

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Reference herein to any social initiative (including but not limited to Diversity, Equity, and Inclusion (DEI); Community Benefits Plans (CBP); Justice 40; etc.) is made by the Author independent of any current requirement by the United States Government and does not constitute or imply endorsement, recommendation, or support by the United States Government or any agency thereof.

ANL/ESIA-24/20 Rev.1

Summary of Expansions and Updates in R&D GREET® 2024 Rev.1

**Energy Systems and Infrastructure Analysis Division
Argonne National Laboratory**

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Lemont, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free at OSTI.GOV (<http://www.osti.gov/>), a service of the US Dept. of Energy's Office of Scientific and Technical Information.

Reports not in digital format may be purchased by the public from the National Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information
Service 5301 Shawnee Rd
Alexandria, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC.

Summary of Expansions and Updates in R&D GREET® 2024 Rev.1

Prepared by

Michael Wang, Hao Cai, Longwen Ou, Amgad Elgowainy, Thathiana Benavides, Farhad Masum, Lívia Benvenutti, Hoyoung Kwon, Xinyu Liu, Zifeng Lu, Sofia Martinez, Clarence Ng, Ishan Pandey, Siddharth Shukla, Thomas Sykora, Pradeep Vyawahare, Xinran Zhou

Energy Systems and Infrastructure Analysis Division
Argonne National Laboratory

May 2025

INTRODUCTION

The research and development (R&D) version of Greenhouse gases, Regulated Emissions, and Energy use in Technologies (GREET[®]) model, or R&D GREET, is developed by Argonne National Laboratory (Argonne) with the support of the U.S. Department of Energy (DOE) and other federal agencies. R&D GREET is a life cycle analysis (LCA) model, structured to systematically examine the energy and environmental effects of a wide variety of transportation fuels and vehicle technologies in major transportation sectors (i.e., road, air, marine, and rail) and other end-use sectors, and energy technology systems. Argonne has expanded and updated the model in several areas in R&D GREET 2024 Rev.1. This report provides a summary of the expansions and updates.

EXPANSIONS AND UPDATES

1. NATURAL GAS EXPANSION

The natural gas (NG) pathways have been updated to account for energy use and emissions of the natural gas supply chain at the NG production basin level in the U.S. (16 basins, Figure 1). Based on their production shares, the basins level production data have also been aggregated into higher-level production regions (6 regions, Figure 2, plus U.S. average) to be utilized throughout the R&D GREET model. This update includes all steps of the NG supply chain including production, gathering and boosting (G&B), processing, transmission, storage, and distribution stages. For the segment connecting production region to delivery region (origin-destination pair), NG sources are categorized into three types: conventional, unconventional (shale, tight, and coal bed methane), and offshore. For the segment connecting basin to region, the three NG sources are aggregated as combined NG. The data used for this update is acquired from Khutal et al. (2024).

Each of the 16 production basins are comprised of shares of conventional, unconventional, and offshore gas. Gas composition data (by share of constituents) for both raw and processed NG was used to calculate the gas properties (e.g., lower heating value, higher heating value, density, carbon content, sulfur content, and CH₄ fraction) for both raw and processed natural gas.

Figure 1. U.S. natural gas production basins

Additionally, the distance of pipeline transmission between origin and destination is developed to reflect each of the specific production and delivery segments. Due to the layout of NG transmission pipelines and compression stations across the United States, each production basin or region supplies NG to any of the other regions. More details on the implementation can be found in the report by Zhou et al. (2025).

Figure 2. Natural gas production and delivery regions

2. MARINE FUELS

Ethanol is added to the list of marine fuels in the “Marine_WTH tab”. The feedstocks for ethanol are corn, corn stover, switchgrass, miscanthus, poplar, willow, forest residue, grain sorghum, and sugarcane. Users can change the combination of the feedstocks in the EtOH tab; the default feedstock is 100% corn.

3. R&D GREET MARINE MODULE

The marine module is updated with the estimates from R&D GREET 2024 Rev1. FOG (Fats, oils, and grease) is replaced with landfill gas as feedstock for methanol and ammonia. Ethanol is added to the list of marine fuels in the module. Users can select one or more feedstocks from the feedstock mix to view the input parameters and emission estimates. It’s important to note that users must click on “Update Results” after selecting the feedstocks in BioFeedMix slicer.

4. CLEAN FUEL EXPANSION WITH COAL MINE METHANE

Capture and upgrading of coal mine methane (CMM) from active underground coal mines are added to the “Clean_Fuels” tab. The pipeline CMM produced from this pathway can be used as a process fuel or compressed and used as a transportation fuel. Detailed life cycle analysis of CMM capture and upgrading is documented in Ou and Cai (2024). Pipeline CMM is also added as an option for process fuels in the other pathways in the “Clean_Fuels” tab.

5. UPDATE OF WET MILL ETHANOL

We conducted a detailed Life-cycle analysis (LCA) to update GHG emissions of the US corn wet milling ethanol. Besides ethanol, the LCA considered dextrose and feed products including corn germ, gluten meal, and fibers (Do et al. 2025). Process-level energy and material balances for these products were collected through an industry survey of U.S. corn wet mills. A process-level allocation method based on mass outputs was applied to allocate energy and emission burdens to each product within wet mills. In addition, a plant-level allocation method based on mass outputs was implemented to estimate product-specific emissions.

REFERENCES

Do, T.N., Ou, L., Cai, H., Wang, M. (2025). Life-Cycle Analysis of Ethanol, Dextrose, and Feed Products from Corn Wet Mills in the United States. ACS Sustainable Chemistry & Engineering. <https://pubs.acs.org/doi/full/10.1021/acssuschemeng.4c09569>

Khatal, H., Willems, N., Matthews, H., Chivukula, K., Priyadarshini, NFN, Jamieson, M., and Skone, T. (2024). Life Cycle Analysis of Natural Gas Extraction and Power Generation: U.S. 2020 Emissions Profile. <https://doi.org/10.2172/2483883>

Ou, L., and Cai, H. (2024). Life-Cycle Greenhouse Gas Emissions of Capture and Utilization of Methane-Rich Drainage Gas from Active Underground Coal Mines in the United States.

Wang, M., Cai, H., Liu, X., Kwon, H., Gracida-Alvarez, U., Kar, S., Do, T. N., Ou, L., and Sykora, T. (2025). Life Cycle Analysis of Greenhouse Gas Emissions of Clean Fuels with the R&D GREET 2024 Model. Energy Systems and Infrastructure Analysis Division, Argonne National Laboratory. ANL/ESIA-24/21.

Zhou, X., Pandey, I., Martinez, S., Shukla, S., Vyawahare, P., Ng, C., Elgowainy A. (2025). Updated Natural Gas Pathways in R&D GREET 2024 Rev.1. https://greet.anl.gov/publication-update_ng_2024_Rev1

Energy Systems and Infrastructure Analysis Division

Argonne National Laboratory
9700 South Cass Avenue
Lemont, IL 60439

www.anl.gov

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC