
potency of refractory multicomponent alloys, Acta Materialia 210 (2021) 116800 

𝑫 =
𝜸𝒔𝒖𝒇

𝜸𝒖𝒔𝒇

over 112,378 
quaternary alloys in the 
8-component system

black dots: experiments are available. 
Red dots: DFT validations

(a) bulk (b) Supercell with 

10 Å vacuum

(c) Generalized 

staking fault

( )
Plane

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]
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Intrinsic Ductility: D-Parameter 
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Machine Learning Modeling
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Machine Learning Modeling

21
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Alloy Design Results: Round #1 

RHEA 1 RHEA 3

SEM backscattering electron micrographs. Those round, black features are presumably Ti-rich FCC MC 
carbides, as measured by EDS and WDS. The size is less than 10 m. They appear to be homogeneously 
distributed. This demonstrates the concept of MC carbide precipitation in a RHEA.



Alloy Design Results: High Temperature
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RHEA #27 as-cast RHEA #27 annealed at 1300C for 5 days



Alloy Design Results: Mechanical Properties
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Round IV alloys

Round III alloys

Compression tests at room 
temperatures before and after 
annealing at 1300C for 100 hours. 
The Y axis represents the change in 
yield stress due to annealing.  

The increase in yield stress is due 
to precipitation of fine MC 
carbides and formation of fine 
oxides



L-DED Processing of RHEA-15

Oxyg(ae)n-enrichment 

near the edge-

emanating 

crack/free surface.

Results from 

chemical analysis
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0.30 wt%



700 µm 700 µm

(a) (b)

Minimal cracking in the internal volume of Round 2 builds and no solidification cracking

indicates that RHEA-15 can be processed with L-DED if O content is kept minimal.

Microstructural Evolution of L-DED 
Processed RHEA-15 (Round 2 Builds)

67° specimen



➢High throughput, multiscale modeling are carried out to accelerate alloy 

design that possess balanced RT ductility & toughness, and high-

temperature yield strength and creep performance, while being light weight 

(≤9 g/cm3) and low cost.

➢Optimzied Debye-Grüneisen approach with volume dependence of the 

Grüneisen parameter to predict coefficient of thermal expansion (CTE)

➢Arc-melt buttons are made to rapidly verify computational design

➢Annealing promotes MC carbide precipitation as well as oxide dispersion, 

contributing about 20% increase in yield strength. 

➢Plasma arc melted ingots of large size are made. Tensile tests and creep 

tests are being planned. 

➢Good progress is made in mitigating thermal cracking in L-DED RHEAs.

Summaries and Future Work
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