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Project Overview: Target Properties N lcioioe: %OaxRIbGE (e

University
Project target
Creep strain <2% at 200 MPa after 100 hours
LI RT elongation >1.5%
Fracture toughness >10 MPa-m'/2 at RT
Manufacturability with <0.1Tmm in variation among five tensile bars manufactured specified to the
appropriate ASTM E8/E8M standard.
Yield stress at 1300°C >400 MPa
Solidus Temperature >1500°C
<9.0 g/cm3
Thermal conductivit 9-12 W/mK at RT; >24 W/mK at 1300°C;
CTE from RT to 1300°C <2%
Thermo-mechanical fatigue >1000 cycles at 0.45% strain and R=-1 between 100-1300°C
Creep Coated samples retain creep strength (at 1300°C under 200MPa for 100 hours)
after exposure to air at 1700°C for 100 hours
Manufacturability A generic turbine with dimensions between 3 and 6 inches with internal cool

channels with critical dimensional variation < 1% among three samples.
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» Direct Energy Deposition
DED-AM

 Design of Experiments to
interrogate processing
parameters (laser power,
powder flow & velocity) on
the build.




NATIONAL

Technical Approach A S
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Nb, V, Provide for low density and high ductility _ u
il BCC
IR MC carbide formers for precipitation 0.8 - -
strengthening at elevated temperatures g [ V T_BCC_Decomposition i
g
: : . : © 0.6 n
Provide for solid solution strengthening. =
Increase melting temperature. S ~ -
BCC stabilizers c 04- i
Increase intrinsic alloy ductility & solid % | HCP BCC |
solution strengthening N
Promote toughness through phase 0.2/ \BCCH2 -
transformation induced ductility
A3 - AT1/AT2 -
Al, Cr Increase oxidation resistance 0- \ | MC .
Enhance bulk alloy environmental resistance 50 1000 1500 2000 2500
and compatibility with environmental barrier A Temperature Celsius

7 || systems.
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» Alloys: Nb-Ti-Ta-Mo-V-Zr-Hf-Cr-W-AI-C system
» HT CALPHAD: ThermoCalc TCNI8 database

— Screening criteria: T_solidus > 1800C, T MC precipitation > 1400C, T_decomposition < 1000C, density <9.5
g/cm”3, price < $115/kg (C103).
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> AT2=T_liquidus — T_solidus; AT1 = T_solidus - T_MC precipitation
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F,T) = E.(V) + Fppp(V,T) + Fo (V,T)

Fo(V,T) = g ks 0 (V) + kaT {3 - [1 - (_ 0, T(V)>] . (@D T(v))}

» V- volume
» [ -temperature

>V, - can be obtained by solving V from (g—g);O

» E£. - 0 K static total energy
» F, - vibrational contribution
> F., - thermal electronic contribution

Moruzzi et al., PRB (1988); Wang et al., 1JQC 96 (2004).
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* Debye temperature by Moruzzi model

14
Op = 0y (L) with 6, = 67.48 (22) and V, = 13
* Gruneisen parameter

1
V=§(1+B('))—/1

( 2/3, Slater expression for high temperature
A= 1, Dugdale — MacDonald for low temperature
\4 /3, Vashchenko — Zubarev due to free — volume theory

Moruzzi et al., PRB (1988); Wang et al., Int. J. Quantum Chem. 96(2004);
Slater, J. C. Infroduction to Chemical Physics; McGraw-Hill: New York, 1939;
Dugdale & MacDonald, Phys. Rev. 89(1953);

Vashchenko & ZubarevSov Phys. Solid. State 5(1963).
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Arbitrary Compositions TLJiKsorarsr University

» In this work, we propose:

)
|%
-y() =0 (1)
» For reference pure elements/species:

— Calibrate the parameters to reproduce the experimental CTE, heat capacity,
and entropy

» For compounds with arbitrary composition:

— The parameters are determined by arithmetic/geometric average over pure
elements/species by composition

» Implemented in DFTTK (density functional theory toolkit) package:
— Welcome to dfttk’'s documentation! — dfttk 0.3.4 documentation
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https://www.dfttk.org/en/master/

CTEs for Pure Elements
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Predictions for C103, NiAl and Ni;Al
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Lines: theoretical results
Symbols: experimental data
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Coefficient of Thermal Expansion (CTE)
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Ab initio molecular dynamics (AIMD) simulations
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*NET (%) is the net expansion from RT-1200C.
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» Our approach is to sum Peierls stress and solid solution strengthening for single BCC phase
- 0=1,+0, (T,é)

» As a simple approximation, the Peierls stress is calculated using the following analytical formula (Joos et al.,
Phys. Rev. Lett. 78(1997)2)

Vaiioy=Poisson’s ration

21 21 h
- T,=G —eX (— —) G 4110v=the shear modulus
p alloy 1=vaiioy P 1-valloy b Y

» The solid solution strengthening is calculated by the theoretical model developed by Maresca and Curtin (Acta
Mater. 182(2020)235-249). The main equations for the model are for the calculations of zero temperature yield
stress gy, the energy barrier for dislocation motion E}, and the yield stress at finite temperature o, (T, €).

4/3 ¢ 212/3
— Oyo = 0-0915Galloy (ﬂ%) Zicb% gy = yield stress at T=0K
. o 2/3 ¢ J1/3 AV = volume misfit
— E, = 0-874Gazzoyb3 (;:aiioy) Zicb# Ep=the energy barrier for dislocation motion
o ¢ 03., 2/3 c; = the alloy concentration for element i
— 0y(T,€) = gyo[1 — {ALI;Tb ln(%0 } | o, (T, €) =yield stress at finite temperature

=
\il |)\.i° \‘.‘ [1] . Maresca et al., Acta Materialia 182 (2020) 235. [2] C.H. Lee et al., Nature Communications 12(1) (2021).
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Intrinsic Ductility: D-Parameter
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[112]

(@) bulk

Vsur=(1-10) surface energy; y,s=(1-10)[111] unstable stacking fault energy

AAARIAARIANL

(b) Supercell with 12!
10 A vacuum

(c) Generalized
staking fault

Y.J. Hu, A. Sundar, S. Ogata, L. Qi, Screening of generalized stacking fault energies, surface energies and intrinsic ductile
potency of refractory multicomponent alloys, Acta Materialia 210 (20217) 116800
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Alloy Design Results: Round #1 ,OAKRiDGE  {negie

100pm NETL 7/15/2021 100pm NETL 7/19/2021
5.0kV COMPO NOR WD 10.9mm 13:58:38 5.0kV COMPO NOR WD 10.9mm 11:23:36

SEM backscattering electron micrographs. Those round, black features are presumably Ti-rich FCC MC
carbides, as measured by EDS and WDS. The size is less than 10 um. They appear to be homogeneously
distributed. This demonstrates the concept of MC carbide precipitation in a RHEA.
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University

RHEA #27 as-cast o | |RHEA #27 annealed at 1300C for 5 days

E— 100pm NETL 4/8/2022
5.0kVv COMPO NOR WD 10.9mm 09:32:26

BED-C 15.0kVv WD 10.0 mm  Std.-PC75.0 HighVac. [S1x500
STD 0080 Sept. 02 2022
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Oxynen-enrichment
near the edge-
emanating
crack/free surface.

Build direction>
4 g -' \‘,., &

High oxygen contamination:
Results from :> 030 Wto/o

chemical analysis
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R SRR F ‘ Microstructural Evolution of L-DED NATIONAL :
d' lj‘i 0 I L 3'// - ¥L TECHNOLOGY - Wational ll:il:lur'.llur}f (l\alféi'ﬂ)%g‘le
canencwnarerosen e Processed RHEA-15 (Round 2 Builds)

LABORATORY Univer Slty

EHT = 5.00 kv %NO.:\K RIDGE | yaturactuzne D=6 ZEISS Gemini 450

IProbe= 25nA lational Laboratory | FACILITY Mag= 92X
Semplelo.= Image Pixel Size = 606.7 nm Width = 1.242 mm

Signal A = BSD4 A

67° specimen

Minimal cracking in the internal volume of Round 2 builds and no solidification cracking
indicates that RHEA-15 can be processed with L-DED if O content is kept minimal.
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» High throughput, multiscale modeling are carried out to accelerate alloy
design that possess balanced RT ductility & toughness, and high-
temperature yield strength and creep performance, while being light weight
(€9 g/cm?®) and low cost.

» Optimzied Debye-Grlneisen approach with volume dependence of the
Grlneisen parameter to predict coefficient of thermal expansion (CTE)

» Arc-melt buttons are made to rapidly verify computational design

» Annealing promotes MC carbide precipitation as well as oxide dispersion,
contributing about 20% increase in yield strength.

» Plasma arc melted ingots of large size are made. Tensile tests and creep
tests are being planned.

>(i30c3diprogress IS made in mitigating thermal cracking in L-DED RHEAs.
q pyple
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